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Abstract. We extend known results on chordal graphs and distance-
hereditary graphs to much larger graph classes by using only a common
metric property of these graphs. Specifically, a graph is called αi-metric
(i ∈ N ) if it satisfies the following αi-metric property for every vertices
u,w, v and x: if a shortest path between u and w and a shortest path be-
tween x and v share a terminal edge vw, then d(u, x) ≥ d(u, v)+d(v, x)−i.
Roughly, gluing together any two shortest paths along a common termi-
nal edge may not necessarily result in a shortest path but yields a ”near-
shortest“ path with defect at most i. It is known that α0-metric graphs
are exactly ptolemaic graphs, and that chordal graphs and distance-
hereditary graphs are αi-metric for i = 1 and i = 2, respectively. We
show that an additive O(i)-approximation of the radius, of the diam-
eter, and in fact of all vertex eccentricities of an αi-metric graph can
be computed in total linear time. Our strongest results are obtained for
α1-metric graphs, for which we prove that a central vertex can be com-
puted in subquadratic time, and even better in linear time for so-called
(α1,∆)-metric graphs (a superclass of chordal graphs and of plane trian-
gulations with inner vertices of degree at least 7). The latter answers a
question raised in (Dragan, IPL, 2020). Our algorithms follow from new
results on centers and metric intervals of αi-metric graphs. In particular,
we prove that the diameter of the center is at most 3i + 2 (at most 3,
if i = 1). The latter partly answers a question raised in (Yushmanov &
Chepoi, Mathematical Problems in Cybernetics, 1991).

Keywords: metric graph classes; chordal graphs; αi-metric; radius; diam-
eter; vertex eccentricity; eccentricity approximating trees; approximation
algorithms.

1 Introduction

Euclidean spaces have the following nice property: if the geodesic between u
and w contains v, and the geodesic between v and x contains w, then their
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union must be the geodesic between u and x. In 1991, Chepoi and Yushmanov
introduced αi-metric properties (i ∈ N ), as a way to quantify by how much a
graph is close to satisfy this above requirement [54] (see also [14, 15] for earlier
use of α1-metric property). All graphs G = (V,E) occurring in this paper are
connected, finite, unweighted, undirected, loopless and without multiple edges.
The length of a path between two vertices u and v is the number of edges in
the path. The distance dG(u, v) is the length of a shortest path connecting u
and v in G. The interval IG(u, v) between u and v consists of all vertices on
shortest (u, v)-paths, that is, it consists of all vertices (metrically) between u
and v: IG(u, v) = {x ∈ V : dG(u, x) + dG(x, v) = dG(u, v)}. Let also IoG(u, v) =
IG(u, v) \ {u, v}. If no confusion arises, we will omit subindex G.

αi-metric property: if v ∈ I(u,w) and w ∈ I(v, x) are adjacent, then
d(u, x) ≥ d(u, v) + d(v, x)− i = d(u, v) + 1 + d(w, x)− i.

Roughly, gluing together any two shortest paths along a common terminal edge
may not necessarily result in a shortest path (unlike in the Euclidean space)
but yields a “near-shortest” path with defect at most i. A graph is called αi-
metric if it satisfies the αi-metric property. αi-Metric graphs were investigated
in [14, 15, 54]. In particular, it is known that α0-metric graphs are exactly the
distance-hereditary chordal graphs, also known as ptolemaic graphs [46]. Fur-
thermore, α1-metric graphs contain all chordal graphs [14] and all plane trian-
gulations with inner vertices of degree at least 7 [32]. α2-Metric graphs con-
tain all distance-hereditary graphs [54] and, even more strongly, all HHD-free
graphs [18]. Evidently, every graph is an αi-metric graph for some i. Chepoi and
Yushmanov in [54] also provided a characterization of all α1-metric graphs: They
are exactly the graphs where all disks are convex and the graph W++

6 from Fig.
1 is forbidden as an isometric subgraph (see [54] or Theorem 5). This nice char-
acterization was heavily used in [4] in order to characterize δ-hyperbolic graphs
with δ ≤ 1/2.

Let the eccentricity of a vertex v in G be defined as eG(v) = maxu∈V dG(u, v).
The diameter and the radius of a graph are defined as diam(G) = maxu∈V eG(u)
and rad(G) = minu∈V eG(u), respectively. Let the center of a graph G be defined
as C(G) = {u ∈ V : eG(u) = rad(G)}. Each vertex from C(G) is called a central
vertex. In this paper, we investigate the radius, diameter, and all eccentricities
computation problems in αi-metric graphs. Understanding the eccentricity func-
tion of a graph and being able to efficiently compute or estimate the diameter,
the radius, and all vertex eccentricities is of great importance. For example, in the
analysis of complex networks, the eccentricity of a vertex is used to measure its
importance: the eccentricity centrality index of v [47] is defined as 1

e(v) . Further-

more, the problem of finding a central vertex is one of the most famous facility
location problems. In [54], the following nice relation between the diameter and
the radius of an αi-metric graph G was established: diam(G) ≥ 2rad(G)− i− 1.
Recall that for every graph G, diam(G) ≤ 2rad(G) holds. Authors of [54] also
raised a question1 whether the diameter of the center of an αi-metric graph can

1 It is conjectured in [54] that diam(C(G)) ≤ i+ 2 for every αi-metric graph G.
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be bounded by a linear function of i. It is known that the diameters of the centers
of chordal graphs or of distance-hereditary graphs are at most 3 [15, 54].

