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LARGE SELF-SIMILAR SOLUTIONS
TO OBERBECK–BOUSSINESQ SYSTEM

WITH NEWTONIAN GRAVITATIONAL FIELD

LORENZO BRANDOLESE AND GRZEGORZ KARCH

Abstract. The Navier-Stokes system for an incompressible fluid coupled with

the equation for a heat transfer is considered in the whole three dimensional space.

This system is invariant under a suitable scaling. Using the Leray–Schauder theo-

rem and compactness arguments, we construct self-similar solutions to this system

without any smallness assumptions imposed on homogeneous initial conditions.

1. Introduction

The Oberbeck–Boussinesq system is a mathematical model of a stratified flow,

where the fluid is assumed to be incompressible and convecting by a diffusive quan-

tity creating positive and negative buoyancy force. The diffusive quantity in this

model is identified with the deviation of temperature from its equilibrium value and

the resulting system has the following form

∂tu+ u · ∇u+∇p = ∆u+ θ∇G+ f, x ∈ R3, t ∈ R+

∇ · u = 0,

∂tθ + u · ∇θ = ∆θ,

(1.1)

with the unknown fluid velocity u = u(x, t), the temperature θ = θ(x, t) and the

pressure p = p(x, t). In first equation of system (1.1), the symbol ∇G denotes a

gravitational force acting on the fluid and f = f(x, t) is a given external force.

The equations in system (1.1) should contain important physical parameters such

as is the viscosity coefficient, the heat conductivity coefficient, the fluid density,

the reference temperature, the specific heat at constant pressure, the coefficient of

thermal expansion of the fluid. However, since these physical constants do not play

any role in this work, we put all of them equal to one, for simplicity of the exposition.
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As noticed by Feireisl and Schonbek [12], it is customary to take ∇G = g(0, 0,−1)

(where the constant g represents the acceleration rate caused by Earth’s gravity)

as the gravitational force acting on the fluid which is a reasonable approximation

provided the fluid occupies a bounded domain, where the gravitational field can be

taken constant. On the other hand, from a physical point of view, for system (1.1)

in the whole space R3, it is better to consider the gravitational potential of the

following form

G(x) =

∫
R3

1

|x− y|
m(y) dy,

where m denotes the mass density of the object acting on the fluid by means of

gravitation. Moreover, if the size of the object is negligible, we may choose G(x) =

|x|−1.

The Oberbeck–Boussinesq approximation (1.1) can be derived as a singular limit

of the full Navier-Stokes–Fourier system with suitable boundary conditions and with

the Mach and the Froude numbers tending to zero and when the family of domains

on which the primitive problems are stated converges to the whole space R3, see

[12, 26] and the references therein. Several authors studied properties solutions to

system (1.1) with ∇G = g(0, 0,−1) on the whole space R3, see e.g [5, 6, 10, 18, 24]

and references therein. On the other hand, this work is devoted to system (1.1) with

singular gravitational force ∇G(x) = ∇|x|−1.

The Oberbeck-Boussinesq model enjoys the following scaling property: if (u, θ) is

a solution of system (1.1) with

(1.2) G(x) =
1

|x|
and f(x, t) =

1

(
√

2t)
3F

(
x√
2t

)
,

then

(1.3) uλ(x, t) := λu(λx, λ2t), θλ(x, t) := λθ(λx, λ2t)

is also a solution of the same system for each λ > 0. A self-similar solution to

system (1.1)-(1.2) is, by definition, a solution which is left invariant by this rescaling:

(u, p, θ) = (uλ, θλ) for every λ > 0. Equivalently, by choosing λ = 1/
√

2t, self-similar

solutions are those that can be written in the form

(1.4) u(x, t) =
1√
2t
U
( x√

2t

)
, θ(x, t) =

1√
2t

Θ
( x√

2t

)
,

with U(x) = u(x, 1/2) and Θ(x) = θ(x, 1/2).
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If system (1.1) is supplemented with an initial condition

(1.5) u(x, 0) = u0(x), θ(x, 0) = θ0(x),

in the case of a self-similar solution, it has to be also invariant under the scaling

(u0,λ, θ0,λ)(x) = λ(u0, θ0)(λx), which means that these are homogeneous function of

degree −1. In this work, we construct self-similar solutions of system (1.1)-(1.2)

with arbitrary, not necessarily small initial conditions (1.5) which are homogeneous

of degree −1 and essentially bounded on the unit sphere of R3. The main result of

this work is stated in the following theorem.

Theorem 1.1. Let (u0, θ0) ∈ L∞loc(R3\{0}) be homogeneous of degree −1, with ∇ ·
u0 = 0. Let the external force f(x, t) be of the form as in (1.2) with the profile

F ∈ Lp(R3)3 with some p ∈ [6/5, 2]. Then there exists a self-similar solution (u, p)

of system (1.1)-(1.2). This solution has the following properties:

• (u, θ) ∈ Cw([0,∞),L3,∞(R3));

• for all t > 0

‖u(t)− et∆u0‖2 + ‖θ(t)− et∆θ0‖2 ≤ Ct1/4,

‖∇u(t)−∇et∆u0‖2 + ‖∇θ(t)−∇et∆θ0‖2 ≤ Ct−1/4.
(1.6)

Theorem 1.1 extends to the Oberbeck–Boussinesq system (1.1)-(1.2) the well

known existence result of large (i.e. with no size restriction on the initial data)

forward self-similar solutions to the Navier–Stokes equations, first established by

Jia and Šverák [15].

