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Despite this progress in achieving a good understanding of the structure of glassy TeO 2 , research on the vibrational and non-linear optical properties of this glass remains scarce. At a more general level, the compu- tational study of the spectroscopic properties of amorphous systems is limited to the study on atomic clusters that are extracted from the amorphous or crystalline models. While instructive, this procedure is not straightforward and provides an inherently limited understanding of the structural correlations behind the Raman response of the glassy material. From a technical standpoint, the main stumbling block in computing spectroscopic and optical properties is the huge computational effort that is required when dealing with amorphous systems within a periodic DFT calculation. On the one hand, a proper description of these glasses requires an atomistic model that contains several hundreds of atoms. On the other hand, the present methodologies are either suitable for small size systems or only work well in the case of crystalline materials [18,19,20,21,22,23]. Consequently, there is a need for a method that is able to compute accurate Raman properties on large periodic amorphous models at a reasonable computational cost. This method would enable us to access the important quantities that are required to properly correlate the macroscopic properties of the material to its microscopic structure, thereby setting the scene to better design the roots of functional oxide materials.

In this letter, we present a scheme that can compute the Raman spectra of amorphous systems that contain several hundreds of atoms in a periodic simulation cell, which is based on the linear response perturbation theory and the finite differences method. This scheme yields a Raman spectra that is in excellent agreement with the experimental measurements. Furthermore, our scheme allows di- rect access to the atomistic nature of the normal modes, which facilitates the interpretation of the observed Raman bands, especially in the case of the Boson peak. In this letter, we focus on the Raman properties of amorphous TeO 2 by taking advantage of the achieved atomic scale models in Ref. [17], and we then compare the results to those on amorphous SiO 2 . Computational details related to the TeO 2 amorphous model generation protocol can be found in Ref. [17]. The details of the SiO 2 model are provided in the supplementary materials (SI).

At the microscopic level, Raman scattering phenomenon is related to photon-phonon interaction. The result of this inelastic interaction is the change of the energy according to the energy conservation law. In particular, when the photon energy decays after the scattering hω s = hω i -hΩ (where ω s and ω i are the frequencies of the scattered and incipient light, respectively, and Ω is the frequency of the phonon), then this process is called Stokes. When the photon energy increases after scattering, the process is then called Antistokes. The intensity of the Raman scattering depends on the change of the polarizability with respect to atomic displacements which correspond to a selected vibrational mode.

In practice, we start by focusing on the dynamical properties that are computed within the Born-Oppenheimer approximation, which itself is based on the double-harmonic approximation. Given an amorphous configuration, we first optimize the geometry (i.e., variation of the lattice parameters and atomic positions at fixed angles) to achieve a ground state at the minimum of the total energy. Phonon calculations are then performed to extract the vibration frequencies and the normal vectors using the PHONOPY software package [24] to compute the dynamic matrix using the finite difference method.

In a Raman spectrum, the positions of the bands are determined by the vibrational mode frequencies near the Γpoint and in the nonresonant Raman scattering processes. The intensities of the bands can be calculated within a Placzek approximation [START_REF] Born | Dynamical Theory of Crystal lattices[END_REF]. For the Stokes process, the intensity of the m th vibrational mode is given by [START_REF]Light scattering in solids II[END_REF]:

I m = (ω 0 -ω m ) 4 ω m |e i • A m • e s | 2 (n m + 1), (1) 
where e i and e s are the unit polarization vectors of the incident and scattered radiation, respectively; ω 0 is the frequency of incipient radiation; ω m is the frequency of the phonon mode; n m is the Bose-Einstein distribution given by n(ω m ) = 1/(e hωm/k B T -1); and A m is the Raman tensor, which is defined by:

A m ij = √ Ω � α,β ∂χ ij ∂r α,β U m α,β , (2) 
where Ω is the unitcell volume, r α,β is α coordinate of β-th atom in the unitcell, and U m α,β corresponds to normal vector of the m-th vibrational mode. The linear dielectric susceptibility tensor χ ij is obtained within density functional perturbation theory [START_REF] Souza | [END_REF] by obtaining the derivative of the macroscopic polarization P with respect to an electric field E:

