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In the wake of [KS22], we study the stable cohomology groups of the mapping class groups of surfaces with twisted coefficients given by the d th exterior powers of the first rational homology of the unit tangent bundles of the surfaces HQ . These coefficients are outside of the traditional framework of cohomological stability. They form a module H * st (Λ d HQ ) over the stable cohomology algebra of the mapping class groups with trivial coefficients denoted by Sym Q (E ). If d = 2, the Tor-group in each degree of H * st (Λ d HQ ) does not vanish, and we compute all these Tor-groups explicitly for d 5. In particular, for each d = 2, the module H * st (Λ d HQ ) is not free over Sym Q (E ), while it is free for d = 2. For comparison, we also compute the stable cohomology group with coefficients in the d th exterior powers of the first rational cohomology of the unit tangent bundle of the surface, which fit into the classical framework of cohomological stability.

Introduction

Considering a smooth compact connected orientable surface of genus g 0 and with one boundary component Σ g,1 , we denote by Γ g,1 its mapping class group, i.e. the isotopy classes of its diffeomorphisms restricting to the identity on the boundary. The study of the (co)homology with twisted coefficients of these mapping class groups of surfaces has been a very rich and active research topic over the last decades; see [START_REF] Harer | Stability of the homology of the mapping class groups of orientable surfaces[END_REF][START_REF] Harer | The Second Homology Group of the Mapping Class Group of an Orientable Surface[END_REF][START_REF] Harer | The third homology group of the moduli space of curves[END_REF], [START_REF] Ivanov | On the homology stability for Teichmüller modular groups: closed surfaces and twisted coefficients[END_REF], [START_REF] Looijenga | Stable cohomology of the mapping class group with symplectic coefficients and of the universal Abel-Jacobi map[END_REF], [START_REF] Kawazumi | A generalization of the Morita-Mumford classes to extended mapping class groups for surfaces[END_REF][START_REF] Kawazumi | On the stable cohomology algebra of extended mapping class groups for surfaces[END_REF], [GKR19, §5.5], [START_REF] Hain | Johnson homomorphisms[END_REF]§4] and [START_REF] Petersen | Tautological classes with twisted coefficients[END_REF]§11] for instance. Let UTΣ g,1 denote the unit tangent bundle of the surface Σ g,1 . In [START_REF] Kawazumi | Stable twisted homology of the mapping class groups in the unit tangent bundle (co)homology[END_REF], we compute the stable cohomology groups of {Γ g,1 , g ∈ N} with twisted coefficients defined by the first rational homology group H 1 (UTΣ g,1 ; Q). In this paper, we study the stable cohomology groups of the mapping class groups with twisted coefficients given by the exterior powers of this representation and its dual; see Theorems A-F below.

Cohomological stability. Computing cohomology of groups may be a difficult task in general. However, cohomological stability phenomena happen for mapping class groups and they give a clue for these computations. Following the works of Harer [START_REF] Harer | Stability of the homology of the mapping class groups of orientable surfaces[END_REF], Ivanov [START_REF] Ivanov | On the homology stability for Teichmüller modular groups: closed surfaces and twisted coefficients[END_REF] and Randal-Williams and Wahl [START_REF] Wahl | Homological stability for automorphism groups[END_REF], the current classical framework for cohomological stability with twisted coefficients for mapping class groups is defined as follows. We view the mapping class groups as a set of groups {Γ g,1 } g∈N . For each g 0, we consider the canonical embedding i g : Σ g,1 ֒→ Σ g+1,1 given by viewing Σ g,1 as a subsurface of Σ g+1,1 thanks to the boundary connected sum Σ g+1,1 ∼ = Σ 1,1 ♮Σ g,1 , and it induces an injection Γ g,1 ֒→ Γ g+1,1 . There is a category UM 2 whose objects are the surfaces {Σ g,1 } g∈N , the mapping class groups {Γ g,1 } g∈N as automorphisms and the embeddings {i g } g∈N ; see §1.2 for the precise definition. For simplicity, we identify the surface Σ g,1 with its indexing integer g, especially when applying a functor on that object. Denoting by Ab the category of abelian groups, a functor F : UM 2 → Ab induces a Γ g,1 -equivariant morphism F (i g ) : F (g) → F (g + 1) for each g 0. Applying the duality functor -∨ : Ab → Ab op , this data defines maps in cohomology for all i, g 0:

H i (Γ g+1,1 ; F ∨ (g + 1)) → H i (Γ g,1 ; F ∨ (g)).
If this map is an isomorphism for B(i, F ) g with some B(i, F ) ∈ N depending on i and F , then the mapping class groups are said to satisfy (classical) cohomological stability with (twisted) coefficient in F ∨ . Also, the stable cohomology group H i (Γ ∞,1 ; F ∨ ) is the inverse limit Lim ← --g 0 H * (Γ g,1 ; F ∨ (g)) induced by the stability maps. Ivanov [START_REF] Ivanov | On the homology stability for Teichmüller modular groups: closed surfaces and twisted coefficients[END_REF]Th. 4.1] and Randal-Williams and Wahl [RW17, Th. 5.26] prove such cohomological stability property with twisted coefficients in F ∨ if F : UM 2 → Ab satisfies some polynomiality conditions; see §1.3 for further details.

The representation theory of the mapping class group Γ g,1 is still poorly known; see Margalit's expository paper [START_REF] Margalit | Problems, questions, and conjectures about mapping class groups[END_REF] for instance. The first rational homology group of the surface Σ g,1 , that we denote by H Q (g), gives a well-known self-dual 2g-dimensional representation of Γ g,1 . Also, the first rational homology group H 1 (UTΣ g,1 ; Q), that we denote by HQ (g), naturally defines a (2g + 1)-dimensional representation of Γ g,1 which has been studied by Trapp [START_REF] Trapp | A linear representation of the mapping class group M and the theory of winding numbers[END_REF]; see §1.1 for further details. Taking the complex numbers as ground ring, thanks to the works of Franks and Handel [START_REF] Franks | Triviality of some representations of MCG(Sg) in GL(n, C), Diff(S 2 ) and Homeo(T 2 )[END_REF], Korkmaz [Kor11a;[START_REF] Korkmaz | The symplectic representation of the mapping class group is unique[END_REF] and Kasahara [START_REF] Kasahara | Crossed homomorphisms and low dimensional representations of mapping class groups of surfaces[END_REF], there are classification results for the Γ g,1 -representations of dimension less than or equal to 2g + 1, also known as the lowdimensional representations. Namely, up to conjugation and dual, H 1 (Σ g,1 ; C) and H 1 (UTΣ g,1 ; C) are the only indecomposable complex low-dimensional Γ In contrast, for each d 1, the family of mapping class groups representations {Λ d H∨ Q (g)} g∈N defines a functor Λ d H∨ Q : UM op 2 → Ab. This functor does not fit into the above classical setting for twisted cohomological stability, so we cannot deal with the cohomology with coefficients in Λ d HQ (g) with that method. However, we can handle this type of coefficients with an exotic approach detailed in §1.3.2. For example, the functor Λ d HQ : UM 2 → Ab has the property that, for each g 0, the Γ g,1 -equivariant morphism Λ d HQ (i g ) has a canonical Γ g,1 -equivariant splitting; see Example 1.22. The injections Γ g,1 ֒→ Γ g+1,1 along with that splitting for each g induce maps in cohomology H i (Γ g+1,1 ; Λ d HQ (g + 1)) → H i (Γ g,1 ; Λ d HQ (g)) for all i, g 0, which are isomorphisms for g big enough with respect to i and d. The stable cohomology group H i (Γ ∞,1 ; Λ d HQ ) is then the inverse limit Lim ← --g 0 H * (Γ g,1 ; Λ d HQ (g)) with respect to these stabilisation maps.

Mumford-Morita-Miller classes. We recall well-known cohomology classes which compute some stable cohomology groups of the mapping class groups. Madsen and Weiss [START_REF] Madsen | The stable moduli space of Riemann surfaces: Mumford's conjecture[END_REF] prove Mumford's conjecture [START_REF] Mumford | Towards an enumerative geometry of the moduli space of curves[END_REF] and thus compute the stable rational cohomology H * (Γ ∞,1 ; Q). Namely, they use the cohomology classes Morita [Mor84;[START_REF] Morita | Characteristic classes of surface bundles[END_REF] and Miller [START_REF] Miller | The homology of the mapping class group[END_REF], called the classical Mumford-Morita-Miller classes. We denote by E the Q-vector space ∞ i=1 Qe i and by Sym Q (E) its symmetric algebra. Madsen and Weiss prove that there is an algebra isomorphism:

{e i ∈ H 2i (Γ ∞,1 ; Q); i 1} introduced by Mumford [Mum83],
H * (Γ ∞,1 ; Q) ∼ = Sym Q (E).
(0.1)

We note that, both for the classical and exotic framework for cohomological stability, the graded module of the stable twisted cohomology groups has a canonical Sym Q (E)-module structure induced by the cup product with elements of H * (Γ ∞,1 ; Q). For {M g } g∈N a family of {Γ g,1 } g∈N for which there is cohomological stability, Sym Q (E) being concentrated in even degrees, we denote by H odd (Γ ∞,1 ; M ) and H even (Γ ∞,1 ; M ∞ ) the N-graded Sym Q (E)-submodules of H * (Γ ∞,1 ; M ∞ ) defined by {H 2i+1 (Γ ∞,1 ; M ∞ ), i ∈ N} and {H 2i (Γ ∞,1 ; M ∞ ), i ∈ N} respectively. Furthermore, the first author [START_REF] Kawazumi | A generalization of the Morita-Mumford classes to extended mapping class groups for surfaces[END_REF] introduced a series of twisted cohomology classes on the mapping class group sequence (3.2) expressing Λ d HQ (g) as a non-trivial extension of Γ g,1 -representations. Contrary to the case of Λ d H∨ Q (g), for which the connecting homomorphism is simply a multiplication (see Lemma 2.2), Proposition 3.5 proves that the connecting homomorphism of (3.2) is determined by a derivation, whose kernel is much more complicated to study.

Stable cohomology for Λ d

HQ : computations for d 5. For each d small, we compute explicitly the cokernel of the derivation giving the connecting homomorphism of (3.2) and the Tor-groups of the Sym Q (E)-module H * (Γ ∞,1 ; Λ d HQ ). From now on, we will also use the modified version of the twisted Mumford-Morita-Miller classes mi,j := ((-1) j /j!) • m i,j , which are more convenient to make our computations.

First, the case of d = 2 stands out from the crowd, since we can fully compute H * (Γ ∞,1 ; Λ 2 HQ ). In particular, it turns out to be a free Sym Q (E)-module. Indeed, we prove:

Theorem D (Theorem 4.1) The Sym Q (E)-module H * (Γ ∞,1 ; Λ 2
HQ ) is isomorphic to the free Sym Q (E)-module with basis { mj,1 ml,1 -e l mj,2 -e j ml,2 ; j l 1} .

In contrast, the computation of the Sym Q (E)-module H * (Γ ∞,1 ; Λ d HQ (g)) for each d 3 is very complicated and seems out of reach with our current techniques. However, for 3 d 5, we fully compute the Sym Q (E)-submodule H ‡ (Γ ∞,1 ; Λ d HQ ), where ‡ = "even" if d is odd and ‡ = "odd" if d is even.

Theorem E (Theorems 4.2, 4.4, 4.7) There are Sym Q (E)-module isomorphisms

H even (Γ ∞,1 ; Λ 3 HQ ) ∼ = (Sym Q (E)/(e 2 1 , e α , α 2)) { m0,2 } , H odd (Γ ∞,1 ; Λ 4 HQ ) ∼ = (Sym Q (E)/(e 2
1 , e α , α 2)) { m0,3 } , and the Sym Q (E)-module H even (Γ ∞,1 ; Λ 5 HQ ) is isomorphic to the quotient of the torsion Sym Q (E)module (Sym Q (E)/(e 3 1 , e α e β , e γ ; α, β 1 except α = β = 1, γ 4)){ m0,4 ; m0,2 m0,2 } ⊕(Sym Q (E)/(e α , e β e γ ; α 3, β, γ 1)){ m0,3 m1,1 } ⊕(Sym Q (E)/(e α , e β e γ ; α 2, β, γ 1)){ m0,3 m2,1 }.

by the direct sum of the trivial Sym Q (E)-modules {2e 2 m0,3 m1,1 + 3e 1 m0,3 m2,1 }, {e 2 m0,2 m0,2 + 6e 1 m0,3 m1,1 } and {e 3 m0,2 m0,2 -6e 2 1 m0,4 }.

On the other hand, the difficult part to compute is the Sym Q (E)-submodule H † (Γ ∞,1 ; Λ d HQ ), where ‡ = "odd" if d is odd and † = "even" if d is even. Instead, we fully compute the torsion groups H * (Sym Q (E); H * st (Λ d HQ )), because they reflect the complexity of the stable twisted cohomology groups. For each ℓ 1, the Q-vector spaces 1 i ℓ-1 Qe i and i ℓ Qe i are denoted by E ℓ-1 and E ℓ respectively.

Theorem F (Propositions 4.3 and 4.5, Theorem 4.8) The full computations of the Tor-groups H j (Sym Q (E); H * st (Λ d HQ )) are done as follows.

• For j 1 and d ∈ {3, 4}:

H j (Sym Q (E); H * st (Λ d HQ )) ∼ = Λ j-1 E 2 ⊕ Λ j E 2 ⊕ Λ j+1 E 2 ⊕ Λ j+2 E 2 . • For d ∈ {3, 4}, H 0 (Sym Q (E); H * st (Λ d HQ )) ∼ = Q ⊕ E 2 ⊕ Λ 2 E 2 ⊕ S d
, where S 3 = Q{[ mα-1,2 mβ,1 -mβ-1,2 mα,1 ]; 2 α < β} ⊕ Q{[ mα,1 mβ,1 mγ,1 ]; 1 α β γ 2}, S 4 = Q{[ ma,2 mb,2 -ma-1,3 mb+1,1 -mb-1,3 ma+1,1 ]; 2 a b} ⊕ Q{[ mγ-1,2 mα,1 mβ,1 -mα-1,2 mβ,1 mγ,1 ]; 1 α < β < γ} ⊕ Q{[ mγ-1,2 mα,1 mβ,1 -mβ-1,2 mα,1 mγ,1 ]; 1 α < β < γ} ⊕ Q{[ mγ-1,2 mα,1 mα,1 -mα-1,2 mα,1 mγ,1 ]; 1 α < γ 3}

⊕ Q{[ mγ-1,2 mα,1 mγ,1 -mα-1,2 mγ,1 mγ,1 ]; 1 α < γ} ⊕ Q{[ mα,1 mβ,1 mγ,1 mδ,1 ]; 1 α β γ δ}.

• For d = 5 and j 1:

H j (Sym Q (E); H * st (Λ 5 HQ )) ∼ = (Λ j-3 E 4 ) ⊕6 ⊕ (Λ j-2 E 4 ) ⊕17 ⊕ (Λ j-1 E 4 ) ⊕21 ⊕(Λ j E 4 ) ⊕21 ⊕ (Λ j+1 E 4 ) ⊕15 ⊕ (Λ j+2 E 4 ) ⊕4 .
Moreover, H 0 (Sym Q (E); H * st (Λ 5 HQ )) ∼ = Q ⊕21 ⊕ E ⊕15 4 ⊕ (Λ 2 E 4 ) ⊕4 ⊕ S 5 where S 5 is a complicated Q-module introduced in Theorem 4.8.