Let us briefly review related results on self-similar solutions to the Navier-Stokes

system and the Oberbeck–Boussinesq system. If initial data are sufficiently small,

unique mild solutions to the Cauchy problem either for the Navier-Stokes system or

the Oberbeck–Boussinesq system can be obtained via the contraction mapping argu-

ment applied to integral formulations of these problems. If the considered space has

a scaling invariant norm and contains homogeneous initial conditions, the uniqueness

property ensures that obtained solutions are self-similar. This approach was first

applied to the Cauchy problem for the Navier-Stokes system by Giga-Miyakawa [14]

and refined by Kato [19] and Cannone-Meyer-Planchon [8,9], see also e.g. [4,7,17,27]

and references therein. Methods of constructing small self-similar solutions corre-

sponding to small initial conditions were then applied to other models including the

Oberbeck–Boussinesq, see e.g. [11, 13,18].
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For large initial conditions, the contraction mapping argument no longer works

and a question on the existence of large self-similar solutions remained open until

the seminal paper by Jia and Šverák [15] who constructed self-similar solutions of

the three dimensional Navier-Stokes system, supplemented with a homogeneous not

necessarily small initial condition which is Hölder continuous outside of the origin.

In their construction, they used the theory of local-Leray solutions in L2
uloc developed

by Lemarié-Rieusset [22] and they obtained a local Hölder estimate for local-Leray

solutions near t = 0, assuming minimal control of initial data. That estimate enables

them to prove a priori estimates of self-similar solutions, and then to show their

existence by the Leray-Schauder degree theorem. Results by Jia and Šverák [15]

were then extended either to discretely self-similar solutions of the Navier-Stokes

system or to the Navier-Stokes system in a half-space or to the fractional Navier-

Stokes system in the works [1–3,20,21,25].

Now let us describe the strategy of proving Theorem 1.1. Substituting expressions

(1.4) into system (1.1)-(1.2) allows us to eliminate the time variable and we are led

to construct a solution (U, P,Θ) to the following elliptic system

−∆U − U − (x · ∇)U + (U · ∇)U +∇P = Θ∇(| · |−1) + F,

∇ · U = 0,

−∆Θ−Θ− (x · ∇)Θ +∇(ΘU) = 0.

(1.7)

In this construction, we use solutions to the heat equation given as convolutions of

the Gauss-Weierstrass kernel with homogeneous initial data which are themselves

of self-similar form: in particular, by our assumptions on u0 and θ0, we have

(1.8) et∆u0(x) =
1√
2t
U0

(
x√
2t

)
and et∆θ0(x) =

1√
2t

Θ0

(
x√
2t

)
,

where the self-similar profiles

(1.9) U0 := e∆/2u0 and Θ0 := e∆/2θ0

have properties recalled below in Proposition 2.1. Then, rather than studying di-

rectly system (1.7), we will consider the perturbations

V = U − U0 and Ψ = Θ−Θ0,
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which satisfy the elliptic system

−∆V − V − (x · ∇)V + (V + U0) · ∇(V + U0) +∇P = (Ψ + Θ0)∇(| · |−1) + F,

∇ · V = 0,

−∆Ψ−Ψ− (x · ∇)Ψ +∇ ·
(
(Ψ + Θ0)(V + U0)

)
= 0.

(1.10)

In the next section, we will construct solutions of system (1.10) in the Sobolev

space H1(R3)4, see Theorem 2.6 below, and we deduce Theorem 1.1 as a direct

corollary. Our strategy of studying system (1.10) is closely inspired by the paper

of Korobkov and Tsai [20], where they established a similar result for the Navier–

Stokes equations in the half-space. In that approach, we first solve system (1.10)

supplemented with the Dirichlet boundary condition in a ball by using the Leray–

Schauder theorem. Then, we obtain a solution in the whole space by passing with

the radius of the ball to infinity and using an H1-estimate of the sequence of solutions

which is independent of the radius of the ball. The singular nature of the forcing

term arising from the temperature variations and the coupling bring a few new

technical difficulties. We overcome them by means of an approximation procedure

and suitable a priori estimates, whose derivation do not appear to be so standard

(see, e.g. the contradiction argument contained in the proofs of Propositions 2.2

and 2.5). Assuming that the components of the initial data are L∞loc(R3\{0}) and

not, e.g., only L2
uloc, considerably simplifies the presentation. This makes possible to

provide a proof which is more elementary than that presented in [15,23] in the case of

the Navier–Stokes equations with external forces, despite the Oberbeck–Boussinesq

(1.1)-(1.2) system is more general.

As the usual practice, we skip any comment about the pressure in this introduc-

tion, because it disappears in the weak formulation of system (1.1) and because it

can be obtained in the well-known way by applying the divergence operator to first

equation in system (1.1). Here, we only mention that the pressure corresponding

to the self-similar solution constructed in Theorem 1.1 is self-similar of the form

p(x, t) = (2t)−1P
(
x/
√

2t
)
.

Notations. The symbol ‖ · ‖p denotes the usual Lebesgue Lp-norm. The space

Lp,q(Ω) are the Lorentz spaces. If Ω is a domain of R3, then we denote by C∞0,σ(Ω)3

the space of smooth, divergence-free vector fields, with support contained in Ω. We

denote by H(Ω) the closure of C∞0,σ(Ω)3 × C∞0 (Ω) in the Sobolev space H1(Ω)4. In
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general, we adopt bold symbols for function spaces of 4-dimensional vector-valued

functions. For example, Lp(Ω) = Lp(Ω)3 × Lp(Ω) and C1(Ω) = C1(Ω)3 × C1(Ω).

Constants in estimates below are denoted by the same letter C, even if they vary

from line to line.

2. Analysis of the perturbed elliptic system

We begin by establishing a few simple properties of self-similar solutions to the

heat equation that will be useful in the sequel.

Proposition 2.1. Let (u0, θ0) ∈ L∞loc(R3\{0}) be homogeneous of degree −1 with

∇ · u0 = 0 and consider the corresponding self-similar solutions of the heat equation

et∆u0 and et∆θ0 written in the form (1.8). Then, the profiles U0 and Θ0 satisfy the

following equations

U0 + x · ∇U0 + ∆U0 = 0, ∇ · U0 = 0,

Θ0 + x · ∇Θ0 + ∆Θ0 = 0
(2.1)

and the estimates

|U0(x)|+ |Θ0(x)| ≤ C(1 + |x|)−1,

|∇U0(x)|+ |∇Θ0(x)| ≤ C(1 + |x|)−1,
(2.2)

for all x ∈ R3 and some constant C > 0 independent on x.