Related work. There is a naive algorithm which runs a BFS from each vertex
in order to compute all eccentricities. It has running time O(nm) on an n-vertex
m-edge graph. Interestingly, this is conditionally optimal for general graphs as
well as for some restricted families of graphs [1, 6, 20, 50] since, under plausible
complexity assumptions, neither the diameter nor the radius can be computed
in truly subquadratic time (i.e., in O(namb) time, for some positive a, b such
that a+ b < 2). In a quest to break this quadratic barrier, there has been a long
line of work presenting more efficient algorithms for computing the diameter
and/or the radius, or even better all eccentricities, on some special graph classes.
For example, linear-time algorithms are known for computing all eccentricities
of interval graphs [34, 48]. Extensions of these results to several superclasses of
interval graphs are also known [7, 10, 21, 22, 28, 36, 37, 39, 40]. Chordal graphs are
another well-known generalization of interval graphs, for which the diameter can
unlikely be computed in subquadratic time [6]. For all that, there is an elegant
linear-time algorithm for computing the radius and a central vertex of a chordal
graph [16]. Until this work there has been little insight about how to extend this
nice result to larger graph classes (a notable exception being the work in [18]).
This intriguing question is partly addressed in our paper.

Since the existence of subquadratic time algorithm for exact diameter or
radius computation is unlikely, even for simple families of graphs, a large vol-
ume of work was also devoted to approximation algorithms [1, 3, 13, 50, 52].
Authors of [13] additionally address a more challenging question of obtaining
an additive c-approximation for the diameter, i.e., an estimate D such that
diam(G)−c ≤ D ≤ diam(G). A simple Õ(mn1−ϵ) time algorithm achieves an ad-
ditive nϵ-approximation and, for any ϵ > 0, getting an additive nϵ-approximation
algorithm for the diameter running in O(n2−ϵ′) time for any ϵ′ > 2ϵ would fal-
sify the Strong Exponential Time Hypothesis (SETH). However, much better
additive approximations can be achieved for graphs with bounded (metric) pa-
rameters. For example, a vertex furthest from an arbitrary vertex has eccentricity
at least diam(G) − 2 for chordal graphs [16] and at least diam(G) − ⌊k/2⌋ for
k-chordal graphs [11]. Later, those results were generalized to all δ-hyperbolic
graphs [19, 20, 30, 31]. In [27], we also introduce a natural generalization of an
αi-metric and weakly bridged graphs, which we call a (λ, µ)-bow metric: namely,
if two shortest paths P (u,w) and P (v, x) share a common shortest subpath
P (v, w) of length more than λ (that is, they overlap by more than λ), then the
distance between u and x is at least d(u, v)+d(v, w)+d(w, x)−µ. δ-Hyperbolic
graphs are (δ, 2δ)-bow metric and αi-metric graphs are (0, i)-bow metric. (α1, ∆)-
Metric graphs form an important subclass of α1-metric graphs and contain all
chordal graphs and all plane triangulations with inner vertices of degree at least
7. In [32], it was shown that every (α1, ∆)-metric graph admits an eccentricity 2-
approximating spanning tree, i.e., a spanning tree T such that eT (v)−eG(v) ≤ 2
for every vertex v. Finding similar results for general α1-metric graphs was left
as an open problem in [32].
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Our Contribution. We prove several new results on intervals, eccentricity and
centers in αi-metric graphs, and their algorithmic applications, thus answering
open questions in the literature [25, 32, 54]. To list our contributions, we need to
introduce on our way some additional notations and terminology.

Section 2 is devoted to general αi-metric graphs (i ≥ 0). The set Sk(u, v) =
{x ∈ I(u, v) : d(u, x) = k} is called a slice of the interval I(u, v) where 0 ≤ k ≤
d(u, v). An interval I(u, v) is said to be λ-thin if d(x, y) ≤ λ for all x, y ∈ Sk(u, v),
0 < k < d(u, v). The smallest integer λ for which all intervals of G are λ-thin is
called the interval thinness of G. The disk of radius r and center v is defined
as {u ∈ V : d(u, v) ≤ r}, and denoted by D(v, r). In particular, N [v] = D(v, 1)
and N(v) = N [v] \ {v} denote the closed and open neighbourhoods of a vertex
v, respectively. More generally, for any vertex-subset S and a vertex u, we define
d(u, S) = minv∈S d(u, v), D(S, r) =

⋃
v∈S D(v, r), N [S] = D(S, 1) and N(S) =

N [S]\S. We say that a set of vertices S ⊆ V of a graph G = (V,E) is dk-convex
if for every two vertices x, y ∈ S with d(x, y) ≥ k ≥ 0, the entire interval I(x, y)
is in S. For k ≤ 2, this definition coincides with the usual definition of convex
sets in graphs [5, 14, 51].We show first that, in αi-metric graphs G, the intervals
are (i+ 1)-thin, and the disks (and, hence, the centers C(G)) are d2i−1-convex.
The main result of Section 2.1 states that the diameter of the center C(G) of G
is at most 3i+ 2, thus answering a question raised in [54].