The result of Theorem F highlights that the complexity of the description of the H * (Γ ∞,1 ; Λ d HQ )) as a Sym Q (E)-module grows with d. The length and technicality of our proofs also increase a lot with d; see §4.2, §4.3 and §4.4. This reflects the difficulties we face in our work as d grows and is the reason we stop our computations at d = 5.

Surfaces with more boundaries. All our results straightforwardly generalise to stable twisted cohomology for mapping class groups of surfaces with more boundary components. Namely, we denote by Σ g,n the smooth compact connected orientable surface of genus g 0 and with n 1 boundary components, and by Γ g,n its mapping class group. We recall that gluing a disc on each boundary component (i.e. capping these boundaries) except one induces a surjection κ n : Γ g,n ։ Γ g,1 ; see [FM12, §3.6.2, §4.2.1]. Then, the Γ g,1 -representations H Q (g) and HQ (g) are also Γ g,n -representations via κ n . We also consider the Γ g,n -representations H 1 (Σ g,n ; Q) and

H 1 (U T Σ g,n ; Q), that we denote by H Q (g, n) and HQ (g, n). We note that H Q (g, n) is self-dual as a Γ g,n -representation, similarly to H Q (g) = H Q (g, 1). We fix n 1. For the representations {H Q (g, n)} g∈N , it follows from [Kaw08, Th. 1.A] that, for any d 1, H i (Γ g,n ; Λ d H(g, n)) ∼ = H i (Γ g,1 ; Λ d H(g)) for g 3i + d + 2. Also, the representations {H Q (g)} g∈N provide finite degree coefficient systems in the sense of Boldsen [Bol12, §4.1]. So, for any d 1, it follows from [Bol12, Th. 4.15] that H i (Γ g,n ; Λ d H(g)) ∼ = H i (Γ g,1 ; Λ d H(g)) for g 3i + d + 2
. Hence, we may view Λ d HQ (g) and Λ d HQ (g, n) as non-trivial extensions of Γ g,nrepresentations whose associated cohomology classes are the same as (3.2). This also holds for the duals Λ d H∨ Q (g) and Λ d H∨ Q (g, n) whose cohomology classes as extensions are equal to (2.1). Therefore, there are twisted cohomological stability for these coefficient systems, the stable twisted cohomology groups

H * (Γ ∞,n ; Λ d HQ (n)) and H * (Γ ∞,n ; Λ d HQ ) are both isomorphic to H * (Γ ∞,1 ; Λ d HQ ), while H * (Γ ∞,n ; Λ d H∨ Q (n)) and H * (Γ ∞,n ; Λ d H∨ Q ) are both isomorphic to H * (Γ ∞,1 ; Λ d H∨ Q ).
A fortiori, Theorems A-F repeat verbatim for the stable twisted cohomology groups of Γ g,n with coefficients in the exterior powers of HQ (n), Λ d HQ , H∨ Q (n) and H∨ Q .

Perspectives. For a fixed cohomological degree i and power d 3, our work gives all the necessary tools and methods to compute explicitly the stable twisted cohomology group H i (Γ ∞,1 ; Λ d HQ ) as a Q-module. Furthermore, a lot of key steps of the results of Theorems A-F could be proved with integral coefficients. So we might in principle be able to do the computations with Z as ground ring. However, the stable cohomology H * (Γ ∞,1 ; Z) is still poorly known. Nevertheless, one could potentially make stable twisted cohomology computations with the finite field F p as ground ring, by using the computations of H * (Γ ∞,1 ; F p ) of Galatius [START_REF] Galatius | Mod p homology of the stable mapping class group[END_REF].

Outline. In §1, we make recollections on the representation theory of mapping class groups and we recall the framework and key properties for studying the stable twisted cohomology of mapping class groups. We first compute the stable twisted cohomology of Theorem A in §2. Then, we carry on the general theory for the study of the stable twisted cohomology with coefficients in Λ * HQ in §3 to prove Theorems B and C. We finally make computations of these stable twisted cohomology and associated Tor-groups for d 5 in §4, in particular proving Theorems D-F.

Conventions and notations.

We standardly denote by N the set of non-negative integers and by j the set {1, . . . , j}. We denote by S n the symmetric group on a set of n elements. For a ring R, we denote by R-Mod the category of left R-modules. Non-specified tensor products are taken over the clear ground ring. For R = Z, the category of Z-modules is also denoted by Ab. We denote by Λ d : R-Mod → R-Mod the d th exterior product functor. For K a commutative ring and V a K-vector space, we denote by Sym K (V ) the symmetric algebra on V over K. For a map f , we generically (when everything is clear from the context) denote by f * the induced map in homology and by f * the induced map in cohomology.

The duality functor, denoted by -∨ : R-Mod → R-Mod op , is defined by Hom R-Mod (-, R). In particular, for G a group and V a R[G]-module, we denote by

V ∨ the dual R[G]-module Hom R (V, R).
Then, for a functor F : UM 2 → Ab, the post-composition by the duality functor defines a functor F ∨ that we view as a functor of the form UM 2 → Ab op (rather than UM 2 → Ab op , these two points of view being equivalent).

Considering a functor M : UM 2 → Ab, if there is no risk of confusion, we generally denote the stable twisted cohomology groups H * (Γ ∞,1 ; M ) and H * (Γ ∞,1 ; M ∨ ) by H * st (M ) and H * st (M ∨ ) for the sake of simplicity. We denote the cup product by ∪, but generally abuse the notation denoting it by an empty space for simplicity when there is no risk of confusion. 

Contents

Background and recollections

In this section, we first review some facts about the representations of the mapping class groups in §1.1. Then we recall the functorial framework to encode these representations in §1.2 and its applications for stable twisted cohomology computations in §1.3. We finally recollect methods to compute the homology of modules over the commutative algebra Sym Q (E) in §1.4.

Representations of the mapping class groups

The first integral homology group H 1 (Σ g,1 ; Z) will generally be denoted by H(g) all along the paper (and by H Q (g) for the rational version). We recall that it is naturally equipped with a Γ g,1 -action which factors through the symplectic group Sp 2g (Z), and so is called the symplectic representation of Γ g,1 . We note that there is a Γ g,1 -module isomorphism between H 1 (Σ g,1 ; Z) and H(g) because the Poincaré-Lefschetz duality is the cap product with the fundamental class. Also, since H 1 (Σ g,1 ; Z) is isomorphic to H ∨ (g) as Γ g,1 -modules by the universal coefficient theorem for cohomology of spaces (see [START_REF] Weibel | An introduction to homological algebra[END_REF]Ex. 3.6.7] for instance), we have a Γ g,1 -module isomorphism

H ∨ (g) ∼ = H(g). (1.1)
Tangent bundle and framings. We denote by T Σ g,1 the tangent bundle of the surface Σ g,1 and fix a Riemannnian metric • on it. By definition, the unit tangent bundle UTΣ g,1 is the set of elements of T Σ g,1 whose length is 1 with respect to • . For any diffeomorphism ϕ of Σ g,1 , its differential dϕ acts on the unit tangent bundle UTΣ g,1 . The canonical projection of the unit tangent bundle UTΣ g,1 onto the surface defines the locally trivial fibration

S 1 ι ֒→ UTΣ g,1 ̟ → Σ g,1 .
We recall that a framing of UTΣ g,1 is a continuous map ξ : UTΣ g,1 → S 1 whose restriction to each fiber is an orientation-preserving homeomorphism. We denote by F(Σ g,1 ) the set of homotopy classes (without fixing the boundary) of framings of UTΣ g,1 . It is an affine set modeled by the cohomology group H 1 (Σ g,1 ; Z). The mapping class group Γ g,1 acts on the set F(Σ g,1 ) by

ϕ • ξ = ξ • dϕ -1 : UTΣ g,1 dϕ -1 -→ UTΣ g,1 ξ -→ S 1
for ϕ ∈ Γ g,1 and ξ ∈ F(Σ g,1 ). For α : S 1 → Σ g,1 an immersed loop, its rotation number rot ξ (α) ∈ Z with respect to the framing ξ is the mapping degree of the composite ξ • (

• α/ • α ) : S 1 → UTΣ g,1 → S 1 . The difference of two framings ξ and ξ ′ is given by a cohomology class u ∈ H 1 (Σ g,1 ; Z) if and only if rot ξ ′ (α) -rot ξ (α) = u([α]), where [α] ∈ H 1 (Σ g,1 ; Z) is the homology class of the immersed loop α. For an immersed loop α on Σ g,1 , we have rot ϕ•ξ (α) = rot ξ (ϕ -1 • α).
The unit tangent bundle homology representations. We now consider the first integral homology group of the unit tangent bundle UTΣ g,1 , denoted by H(g). It is naturally equipped with a Γ g,1 -action. Since H(g) ∼ = Z 2g+1 as an abelian group, the dual H∨ (g) is isomorphic to the first integral cohomology group H 1 (UTΣ g,1 ; Z) by the universal coefficient theorem for cohomology of spaces (see [START_REF] Weibel | An introduction to homological algebra[END_REF]Example 3.6.7]). Then the Gysin sequence of the locally trivial fibration S 1 ι ֒→ UTΣ g,1 ̟ → Σ g,1 provides the following Γ g,1 -equivariant short exact sequences:

0 / / Z ι * / / H(g) ̟ * / / H(g) / / 0, (1.2) 0 / / H(g) ̟ *
/ / H∨ (g)

ι * / / Z / / 0. (1.3)
We also have the analogue short exact sequences to (1.2) and (1.3) with the rational versions H Q (g), HQ (g) and H∨ Q (g) of the homology groups H(g), H(g) and H∨ (g). We denote by ∈ HQ (g) the homology class of the fiber of the unit tangent bundle.

Trapp [START_REF] Trapp | A linear representation of the mapping class group M and the theory of winding numbers[END_REF] describes explicitly the Γ g,1 -module structures of H(g) and H∨ (g) as follows. Fixing a framing ξ of UTΣ g,1 and g 2, the map k ξ (g, -) for the latter), we define k(0) : Γ 0,1 → H 1 (Σ 0,1 ; Z) and k(1) : Γ 1,1 → H 1 (Σ 1,1 ; Z) to be the trivial cohomology classes. Trapp [Tra92,Th. 2.2] shows that, for an element ϕ ∈ Γ g,1 , the action of ϕ on H(g) is given by the matrix id

: Γ g,1 → H 1 (Σ g,1 ; Z) defined by k ξ (g, ϕ) = ϕ • ξ -ξ ∈ H 1 (Σ g,1 ; Z) (1.4) is a 1-cocycle of Γ
Z k ξ (g, ϕ) (0) H(ϕ) (1.5)
where H(ϕ) denotes the action of ϕ on H(g). In particular, the class k(g) in Ext 1 Z[Γg,1] (H(g), Z) is by definition the extension class of the short exact sequence (1.2); this may alternatively be shown from the defining formula (1.4).

Also, the formal dual k

∨ (g) in Ext 1 Z[Γg,1] (Z, H ∨ (g))
is the extension class of the short exact sequence (1.3). However, it straightforwardly follows from the formal definitions of the 1-cocycles that

k ∨ ξ (g, ϕ)(ξ) = ϕk ∨ ξ (g, ϕ -1 ) = -k ∨ ξ (g, ϕ -1
) for all ϕ ∈ Γ g,1 , so:

Lemma 1.1 For each g 0, we have k ∨ (g) = -k(g) in H 1 (Γ g,1 ; H ∨ (g)).
This equality does not depend on the self-duality (1.1). Furthermore, although the sequences (1.2) and (1.3) split as abelian groups short exact sequences, they clearly do not as Γ g,1 -modules. A fortiori, contrary to the homology and cohomology of the surface (where Poincaré-Lefschetz duality applies), the dual H∨ (g) is not isomorphic to H(g) as a Γ g,1 -module.

Twisted coefficient systems

We recall here the suitable categories to encode representations of the mapping class groups. It is a mild variation of the one introduced in [RW17, §5.6.1]; see also [KS22, §2.1]. We consider the groupoid M 2 defined by a skeleton of the category of smooth compact connected orientable surfaces with one boundary component, and the isotopy classes of diffeomorphisms restricting to the identity on the boundary component. By the classification of surfaces and because M 2 is skeletal, the objects of M 2 is the set of some fixed surfaces {Σ g,1 } g∈N . For simplicity, we identify the surface Σ g,1 with its indexing integer g, especially when applying a functor on that object. The groupoid M 2 has a braided monoidal structure ♮ induced by the boundary connected sum.

The Quillen bracket construction applied to M 2 , denoted by UM 2 is the category with the same objects as M 2 and for morphisms

UM 2 (Σ g,1 , Σ g ′ ,1 ) = Colim M2 [M 2 (-♮Σ g,1 , Σ g ′ ,1 )].
We may now encode compatible representations of mapping class groups by considering functors with the category UM 2 as source and a module category as target. We distinguish two types of such functors because of their distinct qualitative properties with respect to cohomological stability shown in §1.3. A covariant system over UM 2 is a functor F : UM 2 → Ab. We recursively define the notion of polynomiality of covariant systems as follows:

• the constant functors UM 2 → Ab are the polynomial covariant systems of degree 0;

• for an integer d 1, the functor F : UM 2 → Ab is a polynomial covariant system of degree less than or equal to d if the morphism F ([Σ Proof. For Λ d H, this follows from the fact that the functor H is a strong monoidal functor (UM 2 , ♮, D 2 ) → (Ab, ⊕, 0). We denote by H -1 ([Σ 1,1 , id Σg+1,1 ]) the canonical splitting of the map H([Σ 1,1 , id Σg+1,1 ]). For Λ d H, we deduce by a clear computation using the representation structure (1.5) that the canonical splitting is defined by id

F ⊗ Z G : UM 2 → Ab defined by (F ⊗ Z G)(g) = F (g) ⊗ Z G(g) for each g 0. Then F ⊗ Z G
Q ⊕ H -1 ([Σ 1,1 , id Σg+1,1 ]).
A contravariant system over UM 2 is a functor F : UM op 2 → Ab. Example 1.6 For each d 1, the d th exterior power of the first cohomology groups of the unit tangent bundle of the surfaces define a contravariant system Λ d H∨ : UM op 2 → Ab. We also consider the rational version Λ d H∨ : UM 2 → Q-Mod → Ab for each d 1.

Remark 1.7 Although a natural notion of polynomiality may be defined over the category UM op 2 (following for instance the analogous opposite notions of [START_REF] Djament | Foncteurs faiblement polynomiaux[END_REF]§2] or [START_REF] Soulié | Generalized Long-Moody functors[END_REF]§4]), as far as we know, such notion has no application for the questions addressed in this paper.

Remark 1.8 The existence of Γ g,1 -equivariant splitting for each [Σ 1,1 , id Σg+1,1 ] does not imply that a functor F : UM 2 → Ab is contravariant. For instance, H cannot be turned into a contravariant system, while H actually can because it is strong monoidal.

Cohomological stability and stable (co)homology

We now review some classical results on cohomological stability with twisted coefficients for mapping class groups. In particular, all the twisted coefficient systems in this paper satisfy the cohomological stability property, which motivates the computations of §2- §4. Also, we recall some stable cohomology computations of mapping class groups further used in §2- §4.