Proof. From our assumptions we deduce that the map x 7→ |x|(|u0(x)| + |θ0(x)|) is

in L∞(R3). Let us denote by Gt(x) = (4πt)−3/2 exp(−|x|2/(4t)) the heat kernel. We

do have U0 = G1/2 ∗u0, Θ0 = G1/2 ∗θ0 and ∇U0 = (∇G1/2)∗u0, ∇Θ0 = (∇G1/2)∗θ0.

But (∇G1/2, G1/2) belong to the space L3/2,1(R3) (and to any other Lorentz space

Lp,q(R3), for 1 < p, q ≤ ∞). As (u0, θ0) ∈ L3,∞(R3), the Young inequality for

Lorentz spaces (see [22, Ch. 2]) implies that (U0,Θ0) ∈ L∞(R3). From a simple

convolution estimate, relying on the fast decay of G1/2 and ∇G1/2 at the spatial

infinity, we easily deduce estimates (2.2). Moreover, as u0 is divergence-free, it

results that ∇ ·U0 = 0. The two other equations in (2.1) are well known and follow

from the scaling invariance of the heat equation. �

2.1. A priori estimates for a perturbed elliptic system in bounded do-

mains. First, we construct solutions to system (1.10) considered in a bounded

domain Ω ⊂ R3 with a smooth boundary. For technical reasons, we introduce a

smooth, bounded function ρ ∈ Cb(R3) which will be used in the next section to cut



SELF-SIMILAR SOLUTIONS TO OBERBECK–BOUSSINESQ SYSTEM 7

off the singularity at zero of the potential | · |−1. In view of the application of the

Leray-Schauder theorem, our first goal is to derive a priori estimates independent

of λ ∈ [0, 1] of solutions to the system

−∆V +∇P = λ
(
V + x · ∇V + F0 + F1(V ) + (Ψ + Θ0) ρ∇(| · |−1) + F

)
,

∇ · V = 0,

−∆Ψ = λ
(

Ψ + x · ∇Ψ−∇ ·
(
(Ψ + Θ0)(V + U0)

))
,

x ∈ Ω

(2.3)

where, for simplicity of notation, we set

F0 := −U0 · ∇U0, and F1(V ) := −(U0 + V ) · ∇V + V · ∇U0.

and which we supplement with the Dirichlet boundary conditions

(2.4) V = 0 and Ψ = 0 on ∂Ω.

Proposition 2.2. Let Ω be a bounded domain in R3 with a smooth boundary and let

ρ ∈ Cb(R3). Assume that (U0,Θ0) ∈ L∞(R3) does satisfy the decay estimates (2.2)

and F ∈ L6/5(Ω)3. Let λ ∈ [0, 1] and (V,Ψ) ∈ H(Ω) be solutions to problem (2.3)-

(2.4). Then there exists a constant C0 = C0(Ω, F, ρ, U0,Θ0), independent on λ, such

that

(2.5)

∫
Ω

(
|V |2 + Ψ2 + |∇V |2 + |∇Ψ|2

)
≤ C0.

Proof. Step 1. Multiplying third equation in (2.3) by Ψ and integrating on Ω, after

noticing that ∫
Ω

∇ · (Ψ(V + U0))Ψ = 0

because both V and U0 are divergence-free, we get

(2.6)

∫
Ω

|∇Ψ|2 +
λ

2

∫
Ω

Ψ2 + λ

∫
Ω

∇ · [Θ0(V + U0)]Ψ = 0.

The latter integral on the left-hand side can be estimated by

1

2

∫
Ω

|∇Ψ|2 + ‖Θ0‖2
∞

∫
Ω

|V |2 +

∫
Ω

|Θ0U0|2.

The latter integral is finite because, by (2.2), we have got |Θ0U0| ∈ L2(R3). Thus,

as 0 ≤ λ ≤ 1, we get the estimate

(2.7)
1

2

∫
Ω

|∇Ψ|2 +
λ

2

∫
Ω

Ψ2 ≤ λ
(
‖Θ0‖2

∞

∫
Ω

|V |2 +

∫
Ω

|Θ0U0|2
)
.
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By the Poincaré inequality and by estimate (2.7), we deduce that, in order to es-

tablish (2.5), it is sufficient to prove that

(2.8)

∫
Ω

|∇V |2 ≤ C1

for some C1 = C1(Ω, c, ρ, U0,Θ0) > 0 independent on λ ∈ [0, 1].

Multiplying first equation of system (2.3) by V , after some integration by parts,

we get ∫
Ω

|∇V |2 +
λ

2

∫
Ω

|V |2 =λ
[∫

Ω

(F0 + F1(V )) · V −
∫

Ω

(V · ∇U0) · V

+

∫
Ω

(
(Ψ + Θ0)ρ∇| · |−1

)
· V +

∫
Ω

F · V
]
.

(2.9)

In the above identity, the convergence of the integral
∫

Ω
((Ψ + Θ0)ρ∇| · |−1) · V

deserves an explanation: the fact that Ψρ∇| · |−1 · V and Θ0ρ∇| · |−1 · V are both

integrable on Ω follows from estimates (2.11)–(2.12) below. The other integrals

in (2.9) are obviously convergent because of our assumptions on (U0,Θ0).

But rather than working directly with the energy inequality (2.9), we proceed by

contradiction: assume that there exist a sequence (λk) ⊂ [0, 1] and a sequence of

solutions (Vk,Ψk) ⊂ H(Ω) to problem (2.3)-(2.4), with λk instead of λ, such that

Jk :=
(∫

Ω

|∇Vk|2
)1/2

→ +∞.

