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We present a computational technique that combines density functional theory and the finite difference method
to enable the calculation of the Raman spectra of large models of oxide glasses. The calculated Raman spectra
of amorphous TeO2 is found to be in excellent agreement with the experimental data. A strong peak in the low
frequency range of the Raman spectra is observed and attributed to the Boson peak. According to atomic-scale
analysis, this peak is assigned to collective vibrations of nanoclusters that are formed by the structural units of the
glass. Two general factors that influence the Boson peak intensity are established. The first factor concerns the
intensity of the low frequency peak in TeO2 vibrational density of states. The second factor is related to the low
frequency vibrational state occupancy at fixed temperature, which obeys the Bose-Einstein statistic. It was found
that even a small shift towards high-frequencies leads to a significant decay of the vibrational state occupancy.
This correlates quite well when the Raman spectra of TeO2 glass is compared to the spectra of fused silica. Our
technique can be readily applied to the large set of amorphous systems.

Copyright line will be provided by the publisher

Among binary oxide materials, TeO2 stands out as a
peculiar compound in terms of both its structure and its
properties. Structurally, TeO2 occurs in a variety of crys-
talline polymorphs, including α-TeO2, β-TeO2, γ-TeO2,
and δ-TeO2. When melt-quenched, these crystalline poly-
morphs lead to glassy TeO2 that has inherited structural
features. In particular, TeO4 disphenoids with short and
long Te-O bonds are the main building blocs of the glass.
In addition, the occurrence of Te=O groups is a matter of
debate in the community because this would imply that
the coordination number of Te (nTeO) is smaller than 4.
Recent studies suggest that there is a coordination num-
ber reduction and an increase of the short range disorder
in the glass as the temperature increases [1,2,3]. On the
properties side, TeO2 features a high refractive index, good
non-linear optical properties, high dielectric constant, low
phonon energies, high chemical stability, low melting tem-

peratures, large thermo-optical coefficient and wide opti-
cal transmittance in the visible to near infrared region [4,
5,6,7,8,9]. In particular, its considerably high third-order
non-linear susceptibility as compared to the structurally
homologous α-SiO2 [10,11,12,13] makes it useful for a
very wide range of applications, such as optical switching
devices [14], erasable optical recording media [15], opti-
cal amplifiers, up-conversion frequency systems and laser
hosts [8,16].

In a recent work, we assessed the effects of the DFT
setup and the melt-quench protocol on the equilibrium
structure of glassy TeO2 [17]. The hybrid-functional TeO2

models that we obtained feature a Te coordination number
of 3.96 in the glass and 3.65 in the melt, which is in ex-
cellent agreement with recent experimental results. These
findings were correlated to the short range disorder in Te-
and O-centered structural motifs.
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Despite this progress in achieving a good understand-
ing of the structure of glassy TeO2, research on the vi-
brational and non-linear optical properties of this glass
remains scarce. At a more general level, the compu-
tational study of the spectroscopic properties of amor-
phous systems is limited to the study on atomic clus-
ters that are extracted from the amorphous or crystalline
models. While instructive, this procedure is not straight-
forward and provides an inherently limited understand-
ing of the structural correlations behind the Raman re-
sponse of the glassy material. From a technical stand-
point, the main stumbling block in computing spectro-
scopic and optical properties is the huge computational
effort that is required when dealing with amorphous sys-
tems within a periodic DFT calculation. On the one hand,
a proper description of these glasses requires an atom-
istic model that contains several hundreds of atoms.
On the other hand, the present methodologies are ei-
ther suitable for small size systems or only work well
in the case of crystalline materials [18,19,20,21,22,23].
Consequently, there is a need for a method that is able
to compute accurate Raman properties on large peri-
odic amorphous models at a reasonable computational
cost. This method would enable us to access the impor-
tant quantities that are required to properly correlate the
macroscopic properties of the material to its microscopic
structure, thereby setting the scene to better design the
roots of functional oxide materials.