Classical framework and results

Stable twisted cohomology framework. First of all, we recall the notions of cohomological stability and stable cohomology with twisted coefficients. For F : UM 2 → Ab a covariant system, we note that F induces a Γ g,1 -equivariant morphism F ([Σ 1,1 , id Σg+1,1 ]) : F (g) → F (g + 1) for each g 0. We recall that, viewing Σ g,1 as a subsurface of Σ g+1,1 ∼ = Σ 1,1 ♮Σ g,1 and extending the diffeomorphisms of Σ g,1 by the identity on the complement Σ 1,1 , we define a canonical injection Γ g,1 ֒→ Γ g+1,1 . These maps induce maps in cohomology for all i, g 0:

Φ i,g : H i (Γ g+1,1 ; F ∨ (g + 1)) → H i (Γ g,1 ; F ∨ (g)).
(1.6) Definition 1.9 Let F : UM 2 → Ab be a covariant system. For each i 0, the stable cohomology group H i st (F ∨ ) is the inverse limit Lim ← --g 0 H i (Γ g,1 ; F ∨ (g)) induced by the maps {Φ i,g } g∈N . We say that there is (classical) cohomological stability with twisted coefficients in F ∨ : UM op 2 → Ab if, for each i 0, the maps Φ i,g for g 0 are isomorphisms if g B(i, F ), where B(i, F ) ∈ N is a bound depending on i and F . We now recall the following fundamental result on twisted (classical) cohomological stability for mapping class groups.

Theorem 1.10 ([Iva93, Th. 4.1], [RW17, Th. 5.26]) Let F : UM 2 → Ab be a polynomial covariant system of degree d. Then, there is cohomological stability with twisted coefficients in F ∨ , where the stability bound B(i, F ) is equal to 2i + 2d + 3.

In particular, we deduce from Example 1.4 and Theorem 1.10 that there is cohomological stability for the mapping class groups with twisted coefficients in Λ d H (via the isomorphism (1.1)) and in Λ d H∨ for all d 1. (0.1) Furthermore, we have the following general formula for the stable cohomology of a family of groups with twisted coefficients given by the dual of a covariant system. It is a rewording of [Sou20, Th. C] in terms of twisted cohomology groups.

Theorem 1.11 Let F : UM 2 → Q-Mod be any covariant system. Note that the cup product with elements of H * (Γ ∞,1 ; Q) induces a canonical Sym Q (E)-module structure on the graded stable twisted cohomology groups

H * st (F ∨ ) := i∈N H i st (F ∨ ).
We have a natural isomorphism of Q-vector spaces for each i 0:

H i st (F ∨ ) ∼ = k+l=i H k (Sym Q (E) ⊗ Q H l (UM 2 ; F ).
Here, H l (UM 2 ; F ) denotes the homology of the category UM 2 with coefficient in F ; see [START_REF] Djament | Sur l'homologie des groupes orthogonaux et symplectiques à coefficients tordus[END_REF] Appendice A] for instance. Therefore, the Sym Q (E)-module H * st (F ∨ ) is free. Remark 1.12 The result of Theorem 1.11 does not depend on any polynomiality condition and on whether there is cohomological stability or not. The formula is for the limit of the cohomology groups which always exists. Also, it may be stated with any field K as ground ring rather than just Q.

Twisted Mumford-Morita-Miller classes. We now review the theory of twisted Mumford-Morita-Miller classes, drawing on the works of the first author [Kaw98; Kaw08; KM96]. For the reference [KM96], we will rather quote the preprint version [START_REF] Kawazumi | The primary approximation to the cohomology of the moduli space of curves and cocycles for the Mumford-Morita-Miller classes[END_REF] as it contains more material and details. In the original definition [START_REF] Kawazumi | A generalization of the Morita-Mumford classes to extended mapping class groups for surfaces[END_REF] these cohomology classes are constructed on the group Γ g,1 . The following alternative definition is introduced in [START_REF] Kawazumi | The primary approximation to the cohomology of the moduli space of curves and cocycles for the Mumford-Morita-Miller classes[END_REF].

First of all, for any g 1, we recall that gluing a disc with a marked point Σ 1 0,1 on the boundary component of Σ g,1 induces the following short exact sequence:

1 -→ Z -→ Γ g,1 Cap -→ Γ 1 g -→ 1, (1.7) 
where Γ 1 g denotes the mapping class group of the punctured surface Σ 1 g ; see [FM12, §3.6.2]. We denote by e ∈ H 2 (Γ 1 g ; Z) the Euler class of the short exact sequence (1.7) seen as a central extension. We now define a key cohomology class ω ∈ H 1 (Γ 1 g ; H(g)) defined as follows. Let p : Γ 1 g ։ Γ g be the forgetful map of the puncture, whose kernel is isomorphic to π 1 (Σ g ); see [START_REF] Farb | A primer on mapping class groups[END_REF]Th. 4.6]. We denote by Γ 1 g the pullback Γ 1 g × Γg Γ 1 g . More precisely, there is a defining fiber square

Γ 1 g / / π Γ 1 g p Γ 1 g p / / σ T T Γ g ,
where the section σ : Γ 1 g → Γ 1 g is given by σ(φ) = (φ, φ). Then there is an isomorphism Γ

1 g ∼ = π 1 (Σ g ) ⋊ Γ 1
g defined by (φ, ψ) → (ψφ -1 , φ). Under this isomorphism, σ is given by σ(φ) = (1, φ) and the action of Γ 1 g on H(g) is induced by that of Γ 1 g using the projection Γ 1 g ։ Γ 1 g defined by the semi-direct product decomposition. Similarly to [START_REF] Morita | Families of Jacobian manifolds and characteristic classes of surface bundles[END_REF]§7], this gives rise to a cocycle ω ∈ Z 1 (Γ 1 g ; H(g)) given by ω((x, φ)) = [x] for all x ∈ π 1 (Σ g ) and φ ∈ Γ 1 g . By an abuse of notation, we also use ω to denote the associated element of H 1 (Γ 1 g ; H(g)). Finally, we denote by ē ∈ H 2 (Γ 1 g ; Z) the pullback of the Euler class e ∈ H 2 (Γ 1 g ; Z) along the projection π : Γ

1 g → Γ 1 g , (φ, ψ) → ψ.
The twisted Mumford-Morita-Miller classes are defined as follows: Definition 1.13 Let i 0 and j 0 be integers such that i + j 2. We denote by T j : Q-Mod → Q-Mod the j th tensor product functor where the order of the powers is that of j. The generalised twisted Mumford-Morita-Miller class m i,j is the pullback to H 2i+j-2 (Γ g,1 ; T j H(g)) along Cap : Γ g,1 ։ Γ 1 g of the class

π ! (ē i ∪ ω j ) ∈ H 2i+j-2 (Γ 1 g ; T j H Q (g)).
(1.8)

Here, π ! denotes the Gysin map induced by π : Γ

1 g → Γ 1
g and ω j is the cup product of the class ω following the numerical order of j. The alternating operator A j :

T j H Q (g) → T j H Q (g) is defined for v i ∈ H Q (g) by A j (v 1 ⊗ • • • ⊗ v j ) := τ ∈Sj sgn(τ )(v τ (1) ⊗ • • • ⊗ v τ (j) ).
(1.9)

The exterior algebra is defined by the image of this alternating operator A j . The image of the class m i,j by the projection map

H * (Γ 1 g ; T j H Q (g)) ։ H * (Γ 1 g ; Λ j H Q (g))
induced by (1.9) is denoted by m i,j . Because of the graded-commutativity of the cup product, the class m i,j belongs to the image of the homomorphism induced by the map (1.9). Then, we deduce that

m i,j = j! • m i,j in H * Q (Γ 1 g ; Λ j H Q (g)).
When j = 0, Definition 1.13 specialises to m i+1,0 = π ! (ē i+1 ) = e i recovers the i th classical Mumford-Morita-Miller class.

Remark 1.14 For i = j = 1 and g 2, using Lemma 1.1, the extension classes [k ξ (g, -)] and

-[k ∨ ξ (g, -)] of §1.1 identify with m 1,1 ∈ H 1 st (H Q ) under the duality isomorphism (1.1).
When we consider the cup product structure for the cohomology with coefficients in the exterior powers, we stress that we implicitly do the composite

H * Q (Γ 1 g ; Λ j H Q (g)) ⊗ H * Q (Γ 1 g ; Λ j ′ H Q (g)) ∪ → H * Q (Γ 1 g ; Λ j H Q (g) ⊗ Λ j ′ H Q (g)) ։ H * Q (Γ 1 g ; Λ j+j ′ H Q (g)),
(1.10) where the first map is the classical cup product morphism and the second map is the canonical projection map induced from (1.9). Furthermore, the alternating operator (1.9) induces a lift of the exterior algebra L j : Λ j H Q (g) → T j H Q (g). This induces a map

L * j : H * Q (Γ 1 g ; Λ j H Q (g)) → H * Q (Γ 1 g ; T j H Q (g)).
We note that the map (1.10) is also naturally induced from that of the cohomology with coefficients in the tensor powers, using the canonical projection map

H * 1 (Γ 1 g ; T * 2 H Q (g)) ։ H * 1 (Γ 1 g ; Λ * 2 H Q (g)) induced from (1.9) and the associated lift map L * 1 * 2 . Convention 1.15 The lift map L * j provides a canonical decomposition in H * Q (Γ 1 g ; T j H Q (g))
associated of the cup product of two classes m i,j m k,l following (1.9), that we arrange following the canonical ordering using the graded-commutativity of the cup product. For example, the class

m i,1 m k,1 is identified with m i,1 ⊗ m k,1 + m k,1 ⊗ m i,1 via L *
2 . This type of decomposition will often implicitly used for our computations; see Proposition 1.19 for instance.

The main results related to these classes are the computations of the stable cohomology with twisted coefficients in {Λ d H Q (g)} d 1 by the first author [Kaw08, Th.

3.3], and those with twisted coefficients in H∨

Q by [KS22, Th. A]. We recall from Theorem 1.11 that the graded stable twisted cohomology groups

H * st ( H∨ Q ) and H * st (Λ d H Q ) are free Sym Q (E)-modules.
Beforehand, we recall that: Definition 1.16 A weighted partition of the number d is a set of numbers ((i 1 , j 1 ), . . . , (i ν , j ν ))) where i 1 , . . . , i ν are non-negative integers, j 1 . . . j ν are non-negative integers such that j 1 + • • • + j ν = d, and each (i a , j a ) satisfies the condition i a + j a 2 and i a i a+1 if j a = j a+1 . We denote by Q d the set of all weighted partitions of the number d.

For Q = ((i 1 , j 1 ), . . . , (i ν , j ν )) ∈ Q d , the cup product m i1,j1 m i2,j2 • • • m iν ,jν of the twisted Mumford-Morita-Miller classes defined in Definition 1.13 is denoted by m Q . Theorem 1.17 ([Kaw08, Th. 3.3]; [KS22, Th. A]) There is a graded natural isomorphism of free Sym Q (E)-modules H * st (Λ d H Q ) ∼ = Q∈Q d Sym Q (E)m Q . (1.11) Furthermore, we consider the bigraded Sym Q (E)-module H * st (Λ * H Q ) := d∈N H * st (Λ d H Q ). The cup product induces a commutative 1 bigraded Sym Q (E)-algebra structure on H * st (Λ * H Q ). A fortiori, the commutative bigraded algebra H * st (Λ * H Q ) is the polynomial algebra in the twisted Mumford-Morita- Miller classes M := {m i,j ; i 0, j 1} over the ring Sym Q (E). Finally, the Sym Q (E) H * st ( H∨ Q ) is isomorphic to the free Sym Q (E)-module with basis {m i,1 , i 2}.
Finally, we introduce the following mild variation of the twisted Mumford-Morita-Miller classes which are more convenient to handle in §2- §4:

Notation 1.18 For all i + j 1, we denote by mi,j denote the cohomology class ((-1) j /j!) • m i,j .

Contraction formula. We recall a classical operation on the twisted Mumford-Morita-Miller classes induced by the contraction of the twisted coefficients. Let µ : H(g) ⊗ H(g) → Z be the intersection pairing associated to Poincaré-Lefschetz duality. Let M and M ′ be two Γ g,1 -modules.

The induced contraction map for the cohomology groups

H * (Γ g,1 ; M ∧ (H(g) ⊗ H(g)) ∧ M ′ ) → H * (Γ g,1 ; M ∧ M ′ ) is generically denoted by (id M ∧ µ ∧ id M ′ ) * .
The following formulas are directly deduced from [KM01, Th. 6.2], we sketch a proof below for the sake of completeness.

Proposition 1. 19 We have the following formulas for all integers i, k 0 and j, l 1 such that i + j 2 and k + l 2:

µ * (m 1,1 , m i,j ) = -jm i+1,j-1 ; (1.12) (µ ∧ id H(g) ) * (m 1,1 , m i,j m k,l ) = -jm i+1,j-1 m k,l -lm k+1,l-1 m i,j . (1.13)
More generally, the computation of (µ

∧ id Λ d-1 H(g) ) * (m 1,1 , m i1,j1 • • • m i d ,j d
) is a straightforward generalisation of (1.13) by transiting trough the lift map L * j and applying (1.12).

Sketch of proof.

As is proved in [KM01, Th. 5.3], the Lyndon-Hochschild-Serre spectral sequence for the group extension (1.7) gives a canonical decomposition for the twisted cohomology of Γ1 g . The following formula is then deduced from a direct computation based on this decomposition. For M and

M ′ two Γ g,1 -modules, for m ∈ H * (Γ 1 g ; M ) and m ′ ∈ H * (Γ 1 g ; M ′ ), we have (id M ⊗ µ ⊗ id M ′ ) * (π ! (m ⊗ ω) ∪ π ! (ω ⊗ m ′ )) = -π ! (m ⊗ m ′ ) + σ * (m)π ! (m ′ ) + π ! (m)σ * (m ′ ) -eπ ! (m)π ! (m ′ )
where we recall that σ : Γ 1 g → Γ 1 g is the diagonal map. We then deduce the results from that general formula using the fact that the Euler class e vanishes on Γ g,1 .

Exotic framework

On the basis of current knowledge, there is no general framework for cohomological stability with twisted coefficients taking the functor F ∨ to be Λ d H : UM 2 → Ab in Theorems 1.10 and 1.11. However, we have the following framework to deal with cohomological stability questions with this kind of twisted coefficient.

Let M : UM 2 → Ab be a covariant system such that the image of each morphism of type

[Σ 1,1 , id Σg+1,1 ] has a canonical Γ g,1 -equivariant splitting denoted by M -1 ([Σ 1,1 , id Σg+1,1 ]). The canonical injection Γ g,1 ֒→ Γ g+1,1 and the splitting M -1 ([Σ 1,1 , id Σg+1,1 ]) induce a map in coho- mology Φ ′ i,g : H i (Γ g+1,1 ; M (g + 1)) → H i (Γ g,1 ; M (g)) for each i, g 0.
Definition 1.20 For each i 0, the stable twisted cohomology group H i st (M ) is the inverse limit Lim ← --g 0 H i (Γ g,1 ; M (g)) induced by the maps {Φ ′ i,g } g∈N . Also, we say that there is (exotic) cohomological stability with twisted coefficients in M : UM 2 → Ab if, for each i 0, the maps Φ i,g for g 0 are isomorphisms if g B(i, M ), where B(i, M ) ∈ N is a bound depending on i and M . Lemma 1.21 Let F 2 be a functor UM 2 → Ab such that the image of each morphism of type

[Σ 1,1 , id Σg+1,1 ] has a canonical Γ g,1 -equivariant splitting. Let F 1 and F 3 be polynomial functors UM 2 → Ab such that we have a short exact sequence 0 → F ∨ 1 → F 2 → F ∨ 3 → 0 of functors UM op 2 → Ab.
Then, there is cohomological stability with twisted coefficients in F 2 .