We also set

Lk :=
(∫

Ω

|∇Ψk|2
)1/2

and we introduce the normalized functions

V̂k =
Vk
Jk

and Ψ̂k =
Ψk

Lk
,

so that (V̂k, Ψ̂k) is a bounded sequence in H(Ω). After extracting a suitable sub-

sequence we can assume that (V̂k, Ψ̂k) → (Ṽ , Ψ̃) weakly in H(Ω) and strongly in

Lp(Ω), for p ∈ [2, 6). We can also assume that λk → λ0, for some λ0 ∈ [0, 1].

Step 2. Excluding the case: lim supk→+∞ Jk/Lk <∞.

If by contradiction, lim supk→+∞ Jk/Lk < ∞, then after a new extraction of a

subsequence, we can assume that there exists γ ≥ 0 such that

Jk/Lk → γ.
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In fact, γ > 0 by estimate (2.7). Moreover, as Jk → +∞, we must have Lk → +∞.

Equation (2.6) holds with (Vk,Ψk) instead of (V,Ψ), namely∫
Ω

|∇Ψk|2 +
λk
2

∫
Ω

|Ψk|2 + λk

∫
Ω

∇ · [Θ0(Vk + U0)]Ψk = 0.

After dividing term-by-term by L2
k and taking the limit as k → +∞, using that

Ψ̂k → Ψ̃ weakly in H1
0 (Ω), V̂k → Ṽ strongly in L2(Ω)3 and Θ0 ∈ L∞(Ω) as well as

the fact that Θ0U0 ∈ L2(R3), implies

1

L2
k

∣∣∫
Ω

∇ · (Θ0U0)Ψk

∣∣ ≤ C

Lk
‖Θ0U0‖L2(Ω) → 0.

Hence, we get the equation

(2.10) 1 +
λ0

2

∫
Ω

|Ψ̃|2 = −λ0γ

∫
Ω

∇ · (Θ0Ṽ ) Ψ̃.

The weak formulation of the third equation of (2.3), written for (Vk,Ψk) and λk,

gives, for all χ ∈ C∞0 (Ω),∫
Ω

∇Ψk · ∇χ = λk

[∫
Ω

[Ψk + x · ∇Ψk]χ−
∫

Ω

∇ · [(Ψk + Θ0)(Vk + U0)]χ
]
.

Let us divide this identity by L2
k and let k → +∞. All the terms 1

L2
k

∫
Ω

which are

linear with respect to {Vk,Ψk} tend to zero. Hence, in the limit, we find

λ0γ

∫
Ω

∇ · (Ψ̃Ṽ )χ = 0 for all χ ∈ C∞0 (Ω).

But λ0γ 6= 0 by equation (2.10), so∫
Ω

∇ · (Ψ̃Ṽ )χ = 0 for all χ ∈ C∞0 (Ω).

This in turn implies that

Ṽ · ∇Ψ̃ = 0.

But then ∫
Ω

∇ · (Θ0Ṽ )Ψ̃ = −
∫

Ω

Θ0Ṽ · ∇Ψ = 0

which contradicts equation (2.10). This excludes that lim supk→+∞ Jk/Lk <∞.

Step 3. We reduced ourselves to the case lim supk→+∞ Jk/Lk = +∞. After

extracting a new subsequence, we can assume that Lk/Jk → 0. Equation (2.9)

holds true for (Vk,Ψk) and λk instead of (V,Ψ) and λ. Let us divide it by J2
k and

study the limit of each term, as k → +∞. We have

1

J2
k

∫
Ω

|∇Vk|2 = 1,
1

J2
k

∫
Ω

|Vk|2 →
∫

Ω

|Ṽ |2, 1

J2
k

∫
Ω

F0 · Vk → 0,
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and
1

J2
k

∫
Ω

F · Vk → 0,
1

J2
k

∫
Ω

(Vk · ∇U0) · Vk →
∫

Ω

(Ṽ · ∇U0) · Ṽ ,

because |∇U0| ∈ L2(Ω) and V̂k → Ṽ strongly in Lp(Ω)3 for p ∈ [2, 6). For the next

term, we rely on the Hardy inequality: as Ψk and Vk belong to H1
0 (Ω) we can write

1

J2
k

∣∣∣∫
Ω

Ψkρ∇
(
| · |−1

)
· Vk
∣∣∣ ≤ C

J2
k

∥∥∥Ψk

| · |

∥∥∥
L2(Ω)

∥∥∥ Vk| · |∥∥∥L2(Ω)

≤ C

J2
k

‖∇Ψk‖L2(Ω)‖∇Vk‖L2(Ω)

≤ C

Jk
‖∇Ψk‖L2(Ω) = C

Lk
Jk
→ 0.

(2.11)

The function Θ0 does not belong to H1
0 (Ω), so we deal in a slightly different way

with the term of (2.9) containing Θ0. First of all, since Θ0 ∈ L3,∞ ∩L∞(R3), by the

real interpolation of Lorentz spaces, we get Θ0 ∈ L6,1(R3). (See e.g., [22, Ch. 2]).

Then, by the Hölder inequality in Lorentz spaces (see, e.g., again [22, Ch. 2]),

1

J2
k

∣∣∣∫
Ω

Θ0ρ∇
(
| · |−1

)
· Vk
∣∣∣ ≤ C

J2
k

∥∥∥Θ0

∥∥∥
L6,1(Ω)

‖∇(| · |−1)‖L3/2,∞(Ω)‖Vk‖L6(Ω)

≤ C

J2
k

‖∇Vk‖L2(Ω) =
C

Jk
→ 0.

(2.12)

The above calculations lead to the identity

(2.13) 1 +
λ0

2

∫
Ω

|Ṽ |2 = −λ0

∫
Ω

(Ṽ · ∇U0) · Ṽ ,

which implies λ0 6= 0. So, for large enough k, we have λk 6= 0 and we can normalize

the pressure putting

P̂k :=
Pk
λkJ2

k

.

We now go back to first equation in (2.3), written for (Vk,Ψk) and λk instead of

(V,Ψ) and λ. Dividing by λkJ
2
k we obtain

V̂k · ∇V̂k +∇P̂k =
1

Jk

(
∆V̂k
λk

+ V̂k + x · ∇V̂k +
F0

Jk

− U0 · ∇V̂k − V̂k · ∇U0 +
(Lk
Jk

Ψ̂k +
Θ0

Jk

)
ρ∇(| · |−1) +

F

Jk

)
.