Let FG(v) be the set of all vertices of G that are most distant from v. A
pair x, y is called a pair of mutually distant vertices if x ∈ FG(y), y ∈ FG(x). In
Section 2.2, we show that an additive O(i)-approximation of the radius and of
the diameter of an αi-metric graph G with m edges can be computed in O(m)
time. For that, we carefully analyze the eccentricities of most distant vertices
from an arbitrary vertex and of mutually distant vertices. In Section 2.3, we
present three approximation algorithms for all eccentricities, with various trade-
offs between their running time and the quality of their approximation. Hence,
an additive O(i)-approximation of all vertex eccentricities of an αi-metric graph
G with m edges can be computed in O(m) time.

Section 3 is devoted to α1-metric graphs. The eccentricity function e(v) of
a graph G is said to be unimodal, if for every non-central vertex v of G there
is a neighbor u ∈ N(v) such that e(u) < e(v) (that is, every local minimum
of the eccentricity function is a global minimum). We show in Section 3.1 that
the eccentricity function on α1-metric graphs is almost unimodal and we char-
acterize non-central vertices that violate the unimodality (that is, do not have
a neighbor with smaller eccentricity). Such behavior of the eccentricity function
was observed earlier in chordal graphs [32], in distance-hereditary graphs [29]
and in all (α1, ∆)-metric graphs [32]. In Section 3.2, we show that the diame-
ter of C(G) is at most 3. This generalizes know results for chordal graphs [15]
and for (α1, ∆)-metric graphs [32]. Finally, based on these results we present
in Section 3.3 a local-search algorithm for finding a central vertex of an arbi-
trary α1-metric graph in subquadratic time. Our algorithm even achieves linear
runtime on (α1, ∆)-metric graphs, thus answering an open question from [32].

All omitted proofs can be found in our technical report [26].
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2 General case of αi-metric graphs for arbitrary i ≥ 0

First we present two important lemmas for what follows.

Lemma 1. Let G be an αi-metric graph, and let u, v, x, y be vertices such that
x ∈ I(u, v), d(u, x) = d(u, y), and d(v, y) ≤ d(v, x)+k. Then, d(x, y) ≤ k+ i+2.

Lemma 2. If G is an αi-metric graph, then its interval thinness is at most i+1.

2.1 Centers of αi-metric graphs

We provide an answer to a question raised in [54] whether the diameter of the
center of an αi-metric graph can be bounded by a linear function of i. For that,
we show first that every disk must be d2i−1-convex.

Lemma 3. Every disk of an αi-metric graph G is d2i−1-convex. In particular,
the center C(G) of an αi-metric graph G is d2i−1-convex.

Next auxiliary lemma is crucial in obtaining many results of this section.

Lemma 4. Let G be an αi-metric graph. For any x, y, v ∈ V and any
integer k ∈ {0, . . . , d(x, y)}, there is a vertex c ∈ Sk(x, y) such that
d(v, c) ≤ max{d(v, x), d(v, y)} − min{d(x, c), d(y, c)} + i and d(v, c) ≤
max{d(v, x), d(v, y)} + i/2. For an arbitrary vertex z ∈ I(x, y), we have
d(z, v) ≤ max{d(x, v), d(y, v)} − min{d(x, z), d(y, z)} + 2i + 1 and d(z, v) ≤
max{d(x, v), d(y, v)} + 3i/2 + 1. Furthermore, e(z) ≤ max{e(x), e(y)} −
min{d(x, z), d(y, z)}+2i+1 and e(z) ≤ max{e(x), e(y)}+3i/2+1 when v ∈ F (z).

Using Lemma 4, one can easily prove that the diameter of the center C(G)
of an αi-metric graph G is at most 4i+ 3. Below we improve the bound.

Theorem 1. If G is an αi-metric graph, then diam(C(G)) ≤ 3i+ 2.

Proof. Let r = rad(G). Suppose by contradiction diam(C(G)) > 3i + 2. Since
C(G) is d2i−1-convex, there exist x, y ∈ C(G) such that d(x, y) = 3i + 3 and
I(x, y) ⊆ C(G). Furthermore, for every u ∈ V such that max{d(u, x), d(u, y)} <
r, I(x, y) ⊆ D(u, r−1) because the latter disk is also d2i−1-convex. Therefore, for
every z ∈ I(x, y), F (z) ⊆ F (x) ∪ F (y). Let ab be an edge on a shortest xy-path
such that d(a, x) < d(b, x). Assume F (b) ̸⊆ F (a). Let v ∈ F (b)\F (a). Since G is
αi-metric, d(v, y) ≥ d(v, b)+ d(b, y)− i = r+(d(b, y)− i). Therefore, d(b, y) ≤ i.
In the same way, if F (a) ̸⊆ F (b), then d(a, x) ≤ i. By induction, F (z) ⊆ F (x)
(F (z) ⊆ F (y), respectively) for every z ∈ I(x, y) such that d(y, z) ≥ i + 1
(d(x, z) ≥ i + 1, respectively). In particular, if i + 1 ≤ t ≤ d(x, y) − i − 1,
then F (z) ⊆ F (x) ∩ F (y) for every z ∈ St(x, y). Note that the above properties
are also true for every x′, y′ ∈ C(G) with d(x′, y′) ≥ 2i − 1, as d2i−1-convexity
argument can still be used.

