Supplementary Information

Mechanism of small molecule inhibition of *Plasmodium falciparum* myosin A informs antimalarial drug design

Dihia Moussaoui^{1,2,5}, James P. Robblee^{3,5}, Julien Robert-Paganin^{1,5}, Daniel Auguin^{1,4}, Fabio Fisher⁵, Patricia M. Fagnant³, Jill E. Macfarlane³, Julia Schaletzky⁶, Eddie Wehri⁶, Christoph Mueller-Dieckmann², Jake Baum^{5,7}, Kathleen M. Trybus^{3,#}, Anne Houdusse^{1,#}.

Affiliations

¹Structural Motility, Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, CNRS UMR144, 75248 Paris, France

²Structural Biology group, European Synchrotron Radiation Facility. 71, Avenue des Martyrs, 38000 Grenoble, France. Current affiliation of DM.

³Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, VT, USA.

⁴Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d'Orléans, INRAE, USC1328, Orléans, France.

⁵Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK. ⁶Center for Emerging and Neglected Diseases, Drug Discovery Center, Berkeley, CA, USA.

⁷School of Medical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, 2052, NSW, Australia.

[#] Correspondence and requests for materials should be addressed to K.M.T. (email: <u>kathleen.trybus@uvm.edu</u> or to A.H. (email: <u>anne.houdusse@curie.fr</u>)

^{\$} These authors contributed equally

(a) Affinity of KNX-002 for nucleotide-free M

(b) Affinity of KNX-002 for M.ADP

Supplementary Figure 1 – Affinity of KNX-002 for nucleotide-free PfMyoA and PfMyoA.ADP

(a) Affinity of KNX-002 for nucleotide-free PfMyoA (M). Fractional amplitude of the slow phase $(A_{slow}/(A_{fast} + A_{slow}))$ as a function of KNX-002 concentration. 0.3 µM PfMyoA was pre-incubated with varying concentrations of KNX-002 and then rapidly mixed with either 3 µM mant-ATP (filled circles) or 6 µM mant-ADP (open circles) also containing KNX-002 (pre-mixing concentrations stated). Observed rate constants for the time courses were $6.5 \pm 0.4 \text{ s}^{-1}$ (no KNX-002) and $1.03 \pm 0.01 \text{ s}^{-1}$ (100 µM KNX-002) for mant-ATP and $12.7 \pm 0.2 \text{ s}^{-1}$ (no KNX-002) and $1.80 \pm 0.02 \text{ s}^{-1}$ (100 µM KNX-002) for mant-ATP. For intermediate KNX-002 concentrations, the fractional amplitude of the slow phase ($A_{slow}/(A_{fast} + A_{slow})$) of the biphasic transients is plotted against KNX-002 concentration. The K_d of KNX-002 for nucleotide-free PfMyoA is 8.6 µM (hyperbolic fit). The two resolvable kinetic phases suggest that the off rate of KNX-002 is very slow.

(b) Affinity of KNX-002 for PfMyoA in the presence of ADP (M.ADP). The disappearance of the fast phase (1 - (A_{fast} at measured [KNX-002] / A_{fast} in the absence of KNX-002)) as a function of KNX-002 concentration. 0.3 μ M PfMyoA was pre-incubated with 100 μ M ADP and the indicated amount of KNX-002 and then rapidly mixed with 3 μ M mant-ATP also containing the indicated amount of KNX-002. The K_d of KNX-002 for PfMyoA.ADP is 11.1 μ M (hyperbolic fit). All time courses were biphasic with a fast phase rate of 1.44 ± 0.03 s⁻¹ of varying amplitude and a slow phase having a constant rate (0.08 ± 0.01 s⁻¹) and constant amplitude.

In a separate experiment, 200 μ M KNX-002 was mixed with PfMyoA.mant-ADP. A small increase in bound mant-ADP fluorescence (excited via a Trp residue in PfMyoA) was observed at a rate of ~1 s⁻¹. This observation is consistent with the ability of KNX-002 to bind to PfMyoA that has mant-ADP bound at the active site.

Conditions: 10 mM HEPES pH 7.5, 50 mM KCl, 4 mM MgCl₂, 1 mM EGTA, 1 mM DTT, 1% DMSO, 30°C. Two independent experiments were performed. Source data are provided as a Source Data file.

Supplementary Figure 2 – Backdoor and Schematic motor cycle of a myosin.

(a) Backdoor of myosins has a fully closed configuration in the Pre-powerstroke state, but not in the post-Rigor state.

