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Optimal IC Task Mapping to Maximize QoS on
Heterogeneous Multicore Systems

Lei Mo∗, Member, IEEE, Xinmei Li∗, Student Member, IEEE, Angeliki Kritikakou†, Member, IEEE, and
Pengcheng You‡, Member, IEEE

Abstract—Heterogeneous multicore architectures have become
one of the most widely used hardware platforms for embedded
systems, where time, energy, and system QoS are the major con-
cerns. The Imprecise Computation (IC) model splits a task into
mandatory and optional parts, allowing the trade-off of the above
issues. However, existing approaches, to maximize system QoS
(Quality-of-Service) under time or energy constraints, use a linear
function to model system QoS. Therefore, they become unsuitable
for general applications, whose QoS is modeled by a concave
function. To deal with this limitation, this work addresses the
Mixed-Integer Non-Linear Programming (MINLP) problem of
mapping IC tasks to a set of heterogeneous cores by concurrently
deciding which processor executes each task and the number
of cycles of optional tasks (i.e., task allocation and scheduling),
under real-time and energy supply constraints. Furthermore, as
existing solution algorithms either demand high time complexity
or only achieve feasible solutions, we propose a novel approach
based on problem transformation and dual decomposition that
finds an optimal solution while avoiding high computational
complexity. Simulation results show that the proposed approach
achieves 98% performance of the optimization solver Gurobi, but
only with 19.8% of its computation time.

Index Terms—Task mapping, QoS, heterogeneous multicore,
imprecise computation, dual decomposition.

I. INTRODUCTION

With the increasing requirements for high performance
and low task execution delay, multicore platforms have been
widely used in various domains, such as Cyber-Physical
Systems (CPS). The use of different types of processors in
the same platform enables the specialization of the platform
into the needs of the application domains, achieving parallel
and efficient execution [1]. Energy efficiency and real-time
execution are typically required during the embedded system
design because 1) embedded systems have energy constraints,
especially when they are powered by the battery, which has
limited energy capacity, and 2) real-time responsiveness is
required by many critical applications (e.g., target tracking or
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fire detection) since missing the application’s deadline would
lead to serious or even disastrous consequences. In several
application domains, such as image processing, robot control,
and information gathering, a task can be logically decomposed
into a mandatory subtask and an optional subtask [2]. The
mandatory subtask must be completed before the deadline,
providing a baseline QoS. When it is executed, the optional
subtask can increase the QoS, but it is not necessary to be
executed completely. Such applications can be modeled by
the IC tasks [3]. The way of mapping the IC tasks onto the
hardware platforms plays an important role in the final system
QoS. This is because the constraints on energy consumption,
real-time execution and system QoS often conflict with each
other. The longer the optional subtasks are executed, the higher
QoS is achieved, while more energy and time are required.

Existing energy-aware task mappings approaches, e.g., [4],
[5] aim to minimize energy consumption and typically use a
precise task model. Therefore, they do not explore any QoS
improvement by adjusting the optional cycles. On the contrary,
the QoS-aware task mapping approaches [2], [3], [6]–[10] use
the IC task model to maximize system QoS under real-time
and/or energy constraints. For modeling the system QoS, the
most realistic approaches are based on the linear function [2],
[3], [6], [7] and the concave function [8]–[10]. The concave
function is more general since it can characterize more exten-
sive applications than the linear function [11]. However, exist-
ing QoS-aware approaches that model QoS through concave
functions focus on either uni-processor platforms [10] or with
fixed task-to-processor allocation [8] and omit energy-related
issues [9]. To address this limitation, we propose a QoS-
aware mapping problem for IC tasks with the general concave
function on heterogeneous multicore platforms under energy
consumption and real-time constraints. Then, we propose a
novel polynomial time optimal approach to solve this complex
MINLP problem efficiently.