In this letter, we present a scheme that can compute
the Raman spectra of amorphous systems that contain sev-
eral hundreds of atoms in a periodic simulation cell, which
is based on the linear response perturbation theory and
the finite differences method. This scheme yields a Ra-
man spectra that is in excellent agreement with the experi-
mental measurements. Furthermore, our scheme allows di-
rect access to the atomistic nature of the normal modes,
which facilitates the interpretation of the observed Ra-
man bands, especially in the case of the Boson peak. In
this letter, we focus on the Raman properties of amorphous
TeO2 by taking advantage of the achieved atomic scale
models in Ref. [17], and we then compare the results to
those on amorphous SiO2. Computational details related
to the TeO2 amorphous model generation protocol can be
found in Ref. [17]. The details of the SiO2 model are pro-
vided in the supplementary materials (SI).

At the microscopic level, Raman scattering phe-
nomenon is related to photon-phonon interaction. The
result of this inelastic interaction is the change of the en-
ergy according to the energy conservation law. In partic-
ular, when the photon energy decays after the scattering
h̄ωs = h̄ωi − h̄Ω (where ωs and ωi are the frequencies
of the scattered and incipient light, respectively, and Ω
is the frequency of the phonon), then this process is
called Stokes. When the photon energy increases after
scattering, the process is then called Antistokes. The
intensity of the Raman scattering depends on the change

of the polarizability with respect to atomic displacements
which correspond to a selected vibrational mode.

In practice, we start by focusing on the dynamical prop-
erties that are computed within the Born-Oppenheimer ap-
proximation, which itself is based on the double-harmonic
approximation. Given an amorphous configuration, we first
optimize the geometry (i.e., variation of the lattice param-
eters and atomic positions at fixed angles) to achieve a
ground state at the minimum of the total energy. Phonon
calculations are then performed to extract the vibration fre-
quencies and the normal vectors using the PHONOPY soft-
ware package [24] to compute the dynamic matrix using
the finite difference method.

In a Raman spectrum, the positions of the bands are de-
termined by the vibrational mode frequencies near the Γ -
point and in the nonresonant Raman scattering processes.
The intensities of the bands can be calculated within a
Placzek approximation [25]. For the Stokes process, the
intensity of the mth vibrational mode is given by [26]:

Im =
(ω0 − ωm)4

ωm
|ei ·Am · es|2(nm + 1), (1)

where ei and es are the unit polarization vectors of
the incident and scattered radiation, respectively; ω0 is
the frequency of incipient radiation; ωm is the frequency
of the phonon mode; nm is the Bose-Einstein distribution
given by n(ωm) = 1/(eh̄ωm/kBT − 1); and Am is the Ra-
man tensor, which is defined by:

Am
ij =

√
Ω
�

α,β

∂χij

∂rα,β
Um
α,β , (2)

where Ω is the unitcell volume, rα,β is α coordinate of
β-th atom in the unitcell, and Um

α,β corresponds to normal
vector of the m-th vibrational mode. The linear dielectric
susceptibility tensor χij is obtained within density func-
tional perturbation theory [27] by obtaining the derivative
of the macroscopic polarization P with respect to an elec-
tric field E :

χij =
∂Pi

∂Ej
=

∂2Etot

∂Ei∂Ej
(3)

Therefore, the Raman tensor Am
ij is a third order deriva-

tive of the total energy with respect to the electric field
twice and atomic displacements. While one can use the
(2n+1) theorem in quantum mechanics to calculate the
third order derivative of the total energy, this technique
requires considerable computational effort and implemen-
tation of theoretical formalism because one has to access
the perturbed wave functions up to the first order. Alterna-
tively, the finite differences method can be applied to calcu-
late the Raman tensor as defined in Eq. (2). This method is
based on the generation of structures with atomic displace-
ments along each normal mode in positive and negative
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directions. This is followed by calculations of susceptibil-
ity tensor χij for each distorted structure using the linear
response approach as implemented in CP2K code [27]. Fi-
nally, the values of the Raman tensor components for each
vibrational mode are obtained as derivatives of suscepti-
bility with respect to normal vectors obtained by the finite
difference methods. Technical details of the implementa-
tion of the finite differences method are provided in the
supplementary materials.