χ ij = ∂P i ∂E j = ∂ 2 E tot ∂E i ∂E j (3) 
Therefore, the Raman tensor A m ij is a third order derivative of the total energy with respect to the electric field twice and atomic displacements. While one can use the (2n+1) theorem in quantum mechanics to calculate the third order derivative of the total energy, this technique requires considerable computational effort and implementation of theoretical formalism because one has to access the perturbed wave functions up to the first order. Alternatively, the finite differences method can be applied to calculate the Raman tensor as defined in Eq. ( 2). This method is based on the generation of structures with atomic displacements along each normal mode in positive and negative Copyright line will be provided by the publisher directions. This is followed by calculations of susceptibility tensor χ ij for each distorted structure using the linear response approach as implemented in CP2K code [START_REF] Souza | [END_REF]. Finally, the values of the Raman tensor components for each vibrational mode are obtained as derivatives of susceptibility with respect to normal vectors obtained by the finite difference methods. Technical details of the implementa- tion of the finite differences method are provided in the supplementary materials.

We note that the following rotational invariants [START_REF] Long | The Raman effect: A unified treatment of the theory of Raman scattering by molecules[END_REF] can be used in the case of an amorphous sample:

ζ i = 1 3 � α i xx + α i yy + α i zz � , (4) 
γ 2 i = 1 2 � (α i xx -α i yy ) 2 + (α i yy -α i zz ) 2 + (α i xx -α i zz ) 2 � + + 3 4 � (α i xy + α i yx ) 2 + (α i xz + α i zx ) 2 + (α i yz + α i zy ) 2 � , (5) 
Consequently, the intensity of the Raman bands for parallel and crossed polarization can be written as:

I ⊥ i = (ω L -ω i ) 4 ω i [n(ω i ) + 1] γ 2 i 15 , (6) 
I � i = (ω L -ω i ) 4 ω i [n(ω i ) + 1] 45ζ 2 i + 4γ 2 i 45 . (7) 
The total Raman activity of powders (i.e., the case of unpolarized scattering) is a sum of both invariants

I tot i = I � i + I ⊥ i .
Finally, the Raman intensity is calculated according to Eq. ( 6) and (7), where each peak of the simulated spectra is obtained as a sum of Lorentzian shape lines constructed using the Raman activity of each vibrational mode with a fixed halfwidth. The codes and workflows that are used to achieve these calculations are available at [START_REF]Raman codes and workflows are[END_REF].

Following this procedure, we calculated the Raman spectra on glassy TeO 2 and glassy SiO 2 as an average of 10 spectra computed on 10 amorphous configurations that were sampled from the T=300K trajectory of the glass for each system. The results are presented in Fig. 1 and are compared to experimental results.

By inspecting the experimental Raman spectra of TeO 2 glass, one can identify several ranges with particular signatures that have been correlated in the literature to particular vibrational modes. In the low wavenumbers region, one can associate the main peak centered around 30 cm -1 with the Boson peak [33], while the shoulder around 140 cm -1 can be attributed to the intra-chain vibrations of Te-Te bonds [34]. In the central wavenumbers range, a broad peak coincides with the typical signatures of symmetric stretching vibrations in nearly symmetric (425 cm -1 ) and asymmetric (500 cm -1 ) Te-O-Te bridges [35,36]. The asymmetric stretching vibrations in nearly symmetric and asymmetric Te-O-Te bridges lead to typical signatures around 605 cm -1 and 660 cm -1 , respectively [35,36]. Refs. [START_REF] Zaki | [END_REF], [31], and [32], respectively. A 15% blue shift was applied to the Raman shift in the case of TeO 2 . The Raman intensity is normalized to the maximum band intensity.

Finally, the highest frequency band in the high wavenumber region can be attributed to the asymmetric stretching vibrations in asymmetric Te-O-Te bridges (710 cm -1 ) and asymmetric stretching of essentially covalent Te eq O bonds (770 cm -1 ) [35,36].