Let c ∈ I(x, y) be such that F (c) ⊆ F (x)∩F (y) and k := |F (c)| is minimized.
We claim that k < |F (x) ∩ F (y)|. Indeed, let v ∈ F (x) ∩ F (y) be arbitrary.
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By Lemma 4, some vertex cv ∈ Si+1(x, y) satisfies d(cv, v) ≤ r − 1. Then,
F (cv) ⊆ (F (x) ∩ F (y)) \ {v}, and k ≤ |F (cv)| ≤ |F (x)∩F (y)| − 1 by minimality
of c. Let yc ∈ I(x, y) be such that F (yc) ∩ F (x) ∩ F (y) ⊆ F (c) and d(x, yc)
is maximized. We have yc ̸= y because F (x) ∩ F (y) ̸⊆ F (c). Therefore, the
maximality of d(x, yc) implies the existence of some v ∈ (F (x) ∩ F (y)) \ F (c)
such that d(v, yc) = r−1. Since G is αi-metric, d(v, y) ≥ d(v, yc)+d(yc, y)− i =
r+(d(yc, y)− i− 1). As a result, d(yc, y) ≤ i+1. Then, for every z ∈ Si+1(x, yc),
since we have d(z, yc) = d(x, y) − i − 1 − d(yc, y) ≥ d(x, y) − 2i − 2 = i + 1,
F (z) ⊆ F (x)∩F (y)∩F (yc) ⊆ F (c). By minimality of k, F (z) = F (c). However,
let v ∈ F (c) be arbitrary. By Lemma 4, there exists some c′ ∈ Si+1(x, yc) such
that d(c′, v) ≤ r − 1, thus contradicting F (c′) = F (c). ⊓⊔

2.2 Approximating radii and diameters of αi-metric graphs

In this subsection, we show that a vertex with eccentricity at most rad(G)+O(i)
and a vertex with eccentricity at least diam(G)−O(i) of an αi-metric graph G
can be found in parameterized linear time. We summarize algorithmic results of
this section in the following theorem.

Theorem 2. There is a linear (O(m)) time algorithm which finds vertices v
and c of an m-edge αi-metric graph G such that e(v) ≥ diam(G) − 5i − 2,
e(c) ≤ rad(G)+4i+(i+1)/2+2 and C(G) ⊆ D(c, 4i+(i+1)/2+2). Furthermore,
there is an almost linear (O(im)) time algorithm which finds vertices v and c of G
such that e(v) ≥ diam(G)−3i−2, e(c) ≤ rad(G)+2i+1 and C(G) ⊆ D(c, 4i+3).

Our algorithms are derived from the following new properties of an αi-metric
graph G, whose proofs are omitted due to lack of space.

– Let x, y be a pair of mutually distant vertices. Then, d(x, y) ≥ 2rad(G)−4i−3
and d(x, y) ≥ diam(G) − 3i − 2. Furthermore, any middle vertex z of a
shortest path between x and y satisfies e(z) ≤ ⌈d(x, y)/2⌉+2i+1 ≤ rad(G)+
2i+ 1, and C(G) ⊆ D(z, 4i+ 3). There is also a vertex c in S⌊d(x,y)/2⌋(x, y)
with e(c) ≤ rad(G) + i.

– Let v ∈ V , x ∈ F (v) and y ∈ F (x). Then, e(x) = d(x, y) ≥ 2rad(G) − 2i −
diam(C(G)) ≥ 2rad(G)−5i−2 ≥ diam(G)−5i−2. Furthermore, any middle
vertex z of a shortest path between x and y satisfies e(z) ≤ min{rad(G) +
4i+ (i+1)/2+ 2, ⌈d(x, y)/2⌉+7i+3} and C(G) ⊆ D(z, 4i+ (i+1)/2+ 2).

In particular, using at most O(i) breadth-first-searches, one can generate a se-
quence of vertices v := v0, x := v1, y := v2, v3, . . . vk with k ≤ 5i + 4 such that
each vi is most distant from vi−1 and vk, vk−1 are mutually distant vertices
(because the initial value d(x, y) ≥ diam(G) − 5i − 2 can be improved at most
5i+2 times). Therefore, a pair of mutually distant vertices of an αi-metric graph
can be computed in O(im) total time, thus proving Theorem 2.

For every vertex v ∈ V \ C(G) of a graph G we can define a parameter
loc(v) = min{d(v, x) : x ∈ V, e(x) < e(v)} and call it the locality of v. It shows
how far from v a vertex with a smaller eccentricity than that one of v exists. In
αi-metric graphs, the locality of each vertex is at most i+ 1.
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Lemma 5. Let G be an αi-metric graph. Then, for every vertex v, loc(v) ≤ i+1.

In αi-metric graphs, the difference between the eccentricity of a vertex v and
the radius of G shows how far vertex v can be from the center C(G) of G.

Lemma 6. Let G be an αi-metric graph and k be a positive integer. Then, for
every vertex v of G with e(v) ≤ rad(G) + k, d(v, C(G)) ≤ k + i.

Proof. Let x be a vertex from C(G) closest to v. Consider a neighbor z of x on an
arbitrary shortest path from x to v. Necessarily, e(z) = e(x) + 1 = rad(G) + 1.
Consider a vertex u ∈ F (z). We have d(u, x) = rad(G) and x ∈ I(z, u), z ∈
I(x, v). By the αi-metric property, d(v, u) ≥ d(v, x) + d(x, u)− i = d(v, x)− i+
rad(G). As e(v) ≥ d(v, u) and e(v) ≤ rad(G) + k, we get rad(G) + k ≥ e(v) ≥
d(v, x)− i+ rad(G), i.e., d(v, x) ≤ i+ k. ⊓⊔

As an immediate corollary of Lemma 6 we get.