II. SYSTEM MODEL AND PROBLEM FORMULATION

1) System Model: We consider a set of periodic and in-
dependent IC tasks {τ1, . . . , τN}. They are released at time 0
and share a common hyper-period H [3], [12]. Each IC task τi
contains a mandatory subtask with Mi cycles and an optional
subtask with oi cycles, where Mi and oi are measured in
Worst-Case Execution Cycles (WCEC). The optional subtask
of τi is bounded by 0 ≤ oi ≤ Oi, where Oi is the number
of maximum optional cycles. The values of Mi and Oi
are determined by the minimum and maximum QoS [13].
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We consider a multicore platform with M heterogeneous
processors {θ1, . . . , θM}. Each processor θk can operate at
a voltage/frequency pair (vk, fk). We introduce a parameter
λik ∈ (0, 1] [5] to describe the execution efficiency of
processor θk, when θk executes task τi. Hence, the Worst-
Case Execution Time (WCET) of task τi, when it is executed
at frequency fk on processor θk, is given by Mi+oi

λikfk
. The

processor energy model is adopted from [12], where the power
consumption of a processor θk is expressed as P ck = P sk +P dk .
P sk is the static power of the processor ready to execute, and
P dk is the dynamic power of task execution.

2) Problem Formulation: Given a set of N IC tasks, the
goal is to map these tasks on M heterogeneous processors to
maximize the overall system QoS under real-time and energy
supply constraints. We consider a concave QoS function g(o).
More precisely, we determine 1) which processor the subtask
should be executed on (task allocation), and 2) how many
optional cycles a task should execute (task scheduling). To
formulate the task mapping problem, we introduce the follow-
ing variables: 1) define s , [sik]N×M and let binary variable
sik = 1, if task τi is assigned to processor θk, otherwise,
sik = 0; and 2) define o , [oi]N×1 and let continuous variable
oi be the optional cycles of task τi. Taking time and energy
constraints into account, the Primal Problem (PP) is given by

PP : min
s,o
−g(o) (1)

s.t. C1 −C3, sik ∈ {0, 1}, 0 ≤ oi ≤ Oi.

Since each task τi is executed on only one processor, we ob-
tain the following task allocation constraintC1 :

∑
k∈M sik =

1, ∀i ∈ N , where N , {1, . . . , N}. Considering task
allocation decision sik and task execution cycles Mi + oi,
the time spent by processor θk to execute all the assigned
tasks is known. Thus, the real-time constraint, which restricts
all tasks assigned to processor θk being executed before the
common deadline D, is given byC2 :

∑
i∈N (sik

Mi+oi
λikfk

) ≤ D,
∀k ∈ M, where M , {1, . . . ,M}. Note that the total
energy consumed by M processors during the hyper-period
H cannot exceed the energy supply Es. The energy con-
sumption is bounded by C3 :

∑
k∈M(TkP

d
k + HP sk ) =∑

k∈M[
∑
i∈N (sik

Mi+oi
λikfk

)P dk +HP sk ] ≤ Es.
Remark 2.1: We consider optional cycles oi as a continuous

variable for tractability reasons. When PP is solved, we round
the result down. This impact of one cycle is negligible since
tasks usually execute hundreds of thousands of cycles [14].

Remark 2.2: Since binary variable sik and continuous
variable oi are coupled with each other nonlinearly in C2 and
C3, and the objective function is concave, PP is an MINLP.

Theorem 2.1: Task mapping problem (1) is NP-hard [15].
Due to the page limit, the proofs are omitted here. Although

nonlinear item sikoi can be linearized by introducing auxiliary
variables and adding additional constraints into PP [4], this
approach also increases problem size. To circumvent this
difficulty, we replace nonlinear item sikoi with a new variable
tik, representing the execution time of optional subtask oi on
processor θk. Using sik and tik, PP can be reformulated as

PP1 : min
s,t
−g(t) (2)

s.t. C1, C
′
2, C

′
3, C4, sik ∈ {0, 1}, tik ≥ 0,

where C′2 :
∑
i∈N (sik

Mi

λikfk
+ tik) ≤ D, ∀k ∈M and C′3 :∑

k∈M[
∑
i∈N (sik

Mi

λikfk
+ tik)P dk + HP sk ] ≤ Es. With C4 :

tik ≤ sik
Oi

λikfk
, ∀i ∈ N , ∀k ∈ M, if a task τi is assigned to

the processor θk, sik = 1. The task execution time of θk with
respect to the optional subtask of τi is bounded by 0 ≤ tik ≤
Oi

λikfk
, else, tik = 0. Since sik and tik are coupled with each

other linearly in C1–C4, (2) is an MILP problem.
Lemma 2.1: Mapping problems (1) and (2) are equivalent.

III. OPTIMAL QOS-AWARE TASK MAPPING METHOD

This section proposes a low computational complexity al-
gorithm to optimally solve the PP1 according to the problem
structure. Due to binary variables s, PP1 is a non-convex
problem, making this problem difficult to solve. To reduce
the computational complexity, we can relax s from binary to
continuous variables. However, the feasible region of variables
s in PP1 is also changed. Nevertheless, we can achieve an
equivalent transformation if we solve the relaxed problem
properly, following the three steps below.