By following the calculated Raman spectrum (see Fig. 1), one can distinguish all of the observed features in the experimental spectra. Nevertheless, for wavenumbers higher than 300 cm -1 , all of the positions of the bands are underestimated by about 15%. This discrepancy is due to the small overestimation of the Te-O bond length in our models by about 0.04 Å [17]. This is a well-known issue and is related to the generalized gradient approximation family of exchange and correlation functionals, which slightly underestimate the lattice parameters and interatomic bond lengths. In addition, the large asymmetry around O atoms might influence the values of the cal- culated phonon frequencies [17]. Therefore, applying a 15% blueshift leads to modeled spectra that have an unprecedented good agreement with the measured spectra over the whole range of frequencies (see Fig. 1).

Similarly, the calculated Raman spectrum of glassy SiO 2 shows a good reproduction of the experimental spectrum. In this case, we note that there is a very limited blueshift thanks to the very well-defined structure of SiO 2 . Compared to TeO 2 , the Raman spectrum of glassy SiO 2 features a small peak at around 50 cm -1 that corresponds to the Boson peak. Given that the origins of the Boson peak in amorphous TeO 2 remain largely unknown, a comparative study of the Raman spectra between the TeO 2 and SiO 2 can be instructive. It is noteworthy that the simulated Raman spectra at zero temperature reveals no Boson peak feature for both oxides. At zero temperature, the Bose-Einstein term is negated and the pre-factor G simply acts as a damping function (1/ω) for the squared Raman tensor components. Interestingly, we observe that the "natural" Raman activity (i.e., squared Raman tensor components) is very small in the low frequency range (the highest intensity band in range [0-50] cm -1 is related to the highest intensity band in the whole spectra by 1:100). As temperature increases, the impact of the Bose-Einstein distribution function becomes stronger and one can find a significant response in the Raman spectra in the low frequency range. At T=100 K, one can clearly see that the Bose-Einstein distribution overpowers the damping function in the low frequency range, which leads to an "amplification" of the Raman spectra in the low frequency range (or, in other words, damping intensity and higher frequencies). Therefore, the pre-factor G takes a key role in the low frequency range Raman spectra. In general, at finite temperature, it acts as an amplifier for low frequency range. The strength of this amplification depends on a competition be- tween the two terms in the pre-factor G according to the temperature and the frequency of the considered Raman band.

When the nature of the low frequency Raman spectra amplification is established, it is worth comparing the spectra of TeO 2 and SiO 2 . At zero temperature, the Raman spectra of TeO 2 shows a steady growth of the intensity, starting rapidly from zero frequency. Actually, the lowest Raman-active vibration is found at 17 cm -1 . In the case of SiO 2 , the spectra shows a zero intensity at very low frequencies and only starts to grow weakly at approximately 50 cm -1 (the lowest frequency Raman-active vibration is found at 32 cm -1 ). At finite temperature, the band at low frequencies is clearly observed in the case of TeO 2 . Nevertheless, in the case of SiO 2 glass, even at T=300 K this band is not as strong as in the Raman spectra of TeO 2 . This can be explained by a frequency dependence of the prefactor G. This dependence follows a simple rule: the amplification of the Raman spectra is higher when the frequency of the band is lower. As mentioned earlier, the smallest phonon frequency of TeO 2 is found at 17 cm -1 , while the lowest frequency phonon in the case of silica glass is found at 32 cm -1 . This difference in ca. 15 cm -1 leads, in part, to a significant difference in the intensity of the Boson peak.