Corollary 1. Let G be an αi-metric graph. Then, for every vertex v of G,
d(v, C(G)) + rad(G) ≥ e(v) ≥ d(v, C(G)) + rad(G)− i.

So, in αi-metric graphs, to approximate the eccentricity of a vertex v up-to
an additive one-sided error i, one needs to know only rad(G) and the distance
from v to the center C(G) of G.

2.3 Approximating all eccentricities in αi-metric graphs

In this subsection, we show that the eccentricities of all vertices of an αi-metric
graph G can be approximated with an additive one-sided error at most O(i) in
(almost) linear total time. The following first result is derived from the interesting
property that the distances from any vertex v to two mutually distant vertices
give a very good estimation on the eccentricity of v.

Theorem 3. Let G be an αi-metric graph with m-edges. There is an algorithm
which in total almost linear (O(im)) time outputs for every vertex v ∈ V an
estimate ê(v) of its eccentricity e(v) such that e(v)− 3i− 2 ≤ ê(v) ≤ e(v).

A spanning tree T of a graph G is called an eccentricity k-approximating
spanning tree if for every vertex v of G eT (v) ≤ eG(v)+k holds [49]. All (α1,△)-
metric graphs (including chordal graphs and the underlying graphs of 7-systolic
complexes) admit eccentricity 2-approximating spanning trees [32]. An eccen-
tricity 2-approximating spanning tree of a chordal graph can be computed in
linear time [25]. An eccentricity k-approximating spanning tree with minimum
k can be found in O(nm) time for any n-vertex, m-edge graph G [35]. It is also
known [20, 30] that if G is a δ-hyperbolic graph, then G admits an eccentric-
ity (4δ + 1)-approximating spanning tree constructible in O(δm) time and an
eccentricity (6δ)-approximating spanning tree constructible in O(m) time.
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Lemma 7. Let G be an αi-metric graph with m edges. If c is a middle vertex
of any shortest path between a pair x, y of mutually distant vertices of G and T
is a BFS(c)-tree of G, then, for every vertex v of G, eG(v) ≤ eT (v) ≤ eG(v) +
4i + 2. That is, G admits an eccentricity (4i + 2)-approximating spanning tree
constructible in O(im) time.

Lemma 8. Let G be an αi-metric graph with m edges, and let z ∈ V , x ∈ F (z)
and y ∈ F (x). If c is a middle vertex of any shortest path between x and y
and T is a BFS(c)-tree of G, then, for every vertex v of G, eG(v) ≤ eT (v) ≤
eG(v)+9i+5. That is, G admits an eccentricity (9i+5)-approximating spanning
tree constructible in O(m) time.

It is a folklore by now that the eccentricities of all vertices in any tree
T = (V,U) can be computed in O(|V |) total time. Consequently, by Lemma 7
and Lemma 8, we get the following additive approximations for the vertex ec-
centricities in αi-metric graphs.

Theorem 4. Let G be an αi-metric graph with m edges. There is an algorithm
which in total linear (O(m)) time outputs for every vertex v ∈ V an estimate
ê(v) of its eccentricity e(v) such that e(v) ≤ ê(v) ≤ e(v) + 9i+ 5. Furthermore,
there is an algorithm which in total almost linear (O(im)) time outputs for every
vertex v ∈ V an estimate ê(v) of its eccentricity e(v) such that e(v) ≤ ê(v) ≤
e(v) + 4i+ 2.

3 Graphs with α1-metric

Now we concentrate on α1-metric graphs, which contain all chordal graphs and
all plane triangulations with inner vertices of degree at least 7 (see [14, 15, 32,
54]). For them we get much sharper bounds. First we recall some known results.

Theorem 5 ([54]). G is an α1-metric graph if and only if all disks D(v, k)
(v ∈ V , k ≥ 1) of G are convex and G does not contain the graph W++

6 from
Fig. 1 as an isometric subgraph.

Fig. 1. Forbidden isometric subgraph W++
6 .

Lemma 9 ([51]). All disks D(v, k) (v ∈ V , k ≥ 1) of a graph G are con-
vex if and only if for every vertices x, y, z ∈ V and v ∈ I(x, y), d(v, z) ≤
max{d(x, z), d(y, z)}.

Letting z to be from F (v), we get:

Corollary 2. If all disks D(v, k) (v ∈ V , k ≥ 1) of a graph G are convex then
for every vertices x, y ∈ V and v ∈ I(x, y), e(v) ≤ max{e(x), e(y)}.
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Lemma 10 ([32]). Let G be an α1-metric graph and x be its arbitrary vertex
with e(x) ≥ rad(G) + 1. Then, for every vertex z ∈ F (x) and every neighbor v
of x in I(x, z), e(v) ≤ e(x) holds.

3.1 The eccentricity function on α1-metric graphs is almost
unimodal

We prove the following theorem.

Theorem 6. Let G be an α1-metric graph and v be an arbitrary vertex of G. If

(i) e(v) > rad(G) + 1 or
(ii) e(v) = rad(G) + 1 and diam(G) < 2rad(G)− 1,

then there must exist a neighbor w of v with e(w) < e(v).