1) Problem Relaxation: We relax the binary variable sik to
a continuous variable within the range [0, 1]. Therefore, (2) is
transformed into the following problem:

PP2 : min
s,t
−g(t) (3)

s.t. C1 −C4, 0 ≤ sik ≤ 1, tik ≥ 0.

Let Φ∗1 and Φ∗2 be the optimal objective function values of
PP1 and PP2, respectively. Compared with PP1, the feasible
region is enlarged in PP2. Since PP1 and PP2 are minimization
problems, Φ∗1 is actually an upper bound of Φ∗2, i.e., Φ∗1 ≥ Φ∗2.

Theorem 3.1: The relaxed problem (3) is convex.
Note that the convex problem (3) can be optimally solved

by the polynomial-time method. If the optimal solution to the
PP2 also satisfies the constraints in the PP1, we get Φ∗1 = Φ∗2.
To find this type of solution, the constraint sik ∈ {0, 1} can be
combined into the solving process of PP2. Here, we explain
how to solve PP1 based on the solution of PP2.

2) Dual Problem Construction and Refinement: Instead of
solving PP2 directly, we solve its dual problem, as PP2 is a
convex problem. To construct the dual problem, we introduce
Lagrange multipliers α, β � 0, γ � 0 and µ ≥ 0 with
proper dimensions to its constraints. Hence, the Lagrangian
is L(s, t,α,β,γ, µ) = −g(t) +

∑
i∈N (

∑
k∈M sik − 1)αi +∑

i∈N
∑
k∈M(tik−sik Oi

λikfk
)βik+

∑
k∈M[

∑
i∈N (sik

Mi

λikfk
+

tik) −D]γk + {
∑
k∈M[

∑
i∈N (sik

Mi

λikfk
+ tik)P dk + HP sk ] −

Es}µ. The dual function R(α,β,γ, µ) is defined as the mini-
mum value of the Lagrangian L(s, t,α,β,γ, µ) over the vari-
ables s and t [16]. Thus, for the given α, β, γ and µ, we have
objective function R(α,β,γ, µ) = mins,t L(s, t,α,β,γ, µ),
and the Dual Problem (DP) associated with PP2 is given by

DP : max
α,β,γ,µ

R(α,β,γ, µ) (4)

s.t. β � 0, γ � 0, µ ≥ 0.

From (3), we observe that the inequalitiesC2–C4 are affine,
and thus, the Slater’s condition [16] is satisfied.
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Lemma 3.1: A strong duality exists between the primal
problem (3) and the dual problem (4).

Due to the strong duality, the primal problem and the
dual problem have the same optimal solution [16], i.e.,
solving problem (4) and problem (3) are equivalent. To
solve the problem of maximizing R(α,β,γ, µ), we first
solve the problem of minimizing L(s, t,α,β,γ, µ). Since
variables s and t are coupled with each linearly in
L(s, t,α,β,γ, µ), the Lagrangian can be decomposed as
L(s, t,α,β,γ, µ) = L1(s,α,β,γ, µ) + L2(t,β,γ, µ) +
L3(γ, µ), where L1(s,α,β,γ, µ) =

∑
i∈N {

∑
k∈M[αi −

Oiβik−Mi(γk+P
d
k µ)

λikfk
]sik −αi}, L2(t,β,γ, µ) =

∑
i∈N

∑
k∈M

(βik+γk+P dkµ)tik−g(t), and L3(γ, µ) =
∑
k∈M(HP skµ−

Dγk) − Esµ. Note that L1(s,α,β,γ, µ) and L2(t,β,γ, µ)
are the functions regarding variables s and t, while L3(γ, µ)
is fixed under the given multipliers γ and µ. The dual function
in (4) is written as R(α,β,γ, µ) = mins L1(s,α,β,γ, µ) +
mint L2(t,β,γ, µ)+L3(γ, µ). Hence, mins L1(s,α,β,γ, µ)
and mint L2(t,β,γ, µ) can be solved separately.