Proof. By Theorem 1.10, there is cohomological stability with twisted coefficients given by F 1 and F 3 . Considering the long exact sequences in cohomology, we obtain the following commutative diagram for each g 0 and assuming that we are in the stability range for F ∨ 1 and F ∨ 3 :

• • • / / H i (Γ g,1 ; F ∨ 1 (g)) / / F ∨ 1 ([Σ1,1,id Σ g+1,1 ]) ∼ = H i (Γ 1,1 ; F 2 (g)) F -1 2 ([Σg,1,id Σ g+1,1 ]) / / H i (Γ g,1 ; F ∨ 3 (g)) F ∨ 3 ([Σ1,1,id Σ g+1,1 ]) ∼ = / / • • • • • • / / H i (Γ g+1,1 ; F ∨ 1 (g + 1)) / / H i (Γ g+1,1 ; F 2 (g + 1)) / / H i (Γ g+1,1 ; F ∨ 3 (g + 1)) / / • • •
The results thus follows from a clear recursion and the five lemma.

Example 1.22 Using the short exact sequence (3.1), it follows from Lemmas 1.5, 1.21 and Theorem 1.10 that there is cohomological stability for mapping class groups with twisted coefficients in Λ d HQ :

UM 2 → Q-Mod for all d 1.
Also, the stable twisted cohomology groups have natural Sym Q (E)-module structures in the exotic situations: Proof. Since Sym Q (E) is concentrated in even degrees, the Sym Q (E)-action via the cup product satisfies the compatibility with respect to the grading of H * st (M ) providing the result.

Lemma 1.23 Let M : UM 2 → Q-Mod
Finally, we recall the stable cohomology computations of [START_REF] Kawazumi | Stable twisted homology of the mapping class groups in the unit tangent bundle (co)homology[END_REF] for this type of exotic situations.

Theorem 1.24 ([KS22, Th. B])

The stable twisted cohomology module H * st ( HQ ) is isomorphic to the direct sum Qθ M, where M is the Sym Q (E)-module generated by the classes M i,j := e i m j,1 -e j m i,1 for all distinct j, i 1, and with relations M j,i = -M i,j e i M j,k +e j M k,i +e k M i,j ∼ 0 for all pairwise distinct i, j, k 1.

Computations of the homology groups over a polynomial algebra

Following Theorem 1.11 and Lemma 1.23, we may consider the twisted cohomology groups we study as forming a module over the ring Sym Q (E). In order to give some qualitative properties on these algebras, we compute the homology group of the twisted cohomology modules. The following results for the homology groups of an algebra will be of key use in §3.3.3 and §4; see [START_REF] Loday | Grundlehren der Mathematischen Wissenschaften[END_REF]§1] or [CE56, § IX] for a complete introduction to this topic.

We recall that we denote Tor

Sym Q (E) * (Q, -) by H * (Sym Q (E); -) for simplicity.
For ℓ an integer, we denote by Sym Q (E ℓ ) and Sym Q (E ℓ+1 ) the subalgebras Q[e 1 , . . . , e ℓ ] and Q[e ℓ+1 , e ℓ+2 , . . .] of Sym Q (E) respectively. We first have a general decomposition result for the Tor-groups of a tensor product module with respect to these subalgebras:

Proposition 1.25 Let L be a Sym Q (E ℓ )-module and L ′ a Sym Q (E ℓ+1 )-module. We also consider (m) the ideal of the Q-algebra Sym Q (E ℓ ) generated by an element m in the augmentation ideal of Sym Q (E ℓ ).
Then there is a graded isomorphism:

H * (Sym Q (E); L⊗L ′ ) ∼ = H * (Sym Q (E ℓ ); L) ⊗ Λ * E ℓ+1 if L ′ = Q; H * -1 (Sym Q (E ℓ+1 ); L ′ ) ⊕ H * (Sym Q (E ℓ+1 ); L ′ ) if L = Sym Q (E ℓ )/(m).
(1.14)

Proof. First of all, we note that there is an isomorphism of

Q-algebras Sym Q (E) ∼ = Sym Q (E ℓ ) ⊗ Q Sym Q (E ℓ+1
). Then, it follows from the Künneth formula for homology of algebras (see for instance [CE56, § XI, Th. 3.1]) that we have a graded isomorphism

H * (Sym Q (E); L ⊗ L ′ ) ∼ = H * (Sym Q (E ℓ ); L) ⊗ H * (Sym Q (E ℓ+1 ); L ′ ).
For the first computation of (1.14), the result follows for the fact that there is an isomorphism of graded Q-vector spaces H * (Sym Q (E); Q) ∼ = Λ * E using the Koszul resolution (see for instance [Lod98, §3.4.6]) or the modules of differential forms (see Lemma 1.27). For the second computation of Lemma 1.25, the short exact sequence 0

→ Sym Q (E ℓ ) •m -→ Sym Q (E ℓ ) → Sym Q (E ℓ )/(m) → 0 defines a Sym Q (E ℓ )-free resolution which allows us to compute that H j (Sym Q (E ℓ ); Sym Q (E ℓ )/(m)) = Q if j = 0, 1, 0 otherwise, (1.15)
thus ending the proof.

Example 1.26 Using the tools of Lemma 1.25, we compute that

H 0 (Sym Q (E); H * st ( HQ )) ∼ = Λ 2 E ⊕ Qθ and that H j (Sym Q (E)); H * st ( HQ )) ∼ = Λ j E ⊕ Λ j+2 E for any j > 0; see [KS22, Th. 3.8].
Moreover, we have the following lemma in order to deduce general facts about Tor-computations (see Proposition 3.29) or to make more refined computations for the Tor-groups with respect to the finite dimensional Q-algebra Sym Q (E ℓ ) (see §4.4.1). We consider a subspace E ′ ⊆ E and the

Sym Q (E ′ )-module Ω n Sym Q (E ′ )|Q of n-differential forms; see [Lod98, pp.26-27]. The exterior derivative d : Ω n Sym Q (E ′ )|Q → Ω n+1 Sym Q (E ′ )
|Q is defined in a usual way. We consider the Euler vector field

D := ∞ i=1 e i ∂ ∂e i
and its associated interior product

p D : Ω n Sym Q (E ′ )|Q → Ω n-1 Sym Q (E ′ )|Q .
Lemma 1. 27 The sequence

• • • pD / / Ω n Sym Q (E ′ )|Q pD / / Ω n-1 Sym Q (E ′ )|Q pD / / • • • pD / / Sym Q (E ′ ) aug / / Q / / 0. (1.16) is a free resolution of the trivial Sym Q (E ′ )-module Q. Moreover, for any Sym Q (E ′ )-module M , the
Tor-groups H * (Sym Q (E ′ ); M ) are computed by the homology group of the chain complex

• • • ∂n+1 / / M ⊗ Λ n {de; e ∈ E ′ } ∂n / / M ⊗ Λ n-1 {de; e ∈ E ′ } ∂n-1 / / • • • ∂1 / / M, (1.17)
where the chain map

∂ n : M ⊗ Λ n {de; e ∈ E ′ } → M ⊗ Λ n-1 {de; e ∈ E ′ } is given by ∂ n (m ⊗ de i1 ∧ • • • ∧ de in ) = n k=1 (-1) k-1 e i k m ⊗ de i1 ∧ • • • ∧ de i k ∧ • • • ∧ de in (1.18)
for any m ∈ M .

Proof. We denote by L D the Lie derivative associated to the Euler vector field. We then note that each one of the modules Ω n Sym Q (E ′ )|Q for n > 0 and Ker(aug : Sym Q (E ′ ) → Q) is the direct sum of eigenspaces of L D with positive eigenvalues. Then the Cartan formula L D = dp D + p D d implies that the sequence (1.16) of Sym Q (E ′ )-modules is exact, whence the first result. The second result straightforwardly follows from the fact that Ω n

Sym Q (E ′ )|Q ∼ = Sym Q (E ′ ) ⊗ Λ n {de; e ∈ E ′ } as Sym Q (E ′ )-modules.

Stable cohomology with contravariant coefficients

In this section, we compute the stable twisted cohomology of the mapping class groups given by the exterior powers of H∨ (g), i.e. the first cohomology group of its unit tangent bundle. Contrary to the case of the covariant coefficient system H(g) studied in §3, these stable twisted cohomology groups are much more accessible; see Theorem 2.3. First, we have the following starting tool: Proposition 2.1 For all d 1, there is a short exact sequence of Γ g,1 -modules:

0 / / Λ d H Q (g) Λ d (̟ * ) / / Λ d H∨ Q (g) ( ∧-) ∨ / / Λ d-1 H Q (g) / / 0. (2.1)
In particular, this Γ g,1 -module extension corresponds in

Ext 1 Γg,1 (Λ d-1 H Q (g), Λ d H Q (g)) to the class k ∨ (g) ∧ id Λ d-1 H Q (g) for g 2d + 5. Proof. We recall that, for a finite-dimensional Q-module M , there is a canonical isomorphism Λ d (M ∨ ) ∼ = (Λ d M ) ∨ for all d 1; see [Bou98,
Chapter III, §11.5, Prop. 7] for instance. Then, the short exact sequence (2.1) is obtained from the Γ g,1 -module short exact sequence (3.1) below, by applying the contravariant dualising (exact

) functor Q-Mod(-, Q). That the class k ∨ (g) ∧ id Λ d-1 H Q (g) is the extension (2.1) follows from the fact that it is the Yoneda product of the class k ∨ (g) ∈ H 1 (Γ g,1 ; H Q (g)) of (1.3) with the trivial class id Λ d-1 H Q (g) ∈ Ext 0 (Λ d-1 H Q (g); Λ d-1 H Q (g)). Let δ i : H i (Γ g,1 ; Λ d-1 H Q (g)) → H i+1 (Γ g,1 ; Λ d H Q (g))
be the i th connecting homomorphism of the cohomology long exact sequence associated with the extension (2.1).

Lemma 2.2 For

g 2d + 2i + 5, the morphism δ i is equal to -(m 1,1 ∧ id Λ d-1 H Q (g) ) ∪ -. Proof. Let [z] be a cohomology class of H i (Γ g,1 ; Λ d-1 H Q (g)).
We use the normalised cochain complex and generically denote by ∂ its differentials. We recall that ∈ HQ (g) denotes the homology class of the fiber of the unit tangent bundle, and that ξ denotes the homotopy class of a framing of the tangent bundle UTΣ g,1 . We deduce from the action of Γ g,1 on H∨ (g) (i.e. the dual of the matrix (1.5)) that the map s ξ : Z ֒→ H∨ Q (g) defined by u → u + k ∨ ξ (g, -) defines a splitting (as an abelian group morphism) to the surjection H∨

Q (g) ։ Z, v → v( ). Hence the map s ξ ∧ Λ d-1 ̟ * : Λ d-1 H Q (g) ֒→ Λ d H∨ Q (g) defines a splitting (as an abelian group morphism) to the surjection Λ d H∨ Q (g) ։ Λ d-1 H Q (g).
Since z is a cocycle, we have ∂z = 0 and then compute that

-(s ξ ∧ Λ d-1 ̟ * )ϕ 0 (z([ϕ 1 | • • • | ϕ i ])) = p i=1 (-1) i (s ξ ∧ Λ d-1 ̟ * )(z([ϕ 0 | • • • | ϕ i ϕ i+1 | • • • | ϕ p ])) + (-1) p+1 (s ξ ∧ Λ d-1 ̟ * )(z([ϕ 0 | • • • | ϕ p-1 ])). (2.2) We note that δ i [z] = [∂(s ξ (z))
] by the formal definition of δ i . The result follows from the equalities:

δ i ([z])([ϕ 0 | • • • | ϕ i ]) = (ϕ 0 (s ξ ∧ Λ d-1 ̟ * ) -(s ξ ∧ Λ d-1 ̟ * )ϕ 0 )z([ϕ 1 | • • • | ϕ i ]) = (k ∨ ξ (g, -) ∧ id Λ d-1 H Q (g) )(ϕ 0 )ϕ 0 z([ϕ 1 | • • • | ϕ i ]) = ((-m 1,1 ∧ id Λ d-1 H Q (g) ) ∪ z)([ϕ 0 | • • • | ϕ i ]),
More precisely, the first equality is deduced from the computation (2.2), the second equality follows from the fact that k

∨ ξ (g, ϕ) = ϕ • s ξ • ϕ -1 -s ξ since k ∨
ξ is the generating 1-cocycle of the extension (1.3), and the identification of [k ∨ ξ (g, -)] = -m 1,1 (see Remark 1.14) gives the third equality.

The cohomology long exact sequence applied to (2.1) provides a 4-terms exact sequence, associated with the connecting homomorphism

-(m 1,1 ∧ id Λ d-1 H Q (g) ) ∪ -from H i st (Λ d H Q (g)) to H i+1 st (Λ d-1 H Q (g)) for each i 0 such that i + d = 1 (mod 2). Let Q d (m 1,1
) be the subset of Q d (see Definition 1.16) of the weighted partitions {(i 1 , j 1 ), . . . , (i ν , j ν )} where (i i , j i ) = (1, 1) for some i ∈ {1, . . . , ν}. The stable map -(m 1,1 ∧ id Λ d-1 H Q (g) ) ∪ -being injective, we deduce that:

Theorem 2.3 The stable twisted cohomology module H * st (Λ d H∨ Q ) is isomorphic to the free Sym Q (E)- module on the twisted Mumford-Morita-Miller classes {m Q , Q ∈ Q d -Q d (m 1,1 )}. In particular, the Sym Q (E)-module H * st (Λ d H∨ Q )
is concentrated the degrees of the same parity as d. The commutative bigraded stable cohomology algebra H * st (Λ * H∨ Q ) is the polynomial algebra in the twisted Mumford-Morita-Miller classes {m i,j ; i 0, j 1, (i, j) = (1, 1)} over the ring Sym Q (E).

Stable cohomology in covariant coefficients: general theory

In this section, we study the stable twisted cohomology of the mapping class groups Γ g,1 with twisted coefficient given by the exterior powers of HQ (g). We make the first steps for the computations of these stable twisted cohomology groups in §3.1, in particular the determination of the connecting homomorphisms in cohomology for the short exact sequence of Γ g,1 -modules (3.1); see Proposition 3.5. We provide a first computation of the stable cohomology algebra with twisted coefficient in the graded exterior algebra over the localisation of Sym Q (E) in §3.2. Finally, we introduce in §3.3 the key tools for this work, in particular the determination of the connecting homomorphisms in cohomology for the short exact sequence of Γ g,1 -modules (3.1); see Proposition 3.5. We fix the following conventions and notations for the remainder of the paper. Convention 3.1 From now on, we implicitly assume that g 2i + 2d + 3 each time we consider a cohomological degree i for H i (Γ g,1 ; M (g)) where M (g) = Λ d HQ (g) or Λ d H∨ Q (g). This is for the cohomological stability bound of Theorem 1.10 to be reached, so that we can consider the stable twisted cohomology graded modules H * st (Λ d H) and H * st (Λ d H∨ ).

Short exact sequences and derivations

We recall that ∈ HQ (g) is the homology class of the fiber of the unit tangent bundle, which spans the kernel of the canonical map ̟ * : HQ (g) → H Q (g) induced by the projection UTΣ g,1 → Σ g,1 .