More precisely, we consider the weak formulation of the above equation: testing with

an arbitrary solenoidal vector field η ∈ C∞0,σ(R3)3, after integrating on Ω and letting
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k → +∞, the terms obtained in the right-hand side vanish, in the limit. Indeed, for

the two last terms, following the calculations in (2.12), we obviously have

1

J2
k

∫
Ω

(
Θ0ρ∇(| · |−1) + F

)
· η → 0.

Moreover, we also have

Lk
J2
k

∫
Ψ̂kρ∇(| · |−1) · η → 0

because Lk/J
2
k → 0, ρ is a bounded function, and |

∫
Ω

Ψ̂k∇(| · |−1) ·η| can be bounded

uniformly with respect to k applying the Hardy inequality as in (2.11). The terms

obtained testing with η the other terms on the right-hand side also vanish (because

V̂k is bounded in H1
0 (Ω)3 and |U0| and |∇U0| are both in L∞(Ω), and because Jk →

+∞). But
∫

Ω
∇P̂k · η = 0, therefore, we find in the limit

(2.14)

∫
Ω

(Ṽ · ∇Ṽ ) · η = 0, for all η ∈ C∞0,σ(R3)3.

This means that Ṽ ∈ H1
0 (Ω) is a stationary solution of the Euler equations. At this

stage, the proof can be finished exactly as in the paper by Korobkov and Tsai [20]:

there exists P̃ ∈ L3(Ω), such that ‖∇P̃‖L3/2(Ω) <∞, satisfying
Ṽ · ∇Ṽ = −∇P̃ in Ω

∇ · Ṽ = 0 in Ω

Ṽ = 0 on ∂Ω.

Then, going back to (2.13), and using once more that U0,∇U0 are in L∞(R3), we

find

1 +
λ0

2

∫
Ω

|Ṽ |2 = −λ0

∫
Ω

(Ṽ · ∇U0) · Ṽ = λ0

∫
Ω

(Ṽ · ∇Ṽ ) · U0

= −λ0

∫
Ω

∇P̃ · U0 = −λ0

∫
Ω

∇ · (PU0)

= 0.

The last equality relies on a classical result on the stationary Euler equation [16,

Lemma 4], implying that in addition to the above properties, the pressure P can

be taken additionally such that P (x) ≡ 0 a.e. on ∂Ω, with respect to the two-

dimensional Hausdorff measure. From the last equality we get a contradiction. �
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2.2. Existence of solutions to the perturbed elliptic system in bounded

domains. Let Ω be a bounded domain with a smooth boundary. As before, we

take ρ ∈ Cb(R3), but here we additionally assume that the support of ρ does not

contain the origin, in a such way that ρ∇(| · |−1) ∈ L2(Rn) ∩ L∞(Rn).

Let us define the linear map Lρ and the nonlinear map N ,

Lρ(V,Ψ):=
(
V + x · ∇V − U0 · ∇V + V · ∇U0 + Ψρ∇(| · |−1),

Ψ + x · ∇Ψ−∇ ·
(
ΨU0 + Θ0V

))
N(V,Ψ):=

(
−U0 · ∇U0 − V · ∇V,∇ · (ΨV + Θ0U0)

)
.

We also introduce the following nonlinear map

Gρ(V,Ψ) := Lρ(V,Ψ) +N(V,Ψ).(2.15)

In this way, our system (2.3), in the case λ = 1, can be rewritten as

(2.16) (−∆V +∇P − F,−∆Ψ) = Gρ(V,Ψ).

We endow the dual space H(Ω)′ with the usual norm of dual Banach spaces.

Lemma 2.3. Let Ω be a bounded domain with a smooth boundary and ρ ∈ Cb(R3),

such that 0 6∈ supp(ρ). The nonlinear map Gρ is well defined as a map Gρ : H(Ω)→
L3/2(Ω) and is compact as a map Gρ : H(Ω)→ H(Ω)′.

Proof. Notice that Gρ : H(Ω)→ L3/2(Ω) is well defined. Indeed, if (V,Ψ) ∈ H(Ω) ⊂
L6(Ω), then the components of V · ∇V and ∇ · (ΨV ) do belong to L3/2(Ω). In the

same way, using the conditions (2.2) on U0 and Θ0, one easily checks that all the

other terms defining Gρ(V,Ψ) belong also to L3/2(Ω) (or even to a smaller space).

The presence of the function ρ cutting out the singularity of ∇(| · |−1) near the origin

is important here.

As the Sobolev embedding H(Ω) ⊂ L6(Ω) is continuous, by the previous con-

siderations the map Gρ : H(Ω) → L3/2(Ω) is continuous. Moreover, every function

f ∈ L3/2(Ω) can be identified to an element of H(Ω)′ through the usual duality

h 7→
∫

Ω
f · h, where h ∈ H(Ω). Adopting this identification, it results that the map

Gρ : H(Ω)→ H(Ω)′ is continuous.

Let us prove that, in fact, Gρ : H(Ω) → H′(Ω) is a compact operator. For every

(V,Ψ), (Ṽ , Ψ̃) ∈ H(Ω), denoting

v := Ṽ − V, and ψ := Ψ̃−Ψ,
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we have,

N(Ṽ , Ψ̃)−N(V,Ψ) =
(
−(v + V ) · ∇v − v · ∇V,∇ · ((ψ + Ψ)v + ψV )

)
.

Now, if (Vk,Ψk) is a bounded sequence in H(Ω), with ‖(Vk,Ψk)‖H(Ω) ≤ R, then

there exists (Ṽ , Ψ̃) ∈ H(Ω) such that, after extraction of a subsequence,

(vk, ψk) := (Ṽ − Vk, Ψ̃−Ψk)→ 0 weakly in H(Ω) and strongly in L3(Ω).