(b) Motor cycle - In the post-rigor (PR) state, the myosin is bound to ATP, with the lever arm down and the actin binding cleft open, including the inner cleft. The PR is detached from actin. Priming of the lever arm occurs during the recovery stroke, resulting in the pre-power stroke state (PPS) in which ATP hydrolysis is facilitated thanks to the specific positioning of Switch-2 in this state (inner cleft or backdoor closed). The PPS state can associate weakly to the actin track. This association triggers the transition towards the P_i release state (P_iR) that allows P_i release. It is presumed that a small movement of the lever arm is sufficient to rearrange the actin-binding site in the P_iR state so that an opening of the P_i release tunnel would then allow the P_i to escape the active site¹. The P_iR state initiates force production. A large lever arm swing and cleft closure drive the transition to the Strong ADP state during the powerstroke. Finally, the release of the Mg²⁺ ion followed by ADP occurs after the transition to the Rigor state, myosin is ready to bind a new ATP molecule. This leads to fast detachment from actin while myosin adopts a post-rigor state and starts a new cycle. The structural features underlying myosin force production are reviewed in².

Supplementary Figure 3 – Analysis of the binding pocket of KNX-002. (a) Superimposition on the U50 subdomain of PfMyoA bound to KNX-002 (colored by subdomains, PfMyoA/ATPγS/KNX-002) and PfMyoA in the apo condition (black, PfMyoA/ATPγS/Apo). Small local accommodations are induced in the pocket by the binding of the drug, the most remarkable being a shift in Switch-2 (Sw-2) position (indicated with a dashed purple circle). (b) Superimposition of PfMyoA/ATPγS/KNX-002 and PfMyoA in the pre-powerstroke (PPS) state (PDB code 6YCX,³) on the U50 subdomain. The superimposition shows that KNX-002 cannot bind in PPS. In particular, a clash would occur if Switch-2 rearranges to close the backdoor as found in PPS. Note in particular the position F471 adopts in the PPS state. (c) Cartoon representation showing the ΦLL linker, a conserved element located in the U50 after the Transducerβ7 strand. Alignment of myosin sequences show the conservation of the ΦLL linker: PfMyoA; human fast skeletal muscle myosin 2 (SkMyo2_MYH2); human β-cardiac muscle myosin 2 (Cardiac_MYH7); human smooth muscle myosin 2 (SmMyo2_MYH11); human myosin 6 (Hs_Myo6); human myosin 5a (Hs_Myo5a); human myosin-1b (Hs_Myo1b); *Dictyostelium discoideum* myosin 2 (DdMyo2).

Supplementary Figure 4 – Validation of the KNX-002 binding pocket. (a) Representation of the differences existing in the KNX-002 binding pocket in PfMyoA and in β -cardiac myosin in the PR state (PDB code 6FSA,⁴). The two structures are aligned on the U50 subdomain of PfMyoA. The sequence differences in cardiac are represented as stick in grey (for detail see Fig. 3f). Residues mutated in PfMyoA to alter the pocket and prevent inhibition are represented in a red box. (b) Sequence alignment of the different structural elements of KNX-002 binding pocket in several myosins: Plasmodium falciparum myosin A (PfMyoA); Homo sapiens myosin 5a (MYO5A_HUMAN); Homo sapiens myosin 1b (MYO1B_HUMAN); Homo sapiens β -cardiac myosin (MYH7_HUMAN). Residues involved in polar contacts are labelled with a red star; positions of important differences are labelled with a red hash, the three mutations in the triple mutant F270Y/F471A/F645H are labelled with a red hash. (c) KNX-002 poorly inhibits the actin-activated (filled green squares, IC₅₀>100 µM) and the basal ATPase activity (open green squares, 52 µM of the triple mutant F270Y/F471A/F645H compared to its effect on WT PfMyoA (WT fits reproduced from Fig. 1a, actin-activated (solid line) and basal (dashed black line) ATPase activity). n=2 for each assay. Source data are provided as a Source Data file.

Supplementary Figure 5 – Characterization of the triple mutant F270Y/F471A/F645H.

(a) Coomassie stained 4-12% SDS-PAGE gel of (lane 1) molecular mass markers and (lane 2) the F270Y/F471A/F645H triple mutant. The uncropped gel image is shown in Supplementary Figure 11. (b) Speed distributions from a representative *in vitro* motility assay of the F270Y/F471A/F645H triple mutant. 1% DMSO, 0.71 \pm 0.13 µm/s; 100 µM KNX-002, 0.61 \pm 0.12 µm/s. Values reported are mean \pm SD. 799 filaments counted (n=8 movies) for 1% DMSO and 775 filaments (n=6 movies) counted for 100 µM KNX-002. Conditions: 25 mM imidazole pH 7.5, 150 mM KCl, 4 mM MgCl₂, 1 mM EGTA, 10 mM DTT, 2 mM MgATP, 0.5% methylcellulose, 1% DMSO, 30°C. The speeds in the presence or absence of KNX-002 are statistically insignificant using a two-sided z-test (*p* = 0.572). Source data are provided as a Source Data file.