We note that the following rotational invariants [28]
can be used in the case of an amorphous sample:

ζi =
1

3

�
αi
xx + αi

yy + αi
zz

�
, (4)

γ2
i = 1

2

�
(αi

xx − αi
yy)

2 + (αi
yy − αi

zz)
2 + (αi

xx − αi
zz)

2
�
+

+ 3
4

�
(αi

xy + αi
yx)

2 + (αi
xz + αi

zx)
2 + (αi

yz + αi
zy)

2
�
,

(5)
Consequently, the intensity of the Raman bands for par-

allel and crossed polarization can be written as:

I⊥i =
(ωL − ωi)

4

ωi
[n(ωi) + 1]

γ2
i

15
, (6)

I
�
i =

(ωL − ωi)
4

ωi
[n(ωi) + 1]

45ζ2i + 4γ2
i

45
. (7)

The total Raman activity of powders (i.e., the case
of unpolarized scattering) is a sum of both invariants
Itoti = I

�
i + I⊥i . Finally, the Raman intensity is calculated

according to Eq. (6) and (7), where each peak of the sim-
ulated spectra is obtained as a sum of Lorentzian shape
lines constructed using the Raman activity of each vibra-
tional mode with a fixed halfwidth. The codes and work-
flows that are used to achieve these calculations are avail-
able at [29].

Following this procedure, we calculated the Raman
spectra on glassy TeO2 and glassy SiO2 as an average of
10 spectra computed on 10 amorphous configurations that
were sampled from the T=300K trajectory of the glass for
each system. The results are presented in Fig.1 and are
compared to experimental results.

By inspecting the experimental Raman spectra of TeO2

glass, one can identify several ranges with particular sig-
natures that have been correlated in the literature to par-
ticular vibrational modes. In the low wavenumbers region,
one can associate the main peak centered around 30 cm−1

with the Boson peak [33], while the shoulder around 140
cm−1 can be attributed to the intra-chain vibrations of Te-
Te bonds [34]. In the central wavenumbers range, a broad
peak coincides with the typical signatures of symmetric
stretching vibrations in nearly symmetric (425 cm−1) and
asymmetric (500 cm−1) Te-O-Te bridges [35,36]. The
asymmetric stretching vibrations in nearly symmetric and
asymmetric Te-O-Te bridges lead to typical signatures
around 605 cm−1 and 660 cm−1, respectively [35,36].
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Figure 1 Calculated Raman spectra on glassy TeO2 (a)
and glassy SiO2 (b) compared to experimental results from
Refs. [30], [31], and [32], respectively. A 15% blue shift
was applied to the Raman shift in the case of TeO2. The
Raman intensity is normalized to the maximum band in-
tensity.

Finally, the highest frequency band in the high wavenum-
ber region can be attributed to the asymmetric stretching
vibrations in asymmetric Te-O-Te bridges (710 cm−1) and
asymmetric stretching of essentially covalent TeeqO bonds
(770 cm−1) [35,36].

By following the calculated Raman spectrum (see
Fig. 1), one can distinguish all of the observed features
in the experimental spectra. Nevertheless, for wavenum-
bers higher than 300 cm−1, all of the positions of the bands
are underestimated by about 15%. This discrepancy is due
to the small overestimation of the Te-O bond length in
our models by about 0.04 Å [17]. This is a well-known
issue and is related to the generalized gradient approx-
imation family of exchange and correlation functionals,
which slightly underestimate the lattice parameters and
interatomic bond lengths. In addition, the large asymme-
try around O atoms might influence the values of the cal-
culated phonon frequencies [17]. Therefore, applying a
15% blueshift leads to modeled spectra that have an un-
precedented good agreement with the measured spectra
over the whole range of frequencies (see Fig. 1).

Similarly, the calculated Raman spectrum of glassy
SiO2 shows a good reproduction of the experimental spec-
trum. In this case, we note that there is a very limited
blueshift thanks to the very well-defined structure of SiO2.
Compared to TeO2, the Raman spectrum of glassy SiO2

features a small peak at around 50 cm−1 that corresponds
to the Boson peak. Given that the origins of the Boson peak
in amorphous TeO2 remain largely unknown, a compar-
ative study of the Raman spectra between the TeO2 and
SiO2 can be instructive.
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Figure 2 Simulated Raman spectra of glassy TeO2 (a) and
glassy SiO2 (b) at different temperatures. The spectra are
normalized to the highest frequency band, where the effect
of pre-factor is minimal.