A) To minimize L1(s,α,β,γ, µ) by s, let Hik(β,γ, µ) =
Oiβik−Mi(γk+P

d
k µ)

λikfk
and substitute it into L1(s,α,β,γ, µ):

min
s
L1(s,α,β,γ, µ)

= min
s

∑
i∈N

{∑
k∈M

[αi −Hik(β,γ, µ)]sik − αi
}
. (5)

Since [αi −Hi,k(β,γ, µ)]sik is a linear function regarding
the variable sik, (5) can be decomposed into N ×M indepen-
dent problems with the forms: minsik(αi −Hik(β,γ, µ))sik,
∀i ∈ N , ∀k ∈M. Comparing αi with Hik(β,γ, µ)), the task
allocation decision sik can be determined as follows:

sik =


1 if αi < Hik(β,γ, µ)

[0, 1] if αi = Hik(β,γ, µ)

0 if αi > Hik(β,γ, µ)

(6)

From (6) we have minsik [αi − Hik(β,γ, µ)]sik = [αi −
Hik(β,γ, µ)]−, where [x]− , min{0, x}. The above equation
shows that (5) can be decomposed into N independent func-
tions with the forms:

∑
k∈M[αi −Hik(β,γ, µ)]−, ∀i ∈ N .

Lemma 3.2: Since each task τi is executed on only one pro-
cessor, to minimize the function

∑
k∈M[αi−Hik(β,γ, µ)]−,

the optimal task allocation decision s∗ik is determined by:

s∗ik =

 1 if k = arg min
k
{αi −Hik(β,γ, µ)}

0 else
(7)

If αi −Hik(β,γ, µ) has multiple same minimum values, we
randomly select one from these minimum items, as each task
is assigned to only one processor.

B) Under the given multipliers β, γ and µ, in order to find
an optimal task execution time t∗ to minimize L2(t,β,γ, µ),
we solve the following differential equations: ∂L2(t,β,γ,µ)

∂t =
0 ⇒ t. Based on C2 in PP1, task execution time t∗ is
influenced by the task allocation decision s∗. The optimal
execution time of optional task t∗ik can be selected as follows:

t∗ik =

{
tik if s∗ik = 1

0 else
(8)

Algorithm 1: QoS-aware Task Mapping Algorithm
1 Input: Parameters in (3);
2 Output: s and t;
3 Initialize: Lagrangian multipliers {α,β,γ, µ}, j = 0, δj = δ, ε;
4 while j < Nmax do
5 Update s(j) and t(j) through (7) and (8);
6 Calculate g(j)(t) and L(j)(s, t,α,β,γ, µ);
7 if |L(s, t,α,β,γ, µ)− (−g(t)) | < ε then
8 s∗ = s(j) and t∗ = t(j);
9 end

10 x(j+1) ← [x(j) + δj 5 x(j)]+, where x = α,β,γ, µ;
11 Set j ← j + 1, and update δj+1 ← δj/

√
j;

12 end

Thus, we have mint L2(t,β,γ, µ) = L2(t∗,β,γ, µ), where
t∗ and L2(t∗,β,γ, µ) are actually the functions with respect
to multipliers β, γ and µ. Substituting (7) and (8) into the
objective function of (4), the refined dual function is

R(α,β,γ, µ) = L1(s∗,α,β,γ, µ)+L2(t∗,β,γ, µ)+L3(γ, µ).
(9)

On this basis, we replace the objective function in (4) with the
refined dual function (9), and solve the refined dual problem
by determining Lagrangian multipliers α, β, γ and µ.

3) Optimal Task Mapping Solution: To solve the refined
dual problem, an important step is to find the subgradient of
the dual function (9). Let 5αi, 5βik, 5γk and 5µ denote
the subgradient of dual function R(α,β,γ, µ) with respect
to the variables αi, βik, γk and µ, respectively. Based on the
definition of subgradient [17], we have5αi =

∑
k∈M s∗i,k−1,

5βi,k = t∗i,k−s∗i,k
Oi

λi,kfk
,5γk =

∑
i∈N (s∗i,k

Mi

λi,kfk
+t∗i,k)−D,

and 5µ =
∑
k∈M[

∑
i∈N (s∗i,k

Mi

λi,kfk
+ t∗i,k)P dk +HP sk ]−Es,

where s∗ik and t∗ik are corresponding optimal solutions of task
allocation and execution time under the given multipliers α, β,
γ and µ, respectively. Algorithm 1 summarizes the proposed
optimal QoS-aware task mapping method. In each iteration, the
Lagrange multipliers are updated with subgradient equations
(Line 10), where [x]+ , max{0, x}. Then, the decisions
regarding the task allocation and execution time are updated
through (7) and (8) (Line 5). Finally, the iteration stops
when |L(s, t,α,β,γ, µ)− (−g(t)) | ≤ ε, where −g(t) is the
objective function, L(s, t,α,β,γ, µ) is the Lagrangian, and
ε is a small positive value that controls the convergence of
algorithm [17] (Lines 6–9). The refined dual problem can be
solved in polynomial time with the above method. Assume
that {α∗,β∗,γ∗, µ∗} to be the global optimal solution to the
refined dual problem. Since the multipliers are optimal, the
corresponding solution {s∗, t∗} is also optimal.