Supplementary Figure 6 – Comparison of the structures PfMyoA/ATPyS/KNX-002 and PfMyoA/NF/KNX-002. The structures of PfMyoA complexed to ATPyS and KNX-002 (PfMyoA/ATPyS/KNX-002, colored by subdomain) and PfMyoA complexed to KNX-002 in the nucleotide free state (PfMyoA/NF/KNX-002, dark grey). In the presence of KNX-002, the structures of PfMyoA are highly similar independent of the presence of the nucleotide. The only differences are in the local conformation of residues located in the P-loop (dark yellow) and Switch-1 (olive green); the side chains of these residues are represented as sticks. The two structures are superimposed on the U50 and L50 (residues 182-667).

Supplementary Figure 7 – The presence of γ -phosphate does not alter the coordination of Mg²⁺ ion. Comparison of Mg²⁺ coordination in DdMyo2 structure complexed to (a) ADP (PDB code 1MMA)⁵, (b) DdMyo2 complexed to ATP γ S (PDB code 1MMG)⁵, (c) DdMyo2 structure complexed to ATP (PDB code 1FMW)⁶. (d) For comparison, the coordination of PfMyoA complexed to ATP γ S and KNX-002 (PfMyoA/ATP γ S/KNX-002).

Supplementary Figure 8 – Raw data showing examples of fields of actin bound to surface immobilized PfMyoA. Direct comparison of the amount of actin bound in various nucleotides in the absence or presence of 100 μ M KNX-002. Quantitation of the number of bound filaments is shown in Fig. 5a and Supplementary Fig. 9. Scale bar is 10 μ m.

Supplementary Figure 9 – Expanded y-axis for data in Fig. 5a. Number of actin filaments bound \pm SD to surface immobilized PfMyoA (see Methods): ATP, 0.011 \pm 0.004; ATP + KNX-002, 0.008 \pm 0.030; ADP, 0.59 \pm 0.05 (see Fig. 5a); ADP + KNX-002, 0.030 \pm 0.008. Data represent two experiments each performed in triplicate with independent protein preparations (open and filled circles). No significant differences were observed between any pairs of the illustrated data: ATP \pm KNX-002 (p>0.999), ADP+KNX-002 and ATP+KNX-002 (p=0.971), ADP+KNX-002 and ATP (p=0.992) (one-sided ANOVA followed by Tukey's post-hoc test). Conditions: 25 mM imidazole pH 7.5, 150 mM KCl, 4 mM MgCl₂, 1 mM EGTA, 10 mM DTT, 0% methylcellulose, 1% DMSO, 30°C. 2 mM MgATP or MgADP were added for +ATP or +ADP condition, respectively. Data bars are mean \pm SD.

Supplementary Figure 10 – KNX-002 does not affect the rate of ATP induced actomyosin dissociation. 0.3 µM PfMyoA and 0.4 µM skeletal actin were rapidly mixed with ATP in either 1% DMSO (blue open squares) or 100 µM KNX-002 (red filled circles). The apparent second order binding constant ± SD: 1% DMSO, 1.46 ± 0.14 µM⁻¹ s⁻¹; KNX-002, 1.53 ± 0.33 µM⁻¹ s⁻¹. Conditions: 10 mM HEPES pH 7.5, 50 mM KCl, 4 mM MgCl₂, 1 mM EGTA, 1% DMSO, 15°C. Source data are provided as a Source Data file.

Supplementary Figure 11 – Uncropped gel image from Supplementary Figure 5a. Lanes 2-4 are shown in Supplementary Figure 5a.

	PfMyoA/ATPγS/Apo (8A12)	PfMyoA/ATPγS/KNX-002	PfMyoA/NF/KNX-002
		(8CDQ)	(8CDM)
Data collection			
Space group	P212121	P212121	P212121
Cell dimensions			
a, b, c (Å)	90.13, 115.14, 190.22	114.42, 170.92, 90.40	89.93, 114.41, 170.33
α, β, γ (°)	90, 90, 90	90, 90, 90	90, 90, 90
Resolution (Å)	85.11-2.03 (2.22-2.03)	95.08-2.21 (2.43-2.21)	94.97-2.36 (2.53-2.36)
R _{merge} (all I+ & I-)	0.078 (1.136)	0.199 (1.476)	0.144 (1.672)
R _{merge} (within I+ & I-)	0.073 (1.037)	0.189 (1.384)	0.140 (1.605)
Number of	606008 (30283)	397437 (21446)	528650 (25814)
observations (total)			
Number of	87835 (4371)	57115 (2857)	55344 (2767)
observations (unique)			
<l σl=""></l>	13.1 (1.6)	8.1 (1.5)	11.3 (1.5)
Completeness	85.8 (15.9)	64.0 (13.2)	75.4 (19.9)
(Spherical) (%)			. ,
Completeness	94.4 (63.0)	93.9 (59.2)	93.9 (69.2)
(Ellipsoidal) (%)			
Redundancy	6.9 (6.9)	7.0 (7.5)	9.6 (9.7)
CC1/2	0.999 (0.632)	0.992 (0.546)	0.997 (0.578)
Refinement			
Resolution (Å)	42.56-2.03 (2.10-2.03)	95.08-2.21 (2.29-2.21)	46.44-2.355 (2.44-2.36)
No. reflections	87338 (693)	57104 (274)	55334 (821)
Rwork / Rfree	0.1886/0.2324	0.1882/0.2353	0.1964/0.2482
No. atoms	9182	8998	8946
Protein	8641	8583	8546
Ligand/ion	46	110	44
Water	495	305	356
B-factors	58.18	50.08	58.72
Protein	58.38	40.37	58.84
Ligand/ion	49.71	43.14	48.64
Water	55.48	44.31	57.05
R.m.s. deviations			
Bond length (Å)	0.014	0.009	0.008
Bond angle (°)	1.21	0.98	0.92
PDB code	8A12		