The Raman intensity of each band calculated us-
ing Equation (1) contains two main contributions, the
squared Raman tensor components and the pre-factor
Gm = (1 + n(ωm))/ωm, which contains a damping
inverse frequency term 1/ωm multiplied by the Bose-
Einstein distribution function n(ωm). To disentangle the
contributions of the various terms in Equation (1) to the
total Raman intensity, in Fig. 2 we show the calculated
temperature dependent Raman spectra of TeO2 and SiO2.
The temperature dependence of the spectra is triggered by
the temperature dependence of the Bose-Einstein distribu-
tion function n(ωm).

It is noteworthy that the simulated Raman spectra at
zero temperature reveals no Boson peak feature for both
oxides. At zero temperature, the Bose-Einstein term is
negated and the pre-factor G simply acts as a damp-
ing function (1/ω) for the squared Raman tensor compo-
nents. Interestingly, we observe that the “natural” Raman
activity (i.e., squared Raman tensor components) is very
small in the low frequency range (the highest intensity
band in range [0–50] cm−1 is related to the highest in-
tensity band in the whole spectra by 1:100). As tempera-
ture increases, the impact of the Bose-Einstein distribution
function becomes stronger and one can find a significant
response in the Raman spectra in the low frequency range.
At T=100 K, one can clearly see that the Bose-Einstein
distribution overpowers the damping function in the low
frequency range, which leads to an “amplification” of
the Raman spectra in the low frequency range (or, in
other words, damping intensity and higher frequencies).
Therefore, the pre-factor G takes a key role in the low fre-
quency range Raman spectra. In general, at finite temper-
ature, it acts as an amplifier for low frequency range. The
strength of this amplification depends on a competition be-

tween the two terms in the pre-factor G according to the
temperature and the frequency of the considered Ra-
man band.

When the nature of the low frequency Raman spec-
tra amplification is established, it is worth comparing the
spectra of TeO2 and SiO2. At zero temperature, the Raman
spectra of TeO2 shows a steady growth of the intensity,
starting rapidly from zero frequency. Actually, the lowest
Raman-active vibration is found at 17 cm−1. In the case
of SiO2, the spectra shows a zero intensity at very low fre-
quencies and only starts to grow weakly at approximately
50 cm−1 (the lowest frequency Raman-active vibration is
found at 32 cm−1). At finite temperature, the band at low
frequencies is clearly observed in the case of TeO2. Nev-
ertheless, in the case of SiO2 glass, even at T=300 K this
band is not as strong as in the Raman spectra of TeO2. This
can be explained by a frequency dependence of the pre-
factor G. This dependence follows a simple rule: the ampli-
fication of the Raman spectra is higher when the frequency
of the band is lower. As mentioned earlier, the smallest
phonon frequency of TeO2 is found at 17 cm−1, while the
lowest frequency phonon in the case of silica glass is found
at 32 cm−1. This difference in ca. 15 cm−1 leads, in part, to
a significant difference in the intensity of the Boson peak.

The advantage of the method that is presented in this
letter is that it allows us to make a detailed analysis of
the Raman bands because it gives access to the normal
modes (atomic displacements of vibrational modes) of the
Raman active vibrations. By analysing the structural frag-
ments that are involved in vibrations related to the Boson
peak, one infers that these modes are the result of col-
lective vibrations of nanoclusters composed by structural
units (TeO4, TeO3, TeO5) as a whole. This result is con-
solidated by investigating the overall weight (impact) of
the chemical species (Te and O) in a given Raman active
mode, which is calculated as a ratio of the summary dis-
placements made by atoms of a given chemical species
with respect to the sum of displacements of all of the atoms
in a given vibrational mode. In Figure S3, the weight for
each chemical species is plotted as a function of the Ra-
man frequency. It is noteworthy that the weight of O atoms
will always be at least twice as much than the weight of
the Te atoms because there are twice as many O atoms as
Te atoms in TeO2 glass. This weight proportionality holds
true at the low frequency range, where the impact of Te
and O atoms is nearly the same (taking a factor of 2 into
account). In contrast, the weight of the oxygen atoms be-
comes dominant in the high frequency range, which in-
dicates the key role of O vibrations in this range of fre-
quencies. The low frequency vibration can be visualized
thanks to the obtained eigenvectors of the dynamic matrix.
An example of structural unit vibrations is plotted in Fig-
ure S4 in the supplementary materials. Understanding the
nature of the frequency vibrations provides an explanation
of the origin of the weak “natural” Raman activity that is
observed at low frequency vibrational modes. The vibra-
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tions of structural units as a whole lead to a weak change
of the polarizability of the whole system, and therefore to
a small Raman response, which in turn is proportional to
the derivative of the polarizability with respect to atomic
displacements. However, the dominant Te-O vibrations in
the middle and high frequency range, including bending, li-
bration and stretching, leads to a significant impact on the
polarizibility changes, and consequently to a high Raman
activity, which is damped by prefactor G, as discussed
earlier.