Remark 3.1: Transforming dual problem from (2) to (4), we
avoid solving sik directly since sik can be expressed by other
variables α, β, γ and µ. (7) and (8) show that by properly
solving the problem of minimizing Lagrangian, we can cut the
feasible region of sik and force sik to be a binary variable.

Remark 3.2: (6) and (7) show that sik can only be set to 0
or 1 when solving the PP2. Moreover, the objective function
and the constraints of PP1 and PP2 are the same. Hence, the
optimal solution to the PP2 also meets the constraints in the
PP1, i.e., {s∗, t∗} is also the optimal solution to the PP1.
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Fig. 1. Algorithm convergence under δ varying.
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Fig. 2. Algorithm convergence under φ(0) varying.
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Fig. 3. QoS of different task sets under δ varying.

Remark 3.3: In each iteration, considering the number of
variables, the time complexity is O(3NM+N+M+1) [18].
In addition, we have Nmax � M and N � M , and in the
worst case, the maximum number of iterations is Nmax. Hence,
the time complexity can be simplified as O(NmaxN).

IV. EXPERIMENTAL RESULTS

The simulations are based on a multi-core platform with six
heterogeneous processors (M = 6). The processor parameters
can be found in [4], [12], which are based on 70nm technol-
ogy. The task efficiency factor is set to λik ∈ (0, 1] [5]. The
cycles of mandatory subtasks Mi and maximum optional sub-
tasks Oi are assumed within the range [4×107, 6×108] [12].
This range is calculated from the MiBench and MediaBench
benchmarks. To let time and energy constraints change with
task number N , we set task deadline D = H = θDh and
energy supply Es = ηEh, where θ, η ∈ (0, 1] are time
and energy factors, Dh =

∑
i∈N maxk{Mi+Oi

λikfk
} and Eh =∑

k∈M P skD +
∑
i∈N maxk{Mi+Oi

λikfk
P dk } are the maximum

time and energy required to execute N tasks and each task
τi has Mi + Oi cycles. We adopt a concave QoS function
g(t) =

∑
i∈N

∑
k∈M(−piktik + qik

√
tik) from [10], where

pik and qik ∈ (0, 1] are coefficients related to applications.
For Algorithm 1, we set stop criteria ε = 10−3, maximum
iteration number Nmax = 105, and initial multipliers φ(0) =
{α(0),β(0),γ(0), µ(0)} ∈ [0, 1]. Although different processor
platforms and real application tasks will lead to different PP
parameters, the problem structures are still the same, i.e., the
proposed method is applicable for different parameter values.

The values of θ and η mainly influence the feasibility of
the problem since they change time and energy constraints.
In contrast, the values of step-size δ and initial Lagrange
multipliers φ(0) affect the solution quality and the iteration
number of our approach when the problem is feasible. In
Fig. 1, N = 20; we fix the initial Lagrange multipliers φ(0)

and change the step-size δ from 0.1 to 5. The result shows
that the algorithm convergence speed increases with δ, as a
small step-size will increase the number of iterations and slow
the convergence speed (δ = 0.1, 0.5). However, a large step-
size will miss the optimal solution (δ = 1) or even lead to
oscillation (δ = 5). This result aligns with the stability analysis
in [17]. The value of δ should be carefully determined based
on the problem parameters. In Fig. 2, we set N = 20 and

(a) N = 10 (b) N = 20

(c) N = 30 (d) N = 40

Fig. 4. QoS of different task sets under φ(0) varying.

δ = 0.5 and use different initial Lagrange multipliers. Set 1:
φ(0) ∈ [0, 0.5], Set 2: φ(0) ∈ [0.5, 1], Set 3: φ(0) ∈ [1, 1.5],
and Set 4: φ(0) ∈ [1.5, 2]. When the values of φ(0) are large
(Set 3 and Set 4), the convergence speed is slower, or the
result is hard to converge (Set 4). However, when the results
are stable (Set 1 and Set 2), the influence of φ(0)’s value
is limited, compared with δ, as the differences between these
sets are usually within 100 iterations. To reduce computation
time (iteration number), we can fix φ(0) and then adjust δ.