For any Φ ∈ H(Ω), we have, after some integration by parts,∣∣∣∫
Ω

N(Ṽ , Ψ̃) · Φ−
∫

Ω

N(Vk,Ψk) · Φ
∣∣∣ ≤ CR

(
‖vk‖3 + ‖ψk‖3

)
‖Φ‖H(Ω)

for some constant C > 0 independent on k and Φ. It follows that

‖N(Ṽ , Ψ̃)−N(Vk,Ψk)‖H′(Ω) := sup
‖Φ‖H(Ω)=1

∣∣∣∫
Ω

[N(Ṽ , Ψ̃)−N(Vk,Ψk)] · Φ
∣∣∣

≤ CR
(
‖vk‖3 + ‖ψk‖3

)
→ 0.

For the linear terms we have also,

‖Lρ(Vk,Ψk)− Lρ(Ṽ , Ψ̃)‖H(Ω)′ = ‖Lρ(vk, ψk)‖H(Ω)′ → 0,

as one can check using conditions (2.2). Here the condition 0 6∈ supp(ρ) is useful to

prove that ‖ψk ρ∇(| · |−1)‖H1(Ω)′ → 0, which is part for the previous claim; no other

difficulty arises for the other terms of Lρ(vk, ψk).

Hence,

Gρ(Vk,Ψk)→ Gρ(Ṽ , Ψ̃) strongly in H(Ω)′.

�

Proposition 2.4. Let Ω be a bounded domain with a smooth boundary and ρ ∈
C∞b (R3), such that 0 6∈ supp(ρ). Let (U0,Θ0) be as in (2.2) and assume that F ∈
L6/5(Ω)3. Then the system

−∆V +∇P = V + x · ∇V + F0 + F1(V ) + (Ψ + Θ0) ρ∇(| · |−1) + F

∇ · V = 0,

−∆Ψ = Ψ + x · ∇Ψ−∇ ·
(
(Ψ + Θ0)(V + U0)

) x ∈ Ω,

(2.17)

supplemented with the Dirichlet boundary conditions

(2.18) V = 0, Ψ = 0 on ∂Ω,

has a solution (V,Ψ) ∈ H(Ω).
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Proof. Let T : H(Ω)′ → H(Ω) be the isomorphism given by the Riesz representation

theorem for Hilbert spaces, where the Hilbert space H(Ω) is endowed with the scalar

product (
(V,Ψ), (V ′,Ψ′)

)
7→
∫

Ω

∇V · ∇V ′ +
∫

Ω

∇Ψ · ∇Ψ′.

By assumption on F , and the usual identification of L6/5(Ω) functions as ele-

ments of the dual of H1
0 (Ω), we have (F, 0) ∈ H(Ω)′ (the fourth component is zero

because we considered no forcing term in the equation of the temperature). The

weak formulation of equation (2.16) reads

(2.19) (V,Ψ) = T (Gρ(V,Ψ)) + T ((F, 0)).

By Lemma 2.3, the nonlinear map T ◦Gρ : H(Ω)→ H(Ω) is compact. Hence, the

map (V,Ψ) 7→ T (Gρ(V,Ψ)) + T ((F, 0)) is compact on H(Ω).

For every λ ∈ [0, 1], if (V,Ψ) = λ(T ◦ Gρ)(V,Ψ) + λT ((F, 0)), i.e., if (V,Ψ) is a

solution of (2.3), then ‖(V,Ψ)‖H(Ω) ≤ C0, where C0 is the constant, independent on

λ, obtained in Proposition 2.2. The Leray-Schauder fixed-point theorem (see e.g. [23,

p.529]) then implies that the map (V,Ψ) 7→ T (Gρ(V,Ψ))+T ((F, 0)) has a fixed point

(Vρ,Ψρ) ∈ H(Ω), such that ‖(Vρ,Ψρ)‖H(Ω) ≤ C0. �

2.3. Existence of solutions of the perturbed elliptic system in the whole

space. In this subsection we choose, once for all, a cut-off function ρ ∈ C∞b (R3)

such that, ρ(x) = 0 if |x| ≤ 1/2, 0 ≤ ρ(x) ≤ 1 if 1/2 ≤ |x| ≤ 1 and ρ(x) = 1 if

|x| ≥ 1. Then we set, for x ∈ R3,

ρk(x) := ρ(kx),

so that 0 ≤ ρk(x) ≤ 1 and ρk → 1 a.e. in R3 as k → +∞.

Proposition 2.5. Let (U0,Θ0) be as in (2.2) and F ∈ Lp(Rn)3, for some p ∈
[6/5, 2]. Let k ∈ N, k ≥ 1 and Bk the open ball of R3 centered at the origin and of

radius k. Let (Vk,Ψk) ∈ H(Bk) be a solution of problem (2.17)-(2.18) with Ω = Bk

and ρ = ρk. Then there exists a constant C1 = C1(F,U0,Θ0) > 0, independent on k,

such that

(2.20)

∫
Bk

(
|Vk|2 + Ψ2

k + |∇Vk|2 + |∇Ψk|2
)
≤ C1.

Proof. The proof has a similar structure to that of Proposition 2.2.
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Step 1. First of all, by estimates (2.2) and (2.7), in the case Ω = Bk and λ = 1,

we have

(2.21)

∫
Bk

|∇Ψk|2 +

∫
Bk

Ψ2
k ≤ 2

(
‖Θ0‖2

L∞(R3)

∫
Bk

|Vk|2 +

∫
R3

|Θ0U0|2
)
.

Hence, it is sufficient to prove that

(2.22)

∫
Bk

(1

2
|Vk|2 + |∇Vk|2

)
≤ C1.

With a slight change of notations with respect to Proposition 2.2, we now set

Jk :=
(∫

Bk

(1

2
|Vk|2 + |∇Vk|2

))1/2

, and Lk :=
(∫

Bk

(1

2
Ψ2
k + |∇Ψk|2

))1/2

and

V̂k :=
Vk
Jk
, P̂k =

Pk
J2
k

, and Ψ̂k :=
Ψk

Lk
.