Finally, the origins of the strong Boson peak in TeO2,
which were explained earlier by the low frequency vibra-
tional states, compared to SiO2 can be also attributed to the
physical properties of both systems. In particular, assuming
that the low frequency states are related to displacements
of the whole structural units, one can put forward a correla-
tion between their low frequency and the mass of the struc-
tural units involved in these vibrational states. In a simple
harmonic approximation, the frequency is proportional to
the inverse square root of the mass as ω =

�
k/m. Con-

sidering as a first approximation that ω is mostly affected
by the mass of the structural units, and bearing in mind
that the mass of the structural unit TeO4 is almost twice
that of SiO4, one can easily establish that the ratio of Bo-
son peak frequency for TeO4 and SiO4 systems is equal to√
2. The experimental frequency of Boson peak of TeO2

is 35 cm−1. By taking the ratio
√
2 into account, one ob-

tains a frequency shift up to 49.5 cm−1 for SiO2 amor-
phous silica. This is very close to the experimental data
plotted in Figure 1b (see Table S1 in the SI for more de-
tails). This correlation is of a particular interest because it
is only related to the mass of the structural units involved in
the vibrational modes. Therefore, it is possible to predict
the approximated position and the strength of the Boson
peak in Raman spectra in other amorphous materials.

The Boson peak that is observed in the Raman spec-
tra of amorphous TeO2 (see Fig.1) is significantly stronger
than that in SiO2. This can be explained, in part, by the
high concentration of phonon states in the low-frequency
range. The density of phonon states (VDOS) is plotted in
Fig. 3. The strong low frequency band in the VDOS of
TeO2, when compared to the much weaker band in the
VDOS of SiO2, rises rapidly and reaches a maximum at
frequency ∼50 cm−1. In contrast, the low frequency band
in VDOS of SiO2 is very broad and has a maximum at
∼130−1. It is noteworthy that the prefactor G acts as a
damping factor at higher frequencies and, in addition to
the lower density of states in the VDOS of SiO2, this is
the reason why the Boson peak in the Raman spectra of
SiO2 is weaker than that of TeO2. These findings show that
the intensity and the frequency of the Boson peak can be
qualitatively estimated by VDOS analysis.

The Boson peak is widely interpreted as a consequence
of the absence of long-range order and the frequency of
the peak maximum is related to a medium-range order-
size [31], which remains not very well defined. Indeed,
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Figure 3 Calculated phonon density of states of amor-
phous TeO2 and SiO2.