Theorem 6 says that if a vertex v with loc(v) > 1 exists in an α1-metric
graph G then diam(G) ≥ 2rad(G) − 1, e(v) = rad(G) + 1 and d(v, C(G)) = 2.
Two α1-metric graphs depicted in Fig. 2 show that this result is sharp.

Fig. 2. Sharpness of the result of Theorem 6. (a) An α1-metric graph G with
diam(G) = 2rad(G) − 1 and a vertex (topmost) with locality 2. (b) A chordal
graph (and hence an α1-metric graph) G with diam(G) = 2rad(G) and a vertex
(topmost) with locality 2. The number next to each vertex indicates its eccentricity.

We formulate three interesting corollaries of Theorem 6.

Corollary 3. Let G be an α1-metric graph. Then,

(i) if diam(G) < 2rad(G) − 1 (i.e., diam(G) = 2rad(G) − 2) then every local
minimum of the eccentricity function on G is a global minimum.

(ii) if diam(G) ≥ 2rad(G) − 1 then every local minimum of the eccentricity
function on G is a global minimum or is at distance 2 from a global minimum.

Corollary 4. For every α1-metric graph G and any vertex v, the following for-
mula is true: d(v, C(G))+rad(G) ≥ e(v) ≥ d(v, C(G))+rad(G)−ϵ, where ϵ ≤ 1,
if diam(G) ≥ 2rad(G)− 1, and ϵ = 0, otherwise.

A path (v = v0, . . . , vk = x) of a graph G from a vertex v to a vertex x is
called strictly decreasing (with respect to the eccentricity function) if for every i
(0 ≤ i ≤ k−1), e(vi) > e(vi+1). It is called decreasing if for every i (0 ≤ i ≤ k−1),
e(vi) ≥ e(vi+1). An edge ab ∈ E of a graph G is called horizontal (with respect
to the eccentricity function) if e(a) = e(b).
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Corollary 5. Let G be an α1-metric graph and v be an arbitrary vertex. Then,
there is a shortest path P (v, x) from v to a closest vertex x in C(G) such that:

(i) if diam(G) < 2rad(G) − 1 (i.e., diam(G) = 2rad(G) − 2) then P (v, x) is
strictly decreasing;

(ii) if diam(G) ≥ 2rad(G)− 1 then P (v, x) is decreasing and can have only one
horizontal edge, with an end-vertex adjacent to x.

3.2 Diameters of centers of α1-metric graphs

In this section, we provide sharp bounds on the diameter and the radius of the
center of an α1-metric graph. Previously, it was known that the diameter (the
radius) of the center of a chordal graph is at most 3 (at most 2, respectively) [15].
To prove our result, we will need a few technical lemmas.

Lemma 11. Let G be an α1-metric graph. Then, for every shortest path P =
(x1, x2, x3, x4, x5) and a vertex u of G with d(u, xi) = k for all i ∈ {1, . . . , 5},
there exist vertices t, w, s such that d(t, u) = d(s, u) = k − 1, k − 2 ≤ d(w, u) ≤
k − 1, and t is adjacent to x1, x2, w and s is adjacent to x4, x5, w.

Lemma 12. Let G be an α1-metric graph. Then, for every shortest path P =
(x1, x2, x3, x4, x5) and a vertex u of G with d(u, xi) = k for all i ∈ {1, . . . , 5},
there exists a shortest path Q = (y1, y2, y3) such that d(u, yi) = k − 1, for each
i ∈ {1, . . . , 3}, and N(y1)∩P = {x1, x2}, N(y2)∩P = {x2, x3, x4} and N(y3)∩
P = {x4, x5}.

Theorem 7. Let G be an α1-metric graph. For every pair of vertices s, t of G
with d(s, t) ≥ 4 there exists a vertex c ∈ Io(s, t) such that e(c) < max{e(s), e(t)}.

Proof. It is sufficient to prove the statement for vertices s, t with d(s, t) = 4.
We know, by Corollary 2, that e(c) ≤ max{e(s), e(t)} for every c ∈ I(s, t).
Assume, by way of contradiction, that there is no vertex c ∈ Io(s, t) such that
e(c) < max{e(s), e(t)}. Let, without loss of generality, e(s) ≤ e(t). Then, for
every c ∈ Io(s, t), e(c) = e(t). Consider a vertex c ∈ S1(s, t). If e(c) > e(s),
then e(c) = e(s) + 1. Consider a vertex z from F (c). Necessarily, z ∈ F (s).
Applying the α1-metric property to c ∈ I(s, t), s ∈ I(c, z), we get e(c) = e(t) ≥
d(t, z) ≥ d(c, t) + d(s, z) = 3 + e(s) = 2 + e(c), which is impossible. So, e(s) =
e(c) = e(t) for every c ∈ Io(s, t). Consider an arbitrary shortest path P =
(s = x1, x2, x3, x4, x5 = t) connecting vertices s and t. We claim that for any
vertex u ∈ F (x3) all vertices of P are at distance k := d(u, x3) = e(x3) from u.
As e(xi) = e(x3), we know that d(u, xi) ≤ k (1 ≤ i ≤ 5). Assume d(u, xi) =
k − 1, d(u, xi+1) = k, and i ≤ 2. Then, the α1-metric property applied to
xi ∈ I(u, xi+1) and xi+1 ∈ I(xi, xi+3) gives d(xi+3, u) ≥ k − 1 + 2 = k + 1,
which is a contradiction with d(u, xi+3) ≤ k. So, d(u, x1) = d(u, x2) = k. By
symmetry, also d(u, x4) = d(u, x5) = k. Hence, by Lemma 12, for the path
P = (x1, x2, x3, x4, x5), there exists a shortest path Q = (y1, y2, y3) such that
d(u, yi) = k− 1, for each i ∈ {1, . . . , 3}, and N(y1)∩P = {x1, x2}, N(y2)∩P =
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{x2, x3, x4} and N(y3) ∩ P = {x4, x5}. As yi ∈ Io(x1, x5) = Io(s, t) for each
i ∈ {1, . . . , 3}, we have e(yi) = e(x3) = k.