Supplementary Table 1 – Data collection and refinement statistics (molecular replacement)

*Number of xtals for each structure should be noted in footnote. *Values in parentheses are for highest-resolution shell.

PfMyoA	KNX-002 (8CDQ-	Dd Myo2 (1YV3)	Blebbistatin
_{Нw-h} l641	(D) Methoxyphenyl	н _{w-h} V630	(D)
_{Нр-h} E482	(D)	Hp-h E467	Phenyl (D)
_{Нр-h} F485	(D)	нр-h C470	
Hp-h L481		_{Нр-h} F466	(D)
_{φLL-linker} L272 mc	(D) few interactions	_{φLL-linker} L263 mc	(D) few interactions
_{Hp-h} I486	(A,B,C,D)	_{Hp-h} l471	(C)
φLL-linker L271	(A, C, D) (electrostatic)	φLL-linkerL262	(B,C,D) (electrostatic)
φLL-linker F270	(A) Thiophene	φLL-linker Y261	(A,B) (pi-stacking)
_{Hp-h} T489	(A)	_{Hp-h} T474	(A)
_{Нw-h} F645	(A)	_{Hw-h} V634	(A,B,D)
_{нw-h} Q648		_{Нw-h} Q637	(A)
_{Hw-h} L649		_{Нw-h} L638	
_{Нw-h} L652		_{нw-h} L641	
_{Sw2} I470	(A,B)	_{Sw2} I455	(A,B)
_{Sw2} F471	(B) (pi-stacking),(electrostatic)few A,C	_{sw2} S456	(B,C) (electrostatic)
Sw1 S246 Carbonyl	(B) Pyrazole Water-ATP-Mg ²⁺ (electrostatic)	Sw1S237 Carbonyl	
Transd F248-G249 mc	(B,C)	Transd F239-G240 mc	(B,C) (electrostatic)
_{Sw1} R247	(C), few cyclopropamine	Sw1R238	(C) few interactions
φLL-linkerE273	(C), few D	φLL-linker E264	(D)

Supplementary Table 2 – Contacts between ligand and protein residues

Blue background – sequences differ between PfMyoA and DdMyo2

Orange background – no interaction

Supplementary Table 3 – Comparison of the binding modes of KNX-002 versus Blebbistatin

Blebbistatin	KNX-002	
Differ	ences	
^a Does not prevent ATP hydrolysis	Diminishes ATP hydrolysis (Pi burst experiment,	
Binds preferentially to ADP.Pi	Fig. 2d)	
^a Does not compete with nucleotide binding	Inhibits ATP binding 5-fold (Fig. 4c)	
^a Does not alter affinity for ADP at mM MgCl ₂	KNX-002 decreases ADP affinity at 4 mM MgCl ₂	
	(Fig. 4c)	
^b Does not weaken binding of M.ADP to A	Inhibits binding of M.ADP to A (Fig. 5a)	
^a Binds weakly to apoM (25 μ M) compared to	Binds to nucleotide-free M (8.6 μ M) and M.ADP	
IC ₅₀ for ATPase activity (1.6 μ M for basal/0.4 μ M	(11.1 μ M) with same order of magnitude as the	
for actin activated)	IC ₅₀ ATPase activity (3.6 μ M for basal/7.2 μ M	
	for actin- activated) (Supplementary Fig. 1 and	
	Fig. 1a)	
Similarities		
^a Does not interfere with binding of M to A	Does not interfere with binding of M to A (Fig.	
	5a)	
^a Does not interfere with ATP induced	Does not interfere with ATP induced	
dissociation of AM	dissociation of AM (Supplementary Fig. 10)	
^a Blocks myosin heads in a state that binds with	Blocks myosin heads in a state that binds with	
low affinity to actin	low afffinity to actin (Fig. 5a)	

^aKovacs, M. *et al*. J. Biol Chem 279:25557-63 (2004) ⁷ ^bTakacs, B. *et al*. PNAS 107:6799-6804 (2010) ⁸

Supplementary Table 4 – KNX-002 pocket is conserved in sequence in Myosin A from different Apicomplexan genus.