an amorphous system can be considered as a crystal sys-
tem with breaking of the periodic boundary conditions,
which leads to many times Brillouin zone (BZ) folding. A
good example to explain the appearance of low frequency
peaks in Raman spectra due to BZ folding can be found
in supercells [37]. Many times BZ folding leads to a com-
plete disorder, which is accompanied by a degeneracy of
whole BZ at the Γ point. In the case of ordered struc-
tures, the frequency of acoustic vibrations near the Γ -
point of the BZ is zero and starts to grow when k-vector
shifts along the BZ boundary. The calculated phonon
dispersion branches of the γ-TeO2 crystal accompanied
with VDOS compared to those of crystobalite α-SiO2 are
plotted in Figure S5 (see SI). One can find a sharp and
strong peak in the VDOS of γ-TeO2 at a frequency of
∼55 cm−1, which is close to the Boson peak frequency
in the experimental Raman spectrum. This band mostly
consists of acoustic branches, which have a small dis-
persion due to low sound velocity in TeO2. In contrast,
in the case of α-SiO2, the low frequency peak in VDOS
is weak and broad in the low-frequency range, and has a
maximum at ∼75 cm−1. The acoustical phonon branches
dispersion in α-SiO2 is higher, and therefore the low fre-
quency band in VDOS consists of a mixture of acoustical
and optical phonon branches. This mixture triggers the for-
mation of broad band from 0 up to 500 cm−1 with local
maxima. The results of crystalline systems VDOS anal-
ysis are in line with those made on amorphous systems.
Therefore, they can be used for qualitative analysis of the
Boson peak nature. In addition, the dispersion of acous-
tic branches, which is related to sound velocity, is a key
feature to predict the strength and position of the Boson
peak. Our microscopic approach has shown that the Bo-
son peak corresponds to collective displacements of small
size nanoclusters composed from the glassy structural
building blocs (e.g., TeO4). Therefore, one can consider
the mean Te-Te (Si-Si) distance as a Boson peak charac-
teristic. In the case of TeO2, this distance corresponds to
the mean shortest Te-Te (Si-Si) distance obtained in Te-
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6 :

O-Te bridges, which is about 3.75 Å [15]. In the case of
SiO2 glass, the corresponding distance is equal to ∼3 Å
(see Table S2 in the SI for more details). The minimum
distance is responsible for the force constant k value in the
simple harmonic approximation, namely the force constant
is harder when the distance is shorter. This regularity ex-
plains why the Boson peak in case of silica has a higher
frequency.

In summary, we present an efficient scheme to cal-
culate the Raman spectra on amorphous periodic glassy
oxide models containing several hundreds of atoms by
combining the density functional theory and the finite
differences method. Our scheme has the advantage
of a quite reasonable and time efficient computational
cost thanks to the efficient scalability of the CP2K code.
The obtained Raman spectra in the case of TeO2 and
SiO2 demonstrate a high level of agreement with the
experiments. In addition, we study the origins of the
Boson peak observed in glassy TeO2 by focusing on
two aspects. First, we investigate the reasons behind
the strong Boson peak observed in glassy TeO2 in
close comparison to the less pronounced Boson peak
reported in glassy SiO2. We show that the strength
and position of the Boson peak is a function of the
phonon density of the state’s maximum (frequency and
intensity). Furthermore, we find that as the frequency
increases, the Boson peak is damped by inverse fre-
quency and the Bose-Einstein distribution terms. Con-
sequently, because the TeO2 shows a lower frequency
of the Boson band, it undergoes a higher amplification of
its Raman spectra in the low frequency range. Second,
we inspect the atomistic nature of the Boson peak by
analysing the normal modes vectors and attribute the
Boson peak to vibrations of Te-centered structural units
as a whole. This leads to characterization of Boson peak
by defining a medium-range ordersize that is equal to
the first maximum in the partial cation-cation pair distri-
bution function in oxide materials, which is very probably
the case for the big family of binary (ternary) systems.
Overall, we demonstrate that our computational scheme
is able to compute accurate Raman spectra of large
glassy systems, which paves the way towards a system-
atic computational study of the vibrational properties of
oxide glasses.
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1

DFT setup2

The DFT calculations presented in this work, were carried out within generalized gradi-3

ent approximation to density functional theory (DFT) as implemented in CP2K software4

package.1 The Perdew-Burke-Ernzerhof (PBE)2 functional was used in all the calculations.5

The Gaussian Plane Waves method3 was used to form wavefunctions basis set with cutoff6

energy equal to Eg = 1000 Ry for planewave part and using triple-zeta valence basis for local7

combination of molecular orbitals part. Goedecker-Teter-Hutter pseudopotentials are used8

to describe core-valence interactions.4 The self consistent calculations were performed with9

electronic convergence criteria of 10−8 Ha. Geometry optimization is performed by relaxing10
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both cell parameters and atomic positions at fixed angles for a given atomistic configuration.1

During the relaxation, atomic displacements and lattice parameters were varied until forces2

on atoms become below 10−5 Ha/Bohr and pressure below 10−2 GPa. Dynamical properties3

of relaxed structures were carried out using finite difference method.4

SiO2 Models5

We have performed ab-initio MD to obtained a structural model of SiO2 glass with 2706

atoms at a constant density of 2.2 gm/cm3. The starting ab-initio model was produced7

after a classical MD run at T = 2000 K for 1000 ps using BKS type potential with potential8

parameters taken from Ref.5 Further, the model was quenched to room temperature following9

the thermal cycle shown in figure [S1] under NVT conditions. The partial pair distribution10

functions (PDFs) of the glass are shown in figure [S2]).
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Figure S1: Thermal cycle followed by the ab-initio SiO2 model.