All the above holds for every shortest path P = (s = x1, x2, x3, x4, x5 = t)
connecting vertices s and t. Now, assume that P is chosen in such a way that,
among all vertices in S2(s, t), the vertex x3 has the minimum number of furthest
vertices, i.e., |F (x3)| is as small as possible. As y2 also belongs to S2(s, t) and
has u at distance k− 1, by the choice of x3, there must exist a vertex u′ ∈ F (y2)
which is at distance k − 1 from x3. Applying the previous arguments to the
path P ′ := (s = x1, x2, y2, x4, x5 = t), we will have d(xi, u

′) = d(y2, u
′) = k

for i = 1, 2, 4, 5 and, by Lemma 12, get two more vertices v and w at distance
k − 1 from u′ such that vx1, vx2, wx4, wx5 ∈ E and vy2, wy2 /∈ E. By convexity
of disk D(u′, k − 1), also vx3, wx3 ∈ E. Now consider the disk D(x2, 2). Since
y3, w are in the disk and x5 is not, vertices w and y3 must be adjacent. But then
vertices y2, x3, w, y3 form an induced cycle C4, which is forbidden because disks
in G must be convex.

Thus, a vertex c ∈ Io(s, t) with e(c) < max{e(s), e(t)} must exist. ⊓⊔

Corollary 6. Let G be an α1-metric graph. Then, diam(C(G)) ≤ 3 and
rad(C(G)) ≤ 2.

Corollary 6 generalizes an old result on chordal graphs [15]. Finally, note that
results of Theorem 7 and Corollary 6 are sharp.

3.3 Finding a central vertex of an α1-metric graph

We present a local-search algorithm for computing a central vertex of an arbi-
trary α1-metric graph in subquadratic time (Theorem 8). Our algorithm even
achieves linear runtime on an important subclass of α1-metric graphs, namely,
(α1, ∆)-metric graphs (Theorem 9), thus answering an open question from [32]
where this subclass was introduced. The (α1, ∆)-metric graphs are exactly the
α1-metric graphs that further satisfy the so-called triangle condition: for every
vertices u, v, w such that u and v are adjacent, and d(u,w) = d(v, w) = k, there
must exist some common neighbour x ∈ N(u)∩N(v) such that d(x,w) = k− 1.
Chordal graphs, and plane triangulations with inner vertices of degree at least
7, are (α1, ∆)-metric graphs (see [14, 15, 32, 54]).

We first introduce the required new notations and terminology for this part.
In what follows, let proj(v,A) = {a ∈ A : d(v, a) = d(v,A)} denote the metric
projection of a vertex v to a vertex subset A. For every k such that 0 ≤ k ≤
d(v,A), we define Sk(A, v) =

⋃
{Sk(a, v) : a ∈ proj(v,A)}. A distance-k gate of

v with respect to A is a vertex v∗ such that v∗ ∈
⋂
{I(a, v) : a ∈ proj(v,A)}

and d(v∗, A) ≤ k. If k = 1, then following [16] we simply call it a gate. Note that
every vertex v such that d(v,A) ≤ k is its own distance-k gate. A cornerstone of
our main algorithms is that, in α1-metric graphs, for every closed neighbourhood
(for every clique, resp.), every vertex has a gate (a distance-two gate, resp.).
Proofs are omitted due to lack of space.

The problem of computing gates has already attracted some attention, e.g.,
see [16]. We use this routine in the design of our main algorithms.
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Lemma 13 ([39]). Let A be an arbitrary subset of vertices in some graph G
with m edges. In total O(m) time, we can map every vertex v /∈ A to some vertex
v∗ ∈ D(v, d(v,A)− 1)∩N(A) such that |N(v∗)∩A| is maximized. Furthermore,
if v has a gate with respect to A, then v∗ is a gate of v.

The efficient computation of distance-two gates is more challenging. We
present a subquadratic-time procedure that only works in our special setting.

Lemma 14. Let K be a clique in some α1-metric graph G with m edges. In
total O(m1.41) time, we can map every vertex v /∈ K to some distance-two gate
v∗ with respect to K. Furthermore, in doing so we can also map v∗ to some
independent set JK(v∗) ⊆ D(v∗, 1) such that proj(v∗,K) is the disjoint union
of neighbour-sets N(w) ∩K, for every w ∈ JK(v∗).

Then, we turn our attention to the following subproblem: being given a vertex
x in an α1-metric graph G, either compute a neighbour y such that e(y) <
e(x), or assert that x is a local minimum for the eccentricity function (but not
necessarily a central vertex). Our analysis of the next algorithms essentially
follows from the results of Section 3.1. We first present the following special
case, for which we obtain a better runtime than for the more general Lemma 16.