Myosin A sequences from different Apicomplexan genus are represented: *Plasmodium falciparum* (PfMyoA); *Toxoplasma gondii* (TgMyoA); *Eimeria tenella*; *Babesia bovis*; *Hepatocystis ssp*. All the residues involved in KNX-002 binding (in red) are conserved in all the MyoA, suggesting that KNX-002 would be able to inhibit all these motors. Fully conserved residues are labelled with an asterisk (*), residues conserved with groups of strongly similar properties are labelled with a colon (:), and residues conserved with groups of weakly similar properties are labelled with a period (.). The alignment was performed using ClustalOmega⁹. This conservation contrasts from the divergence seen when PfMyoA is aligned to human unconventional myosins (Supplementary Fig. 4b).

-MAVTNEEIKTASKIVRRVSNVEAFDKSGSVFKGYOIWTDISPTIENDPNIMFVKCVV0 58 PfMyoA TqMyoA MASKTTSEELKTATALKKRSSDVHAVDHSGNVYKGFQIWTDLAPSVKEEPDLMFAKCIVQ 60 MyoA_Eimeria_tenella MAAEEVKTAAGLKKKVSDVHVFDQSGAVFKGFQIWTDLAPAVREQPNLMFAKCAVQ MyoA Babesia bovis -MARFSKDEIATANALKRQGTAVQAFDASDNLLTGFQIWTDAAPSIKEDPSLLFVKCLVH 59 MyoA Hepatocystis --MAVTNEEIKTVSKIVKRASAIEAFDKSGGVFKGYQIWTDISPTIKENPNIMFVKCVVQ 58 : :*: *. PfMyoA QGSKKEKLTVVQIDPPG----TGTPYDIDPTHAWNCNSQVDPMSFGDIGLLNHTNIPCVL 114 AGTDKGNLTCVQIDPPG----FDEPFEVPQANAWNVNSLIDPMTYGDIGMLPHTNIPCVL 116 TqMyoA SGSSKEVLVVQQVEPAG----GGETFEVPQAHAWNVNSAIDPMTYGDIGMLPHTNIPCVL MyoA_Eimeria_tenella 112 MyoA_Babesia_bovis PGSTREKLICSQIEPAPPAGQEDKTFEVPLANAWNTNMSIDPMTYGDIGMLPQTNIPCVL 119 MyoA Hepatocystis QGSKQDKLTVVQIDPPG----LGTPYEIDSTHAWNCNSQIDPMSFGDIGSLNHTNIPCVL 114 :***::**** ::: ::*** *: : *::* . PfMyoA DFLKHRYLKNOIYTTAVPLIVAINPYKDLGNTTNEWIRRYRDTADHTKLPPHVFTCAREA 174 TgMyoA DFLKVRFMKNQIYTTADPLVVAINPFRDLGNTTLDWIVRYRDTFDLSKLAPHVFYTARRA 176 DFI.RHRYI.RNOTYTCADPI.VVATNPFKDI.GNTTKEWICRYRDADDFTKI.PPHVFYTARVA MyoA_Eimeria_tenella 172 MyoA Babesia bovis DYLBHRFMNNOTYSTADPLLVATNPFKDLGNATDAVTREYKTAADSLKLAPHVFRTARMA 179 DFLKQRYVKNQIYTTAAPLIVAINPYKDLGNTTKEWIRRYRDASDYTKLPPHVFTCARTA 174 MyoA Hepatocystis * • • • * * * * • * **:****::****:* *:*: .*: : PfMvoA LSNLHGVNKSOTIIVSGESGAGKTEATKOIMRYFASSKSGNMDLRIOTAIMAANPVLEAF 234 TgMyoA LDNLHAVNKSQTIIVSGESGAGKTEATKQIMRYFAAAKTGSMDLRIQNAIMAANPVLEAF 236 MyoA Eimeria tenella LDNLHGVNKSOTIIVSGESGAGKTEATKOVMRYFAAAKGGAMDMRIONAIMAANPVLEAF 232 LENVYDYKYSQTIIVSGESGAGKTEATKQMMRYFAYSQKGETSGKIQTAIMAANPVLEAF MyoA Babesia bovis 239 MyoA Hepatocystis LENLHGVNKSQTIIVSGESGAGKTEATKQIMRYFASSKSGNMDLRIQTAIMAANPVLEAF 234 * . * : : GNAKTIRNNNS**SRFG**RFMOLVISHEGGIRYGSVVA**FL**LEKSRITTODDNERSYHIFYOFI, 294 PfMvoA