The advantage of the method that is presented in this letter is that it allows us to make a detailed analysis of the Raman bands because it gives access to the normal modes (atomic displacements of vibrational modes) of the Raman active vibrations. By analysing the structural fragments that are involved in vibrations related to the Boson peak, one infers that these modes are the result of collective vibrations of nanoclusters composed by structural units (TeO 4 , TeO 3 , TeO 5 ) as a whole. This result is consolidated by investigating the overall weight (impact) of the chemical species (Te and O) in a given Raman active mode, which is calculated as a ratio of the summary displacements made by atoms of a given chemical species with respect to the sum of displacements of all of the atoms in a given vibrational mode. In Figure S3, the weight for each chemical species is plotted as a function of the Raman frequency. It is noteworthy that the weight of O atoms will always be at least twice as much than the weight of the Te atoms because there are twice as many O atoms as Te atoms in TeO 2 glass. This weight proportionality holds true at the low frequency range, where the impact of Te and O atoms is nearly the same (taking a factor of 2 into account). In contrast, the weight of the oxygen atoms becomes dominant in the high frequency range, which indicates the key role of O vibrations in this range of frequencies. The low frequency vibration can be visualized thanks to the obtained eigenvectors of the dynamic matrix. An example of structural unit vibrations is plotted in Figure S4 in the supplementary materials. Understanding the nature of the frequency vibrations provides an explanation of the origin of the weak "natural" Raman activity that is observed at low frequency vibrational modes. The vibra-Copyright line will be provided by the publisher tions of structural units as a whole lead to a weak change of the polarizability of the whole system, and therefore to a small Raman response, which in turn is proportional to the derivative of the polarizability with respect to atomic displacements. However, the dominant Te-O vibrations in the middle and high frequency range, including bending, libration and stretching, leads to a significant impact on the polarizibility changes, and consequently to a high Raman activity, which is damped by prefactor G, as discussed earlier.

Finally, the origins of the strong Boson peak in TeO 2 , which were explained earlier by the low frequency vibrational states, compared to SiO 2 can be also attributed to the physical properties of both systems. In particular, assuming that the low frequency states are related to displacements of the whole structural units, one can put forward a correlation between their low frequency and the mass of the structural units involved in these vibrational states. In a simple harmonic approximation, the frequency is proportional to the inverse square root of the mass as ω = � k/m. Considering as a first approximation that ω is mostly affected by the mass of the structural units, and bearing in mind that the mass of the structural unit TeO 4 is almost twice that of SiO 4 , one can easily establish that the ratio of Boson peak frequency for TeO 4 and SiO 4 systems is equal to √ 2. The experimental frequency of Boson peak of TeO 2 is 35 cm -1 . By taking the ratio √ 2 into account, one obtains a frequency shift up to 49.5 cm -1 for SiO 2 amorphous silica. This is very close to the experimental data plotted in Figure 1b (see Table S1 in the SI for more details). This correlation is of a particular interest because it is only related to the mass of the structural units involved in the vibrational modes. Therefore, it is possible to predict the approximated position and the strength of the Boson peak in Raman spectra in other amorphous materials.

The Boson peak that is observed in the Raman spectra of amorphous TeO 2 (see Fig. 1) is significantly stronger than that in SiO 2 . This can be explained, in part, by the high concentration of phonon states in the low-frequency range. The density of phonon states (VDOS) is plotted in Fig. 3. The strong low frequency band in the VDOS of TeO 2 , when compared to the much weaker band in the VDOS of SiO 2 , rises rapidly and reaches a maximum at frequency ∼50 cm -1 . In contrast, the low frequency band in VDOS of SiO 2 is very broad and has a maximum at ∼130 -1 . It is noteworthy that the prefactor G acts as a damping factor at higher frequencies and, in addition to the lower density of states in the VDOS of SiO 2 , this is the reason why the Boson peak in the Raman spectra of SiO 2 is weaker than that of TeO 2 . These findings show that the intensity and the frequency of the Boson peak can be qualitatively estimated by VDOS analysis.