Fig. 3 and Fig. 4 compare system QoS achieved by the
proposed approach under different iteration numbers Num
and task numbers N . In Fig. 3, we fix φ(0) and change δ,
while in Fig. 4, we fix δ = 0.5 and use different φ(0). Note
that Fig. 1 and Fig. 2 show the results when the iterations are
stopped (i.e., the convergence criteria are satisfied); Fig. 3 and
Fig. 4 show the results achieved by a given iteration number.
Since our approach is iteration-based, the more iterations are
performed, the better the solution quality, as shown in Fig. 3.
Our approach initially converges very fast. With the iteration
number increasing, the improvement in solution quality is
reduced. For instance, when N = 10 and δ = 0.1, the QoS
loss between Num = 500 and Num = 2000 is less than
5%. However, the computation time of Num = 2000 is four
times of Num = 500. This is because the adaptive step-size
method is used in Algorithm 1. The step-size is updated by
δj+1 ← δj/

√
j, i.e., δj+1 decreases with iteration number j. In

some time-sensitive applications, the iteration can be stopped
when solution quality already reaches the requirements (e.g.,
the time and energy constraints are met or the gap between
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Fig. 5. QoS and computation time comparisons of different methods.

the achieved and optimal solutions is within a threshold), even
if the convergence criteria are not satisfied. Fig. 4 shows that
under the given N and Num parameters, the QoS differences
between different initial multipliers φ(0) are small, as δ plays
a more important role than φ(0) to influence solution quality.

Fig. 5 compares system performance (QoS and computation
time) of the proposed approach, i.e., Dual Decomposition-
based (DD) approach, with the state-of-the-art optimization
solver Gurobi (GUB), Genetic Algorithm (GA), Feasibility
Pump method (FP) [19] and a two-step heuristic (HEU) [12].
The Matlab optimization toolbox provides GA. The QoS gain
between GUB and DD is defined as fGUB(N)−fDD(N)

fGUB(N) , where
fGUB(N) and fDD(N) is the QoS achieved by GUB and
DD under the given N parameter. We set δ = 0.5 and
vary task number N from 100 to 1000, and each time φ(0)

is randomly selected within [0, 1]. Fig. 5(a) shows that DD
outperforms GA and HEU in terms of QoS improvement
(7.8% and 48% on average). Although GA can solve complex
mixed programming problems, such as MINLP and MILP, the
solution’s optimality is hard to guarantee. The HEU method,
which determines task allocation and optional cycle adjust-
ment in sequence, has a lower system QoS since separating
task allocation and optional cycle adjustment reduces the
feasibility region of the original problem. To enhance solution
quality, the subproblems should be considered simultaneously.
Fig. 5(b) compares the computation time of different methods.
DD achieves about 98% and 98.3% (on average) performance
of GUB and FP, but only with 19.8% and 14.4% computation
time. This is because PP (1) is solved in a convex manner,
and the computation time is less than solving an MINLP.
The result shows that the computation time of DD almost
grows linearly with task number N . This result aligns with the
complexity analysis. Since our approach can transform MINLP
into a convex problem equivalently, it achieves a balance
between computation time and solution quality. Although DD
and GA are both iteration-based methods, the GA structure
is more complex than DD, as it generates new populations
through several procedures at each iteration, e.g., selection,
reproduction, mutation and crossover. Fig. 5 shows that when
N is large, DD obtains a better QoS in a short time compared
with GA. For the iteration approach, only when the step-size is
small enough and the iteration number is large enough, we can
reach the optimal solution [17]. The above results of DD can
be further improved through better δ and Num parameters.

V. CONCLUSIONS

This paper studied the QoS-aware task mapping problem
for IC tasks on heterogeneous multicore platforms to maxi-

mize the system QoS under real-time and energy constraints,
formulated as an MINLP problem. Based on the problem
transformation and dual decomposition, we proposed a novel
method to efficiently solve this problem in low computation
time, whose solution is the same as the optimal solution to
the original problem. Finally, the simulation results show the
effectiveness of the proposed method, which outperforms other
methods in terms of QoS improvement and computation time.
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