GNAKTIRNNNS**SRFG**RFMOLDVGREGGIKFGSVVA**FL**LEKSRVLTODEOERSYHIFYOMC 296 TqMyoA MyoA Eimeria tenella GNAKTIRNNNS**SRFG**RFMQLDVAKEGGIRYGSVVA**FLLE**KSRVLTQDEQERSYHIFYQLC 292 MyoA_Babesia_bovis GNAKTIRNNNS**SRFG**RFMQLDVSEEGGIRYGSVVA**FL**L**E**KSRIITQDSDERSYHIFYQFL 299 GNAKTIRNNNS**SRFG**RFMQLIISHEGGIKNGSIVA**FL**L**E**KSRIISQDENERSYHIFYQFL 294 MyoA Hepatocystis KGANSTMKSKFGLKGVTEYKLLNPNSTEVSGVDDVKDFEEVIESLKNMELSESDIEVIFS 354 PfMvoA KGADAAMKERFHILPLSEYKYINPLCLDAPGIDDVAEFHEVCESFRSMNLTEDEVASVWS 356 TqMyoA KGADKAMRDKFHLLSLDQYTYINPKCFDVPGIDDIADYNDVCAAFKSMAMSEEQVEAVWS 352 MyoA_Eimeria_tenella MyoA_Babesia_bovis KGATPEMRNKYKLKGLNEYKFLNPNCLDVPSIDDVADFKEVLESFKNMGLGESEIDTILS 359 MyoA_Hepatocystis KGASSAMKSKYGLKDLKSYSLLNPNSVNVNGIDDVKDFNEVMESLKNMOLSDDOIDVIFS 354 : .*. :** . :. .**: ::.:* :::.* : :.:: *:.:: : PfMyoA IVAGILTLGNVRLIEKOEAGLSDAAAIMDEDMGVFNKACELMYLDPELIKREILIKVTVA 414 TqMyoA IVSGVLLLGNVEVTATKDGGIDDAAAIEGKNLEVFKKACGLLFLDAERIREELTVKVSYA MyoA_Eimeria_tenella IVSGVLLLGNVKVTASKQGGIDDAAAIEGDNLTLFNQACQLLHIDAEAVLRELTLKVTYA 412 MyoA Babesia bovis VI.SGVI.I.MGNVETGATSVDGTDDAAMTVNK--DVFNTACNI.I.YI.DPALI.ETEL.TVKTTSA 417 IIAGILTLGNVRLIEVADAGLTDAAAIHNEDTGLFRKACELMFLDAEAVKREILIKVTIA 414 MyoA Hepatocystis *: *** * .. :*. ** *:.:* ···* ·* ·*** ·· *: :*:: : PfMyoA GGTKIEGRWNKNDAEVLKSSLCKAMYEKLFLWIIRHLNSRIEPEGGFKTFMGMLD**IF**GFE 474 GNOF TRGRWKOEDGDMLKSSLAKAMYDKLEMWTTAVLNRSTKPPGGFKTEMGMLD**IF**GFE 476 TqMvoA MyoA_Eimeria_tenella MyoA_Babesia_bovis GGOKVESRWKOEDGDMLKSSLAKAMYDKLFLWIIRELNKSIEPPEGFRNFLGMLDIFGFE 472 GNNQIKGPRKKQDGEVLKTSVCKAIYERLFLWLIRNLNRSIEPPTGFKTFIGMLD**IF**GFE 477 MyoA Hepatocystis GGNKIEGRWNKKDAEVLKSSLCKAMYEKLFIWIINYLNSRIEPKDGFSVFMGMLD**IF**GFE 474 *. ::.. ::*.:**:*:.**:*:**:* * * *:* * * * • * * * * * * * * PfMyoA VFKNNSLEOLFINITNEMLOKNFVDIVFERESKLYKDEGISTAELKYTSNKEVINVLCEK 534 ΤαΜνοΑ VFKNNSLEOFFINTTNEMLOKNFVDIVFDRESKLYRDEGVSSKELTFTSNAEVIKILTAK 536 VFKNNSLEQFFINVTNEMLQKNFVDIVFTREAKLYKEEGVSTAELVYTSNADVISLLTDK 532 MyoA Eimeria tenella MyoA_Babesia_bovis VFKNNSLEQLFINITNEMLQTNFVDIVFKREAALYTNEGIPIPELKYTSNADIIEVLCSK 537 MyoA_Hepatocystis VFKNNSLEQLFINITNEMLQKNFIDIVFERETKLYREEGISSAELKYTSNKDVISVLCDK 534 ** *** *** PfMvoA GKSVLSYLEDOCLAPGGTDEKFVSSCATNLKENNKFTPAKVASNKNFIIOHTIGPIOYCA 594 NNSVLAALEDQCLAPGGSDEKFLSTCKNALKGTTKFKPAKVSPNINFLISHTVGDIQYNA 596 TqMyoA MyoA Eimeria tenella KSSILSTLEDOCLAPGGGDEKFVAACKSAFKNSPKFKPAKVSPNINFLVCHTIGDIOYNA 592 MyoA_Babesia_bovis GKSILSLLEDQCLAPGGTDENLVSSCNNQLKDNSKYSPAKVGAKLNFTVTHTIGTISYNA 597 MyoA_Hepatocystis GRSVLSYLEDQCLAPGGTDEKFVSACVINLKTNEKFIPAKVASNKNFLIQHTIGAIQYCA 594 :* . *: **** : ** : **:* *.*