The Boson peak is widely interpreted as a consequence of the absence of long-range order and the frequency of the peak maximum is related to a medium-range order- size [31], which remains not very well defined. Indeed, an amorphous system can be considered as a crystal system with breaking of the periodic boundary conditions, which leads to many times Brillouin zone (BZ) folding. A good example to explain the appearance of low frequency peaks in Raman spectra due to BZ folding can be found in supercells [37]. Many times BZ folding leads to a complete disorder, which is accompanied by a degeneracy of whole BZ at the Γ point. In the case of ordered struc- tures, the frequency of acoustic vibrations near the Γpoint of the BZ is zero and starts to grow when k-vector shifts along the BZ boundary. The calculated phonon dispersion branches of the γ-TeO 2 crystal accompanied with VDOS compared to those of crystobalite α-SiO 2 are plotted in Figure S5 (see SI). One can find a sharp and strong peak in the VDOS of γ-TeO 2 at a frequency of ∼55 cm -1 , which is close to the Boson peak frequency in the experimental Raman spectrum. This band mostly consists of acoustic branches, which have a small dispersion due to low sound velocity in TeO 2 . In contrast, in the case of α-SiO 2 , the low frequency peak in VDOS is weak and broad in the low-frequency range, and has a maximum at ∼75 cm -1 . The acoustical phonon branches dispersion in α-SiO 2 is higher, and therefore the low frequency band in VDOS consists of a mixture of acoustical and optical phonon branches. This mixture triggers the formation of broad band from 0 up to 500 cm -1 with local maxima. The results of crystalline systems VDOS analysis are in line with those made on amorphous systems. Therefore, they can be used for qualitative analysis of the Boson peak nature. In addition, the dispersion of acoustic branches, which is related to sound velocity, is a key feature to predict the strength and position of the Boson peak. Our microscopic approach has shown that the Boson peak corresponds to collective displacements of small size nanoclusters composed from the glassy structural building blocs (e.g., TeO 4 ). Therefore, one can consider the mean Te-Te (Si-Si) distance as a Boson peak characteristic. In the case of TeO 2 , this distance corresponds to the mean shortest Te-Te (Si-Si) distance obtained in Te-

Copyright line will be provided by the publisher O-Te bridges, which is about 3.75 Å [15]. In the case of SiO 2 glass, the corresponding distance is equal to ∼3 Å (see Table S2 in the SI for more details). The minimum distance is responsible for the force constant k value in the simple harmonic approximation, namely the force constant is harder when the distance is shorter. This regularity explains why the Boson peak in case of silica has a higher frequency.

In summary, we present an efficient scheme to calculate the Raman spectra on amorphous periodic glassy oxide models containing several hundreds of atoms by combining the density functional theory and the finite differences method. Our scheme has the advantage of a quite reasonable and time efficient computational cost thanks to the efficient scalability of the CP2K code. The obtained Raman spectra in the case of TeO 2 and SiO 2 demonstrate a high level of agreement with the experiments. In addition, we study the origins of the Boson peak observed in glassy TeO 2 by focusing on two aspects. First, we investigate the reasons behind the strong Boson peak observed in glassy TeO 2 in close comparison to the less pronounced Boson peak reported in glassy SiO 2 . We show that the strength and position of the Boson peak is a function of the phonon density of the state's maximum (frequency and intensity). Furthermore, we find that as the frequency increases, the Boson peak is damped by inverse frequency and the Bose-Einstein distribution terms. Consequently, because the TeO 2 shows a lower frequency of the Boson band, it undergoes a higher amplification of its Raman spectra in the low frequency range. Second, we inspect the atomistic nature of the Boson peak by analysing the normal modes vectors and attribute the Boson peak to vibrations of Te-centered structural units as a whole. This leads to characterization of Boson peak by defining a medium-range ordersize that is equal to the first maximum in the partial cation-cation pair distribution function in oxide materials, which is very probably the case for the big family of binary (ternary) systems. Overall, we demonstrate that our computational scheme is able to compute accurate Raman spectra of large glassy systems, which paves the way towards a systematic computational study of the vibrational properties of oxide glasses. and crystobalite α-SiO 2 (bottom) calculated using supercell approach. The dynamical matrix was calculated for 4×4×3 supercell using finite difference method. The density of vibrational states (VDOS) is calculated as formally defined by equation: g(ω) = 1 N ν,q δ(ω -ω ν (q)), where N is the number of unit cells, ν is the band index and q is the q-point. The Dirac delta function δ(x) is substituted by Gaussian function with constant standard deviation. Appendix 1: Finite differences method According to Ref. 13 the Raman tensor of vibrational mode is defined as derivative of linear dielectric susceptibility χ with respect to normal mode ξ:

VDOS of crystalline oxides

Boson peak frequency and cation-cation distances

A ij = dχ ij dξ = α,β ∂χ ij ∂τ αβ u αβ , (1) 
where u αβ = ∂τ αβ ∂ξ is a vector of atomic displacement of α'th atom along β Cartesian direction.