11

S2



Draft version, January 19, 2023

0

5

10

15

20

270

0

2

4

6

1 2 3 4
r(Å)

0

10

20

30g(
r)

1 2 3 4 5
r(Å)

0

1

2

3

4

Total X-ray

Si-O

O-O

Si-Si

Figure S2: Comparison of total X-ray and partial O-O, Si-O, Si-Si g(r) PDFs for various
simulation sizes.

Te and O weights to the displacement at a given normal1
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Figure S3: Frequency dependence of displacement weights of Te and O atoms in Raman
active vibrational modes.
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TeO4

TeO3

TeO4

Figure S4: Atomic displacements pattern of an amorphous TeO2 fragment. In left part one
TeO4 structural unit displaced with respect to TeO3 structural unit, moving in perpendicular
direction. In right part competitive displacements of two TeO4 structural units is shown (the
top unit shifts up, the other one shifts left).

VDOS of crystalline oxides1
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Figure S5: Phonon dispersion branches and vibratrional density of states of γ-TeO2 (top)
and crystobalite α-SiO2 (bottom) calculated using supercell approach. The dynamical matrix
was calculated for 4×4×3 supercell using finite difference method. The density of vibrational
states (VDOS) is calculated as formally defined by equation: g(ω) = 1

N

∑
ν,q δ(ω − ων(q)),

where N is the number of unit cells, ν is the band index and q is the q-point. The Dirac
delta function δ(x) is substituted by Gaussian function with constant standard deviation.

Boson peak frequency and cation-cation distances1
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Table S1: Boson peak frequency of common oxides.

Compound Frequency, cm−1

TeO2 34a 75b 35c

SiO2 65a 50d

B2O3 30e

GeO2 40.5f
a This work
b Ref. 6 (Lowest frequency peak in vibrational density of states).
c Ref. 7
d Ref. 8
e Ref. 9
f Ref. 10

Table S2: The most probable nearest neighbor distances in glassy TeO2 and glassy SiO2.

Property distance value, Å
TeO2

d(Te-Te) 3.75a 3.7b

d(Te-O) 1.96a 1.9b

d(O-O) 2.79a 2.9b

SiO2

d(Si-Si) 3.1c 3.2d

d(Si-O) 1.6c 1.6d

d(O-O) 2.6c 2.5d
a Ref. 11
b Ref. 6
c This work
d Ref. 12

Appendix 1: Finite differences method1

According to Ref.13 the Raman tensor of vibrational mode is defined as derivative of linear2

dielectric susceptibility χ with respect to normal mode ξ:3

Aij =
dχij
dξ

=
∑
α,β

∂χij
∂ταβ

uαβ, (1)

where uαβ =
∂ταβ
∂ξ

is a vector of atomic displacement of α’th atom along β Cartesian4

direction.5

The calculation of derivative in equation (1) by finite difference method can be imple-6

mented in two general approaches. The first one corresponds to the distortion of relaxed7

structure according to normal modes, i.e. for each Raman active vibrational mode atomic8

positions are shifted by vector of atomic displacements ξm with respect to equilibrium atomic9

positions r0 in positive and negative direction, then for each disturbed structure the suscep-10

tibility tensor is calculated. Then the derivative for each vibrational mode is calculated as11
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follows:1

dχij
dξ

=
χ(r0 + ξm)− χ(r0 − ξm)

2|ξm|
(2)

The second approach is devoted to calculations of derivatives with respect to atom α2

displacements along Cartesian directions τβ by finite difference method followed by multipli-3

cation on vector uαβ (right part of equation (1)).4

The choice of the method depends on symmetry of the structure under study.5
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