PfMyoA TgMyoA MyoA_Eimeria_tenella MyoA_Babesia_bovis MyoA_Hepatocystis	ESFLLKNKDVLRGDLVEVIKDSPNPIVQQLFEGQVIEKGKIAKGSLIGSQFLNQLTSLMN EGFLFKNKDVLRAEIMEIVQQSKNPVVAQLFAGIVMEKGKMAKGQLIGSQFLSQLQSLME EGFLFKNKDVLRAEIMEVVQASPNPVVRDLFAGIVMEKGKIAKGQLIGSQFLRQLEALMD QSFIFKNKDVLTAELVECVNASPNEMIKGLFENVVVTRGKLAKGQLIGSQFLNQLISLMS :.*::******* .:::* : * :: ** .:: :**:********	654 656 652 657 654
PfMyoA TgMyoA MyoA_Eimeria_tenella MyoA_Babesia_bovis MyoA_Hepatocystis	LINSTEPHFIRCIKPNENKKPLEWCEPKILIQLHALSILEALVLRQLGYSYRRTFEEFLY LINSTEPHFIRCIKPNDTKKPLDWVPSKMLIQLHALSVLEALQLRQLGYSYRRPFKEFLF LINSTEPHFVRCVKPNDTKKPLDWVQSKVLIQLHALSVLEALQLRQVGFSYRRPFKDFLY LINSTDSHFIRCVKPNESKQPLDFNSVKILVQLHALSIIEALQLRKLGYSYRRPYESFLE LINCTEPHFIRCIKPNENKKPLEWCEPKILIQLHALSILEALTLRQLGYSYRRTFKEFLY ***.*: **:**:**:**:: *::****::***	714 716 712 717 714
PfMyoA TgMyoA MyoA_Eimeria_tenella MyoA_Babesia_bovis MyoA_Hepatocystis	QYKFVDIAAAEDSSVENQNKCVNILKLSGLSESMYKIGKSMVFLKQEGAKILTKIQREKL QFKFIDLSASENPNLDPKEAALRLLKSSKLPSEEYQLGKTMVFLKQTGAKELTQIQRECL QFKFIDLGICENPNLSPKEACEALLEKAKVSKSGCQVGKTMIFLKQDAAKQLTLLQRQCL QYKYLDLSITNDKSLDPKVAAERLITSVGVSKDQYAFGKSMMFLTQKLAKELTAIQRQRL QYKFVDIAVTEDSSIDDANKCVKILKNSGLSENMYKLGKTMVFLKQEGAKALTKYQREKL *:*::*:. :: .: .: .**:**** *** *** ***	774 776 772 777 774
PfMyoA TgMyoA MyoA_Eimeria_tenella MyoA_Babesia_bovis MyoA_Hepatocystis	VEWENCVSVIEAAILKHKYKQKVNKNIPSLLRVQAHIRKKMVAQ SSWEPLVSVLEAYYAGRRHKKQLLKKTPFIIRAQAHIRRHLVDNNVSPATVQPAF AAWTPVVNVLEACYLKLRLKKAIQKKQHYIIRTQAHIRRHIVDHNVSPPAITKLF SVWEPITAMIDAWITRQMAKKSLMSAVEDIVRLQAHLRRHIVESRVTPSPDRMVKMQMTS VEWEKCIGVIEAAVIKQRYRKNINEIIPSLVRVQAHIKKRLMA * :::* :: :: :: ::* ***:::::	818 831 827 837 817