The first key tool for studying the stable twisted cohomology module H * st (Λ d HQ ) is the following short exact sequence: Proposition 3.2 For all d 1, there is a short exact sequence of Γ g,1 -modules:

0 / / Λ d-1 H Q (g) ∧-/ / Λ d HQ (g) Λ d (̟ * ) / / Λ d H Q (g) / / 0. (3.1)
In particular, as an element of

Ext 1 Γg,1 (Λ d H Q (g), Λ d-1 H Q )(g)), the Γ g,1 -module extension (3.1) corresponds to the cohomology class of k(g) ∧ id Λ d-1 H Q (g) for g 2d + 5. Proof. The map ̟ * : HQ (g) → H Q (g) defines the algebra homomorphism Λ d (̟ * ) : Λ d HQ (g) → Λ d H Q (g), which is clearly Γ g,1 -equivariant. Let
Λ d HQ (g) be the two-sided ideal generated by in the exterior algebra Λ d HQ (g). By [Bou98, Chapter III, §7, Proposition 3], the morphism Λ d (̟ * ) is surjective and its kernel is isomorphic to Λ d HQ (g) . We define a Γ g,1 -morphism

Ψ d : Λ d-1 H Q (g) → Ker(Λ d (̟ * ))
as follows. For s : H Q (g) → HQ (g) a splitting (as an abelian group morphism) to the map ̟ * , we assign Ψ d (u

) := ∧ s(u) for all u ∈ Λ d-1 H Q (g). If s ′ : H Q (g) → HQ (g) is another splitting of ̟ * , then s ′ (u) -s(u) belongs to Λ d-1 HQ (g) , so there exists an element v ∈ Λ d-1 HQ (g) such that s ′ (u) -s(u) = ∧ v and therefore ∧ s ′ (u) -∧ s(u) = ∧ ∧ v = 0.
Hence, the morphism Ψ d is independent of the choice of s. In particular, this shows that it is by construction equivariant with respect to the canonical Γ g,1 -actions on Λ d-1 HQ (g) and Ker(Λ d (̟ * )). It is clearly injective and the surjectivity follows from the fact that any element of Λ d HQ (g) may be written as w ∧ where w ∈ Λ d-1 HQ (g) is such that Λ d-1 (̟ * )(w) = 0, which provides the short exact sequence (3.1).

Finally, that the class k(g) ∧ id Λ d-1 H Q (g) is that of the extension (2.1) follows from the fact that it is the Yoneda product of the extension class k(g)

∈ H 1 (Γ g,1 ; H Q (g)) of (1.2) with the trivial class id Λ d-1 H Q (g) ∈ Ext 0 (Λ d-1 H Q (g), Λ d-1 H Q (g)).
Let ξ : UTΣ g,1 → S 1 be a framing of UTΣ g,1 , we denote by ξ * : HQ (g) → Q = H 1 (S 1 ; Q) the induced homomorphism in homology and we recall that Ker(ξ * ) ∼ = H Q (g) by the projection ̟ * .

The framing ξ induces a unique splitting (as an abelian group morphism) s ξ : H Q (g) → HQ (g) to the map ̟ * , such that the composite ξ * • s ξ is the zero map 0 : H Q (g) → HQ (g) → Q. We have two keys equalities on the interaction of the splitting s ξ with the contraction µ and the exterior product with the class :

Lemma 3.3 For all ϕ ∈ Γ g,1 and v ∈ H Q (g), we have:

(ϕ • s ξ • ϕ -1 -s ξ )(v) = µ(k ξ (g, ϕ), v) . (3.2)
In particular, we deduce that

∧ ϕs ξ ϕ -1 (v) = ∧ s ξ (v). (3.3)
Proof. For any immersed loop α : S 1 → Σ g,1 , the homology class [

• α/ • α ] of the normalised velocity vector • α/ • α : S 1 → UTΣ g,1 satisfies [ • α/ • α ] = s ξ [α] + (rot ξ (α)) ∈ HQ (g). Hence, we have (s ξ -s ϕ•ξ )[α] = (rot ϕ•ξ (α) -rot ξ (α)) = ([α] • k ξ (g, ϕ)
) . Then, since any homology class in H 1 (Σ g,1 ; Z) is represented by an immersed loop, we have in HQ (g):

(s ξ -s ϕ•ξ )(v) = -µ(k ξ (g, ϕ), v) .
(3.4) Furthermore, we recall that

ξ * • ϕ -1 = (ϕ • ξ) * , which implies that ξ * • ϕ -1 • s ϕ•ξ • ϕ = 0 as a map H Q (g) → Q. Hence, we have ̟ * • ϕ -1 • s ϕ•ξ • ϕ = id H Q (g)
, and a fortiori

s ϕ•ξ = ϕ • s ξ • ϕ -1 .
Therefore, we deduce the equality (3.2) from (3.4). The equality (3.3) then follows from (3.2) since

∧ (ϕs ξ -s ξ ϕ)(v) = 0.
For any ϕ ∈ Γ g,1 , we consider the (anti-

)derivation µ(k ξ (g, ϕ), -) ∧ id Λ d-1 H Q (g) : Λ d H Q (g) → Λ d-1 H Q (g) induced from the map µ(k ξ (g, ϕ), -) : H Q (g) → Q, v → µ(k ξ (g, ϕ), v).
Proposition 3.4 For any u ∈ Λ d H and ϕ ∈ Γ g,1 , we have

(ϕ(Λ d s ξ )ϕ -1 -Λ d s ξ )(u) = Ψ d ((µ(k ξ (g, ϕ), -) ∧ id Λ d-1 H Q (g) )(u)). Proof. Using (3.2), for v 1 , v 2 , . . . , v d ∈ H Q (g), we compute: (ϕ(Λ d s ξ )ϕ -1 -(Λ d s ξ ))(v 1 ∧ v 2 ∧ • • • ∧ v d ) = d j=1 s ξ (v 1 ) ∧ • • • ∧ s ξ (v j-1 ) ∧ (ϕs ξ ϕ -1 -s ξ )(v j ) ∧ ϕs ξ ϕ -1 (v j+1 ) ∧ • • • ∧ ϕs ξ ϕ -1 (v d ) = d j=1 s ξ (v 1 ) ∧ • • • ∧ s ξ (v j-1 ) ∧ µ(k ξ (g, ϕ), v j ) ∧ ϕs ξ ϕ -1 (v j+1 ) ∧ • • • ∧ ϕs ξ ϕ -1 (v d ) = d j=1 s ξ (v 1 ) ∧ • • • ∧ s ξ (v j-1 ) ∧ µ(k ξ (g, ϕ), v j ) ∧ s ξ (v j+1 ) ∧ • • • ∧ s ξ (v d ) = ∧ d j=1 (-1) j-1 µ(k ξ (g, ϕ), v j )s ξ (v 1 ) ∧ • • • ∧ s ξ (v j-1 ) ∧ s ξ (v j+1 ) ∧ • • • ∧ s ξ (v d ) = ∧ s ξ   d j=1 (-1) j-1 µ(k ξ (g, ϕ), v j )v 1 ∧ • • • ∧ v j-1 ∧ v j+1 ∧ • • • ∧ v d   = Ψ d ((µ(k ξ (g, ϕ), -) ∧ id Λ d-1 H Q (g) )(v 1 ∧ • • • ∧ v d ))
Here we used the formula (3.2) to get the second equality and the formula (3.3) to get the third equality; the other equalities follow from the definitions or are clear algebraic manipulations.

We now consider the cohomology long exact sequence associated with (3.1) and we denote by

δ i : H i (Γ g,1 ; Λ d H Q (g)) → H i+1 (Γ g,1 ; Λ d-1 H Q (g)
) its i th connecting homomorphism. For each i 0 such that i = d (mod 2) and g 2d + 2i + 5, using the computation (1.11), we obtain the following four term exact sequence:

H i (Λ d HQ (g)) / / H i (Λ d H Q (g)) δ i / / H i+1 (Λ d-1 H Q (g)) / / / / H i+1 (Λ d HQ (g)) (3.5)
We denote by µ d,i (m 1,1 , -) the map

H i st (Λ d H Q ) → H i+1 st (Λ d-1 H Q ) defined by v → µ d (m 1,1 , v).
Proposition 3.5 For g 2d + 2i + 5, the morphism δ i is equal to µ d,i (m 1,1 , -).

Proof. Let [z] be a cohomology class of H i (Γ g,1 ; Λ d H Q (g)).
We use the normalised cochain complex and generically denote by ∂ its differentials. For the fixed framing ξ and associated splitting s ξ : H Q (g) → HQ (g), we note that Λ d s ξ : Λ d H Q (g) → Λ d HQ (g) defines a splitting (as an abelian group morphism) the canonical surjection Λ d (̟ * ) :

Λ d HQ (g) ։ Λ d H Q (g).
Since z is a cocycle, we have ∂z = 0 and we deduce that

-(Λ d s ξ )ϕ 0 (z([ϕ 1 | • • • | ϕ i ])) = i j=1 (-1) j (Λ d s ξ )(z([ϕ 0 | • • • | ϕ j ϕ j+1 | • • • | ϕ i ])) + (-1) i+1 (Λ d s ξ )(z([ϕ 0 | • • • | ϕ i-1 ])). (3.6) Since δ i [z] = [∂(s ξ (z))
] by the formal definition of δ i , it follows from (3.6) and Proposition 3.4 that

δ i ([z])([ϕ 0 | • • • | ϕ i ]) = (ϕ 0 (Λ d s ξ )ϕ 0 -1 -(Λ d s ξ ))ϕ 0 (z([ϕ 1 | • • • | ϕ i ])) = Ψ d ((µ(k ξ (g, ϕ 0 ), -) ∧ id Λ d-1 H Q (g) )(ϕ 0 (z([ϕ 1 | • • • | ϕ i ]))) Since [k ξ (g, -)] is identified with m 1,1 in H 1 st (H Q ) (see Remark 1.14), we have δ i ([z]) = µ d,i (m 1,1 , [z]
), which ends the proof.

Remark 3.6 Based on the proof of Proposition 3.2, the induced action of the map ∧ -on the i th twisted cohomology group of the mapping class group is given as follows. For an i-cocycle z

∈ Z i (Λ d-1 H Q (g)), we take an i-cochain z = (Λ d-1 s) • z ∈ C i (Λ d-1 HQ (g)). Then ∂ z is an (i + 1)-cochain with values in ∧ Λ d-2
HQ (g). Then we have ∂(z ∧ ) = ∂(z) ∧ = 0 since appears twice there. The cohomology class [z ∧ ] is equal to ( ∧ -)[z] ∈ H i (Λ d HQ (g)). We also note that e 1 ∪ = 0 since H 2 ( HQ (g)) = 0 by Theorem 1.24. However, we have ∧e 1 m 0,2 = 0 ∈ H 2 (Λ 3 HQ (g)). Indeed, H 2 (Λ 3 H Q (g)) is of dimension 3 and spanned by the classes m 1,2 , e 1 m 0,2 and m 1,1 m 1,1 , while H 1 (Λ 3 H Q (g)) is of dimension 2 is spanned by m 0,3 and m 0,2 m 1,1 , and we have the following special case of the exact sequence (3.5)

H 1 (Λ 3 H Q (g)) µ3,1(m1,1,-) / / H 2 (Λ 2 H Q (g)) ∧-/ / / / H 2 (Λ 3 HQ (g)).
Since µ 3,1 (m 1,1 , m 0,3 ) = -3m 1,2 and µ 3,1 (m 1,1 , m 0,2 m 1,1 ) = -2m 2 1,1 -e 1 m 0,2 , the element e 1 m 0,2 is not in the image of µ 3,1 (m 1,1 , -). This is not a contradiction. Let w ∈ Λ 2 HQ (g) be a lift of m 0,2 ∈ H 0 (Λ 2 H Q (g)). Since e 1 ∪ vanishes, it is represented by the coboundary of a 1-cochain c : Γ g,1 → HQ (g). Therefore the class Ψ * d (e 1 m 0,2 ) is represented by (∂c) ∧ w, which is a cocycle but not a coboundary. Indeed we have ∂((∂c) ∧ w) = ±(∂c) ∧ (∂ w) = 0 since appears twice there. The non-vanishing ∧ e 1 m 0,2 = 0 just means that the image of c is not included in Q .

We recall from Lemma 1.23 that we have a canonical Sym Q (E)-module decomposition

H * st (Λ d HQ ) ∼ = H even st (Λ d HQ ) ⊕ H odd st (Λ d HQ )
. Therefore, we confine ourselves to studying the derivation

D d := i 0 µ d,i (m 1,1 , -) : H * st (Λ d H Q ) → H * st (Λ d-1 H Q ),
and the induced exact sequence of Sym Q (E)-modules

H † st (Λ d HQ ) / / H † st (Λ d H Q ) D d / / H ‡ st (Λ d-1 H Q ) / / / / H ‡ st (Λ d HQ ), (3.7) 
where † = "odd" and ‡ = "even" if d is odd, while † = "even" and ‡ = "odd" if d is even. The key tool to compute the derivation D d is provided by the contraction formulas of Proposition 1.19.

Computations over the localisation of Sym Q (E)

In this section, we study the Sym Q (E)-algebra H * st (Λ * HQ ) rather each Sym Q (E)-module H * st (Λ d HQ ) individually. Also, we consider the localisation of Sym Q (E) in order to simplify the computation. Namely, let E ± be the set obtained from E by inverting all the classical Mumford-Morita-Miller classes. Then the symmetric algebra Sym Q (E ± ) is the extension Q[e ±1 i ; i 1] of Sym Q (E). This induces the (exact) localisation functor Sym Q (E ± )⊗ Sym Q (E) -and we compute the localised algebra Sym Q (E ± ) ⊗ Sym Q (E) H * st (Λ * HQ ); see Theorem 3.14. In particular, this Sym Q (E ± )-algebra is free.

This contrasts with the Sym Q (E)-module H * st (Λ * HQ ) which is not free for d 3 by Corollary 3.23 and requires further complicated analysis to be computed for * 5; see §4. Furthermore, the localisation provides a way to calculate the Sym Q (E)-algebra H * st (Λ * HQ ); see Corollary 3.19.

A model for the algebra

H * st (Λ * H Q )
First of all, we introduce the following alternative convenient description of the stable cohomology algebra of the mapping class groups with twisted coefficient given by the exterior algebra Λ * H Q .

For each n 1, let R n be the polynomial algebra Q[x n,0 , x n,1 , . . . , x n,n ], and D n be the following derivation on the algebra R n

D n := n-1 k=0 x n,k ∂ ∂x n,k+1
.

We stress that there are no Koszul signs in the derivation D n , and then D 2 n is not a derivation. Definition 3.7 Let x := x i0 n,0 x i1 n,1 • • • x in n,n be an element of R n . We respectively define the weight wt and the degree deg of x by

wt(x i0 n,0 x i1 n,1 • • • x in n,n ) := n j=0 ji j and deg(x i0 n,0 x i1 n,1 • • • x in n,n ) := n j=0 (2n -2 -j)i j .
We deduce from these definitions that the derivation D n decreases the weight by 1 and increases the degree by 1. Hence the kernel Ker(D n ) and the cokernel Coker(D n ) are homogeneous both in weight and degree. We also note that every non-constant homogeneous term in R n has at least degree n -2.

Key polynomials xn,k

We now consider some particular key polynomials of Ker(D ∞ ).

Definition 3.8 We fix n 2. First, we define xn,1 := x n,1 . Now, for each 2 k n, let xn,k ∈ R n be the polynomial defined as follows.

• If k := 2ℓ: we assign

xn,2ℓ := x 2 n,ℓ + 2 ℓ-1 i=0 (-1) ℓ+i x n,i x n,2ℓ-i .
For instance, xn,2 = x 2 n,1 + 2x 2 n,0 and xn,4 = x 2 n,2 + 2x n,0 x n,4 -2x n,1 x n,3 . The element xn,2ℓ is homogeneous both in weight and degree with wt(x n,2ℓ ) = 2ℓ and deg(x n,2ℓ ) = 4n -4 -2ℓ.