Let us assume, by contradiction, that (2.22) does not hold. Thus, there exists a

subsequnce of solutions (Vk,Ψk) ∈ H(Bk) of problem (2.17)-(2.18) with Ω = Bk and

ρ = ρk such that

Jk → +∞.

The boundedness of the sequence (V̂k, Ψ̂k) in H(Bk) (or, more precisely, of the

sequence obtained extending (V̂k, Ψ̂k) to the whole R3 via the classical extension

theorem for Sobolev spaces), implies that there exists (Ṽ , Ψ̃) ∈ H(R3), such that,

after extraction of a subsequence,

(V̂k, Ψ̂k)→ (Ṽ , Ψ̃)

weakly in H(R3) and strongly in Lploc(R3), for 2 ≤ p < 6. The divergence-free

condition for Ṽ follows from the fact that, for every test function ϕ ∈ C∞0 (R3), one

has
∫
Ṽ · ∇ϕ = limk

∫
Ṽk · ∇ϕ = 0.

Step 2. Excluding that lim supk→+∞ Jk/Lk < ∞. Assume for the moment that

lim supk→+∞ Jk/Lk <∞. So we must have also Lk → +∞. Then, after extraction,

we have Jk/Lk → γ, for some real γ > 0, because of inequality (2.21). But the

following identity holds true, just like (2.6),

(2.23)

∫
Bk

|∇Ψk|2 +
1

2

∫
Bk

Ψ2
k +

∫
Bk

∇ · [Θ0(Vk + U0)]Ψk = 0.

Let us divide it by L2
k and take k → +∞. We claim that

1

L2
k

∫
Bk

∇ · (Θ0Vk)Ψk =
1

L2
k

∫
Bk

∇Θ0 · VkΨk → γ

∫
R3

(∇Θ0 · Ṽ )Ψ̃.
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Indeed, let Ω be a bounded domain and k large enough so that Ω ⊂ Bk. We make

use of the fact that condition (2.2) implies ∇Θ0 ∈ L4(R3), and that H1(R3) is

continuously embedded in L8/3(R3). So we have∣∣∣ 1

L2
k

∫
Bk

(∇Θ0·Vk)Ψk − γ
∫
R3

(∇Θ0 · Ṽ )Ψ̃
∣∣∣

≤
∣∣∣ Jk
Lk

∫
Bk

(∇Θ0 · V̂k)Ψ̂k − γ
∫
Bk

(∇Θ0 · Ṽ )Ψ̃
∣∣∣

+ ‖∇Θ0‖L4(Bc
k)‖Ṽ ‖L8/3(R3)‖Ψ̃‖L8/3(R3)

≤
∣∣∣∫

Ω

( Jk
Lk

(∇Θ0 · V̂k)Ψ̂k − γ(∇Θ0 · Ṽ )Ψ̃
)∣∣∣+ C‖∇Θ0‖L4(Ωc),

(2.24)

because V̂k and Ψ̂k can be extended to R3 and that such extensions are bounded in

H1(R3), and so in L8/3(R3), with respect to k. The first term in the right-hand side

tends to zero as k → +∞ by the compact embedding of H(Ω) into L8/3(Ω). The

second term can be taken as small as we wish, taking Ω = BR, k > R, choosing a

radius R > 0 large enough.

Hence, we get from (2.23)

(2.25) 1 = γ

∫
R3

∇ · (Θ0Ṽ )Ψ̃.

Let us consider an arbitrary test function χ ∈ C∞c (R3) and k large enough so that

the support of χ is contained in Bk. From the second equation of (2.17), written for

(Vk,Ψk), we obtain∫
Bk

∇Ψk · ∇χ =

∫
Bk

[Ψk + x · ∇Ψk]χ−
∫
Bk

∇ · [(Ψk + Θ0)(Vk + U0)]χ.

Dividing by L2
k and letting k → +∞, all the integrals 1

L2
k

∫
Bk
. . . with linear terms

in Vk and Ψk in the above identity go to zero. On the other hand, proceedings as

in (2.24),

1

L2
k

∫
Bk

∇ · (ΨkVk)χ→ γ

∫
R3

∇ · (Ψ̃Ṽ )χ.

Then it follows that

γ

∫
R3

∇ · (Ψ̃Ṽ )χ = 0, for all χ ∈ D(R3).

But γ 6= 0 by (2.25), so∫
R3

∇ · (Ψ̃Ṽ )χ = 0, for all χ ∈ D(R3).
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This in turn implies that Ṽ · ∇Ψ̃ = 0. But then∫
R3

∇ · (Θ0Ṽ )Ψ̃ = −
∫
R3

Θ0Ṽ · ∇Ψ = 0

which contradicts (2.25). This excludes that lim supk→+∞ Jk/Lk <∞.

Step 3. We reduced ourselves to the case lim supk→+∞ Jk/Lk =∞. Multiplying

equations (2.17) by Vk and integrating on Bk gives, in a similar way as we did in (2.9)

(2.26) J2
k =

∫
Bk

F0Vk −
∫
Bk

(Vk · ∇U0) · Vk +

∫
Bk

(
(Ψk + Θ0)ρk∇

(
| · |−1

)
+ F

)
· Vk.

Applying the Hardy inequality (c.f (2.1)) we get, as k → +∞,∣∣∣ 1

J2
k

∫
Bk

(Ψkρk∇(| · |−1) · Vk
∣∣∣ ≤ C

Lk
Jk

∥∥∥ Ψ̂k

| · |

∥∥∥
L2(Bk)

∥∥∥ V̂k| · |∥∥∥L2(Bk)

≤ C
Lk
Jk
‖∇Ψ̂k‖L2(Bk)‖∇V̂k‖L2(Bk) → 0.