P T

Supplementary Table 5 – Key Resources

	Symbol/name used in		
REAGENT or RESOURCE	publication	SOURCE	IDENTIFIER
Chemicals			
Adenosine 5'-triphosphate			
disodium salt (Grade I)	ATP	Sigma	A2383
Adenosine 5'-diphosphate			
sodium salt	ADP	Sigma	A2754
Anti-FLAG M2 Affinity Gel	FLAG resin	Sigma	A2220
Biotinylated bovine serum			
albumin	B-BSA	Thermo Scientific	29130
Pyruvate Kinase from rabbit			
muscle	pyruvate kinase	Sigma	P9136
Phospho(enol)pyruvic acid			
monosodium salt hydrate	phosphoenolpyruvate	Sigma	P0564
L-lactic dehydrogenase from	L-lactate		
rabbit muscle	dehydrogenase	Sigma	L1254
β-Nicotinamide adenine			
dinucleotide, reduced			
disodium salt	NADH	Sigma	N9410
NeutrAvidin	neutravidin	Thermo Scientific	31000
Catalase from bovine liver	catalase	Sigma	C40
Glucose oxidase nfrom		-	
Aspergillus niger	glucose oxidase	Sigma	G6125
Malachite green	malachite green	Fisher	M-290
C	Ũ		
Recombinant DNA			
		(Bookwalter <i>et al.</i> .	
Plasmodium myosin A	PfMvoA	2017) ¹⁰	NCBI:XM 001350111.1
Plasmodium falciparum	,		-
microtubule interacting		(Bookwalter <i>et al.,</i>	
protein	PfMTIP	2017) ¹⁰	NCBI:XM 001350813.1
Plasmodium falciparum		(Bookwalter <i>et al.</i> ,	-
essential light chain	PfELC	2017) ¹⁰	NCBI:XM_001347419.1
C			chimeric clone of
			NCBI:XM_001348333.1
Plasmodium UCS family		(Bookwalter <i>et al.,</i>	and
chaperone	PUNC	2017) ¹⁰	NCBI:XM_002260772
			_
Proteins			
Plasmodium falciparum		(Robert-Paganin <i>et al</i>	
myosin A (wild-type)	WT	2019) ¹¹	
Plasmodium falciparum		,	
myosin A			
(F270Y/F471A/F645H)	F/YAH	this paper	
actin	actin	chicken breast	
Rhodamine-nhalloidin	labelled actin	Invitragen	R/15
			N-110
rlag peptide	rlag peptide	AFEXBIU	ADUUZ

Imaging and Data Analysis			
Lambda 25 UV/VIS			
spectrophotometer		Perkin Elmer	
Zeiss Axiovert 10			
microscope		Zeiss	
Rolera Mgi Plus digital			
camera		Qimaging	
Nikon NIS Elements			
software		Nikon	v3.22.15
KinTec SF-2001 stopped-			
flow apparatus		KinTec	
Prism		GraphPad	v9.3.1;
			RRID:SCR_002798
		available for free	
		download at	
Fast Automated Spud		spudlab.stanford.edu,	
Trekker	FAST	also see 12	v1.1

Supplementary references

- 1. Llinas, P. et al. How Actin Initiates the Motor Activity of Myosin. Dev. Cell 33, 401–412 (2015).
- 2. Robert-Paganin, J., Pylypenko, O., Kikuti, C., Sweeney, H. L. & Houdusse, A. Force Generation by Myosin Motors: A Structural Perspective. *Chem. Rev.* **120**, 5–35 (2020).
- 3. Moussaoui, D. *et al.* Full-length Plasmodium falciparum myosin A and essential light chain PfELC structures provide new anti-malarial targets. *Elife* **9**, (2020).
- 4. Robert-Paganin, J., Auguin, D. & Houdusse, A. Hypertrophic cardiomyopathy disease results from disparate impairments of cardiac myosin function and auto-inhibition. *Nat. Commun.* **9**, 4019 (2018).
- 5. Gulick, A. M., Bauer, C. B., Thoden, J. B. & Rayment, I. X-ray Structures of the MgADP, MgATPγS, and MgAMPPNP Complexes of the Dictyostelium discoideum Myosin Motor Domain,. *Biochemistry* **36**, 11619–11628 (1997).
- Bauer, C. B., Holden, H. M., Thoden, J. B., Smith, R. & Rayment, I. X-ray structures of the apo and MgATP-bound states of Dictyostelium discoideum myosin motor domain. *J. Biol. Chem.* 275, 38494–38499 (2000).
- 7. Kovács, M., Tóth, J., Hetényi, C., Málnási-Csizmadia, A. & Sellers, J. R. Mechanism of blebbistatin inhibition of myosin II. *J. Biol. Chem.* **279**, 35557–35563 (2004).
- Takács, B. *et al.* Myosin complexed with ADP and blebbistatin reversibly adopts a conformation resembling the start point of the working stroke. *Proc. Natl. Acad. Sci. U. S. A.* **107**, 6799–6804 (2010).
- 9. McWilliam, H. *et al.* Analysis Tool Web Services from the EMBL-EBI. *Nucleic Acids Res.* **41**, W597-600 (2013).
- 10. Lu, H., Fagnant, P. M. & Trybus, K. M. Unusual dynamics of the divergent malaria parasite PfAct1 actin filament. *Proc. Natl. Acad. Sci. U. S. A.* **116**, 20418–20427 (2019).
- 11. Robert-Paganin, J. *et al.* Plasmodium myosin A drives parasite invasion by an atypical force generating mechanism. *Nat. Commun.* **10**, 3286 (2019).
- 12. Aksel, T., Choe Yu, E., Sutton, S., Ruppel, K. M. & Spudich, J. A. Ensemble force changes that result from human cardiac myosin mutations and a small-molecule effector. *Cell Rep.* **11**, 910–920 (2015).