• If k := 2ℓ + 1: we first define xn,2ℓ+1 := x n,ℓ x n,ℓ+1 + ℓ-1 i=0 (-1) ℓ+i (2ℓ -2i + 1)x n,i x n,2ℓ+1-i .
Then, we define xn,2ℓ+1 := x n,1 xn,2ℓ -x n,0 xn,2ℓ+1 . For instance, xn,3 :=

x 3 n,1 + 2x 2 n,0 x n,1 - x n,0 x n,1 x n,2 -3x 2 n,0
x n,3 . The element xn,2ℓ+1 is homogeneous both in weight and degree with wt(x n,2ℓ+1 ) = 2ℓ + 1 and deg(x n,2ℓ+1 ) = 6n -6 -2ℓ -1.

We note the following key property on these new variables: Lemma 3.9 For each n 2, the elements x n,0 , xn,2 , . . . , xn,n are algebraically independent over the algebra R n .

Proof. We compute from Definition 3.8 that xn,2ℓ ≡ (-1) n 2x n,0 x n,2ℓ (mod R 2ℓ-1 ), while xn,2ℓ+1 ≡ (-1) n+1 (2ℓ + 1)x 2 n,0 x n,2ℓ (mod R 2ℓ ). This implies that the set {x n,2 , . . . , xn,n } is algebraic independent over R n . Now, we consider a linear combination such that

(i0,i2,••• ,in) λ (i0,i2,••• ,in) x i0 n,0 xi2 n,2 • • • xin n,n = 0 (3.8) with λ (i0,i2,••• ,in) ∈ Q. Because
x n,0 and all the xn,i 's are homogeneous both in weight and degree, we may decompose (3.8) into sums indexed by i 0 and assume that each of these summands is null. So there is no loss of generality in assuming that there is at most one i

0 such that λ (i0,i2,••• ,in) = 0 if i 0 = i. Then, substituting x n,0 = 1 in (3.8), we deduce that (i2,••• ,in) λ (i,i2,••• ,in) (x i2 n,2 • • • xin n,n )| x0=1 = 0 in Q[x n,2 , . . . , x n,n ].
We thus deduce from the algebraic independence proved above that λ (i,i2,••• ,in) = 0, which thus end the proof.

We also have the following key property on the new variables: Lemma 3.10 For all n 2 and 2 k n, then xn,k ∈ Ker(D n ).

Proof. If k = 2ℓ, then we have

D n (x n,2ℓ ) = 2x n,ℓ-1 x n,ℓ + 2 ℓ-2 i=0 (-1) ℓ+i+1 x n,i x n,2ℓ-i-1 + 2 ℓ-1 i=0 (-1) ℓ+i x n,i x n,2ℓ-i-1 = 0. If k = 2ℓ + 1, we compute that D n (x n,2ℓ+1 ) =x 2 n,ℓ + x n,ℓ-1 x n,ℓ+1 -3x n,ℓ-1 x n,ℓ+1 + 2 n,ℓ-2 i=0 (-1) ℓ+i x n,i x n,2ℓ-i =x 2 n,ℓ + 2 n,ℓ-1 i=0 (-1) ℓ+i x n,i x n,2ℓ-i = xn,2ℓ .
We then deduce that D n (x n,2ℓ+1 ) = x n,0 xn,2ℓ -x n,0 xn,2ℓ = 0.

We consider the extension of R n defined by

R ′ n := R n [x -1 n,0 ] = Q[x ±1 n,0 , x n,1 , . . . , x n,n ].
Since D n (x n,0 ) = 0, the derivation D n naturally extends to a derivation

D ′ n on R ′ n . Since x n,0 is invertible in R ′
n , we deduce from Definition 3.8 that we may inductively rewrite the generators {x n,1 , x n,2 , . . . , x n,n } as polynomials over the ground ring Q[x ±1 n,0 ] over the variables {x n,1 , xn,2 , . . . , xn,n }. Therefore, we deduce from the linear independence result of Lemma 3.9 that 

R ′ n ∼ = Q[x ±1 n,0 ][x n,
Lemma 3.11 For each n 2, Ker(D ′ n ) is the Q[x ±1 n,0 ]-subalgebra of R ′ n generated by {x n,k } k 2 , while Coker(D ′ n ) = 0.
Proof. Since x n,0 is invertible in R ′ n , the result follows from elementary facts about the derivation ∂/∂ xn,1 . Remark 3.12 Lemma 3.11 cannot be true if we consider the derivation D n on R n . For example, the composite Q[x n,n ] ֒→ R n ։ Coker(D n ) is an injective map for any n 2, and the substitution

x n,0 = x n,1 = • • • = x n,n-1 = 0 defines a left inverse map Coker(D n ) → Q[x n,n ]. Moreover, for n 3, the element x -2 n,0 (x 2 n,3 -x3 n,2 ) = 6x 3 n,1 x n,2 -3x 2 n,1 x 2 n,2 -18x n,0 x n,1 x n,2 x n,3 + 9x 2 n,0 x 2 n,3 + 8x n,0 x 3 n,2 of R n belongs to Ker(D n ) ⊆ R n but not to Q[{x n,k ; k 2}].

Correspondence between the algebras H

* st (Λ * H Q ), R ∞ and R ′ ∞
We consider the infinite tensor products

R ∞ := ∞ n=2 R n and R ′ ∞ := ∞ n=2 R ′ n .
We note that their respective homogeneous parts in each degree are of finite dimension. We recall that the description of the stable twisted cohomology module H * st (Λ d H Q ) for each d 1 is given in Theorem 1.17. The assignment for each k 0

R(x n,k ) := mn-k,k = (-1) k k! m n-k,k ∈ H 2n-2-k (Λ k H Q ) induces an Sym Q (E)-algebra isomorphism R : R ∞ ∼ → H * st (Λ * H Q ).
We note that if u ∈ R ∞ is homogeneous both in the weight and the degree, then we have

R(u) ∈ H deg(u) (Λ wt(u) H Q ). Using the localisation functor Sym Q (E ± ) ⊗ Sym Q (E) -, the isomorphism R extends to an isomorphism R ′ : R ′ ∞ ∼ → Sym Q (E ± ) ⊗ Sym Q (E) H * st (Λ * H Q ).
Moreover, we extend the derivation D n (resp. D ′ n ) by the identity on each component other than R n (resp. R ′ n ). Then, we define derivations

D ∞ := ∞ n=2 D n and D ′ ∞ = ∞ n=2 x n,0 (∂/∂ xn,1 ) on the algebras R ∞ and R ′ ∞ respectively. It follows from the definitions that R • D ∞ = D • R and R ′ • D ′ ∞ = (Sym Q (E ± ) ⊗ Sym Q (E) D) • R ′ as morphisms R ∞ → H * st (Λ * H Q ) and R ′ ∞ → Sym Q (E ± ) ⊗ Sym Q (E) H * st (Λ * H Q ) respectively.
Then, we deduce from the universal properties of kernels and cokernels and from the exactness of the localisation functor that:

Lemma 3.13 The isomorphism R induces Sym Q (E)-algebra isomorphisms Ker(D) ∼ = Ker(D ∞ ) and Coker(D) ∼ = Coker(D ∞ ). The isomorphism R ′ induces Sym Q (E ± )-algebra isomorphisms Sym Q (E ± ) ⊗ Sym Q (E) Ker(D) ∼ = Ker(D ′ ∞ ) and Sym Q (E ± ) ⊗ Sym Q (E) Coker(D) ∼ = Coker(D ′ ∞ ).

Computation of H * st (Λ * HQ ) over the localised algebra

We are now able to compute Sym

Q (E ± ) ⊗ Sym Q (E) H * st (Λ * HQ ) thanks to the algebra R ′ ∞ and the derivation D ′ ∞ . Theorem 3.14 The Sym Q (E ± )-algebra Sym Q (E ± ) ⊗ Sym Q (E) H * st (Λ * HQ )
is free and generated by

B := {e 1 m n,1 -e n m 1,1 , R ′ (x n,2ℓ ), R ′ (x n,2ℓ+1 ); n 2, 1 ℓ n/2} . (3.9)
In particular, if

d + i ≡ 1 (mod 2), then Sym Q (E ± ) ⊗ Sym Q (E) H d (Λ i HQ ) = 0.
Proof. By Lemma 3.13, the result boils down to computing Ker(D ′ ∞ ) and Coker(D ′ ∞ ). For n 2, we define y n+1 := x 2,0 x n+1,1 -x n+1,0 x 2,1 = x 2,0 xn+1,1 -x n+1,0 x2,1 and y 2 := x 2,1 = x2,1 , and we compute that R ′ (y n+1 ) = e n m 1,1 -e 1 m n,1 . It is a routine to check analogously to Lemma 3.9 from these assignments and Definition 3.8 that the generators {y n } ∞ n=2 ⊔ {x n,k } n 2,2 k n are algebraically independent over Sym Q (E ± ). Also, in terms of these variables, we have D ′ ∞ = x 2,0 (∂/∂y 2 ). We deduce that D ′ ∞ (y n+1 ) = 0 and that Im(

D ′ ∞ ) = R ′ ∞ since x 2,0 is invertible in R ′ ∞ . Hence Coker(D ′ ∞ ) = 0, and the subalgebra Ker(D ′ ∞ ) is a polynomial algebra over Q[x ±1 n,0 ; n 2] in variables {y n } n 3 ⊔ {x k,n } n 2,2 k n .
Remark 3.15 For all n 2, the generator e 1 m n,1 -e n m 1,1 is the class M 1,n introduced in [KS22] and recalled in Theorem 1.24 which generates the stable twisted cohomology module H * st ( HQ ). Also, for all 1 ℓ n/2, we compute that:

R ′ (x n,2ℓ ) = m2 n-ℓ,ℓ + 2 ℓ-1 k=0 mn-k,k mn-2ℓ+k,2ℓ-k and R ′ (x n,2ℓ+1 ) = ( mn-1,1 -e n-1 ) ℓ-1 k=0 (-1) ℓ+k (2ℓ -2k + 1) mn-k,k mn-2ℓ+k+1,2ℓ+1-k + ( mn-1,1 -e n-1 ) mn-ℓ,ℓ mn-ℓ-1,ℓ+1 .
As a result of Theorem 3. 

:= Sym Q (E ± )⊗ Sym Q (E) : Sym Sym Q (E) (H * st ( HQ )) Υ / / _ H * st (Λ * HQ ) _ Sym Sym Q (E ± ) (H * st ( HQ )) Υ ′ / / Sym Q (E ± ) ⊗ Sym Q (E) H * st (Λ * HQ ).
(3.11)

Following Theorem 1.24, we deduce from the relations in H * st ( HQ ) that, for all j > i 1, we have

M i,j = e -1 1 (e i M 1,j -e j M 1,i ) in Sym Sym Q (E ± ) (H * st ( HQ )). Hence Sym Sym Q (E ± ) (H * st ( HQ )
) is the free Sym Q (E ± )-algebra generated by {M 1,n ; n 2}. Therefore, it follows from Theorem 3.14 and from the definition of Υ ′ the Sym Q (E ± )-algebra morphism Υ ′ is injective, and so is Sym Q (E)algebra morphism Υ by the commutativity of (3.11). Finally, the morphism Υ cannot be surjective, otherwise Υ ′ would be an isomorphism of Sym Q (E ± )-algebras which would contradict Theorem 3.14 by the above computation of Sym Sym Q (E ± ) (H * st ( HQ )).

Finally, Theorem 3.14 leads us to ask the open question:

Question 3.18 Does there exist a twisted contravariant coefficient systems whose stable cohomology graded module tensored by Sym Q (E ± ) is not Sym Q (E ± )-free ?

Computation of H even st (Λ even HQ ) ⊕ H odd st (Λ odd HQ ). We recall that the kernel Ker(D) is isomorphic to the Sym Q (E)-module H even st (Λ even HQ ) ⊕ H odd st (Λ odd HQ ), that B is the set of generators introduced in Theorem 3.14, that M is the basis of the twisted Mumford-Morita-Miller classes of Theorem 1.17 and that Sym Q (E ± )S (resp. Sym Q (E)S) denotes the free Sym Q (E ± )-module (resp. Sym Q (E)-module) on the set S. Theorem 3.14 provides a canonical bigraded Sym Q (E)-module injection Ker(D) ֒→ Sym Q (E ± )(3.9) and thus a way to compute H even st (Λ even HQ ) ⊕ H odd st (Λ odd HQ ) as follows:

Corollary 3. 19 The bigraded Sym Q (E)-algebra Ker(D) may be computed as the following pullback square:

Ker(D) Sym Q (E ± )B Sym Q (E)M Sym Q (E ± )M (3.12)
where the horizontal arrows are defined by the localisation functor

Sym Q (E ± ) ⊗ Sym Q (E) -. In particular, Sym Q (E)B Ker(D) Sym Q (E ± )B.

Key tools to study stable twisted cohomology

We now introduce some new tools in order to make computations for the Sym Q (E)-modules H † st (Λ d HQ ) and H ‡ st (Λ d HQ ) when fixing d 2.

A filtration by the monomials

First, we define the following filtration of the module H * st (Λ d H Q ) for each d 1.

Definition 3.20 For each k 0, let F k H * st (Λ d H Q ) be the free Sym Q (E)-submodule of H * st (Λ d H Q ) generated by the monomials in { mi,j ; i 0, j 1, i + j 2} of length less than or equal to k + 1. In particular,

F d-1 H * st (Λ d H Q ) = H * st (Λ d H Q ) and F 0 H * st (Λ d H Q ) is generated by {m i,d ; i 0} if d 2 and {m i,1 ; i 1} if d = 1. Since D d (F k H * st (Λ d H Q )) ⊂ F k H * st (Λ d-1 H Q ) by formula (1.12), the map D d induces a morphism D d,k : F k H * st (Λ d H Q ) → F k H * st (Λ d-1 H Q )
for each k 0, and thus a morphism for each k 1:

D d,k/(k-1) : F k H * st (Λ d H Q )/F k-1 H * st (Λ d H Q ) -→ F k H * st (Λ d-1 H Q )/F k-1 H * st (Λ d-1 H Q ). (3.13)
By the snake lemma, we obtain an exact sequence for each k 1 (3) For integers n 1 and a, b, p, q 0 such that a + p 2 and b + q 2, we have ma,p mb,q = (-1) k ma-k,p+k mb+k,q-k as elements of Coker(D d,1 ), for k min(a, q).

Ker(D d,k/(k-1) ) δ d,k-1 / / Coker(D d,k-1 ) i d,k-1 / / Coker(D d,k ) / / Coker(D d,k/(k-1) ) / / 0. ( 3 
(4) For a 0 1, a i , p 0 , p i 0 with a 0 + p 0 , a i + p i 2, we have ma0,p0 ma1,p1

• • • man,pn =      0 if a 0 > n i=1 p i , (-1) a0 a0! p1!...pn! e a1+p1-1 • • • e an+pn-1 m 0,a0+p0 if a 0 = n i=1 p i , (-1) a0 n i=1 a0! p1!...(pi-1)!...pn! e a1+p1-1 • • • m ai+pi-1,1 • • • e an+pn-1 m 0,a0+p0 if a 0 = -1 + n i=1 p i , as an element of Coker(D d,n ). (5) If some integers k i 1 satisfy k 1 + • • • + k r d -r, then we have e k1 • • • e kr u = 0 as an element of Coker(D d,l+r ), for any u ∈ F l H * st (Λ d-1 H Q ). In particular, if k d -1, we have e k u = 0 ∈ Coker(D d ) for any u ∈ H * st (Λ d-1 H Q ).
Proof. The points (1) and ( 2) are straightforward consequences from the formulas of Proposition 1.19 and of the definition of the filtration. The point (3) follows from a clear recursion on the relation D d ( ma-1,p+1 mb,q ) = ma,p mb,q + ma-1,p+1 mb+1,q-1 computed from the contraction formula (1.13) of Proposition 1.19. For the point (4), we denote Hence, as an element of Coker(D d,n ), we have ma0,p0 ma1,p1 . . . man,pn = (-1) a0 m0,p0+a0 D a0 ( ma1,p1 . . . man,pn ).