Moreover,
1

J2
k

∫
Bk

(Vk · ∇U0) · Vk →
∫
R3

(Ṽ · ∇U0) · Ṽ

as one easily checks by reproducing the same calculations as in (2.24), using that

∇U0 ∈ L4(R3), by condition (2.2). Therefore, dividing equation (2.26) by J2
k and

letting k → +∞ we find the identity

(2.27)

∫
R3

(Ṽ · ∇U0) · Ṽ = −1.

Dividing by J2
k the first equation in (2.17) satisfied by (Vk,Ψk), we get

V̂k · ∇V̂k +∇P̂k

=
1

Jk

(
∆V̂k + V̂k + x · ∇V̂k +

F0

Jk
− U0 · ∇V̂k − V̂k · ∇U0

+
Lk
Jk

Ψ̂kρk∇(| · |−1) +
1

J2
k

(
Θ0ρk∇(| · |−1) + F

))
.

Writing the weak formulation of the above equation, i.e., testing with an arbitrary

η ∈ C∞0,σ(R3) and using that Jk → +∞ and that Lk/Jk remains bounded as k → +∞,

we deduce, in the limit:∫
R3

(Ṽ · ∇Ṽ ) · η = 0, for all η ∈ C∞0,σ(R3)3.

But U0 ∈ L4
σ(R3) and Ṽ ,∇Ṽ are in L2(R3). Approximating U0 in the L4-norm by

test functions implies ∫
R3

(Ṽ · ∇Ṽ ) · U0 = 0.

This is in contradiction with (2.27). �
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Theorem 2.6. Assume that U0, and Θ0 do satisfy (2.2). Assume also that F ∈
Lp(R3)3, for some p ∈ [6/5, 2]. Then elliptic system (1.10) possess at least a solution

(V,Ψ) ∈ H(R3).

Proof. Applying Proposition 2.4 with Ω = Bk and ρ = ρk (k = 1, 2, . . .), we get

a sequence of solutions (Vk,Ψk) ∈ H(Bk). By Proposition 2.5, such a sequence is

bounded in the H(Bk)-norm by a constant independent on k. This implies that

there exist (V,Ψ) ∈ H(R3) and a subsequence, still denoted (Vk,Ψk), such that

(Vk,Ψk)→ (V, U) weakly in H(Ω), for any bounded domain Ω ⊂ Rn.

It remains to prove that (V,Ψ) is a weak solution of the elliptic problem (1.10).

Thus, we have to pass to the limit in all the terms of the variational formulation of

problem (2.17)-(2.18) considered on the balls Bk. For example, for a test function

χ ∈ C∞0 (R3), using ρk ↗ 1 a.e. in R3 and the compact embedding H1
loc(R3) ⊂

Lploc(R3), p ∈ [2, 6), we do get after extracting a new subsequence,∫
R3

Ψkρk∇(| · |−1)χ→
∫
R3

Ψ∇(| · |−1)χ.

Similar considerations prove that all the other terms also pass to the limit. This

gives the result. �

3. Conclusion

This section is devoted to deduce the result of Theorem 1.1 from Theorem 2.6.

Proof of Theorem 1.1. Let (V,Ψ) be as in Theorem 2.6 and set

u(x, t) :=
1√
2t

(U0 + V )
( x√

2t

)
, and θ(x, t) :=

1√
2t

(Θ0 + Ψ)
( x√

2t

)
.

We have (U0,Θ0) ∈ L3,∞(R3) by Proposition 2.1 and (V,Ψ) ∈ H(R3) ⊂ L3,∞(R3).

Then, from the scaling properties (u, θ) ∈ L∞(R+,L3,∞(R3)).

Let us now address the continuity with respect to t and we detail only the con-

tinuity property at 0, that is important to give a sense to the initial condition

(u0, θ0)|t=0 = (u0, θ0). We have

1√
2t

(U0,Θ0)
( x√

2t

)
= et∆(u0,Θ0)→ (u0, θ0) as t→ 0+

in the weak-* topology of L3,∞(R3). Let us check that 1√
2t

(V,Ψ)
(

x√
2t

)
→ 0 in the

same topology. Indeed, if ϕ ∈ L3,1(R3), we can approximate it in the L3,1-norm with

functions ϕε ∈ L2 ∩ L3/2(R3). Then is is enough to observe that

|
∫
R3

1√
2t

(V,Ψ)
( ·√

2t

)
· ϕε| ≤ Ct1/4 → 0 as t→ 0 + .
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Therefore, (u, θ) ∈ Cw(R+,L3,∞(R3)).

Estimates (1.6) follow immediately from the fact that (V,Ψ) = (U−U0,Θ−Θ0) ∈
H1 and from the scaling properties of the L2 and the Ḣ1-norms. �
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Polytech., Palaiseau, 1994, pp. Exp. No. VIII, 12.

[9] Cannone, M., and Planchon, F. Self-similar solutions for Navier-Stokes equations in R3.

Comm. Partial Differential Equations 21, 1-2 (1996), 179–193.

[10] Danchin, R., and Paicu, M. Existence and uniqueness results for the Boussinesq system

with data in Lorentz spaces. Phys. D 237, 10-12 (2008), 1444–1460.

[11] de Almeida, M. F., and Ferreira, L. C. F. On the well posedness and large-time behavior

for Boussinesq equations in Morrey spaces. Differential Integral Equations 24, 7-8 (2011), 719–

742.

[12] Feireisl, E., and Schonbek, M. E. On the Oberbeck-Boussinesq approximation on un-

bounded domains. In Nonlinear partial differential equations, vol. 7 of Abel Symp. Springer,

Heidelberg, 2012, pp. 131–168.

[13] Ferreira, L. C. F., and Villamizar-Roa, E. J. On the stability problem for the Boussi-

nesq equations in weak-Lp spaces. Commun. Pure Appl. Anal. 9, 3 (2010), 667–684.

[14] Giga, Y., and Miyakawa, T. Navier-Stokes flow in R3 with measures as initial vorticity

and Morrey spaces. Comm. Partial Differential Equations 14, 5 (1989), 577–618.



20 LORENZO BRANDOLESE AND GRZEGORZ KARCH
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