Lemma 15. Let x be an arbitrary vertex in an α1-metric graph G with m edges.
If e(x) ≥ rad(G) + 2, then

⋂
{N(x) ∩ I(x, z) : z ∈ F (x)} ≠ ∅, and every

neighbour y in this subset satisfies e(y) < e(x). In particular, there is an O(m)-
time algorithm that either outputs a y ∈ N(x) such that e(y) < e(x), or asserts
that e(x) ≤ rad(G) + 1.

Note that Lemma 15 relies on the existence of gates for every vertex with
respect toD(x, 1), and that it uses Lemma 13 as a subroutine. We can strengthen
Lemma 15 as follows, at the expenses of a higher runtime.

Lemma 16. Let x be an arbitrary vertex in an α1-metric graph G with m edges.
There is an O(m1.41)-time algorithm that either outputs a y ∈ N(x) such that
e(y) < e(x), or asserts that x is a local minimum for the eccentricity function.
If G is (α1, ∆)-metric, then its runtime can be lowered down to O(m).

The improved runtime for (α1, ∆)-metric graphs comes from the property
that for every clique in such a graph, every vertex has a gate [32], and that gates
are easier to compute than distance-two gates.

Theorem 8. If G is an α1-metric graph with m edges, then a vertex x0 such
that e(x0) ≤ rad(G) + 1 can be computed in O(m) time. Furthermore, a central
vertex can be computed in O(m1.71) time.

Let us sketch our algorithm for general α1-metric graphs. By Theorem 2,
we can compute in O(m) time a vertex x0 such that e(x0) ≤ rad(G) + 3. We
repeatedly apply Lemma 15 until we can further assert that e(x0) ≤ rad(G) + 1
(and, hence, by Theorem 6, d(x0, C(G)) ≤ 2). Since there are at most two
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calls to this local-search procedure, the runtime is in O(m). Now, if x0 has
small enough degree (≤ m.29), then we can apply Lemma 16 to every vertex
of D(x0, 1) in order to compute a minimum eccentricity vertex within D(x0, 2),
which must be central. Otherwise, we further restrict our search for a central
vertex to X1 := D(x0, 5) ∩ D(z0, e(x0) − 1), for some arbitrary z0 ∈ F (x0),
which must be a superset of C(G) provided that x0 is non-central. Starting
from an arbitrary vertex of X1, if we apply Lemma 15 at most five times, then
we can either extract some x1 ∈ X1 such that e(x1) ≤ e(x0), or assert that
x0 is central. If e(x1) < e(x0), then x1 is central. Otherwise, we repeat our
above procedure for x1. Doing so, we compute a decreasing chain of subsets
X0 = V ⊃ X1 ⊃ . . . ⊃ Xi ⊃ . . . XT , and vertices x0, x1, . . . , xi, . . . , xT such that
xi ∈ Xi \Xi+1 for every i, 0 ≤ i ≤ T . We continue until we compute a vertex of
smaller eccentricity than x0, or we reach XT+1 = ∅ (in which case, x0 is central).

To lower the runtime to O(m) for the (α1, ∆)-metric graphs, we use a different
approach that is based on additional properties of these graphs. Unfortunately,
these properties crucially depend on the triangle condition.

Theorem 9. If G is an (α1, ∆)-metric graph with m edges, then a central vertex
can be computed in O(m) time.

Roughly, the algorithm starts from a vertex x which is a local minimum for
the eccentricity function of G. We run a core procedure which either outputs two
adjacent vertices u, v ∈ D(x, 1) such that e(u) = e(v) = e(x) and F (u), F (v) are
not comparable by inclusion, or outputs a central vertex. In the former case, we
can either assert that x is central, or extract a central vertex from Se(x)−1(y, z)
for some arbitrary y ∈ F (u) \ F (v), z ∈ F (v) \ F (u). Indeed, we can apply
Lemma 16 to the latter slice because Se(x)−1(y, z) ⊆ D(w, 1) for some w [32].
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Research, vol. 87, Ştiinţa, Chişinău, 1986, pp. 164–177 (Russian).

15. V. Chepoi, Centers of triangulated graphs, Math. Notes 43 (1988), 143–151.
16. V. Chepoi, F.F. Dragan, A linear-time algorithm for finding a central vertex of a

chordal graph, in Proceedings of the Second European Symposium on Algorithms –
ESA’94, 159–170.

17. V. Chepoi and F. F. Dragan, Disjoint sets problem, 1992.
18. V. Chepoi and F. F. Dragan, Finding a central vertex in an HHD-free graph, DAM,

131(1) (2003), 93–111.
19. V.D. Chepoi, F.F. Dragan, B. Estellon, M. Habib and Y. Vaxès, Diameters, centers,

and approximating trees of δ-hyperbolic geodesic spaces and graphs, Proceedings
of the 24th Annual ACM Symposium on Computational Geometry (SoCG 2008),
June 9-11, 2008, College Park, Maryland, USA, pp. 59-68.

20. V. Chepoi, F.F. Dragan, M. Habib, Y. Vaxès, and H. Alrasheed, Fast approxima-
tion of eccentricities and distances in hyperbolic graphs, Journal of Graph Algo-
rithms and Applications, 23(2019), 393–433.

21. F.F. Dragan, Centers of Graphs and the Helly Property (in Russian), PhD thesis,
Moldava State University, Chişinău, 1989.
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