The calculation of derivative in equation ( 1) by finite difference method can be implemented in two general approaches. The first one corresponds to the distortion of relaxed structure according to normal modes, i.e. for each Raman active vibrational mode atomic positions are shifted by vector of atomic displacements ξ m with respect to equilibrium atomic positions r 0 in positive and negative direction, then for each disturbed structure the susceptibility tensor is calculated. Then the derivative for each vibrational mode is calculated as S6

Figure 1

 1 Figure1Calculated Raman spectra on glassy TeO 2 (a) and glassy SiO 2 (b) compared to experimental results from Refs.[START_REF] Zaki | [END_REF],[31], and[32], respectively. A 15% blue shift was applied to the Raman shift in the case of TeO 2 . The Raman intensity is normalized to the maximum band intensity.

Figure 2

 2 Figure 2 Simulated Raman spectra of glassy TeO 2 (a) and glassy SiO 2 (b) at different temperatures. The spectra are normalized to the highest frequency band, where the effect of pre-factor is minimal.

Figure 3

 3 Figure 3 Calculated phonon density of states of amorphous TeO 2 and SiO 2 .

Figure S2 :

 S2 Figure S2: Comparison of total X-ray and partial O-O, Si-O, Si-Si g(r) PDFs for various simulation sizes.

Figure S3 : 4 Figure S4 :

 S34S4 Figure S3: Frequency dependence of displacement weights of Te and O atoms in Raman active vibrational modes.

Figure S5 :

 S5 Figure S5: Phonon dispersion branches and vibratrional density of states of γ-TeO 2 (top)and crystobalite α-SiO 2 (bottom) calculated using supercell approach. The dynamical matrix was calculated for 4×4×3 supercell using finite difference method. The density of vibrational states (VDOS) is calculated as formally defined by equation: g(ω) = 1

Table S1 :

 S1 Boson peak frequency of common oxides. This work b Ref. 6 (Lowest frequency peak in vibrational density of states).

	Compound	Frequency, cm -1
	TeO 2	34 a	75 b	35 c
	SiO 2	65 a	50 d	
	B 2 O 3	30 e		
	GeO 2	40.5 f		
	a			

1 S5 c Ref. 7 d Ref. 8 e Ref. 9 f Ref. 10

Table S2 :

 S2 The most probable nearest neighbor distances in glassy TeO 2 and glassy SiO 2 .

	Property distance value,	Å
		TeO 2	
	d(Te-Te)	3.75 a	3.7 b
	d(Te-O)	1.96 a	1.9 b
	d(O-O)	2.79 a	2.9 b
		SiO 2	
	d(Si-Si)	3.1 c	3.2 d
	d(Si-O)	1.6 c	1.6 d
	d(O-O)	2.6 c	2.5 d
	a Ref. 11		

b Ref. 6 c This work d Ref. 12
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DFT setup

The DFT calculations presented in this work, were carried out within generalized gradient approximation to density functional theory (DFT) as implemented in CP2K software package. 1 The Perdew-Burke-Ernzerhof (PBE) 2 functional was used in all the calculations.

The Gaussian Plane Waves method 3 was used to form wavefunctions basis set with cutoff energy equal to E g = 1000 Ry for planewave part and using triple-zeta valence basis for local combination of molecular orbitals part. Goedecker-Teter-Hutter pseudopotentials are used to describe core-valence interactions. 4 The self consistent calculations were performed with electronic convergence criteria of 10 -8 Ha. Geometry optimization is performed by relaxing S1 Draft version, January 19, 2023 both cell parameters and atomic positions at fixed angles for a given atomistic configuration.

During the relaxation, atomic displacements and lattice parameters were varied until forces on atoms become below 10 -5 Ha/Bohr and pressure below 10 -2 GPa. Dynamical properties of relaxed structures were carried out using finite difference method.

SiO 2 Models

We have performed ab-initio MD to obtained a structural model of SiO 2 glass with 270 atoms at a constant density of 2.2 gm/cm 3 . The starting ab-initio model was produced after a classical MD run at T = 2000 K for 1000 ps using BKS type potential with potential parameters taken from Ref. 5 

The second approach is devoted to calculations of derivatives with respect to atom α displacements along Cartesian directions τ β by finite difference method followed by multiplication on vector u αβ (right part of equation ( 1)).

The choice of the method depends on symmetry of the structure under study.