D d+1 • • • • • D d+k-
(3.15)

Here we have

D k ( mai,pi ) =      0 if k > p i , e ai+pi-1 if k = p i , mai+pi-1,1 if k = p i -1,
and then

D k ( ma1,p1 • • • man,pn ) =      0 if k > p i , k! p1!...pn! e a1+p1-1 • • • e an+pn-1 if k = p i , n i=1 k! p1!...(pi-1)!...pn! e a1+p1-1 • • • m ai+pi-1,1 • • • e an+pn-1 if k = -1 + p i .
For the point (5), we first note that

D d-1 u ∈ Sym Q (E), hence D d u = 0. Since (k 1 + 1) + • • • + (k r + 1) d, there exists d i 0 such that d 1 +• • •+d r = d and k i +1 d i for each 1 i r. We consider v := d1!•••dr! d! mk1-d1+1,d1 • • • mkr-dr+1,dr ∈ F r-1 H * st (Λ d H Q ). Then we have D d (v) = e k1 • • • e kr and D i (u)D j (v) ∈ F r-1 H * st (Λ d H Q ) for all i + j = d -1. Hence e k1 • • • e kr u = D d (v)u = (-1) d-1 D d (v)D d-1 (u) = D d ((-1) d-1 vD d-1 (u)) = 0 ∈ Coker(D d,l+r )
which ends the proof.

These tools also allow us to exhibit the following qualitative property for the stable cohomology graded modules for the exterior powers of degree greater or equal to three: Finally, we have the following estimate for annihilators of each element in H even st (Λ odd HQ ) ⊕ H odd st (Λ even HQ ), which is a supporting evidence for our computations in the following sections. This follows immediately from (5) in Proposition 3.21. Corollary 3.24 For any element u ∈ H even st (Λ odd HQ ) ⊕ H odd st (Λ even HQ ), there exists a monomial v in E such that vu = 0 in H even st (Λ odd HQ ) ⊕ H odd st (Λ even HQ ).

First application: low-dimensional paired stable twisted cohomologies

We now apply the filtration of §3.3.1 to prove the triviality of each low-dimensional stable cohomology group H i st (Λ d HQ ) when i has the same parity as d. Beforehand, we introduce the following truncation of the derivation D d and its filtration by the monomials. We consider an integer j 2 and denote by D j d the direct sum

0 i j-2 µ d,i (m 1,1 , -) : 0 i j-2 H i st (Λ d H Q ) → 0 i j-2 H i+1 st (Λ d-1 H Q ).
The filtration by the monomials of Definition 3.20 restricts well to

H * d-2 st (Λ d H Q ) (i.e. the di- rect sum 0 i d-2 H i st (Λ d H Q ))
. Then, by formula (1.12), the map Proof. Let us prove by induction on 0 k d -2 that Ker(D d d,k ) = 0, and we will be done since

D d d,k induces a morphism D d d,k : F k H * d-2 st (Λ d H Q ) → F k H * d-1 st (Λ d-1 H Q ) for each k 0,
D d d,d-2 = D d d because F k H * d-2 st (Λ d H Q ) = F d-2 H * d-2 st (Λ d H Q )) if k d -2. Indeed, a monomial ma0,b0 ma1,b1 • • • ma k ,b k ∈ H * d-2 st (Λ d H Q ) with b i 1 satisfies 0 i k b i = d and 0 i k (2a i + b i -2) d -2.
A fortiori, we have 0 i k a i k, so there is some i 0 such that a i0 = 0 and b i0 2 (since there does not exist m 0,1 ), and thus

d = 0 i k b i k + 2.
By Definitions 1.13 and 1.16, we note that a generator ma0,b0 belongs to Beforehand, we note from Definitions 1.13 and 1.16 that a generator ma0,b0 ma1,b1 • • • ma k ,b k belongs to (and does not vanish in)

F 0 H * d-2 st (Λ d H Q ) if
F k H * d-2 st (Λ d H Q )/F k-1 H * d-2 st (Λ d H Q ) if and only if 0 i k a i k and 0 i k b i = d with b i 1 for each 0 i k.
In particular, there must then be at least one a i = 0. We also recall from Definition 1.16 that b 0

b 1 • • • b k and that a i a i+1 if b i = b i+1 . An element of the kernel of D d d,k/(k-1
) may be written as a formal sum M ℓ :=

1 j ℓ λ j m(j) a0,b0 • • • m(j) a k ,b k , where ℓ 1, λ j ∈ Sym Q (E) and m(j) a0,b0 • • • m(j) a k ,b k belongs to (and does not vanish in) F k H * d-2 st (Λ d H Q )/F k-1 H * d-2 st (Λ d H Q ) for each 1 j ℓ.
For convenience, we denote by a (1) 0 andso D d d,k/(k-1) (M 1 ) = 0 implies that λ 1 = 0, and thus M 1 = 0.

2 because 0 i k b (1) i = d, while b (1) 0 b (1) 1 • • • b (1) k . Hence 0 i k m(1) a0,b0 • • • m(1) ai+1,bi-1 • • • m(1) a k ,b k does not vanish in F k H * d-1 st (Λ d-1 H Q )/F k-1 H * d-1 st (Λ d-1 H Q ),
Let us now assume ℓ 2 and that any element of the kernel of D d d,k/(k-1) vanishes if its number of terms is strictly smaller than ℓ. We denote by L the set {1, . . . , ℓ} and by L c the subset {l ∈ L | c (l) c (l ′ ) , ∀l ′ ∈ L} for c ∈ {a 0 , b 0 }. The rest of the proofs is the following case disjunction.

Step 1: assume that L b0 = L. We denote the summand

j∈L b 0 λ j m(j) a0,b0 • • • m(j) a k ,b k of M ℓ by M L b 0
, and the other summand

j ′ ∈L\L b 0 λ j ′ m(j ′ ) a0,b0 • • • m(j ′ ) a k ,b k by M L\L b 0 . Decomposing the equality D d d,k/(k-1) (M ℓ ) =
0 with respect to these summands provides that:

j∈L b 0 λ j 0 i k m(j) a0,b0 • • • m(j) ai+1,bi-1 • • • m(j) a k ,b k = - j ′ ∈L\L b 0 λ j ′ 0 i k m(j ′ ) a0,b0 • • • m(j ′ ) ai+1,bi-1 • • • m(j ′ ) a k ,b k .
(3.17)

Case A: for all j ∈ L b0 and all 1 i k, a 2 by Definition 1.13). For each j ∈ L b0 , let I j be the maximum i ∈ {0, . . . , k} such that b

(j) i = b (j)
0 . We denote by I the maximum of the set {I j | j ∈ L b0 } and by L b0 (I) the set {j ∈ L b0 | I j = I}. Then, by analysing the homogeneity of the b 0 's, we deduce that the following summand of the left-hand side of (3.17) for each j ∈ L b0 (I)

λ j I+1 i k m(j) 0,b0 • • • m(j) 1,bi-1 • • • m(j)
0,b k cannot be cancelled by linear combinations of terms

• of the left-hand side of (3.17) either indexed by j 1 ∈ L b0 \ L b0 (I) or those of the form

λ j2 0 i I m(j2) 0,b0 • • • m(j2) 1,bi-1 • • • m(j2) 0,b k with j 2 ∈ L b0 (I);
• of the right-hand side of (3.17).

Therefore, denoting by m0,b0 the common class m(j) 0,b0 when j ∈ L b0 (I), we deduce that m∪I 0,b0 j∈L b 0 (I)

λ j I+1 i k m(j) 0,bI+1 • • • m(j) 1,bi-1 • • • m(j) 0,b k = 0.
Note that this is equal to m∪I

0,b0 D d d,k-I-1/(k-I-2) (M L b 0 ,I ), where M L b 0 ,I denotes the element j∈L b 0 (I) λ j m(j) 0,bI+1 • • • m(j) 0,b k .
Then it follows from the inductive assumption on k that M L b 0 ,I = 0. Hence there is at least one coefficient λ j of M ℓ which is null and thus we are done by the inductive assumption on ℓ.

Case B: there exists j ∈ L b0 and 1 i k such that b (j) i 2. By Case A, we may assume that there exists j ∈ L b0 and 1 i k such that a 1. Then, by analysing the homogeneity of the a 0 's and b 0 's, we deduce that the following summand of the left-hand side of (3.17) for each j ∈ L b0,a0 (I)

λ j I+1 i k m(j) a0,b0 • • • m(j) ai+1,bi-1 • • • m(j) a k ,b k
cannot be cancelled by linear combinations of terms

• of the left-hand side of (3.17) either indexed by j 1 ∈ L b0 \ L b0,a0 (I) or those of the form

λ j2 0 i I m(j2) a0,b0 • • • m(j2) ai+1,bi-1 • • • m(j2) a k ,b k with j 2 ∈ L b0,a0 (I); • of the right-hand side of (3.17).
Therefore, denoting by ma0,b0 the common class m(j) a0,b0 when j ∈ L b0,a0 (I), we deduce that m∪I a0,b0 j∈L b 0 ,a 0 (I)

λ j I+1 i k m(j) aI+1,bI+1 • • • m(j) ai+1,bi-1 • • • m(j) a k ,b k = 0.
Note that this is equal to m∪I a0,b0 D d d,k-I-1/(k-I-2) (M L b 0 ,I ), where M L b 0 ,I denotes the element

j∈L b 0 ,a 0 (I) λ j m(j) aI+1,bI+1 • • • m(j) a k ,b k .
Then it follows from the inductive assumption on k that M L b 0 ,I = 0. Hence there is at least one coefficient λ j of M ℓ which is null and thus we are done by the inductive assumption on ℓ.

Case C: b (j) i

= 1 for all j ∈ L b0 and 1 i k. Recall that 0 i k a (j) i k by the above description of the source of D d d,k/(k-1) and that the cup products of monomials of length strictly smaller than k + 1 vanish in the target of D d d,k/(k-1) . Then, the only possibility for the left-hand side of (3.17) to not be null is that it is of the form

j∈L b 0 λ j m(j) 1,b0-1 m(j) 1,1 • • • m(j) 1,1 .
In order to match each of these summands, the preimage M L\L b 0 of the right-hand side of (3.17) must contain the generator m1,b0-1 m0,2 m1,1 • • • m1,1 . But then, in order to cancel that element, M L\L b 0 must also contain either m1,b0-1 m0,2 m0,2 m1,1 • • • m1,1 or m2,b0-2 m0,2 m1,1 m1,1 • • • m1,1 , whereas these elements do not belong to the source of D d d,k/(k-1) . Therefore we must have (3.17) = 0, and since each side of the equality is the image of some M ℓ ′ with ℓ ′ < ℓ, we are done by the inductive assumption on ℓ.

Step 2: assume that L a0 = L. By Step 1, we may assume that L b0 = L. It follows from the equality

D d d,k/(k-1) (M ℓ ) = 0 that: j∈La 0 λ j 0 i k m(j) a0,b0 • • • m(j) ai+1,bi-1 • • • m(j) a k ,b k = - j ′ ∈L\La 0 λ j ′ 0 i k m(j ′ ) a0,b0 • • • m(j ′ ) ai+1,bi-1 • • • m(j ′ ) a k ,b k .
(3.18) The reasoning is then analogous to that of Step 1.

Case A: Since we assume L a0 = L, it is impossible that a (j) i = 0 for all j ∈ L b0 and all 1 i k. Case B: there exists j ∈ L a0 and 1 i k such that b (j) i 2. By Case A, we may assume that there exists j ∈ L b0 and 1 i k such that a (j) i = 0. For each j ∈ L a0 , let I j be the maximum i ∈ {0, . . . , k} such that a 1. Then, by a clear analysis on the homogeneity of the a 0 's and b 0 's, we deduce that the following summand of the left-hand side of (3.18) for each j ∈ L a0 (I)

λ j I+1 i k m(j) a0,b0 • • • m(j) ai+1,bi-1 • • • m(j) a k ,b k cannot be cancelled by terms of the form λ j 0 i I m(j) a0,b0 • • • m(j) ai+1,bi-1 • • • m(j)
a k ,b k from the lefthand side of (3.18), or by terms of the right-hand side of (3.18). Therefore, denoting by ma0,b0 the common class m(j) a0,b0 when j ∈ L a0 (I), we deduce that m∪I a0,b0 j∈La 0 (I)

λ j I+1 i k m(j) aI+1,bI+1 • • • m(j) ai+1,bi-1 • • • m(j) a k ,b k = 0. This is equal to m∪I a0,b0 D d d,k-I-1/(k-I-2) (M L ), where M L := j∈La 0 (I) λ j m(j) aI+1,bI+1 • • • m(j) a k ,b k .
Then, by the inductive assumption on k, we deduce that M L = 0. Hence there is at least one coefficient λ j of M ℓ which is null and thus we are done by the inductive assumption on ℓ.

Case C: b (j) i

= 1 for all j ∈ L and 1 i k. By the properties of the source and target of D d d,k/(k-1) , the left-hand side of (3.18) is of the form j∈La 0 λ j m(j)

a0+1,b0-1 m(j) 1,1 • • • m(j) 1,1 .
Then, analysing the homogeneity of the b 0 's, we deduce from the right-hand side of (3.18) is of the form

-j∈L\La 0 λ j m(j ′ ) a0+1,b0-1 m(j ′ ) 1,1 • • • m(j ′ ) 1,1 . But b (j ′ ) 0 < b (j)
0 , so (3.18) = 0. Hence we are done by the inductive assumption on ℓ.

Step 3: by Steps 1 and 2, we may assume that L a0 = L b0 = L. The element M ℓ may be rewritten as ma0,b0 M ′ ℓ where

M ′ ℓ := 1 j ℓ λ j m(j) a1,b1 • • • m(j) a k ,b k . Then D d d,k/(k-1) (M ℓ ) = 0 implies that ma0,b0 1 j ℓ λ j 1 i k m(j) a1,b1 • • • m(j) ai+1,bi-1 • • • m(j) a k ,b k = -ma0+1,b0-1 M ′ ℓ . (3.19)
Analysing the homogeneity of the a 0 's and b 0 's, the equality (3.19) implies that b

(j) 1 = b 0 and a (j) 1 = a 0 for all 1 j ℓ. Then (3.19) is equivalent to: m2 a0,b0 1 j ℓ λ j 2 i k m(j) a2,b2 • • • m(j) ai+1,bi-1 • • • m(j) a k ,b k = -2 ma0,b0 ma0+1,b0-1 1 j ℓ λ j m(j) a2,b2 • • • m(j) a k ,b k .
Then, by a clear recursion on the homogeneity of the a's and b's, this implies that b (j) i = b 0 and a (j) i = a 0 for all 2 i k and 1 j ℓ. Then we obtain that mk a0,b0 ma0+1,b0-1 1 j ℓ λ j = -mk a0,b0 ma0+1,b0-1 1 j ℓ kλ j . But then this implies that 1 j ℓ λ j = -k 1 j ℓ λ j and thus 1 j ℓ λ j = 0. Hence M ℓ = 0, which ends the proof.

Corollary 3.26 We fix integers d 1 and d

′ 2. Then, H 2i+1 st (Λ 2d+1 HQ ) = H 2i ′ st (Λ 2d ′ HQ ) = 0 for i < d and i ′ < d ′ .

Computing the Tor-groups

We finally detail the general methods we use in §4 to compute the Tor-groups of H * st (Λ d HQ ). We recall that we write H * (Sym Q (E); -) for Tor

Sym Q (E) * (Q, -). General properties. Since H † st (Λ d H Q ) and H ‡ st (Λ d-1 H Q ) are free over Sym Q (E), the concate- nation of a Sym Q (E)-free resolution of H † st (Λ d HQ ) and the exact sequence (3.7) is a Sym Q (E)-free resolution of H ‡ st (Λ d HQ )
. Hence we deduce that for any j > 0

H j (Sym Q (E); H † st (Λ d HQ )) ∼ = H j+2 (Sym Q (E); H ‡ st (Λ d HQ )). (3.20) 
In general, the module 

H ‡ st (Λ d HQ ) is explicitly computable (at
H j (Sym Q (E); H * st (Λ d HQ )) = 0.
Also, we have

H j ′ (Sym Q (E); H † st (Λ d HQ )) = 0 for j ′ 2. In particular, the Sym Q (E)-modules H † st (Λ d HQ ) is not free. Proof. Let Q E d-1 be the trivial Sym Q (E d-1 )-module Q. Viewing H ‡ st (Λ d HQ ) as a Sym Q (E d-2 )- module, it follows from (5) in Proposition 3.21 that H ‡ st (Λ d HQ ) is isomorphic to H ‡ st (Λ d HQ ) ⊗ Q Q E d-1
. Then, by Lemma 1.25, we have:

H * (Sym Q (E); H ‡ st (Λ d HQ )) = H * (Sym Q (E d-2 ); H ‡ st (Λ d HQ )) ⊗ Λ * E d-1 ⊃ H 0 (Sym Q (E d-2 ); H ‡ st (Λ d HQ )) ⊗ Λ * E d-1 .
It follows from Theorem 3.22 that the Sym Q (E d-2 )-module H ‡ st (Λ d HQ ) has a non-trivial element m of lowest cohomological degree. Using the resolution (1.17) and formulas (1.18) to compute

H 0 (Sym Q (E d-2 ); H ‡ st (Λ d HQ )
), the element m does not belong to the image of the boundary map ∂ 1 . Indeed, m would otherwise be equal to a linear combination of elements of the form em ′ with e ∈ Sym Q (E) and

m ′ ∈ H ‡ st (Λ d HQ )
, where e would have a strictly positive cohomological degree and thus m ′ would have a lower degree than m, which contradicts the assumption on m. Therefore, the image of m in H 0 (Sym Q (E d-2 ); H ‡ st (Λ d HQ )) is not null, which gives the non-triviality of that 0 th cohomology group. Moreover, we have Λ j E d-1 = 0 for any j 0. Hence the right-hand side does not vanish for any degree j 0, thus ending the first part of the proof. Finally, we obtain the non-vanishing of the Tor-group for H † st (Λ d HQ ) by using (3.20).

Computation of Tor 0 . In contrast with (3.20), the computation of

H 0 (Sym Q (E); H * st (Λ d HQ ))
requires the following more subtle analysis. We denote by Π the surjection

H ‡ st (Λ d-1 H Q ) ։ H ‡ st (Λ d
HQ ) of the sequence (3.7). We then consider the decomposition of that sequence into the two short exact sequences where Ker(Π) appears:

0 → H † st (Λ d HQ ) → H † st (Λ d H Q ) → Ker(Π) → 0, (3.21) 0 → Ker(Π) → H ‡ st (Λ d-1 H Q ) → H ‡ st (Λ d HQ ) → 0. (3.22)
Lemma 3.28 Writing H * (-) := H * (Sym Q (E); -) for the sake of concision, we have an exact sequence:

0 → H 2 (H ‡ st (Λ d HQ )) → H 0 (H † st (Λ d HQ )) → Ker(H 0 (D d )) ∆ d → H 1 (H ‡ st (Λ d HQ )) → 0. (3.23) In particular, H 0 (Sym Q (E); H † st (Λ d HQ )) ∼ = H 2 (Sym Q (E); H ‡ st (Λ d HQ ) ⊕ Ker(∆ d ).
Proof. The exact sequence (3.23) is constructed from the following combination of the Tor-long exact sequences of the short exact sequences (3.21) and (3.22)

H 1 (Ker(Π)) / / H 0 (H † st (Λ d HQ )) / / H 0 (H † st (Λ d H Q )) / / / / H0(D d ) H 0 (Ker(Π)) H 0 (H ‡ st (Λ d HQ )) H 0 (H ‡ st (Λ d-1 H Q )) o o o o H 0 (Ker(Π)) o o H 1 (H ‡ st (Λ d HQ )) ? _ o o and the fact that H 2 (H ‡ st (Λ d HQ )) ∼ = H 1 (Ker(Π)) since H ‡ st (Λ d-1 H Q ) is a free Sym Q (E)-module.
Since H ‡ st (Λ d HQ ) is generally explicitly computable (at least for d 5; see §4), it follows from (3.23) that the only remaining point in order to compute

H 0 (Sym Q (E); H † st (Λ d HQ )) is to determine the kernel of the map ∆ d : Ker(H 0 (D d )) ։ H 1 (Sym Q (E); H ‡ st (Λ d HQ )).
In that respect, it follows from the freeness of Ker(D d,k/(k-1) ) as a Sym Q (E)-module for each 1 k d -1 (see (1) in Proposition 3.21) and from the right-exactness of H 0 (Sym Q (E); -) that

H 0 (D d ) ∼ = 1 k d-1 H 0 (Sym Q (E); D d,k/k-1 ). Then, since H ‡ st (Λ d-1
HQ ) is a free Sym Q (E)-module, we deduce the following isomorphism from the commutation of a kernel with a finite direct sum:

Ker(H 0 (D d )) ∼ = 1 k d-1 H 0 (Sym Q (E); Ker(D d,k/k-1 )).
(3.24)

The resolution (1.17) with E ′ := E induces a short exact sequence of chain complexes . . .

. . . . . . 0 / / Ker(Π) ⊗ E ∂1 / / H ‡ st (Λ d-1 H Q ) ⊗ E ∂1 Π⊗E / / H ‡ st (Λ d HQ ) ⊗ E ∂1 / / 0 0 / / Ker(Π) / / H ‡ st (Λ d-1 H Q ) Π / / H ‡ st (Λ d HQ ) / / 0. (3.25)
The following result gives a sufficient condition to describe the image of ∆ d , which will be of key use to compute Ker(∆ d ) in §4.

Proposition 3.29 Let ũ ∈ H † st (Λ d H Q ) be a lift of an element u ∈ H 0 (Ker(D d,k/k-1 )). If there exists û ∈ H ‡ st (Λ d-1 H Q ) ⊗ E such that ∂ 1 (û) = D d (ũ) ∈ H ‡ st (Λ d-1 H Q ),
then the homology class of

(Π ⊗ E)(û) is equal to ∆ d (u).
Proof. The result follows from the fact that the connecting homomorphism of (3.25) is formally equal to the connecting homomorphism

H 1 (Sym Q (E); H ‡ st (Λ d HQ )
) ֒→ H 0 (Sym Q (E); Ker(Π)) of the short exact sequence (3.22).

Stable cohomology in covariant coefficients: computations for small powers

We recall that we use the conventions and notation of Convention 3.1. In this section, we study the stable twisted cohomology graded modules H * st (Λ d HQ ) for d 5. More precisely, we deal with the exact sequence (3.7) for each for d 5 to calculate H ‡ st (Λ d HQ ) where ‡ = "even" if d is odd and ‡ = "odd" if d is even: this corresponds to Coker(D d ), whose computation is always doable since this is a cokernel. This also allows us to fully compute the Tor-groups of H * st (Λ d HQ ) as a Sym Q (E)-module via the techniques of §3.3.3. We decompose our work in §4.1- §4.4 following the degree of the exterior power.

Second exterior power

We consider the exact sequence (3.7) for d = 2. We apply the contraction formulas of Proposition 1.19 to compute the image of the derivation D 2 as follows. For all integers a 0 and α, β 1, we have D 2 ( ma,2 ) = ma+1,1 and D 2 ( mα,1 mβ,1 ) = e α mβ,1 + e β mα,1 . We deduce from these formulas that the homomorphism D 2 has a right inverse defined by mj,1 → mj-1,2 for all j 1. Therefore, we have:

Theorem 4.1 The Sym Q (E)-module H * st (Λ 2
HQ ) is isomorphic to the free Sym Q (E)-module with basis { mj,1 ml,1 -e l mj,2 -e j ml,2 ; j l 1} .

In particular, H * st (Λ 2 HQ ) = H even st (Λ 2 HQ ), H odd st (Λ 2 HQ ) = 0 and H j (Sym Q (E); H * st (Λ 2 HQ )) = 0 for all j > 0.

Third exterior power

We consider the exact sequence (3.7) for d = 3. By computing the image of the derivation D 3 thanks to the contraction formulas of Proposition 1.19, we prove the following result.

Theorem 4.2 The Sym Q (E)-module H even st (Λ 3 HQ ) is isomorphic to (Sym Q (E)/(e 2 1 , e α , α 2)) { m0,2 } .
Proof. We progressively compute Coker(D 3,k ) for 0 k 2 using the exact sequence (3.14) for d = 3.

Computation of Coker(D 3,1 ): we compute that for all a 0 and α 1 D 3,1/0 ( ma,2 mα,1 ) = ma+1,1 mα,1 = D 3,1/0 ( mα-1,2 ma+1,1 ).

It follows from the structure of the filtration F 1 H * st (Λ 3 H Q ) and the formulas for D 3,1/0 that the above equality provides the only way to construct elements of Ker(D 3,1/0 ). Hence {[ ma,2 mα,1mα-1,2 ma+1,1 ]; α -1 > a 0} defines a basis of Ker(D 3,1/0 ) as a free Sym Q (E)-module and Coker(D 3,1/0 ) = 0. By the formal definition of the connecting homomorphism defined by the snake lemma, each one of these generators is mapped to [e α ma,2 -e a+1 mα-1,2 ] in Coker(D 3,0 ) by δ 3,0 . We recall from (2) in Proposition 3.21 that Coker(D 3,0 ) ∼ = Sym Q (E)[ m0,2 ]. Hence we have Im(δ 3,0 ) = (e α ; α 2)[ m0,2 ], and a fortiori Coker(D 3,1 ) ∼ = (Sym Q (E)/(e α ; α 2))[ m0,2 ].

Computation of Coker(D 3,2 ): since the target of D 3,2/1 is zero, we deduce that Coker(D 3,2/1 ) = 0 and that Ker(D 3,2/1 ) is the free Sym Q (E)-module with basis {[ mα,1 mβ,1 mγ,1 ]; 1 α β γ}. The connecting homomorphism δ 3,2 maps each generator mα,1 mβ,1 mγ,1 to the class of [e α mβ,1 mγ,1 + e β mα,1 mγ,1 + e γ mα,1 mβ,1 ] in Coker(D 3,1 ). Since It seems complicated to fully compute the kernel Ker(D 3 ) ∼ = H odd st (Λ 3 HQ ). Indeed, the simplest example of elements of that kernel is defined as follows. Denoting by χ a,b the element e a mb-1,3 + ma,1 mb,2 , then the element e c χ a,b-1 + e b χ c,a-1 + e a χ b,c-1 -ma,1 mb,1 mc,1 belongs to Ker(D 3 ). We also recall from Corollary 3.26 that H 1 st (Λ 3 HQ ) = 0.

Furthermore, we compute the Tor-groups of H * st (Λ 3 HQ ):

Proposition 4.3 For any j > 0, we have

H j (Sym Q (E); H * st (Λ 3 HQ )) ∼ = Λ j-1 E 2 ⊕ Λ j E 2 ⊕ Λ j+1 E 2 ⊕ Λ j+2 E 2 .
Moreover, we have

H 0 (Sym Q (E); H * st (Λ 3 HQ )) ∼ = Q ⊕ E 2 ⊕ Λ 2 E 2 ⊕ Q{[ mα-1,2 mβ,1 -mβ-1,2 mα,1 ]; 2 α < β} ⊕ Q{[ mα,1 mβ,1 mγ,1 ]; 1 α β γ 2}.
Proof. By the computations (1.14) and Theorem 4.2, we deduce that H j (Sym Q (E); H even st (Λ 3 HQ )) ∼ = Λ j-1 E 2 ⊕ Λ j E 2 for all j 1, while H 0 (Sym Q (E); H even st (Λ 3 HQ )) ∼ = Q. Combining this computation with the isomorphism (3.20), we deduce that H j (Sym Q (E); H odd st (Λ 3 HQ )) ∼ = Λ j+2 E 2 ⊕ Λ j+1 E 2 for j 1. This proves the first part of the proposition.

For the second part of the proposition, we first have the contribution of H 0 (Sym Q (E); H even st (Λ 3 HQ )) computed above. By Lemma 3.28, we compute H 0 (Sym Q (E); H odd st (Λ 3 HQ )) thanks to the exact sequence (3.23). We recall that H 2 (Sym Q (E); H even st (Λ 3 HQ ) is computed above. Following the decomposition (3.24), we now have to progressively determine the generators of Ker(∆ 3 ) associated to each summand Ker(D 3,k/k-1 ) for 1 k 2 to finish the proof. For this purpose, we use the chain complex (3.25) and Proposition 3.29.

For the summand Ker(D 3,1/0 ): for each 1 α < β, the element

D 3 ( mα-1,2 mβ,1 -mβ-1,2 mα,1 ) is equal to ∂ 1 ( mα-1,2 ⊗e β -mβ-1,2 ⊗e α ) in H even st (Λ 2 H Q ). By Theorem 4.2, we have in H even st (Λ 3 HQ )⊗ E Π( mα-1,2 ) ⊗ e β -Π( mβ-1,2 ) ⊗ e α = 0 if α 2, [ m0,2 ] ⊗ e β if α = 1 and β 2.
The element [ m0,2 ]⊗e β corresponds to the non-trivial class e β ∈ E 2 ⊂ H 1 (Sym Q (E); H even st (Λ 3 HQ )). Hence, by Proposition 3.29, the restriction of Ker(∆ 3 ) to H 0 (Sym Q (E); Ker(D 3,1/0 )) is isomorphic to the free Q-module generated by {[ mα-1,2 mβ,1 -mβ-1,2 mα,1 ]; 2 α < β}.

For the summand Ker(D 3,2/1 ): for each 1 α β γ, the element D 3 ( mα,1 mβ,1 mγ,1 ) is equal to ∂ 1 ( mα,1 mβ,1 ⊗ e γ + mβ,1 mγ,1 ⊗ e α + mα,1 mγ,1 ⊗ e β ) in H even st (Λ 2 H Q ). Similarly to relations (4.1) and by Theorem 4.2, the element (Π ⊗ E)( mα,1 mβ,1 ⊗ e γ + mβ,1 mγ,1 ⊗ e α + mα,1 mγ,1 ⊗ e β ) of H even st

(Λ 3 HQ ) ⊗ E is equal to -3[e 1 m0,2 ⊗ e 1 ] = 0 ∈ H 1 (Sym Q (E); H even st (Λ 3 HQ )) if 1 =
Computation of Coker(D 4,3 ): since the target of D 4,3/2 is zero, we deduce that Coker(D 4,3/2 ) = 0 and that Ker(D 4,3/2 ) is the free Sym Q (E)-module with basis {[ mα,1 mβ,1 mγ,1 mδ,1 ]; 1 α β γ δ}. The connecting homomorphism δ 4,3 maps each generator mα,1 mβ,1 mγ,1 mδ,1 to the class of [e α mβ,1 mγ,1 mδ,1 + e β mα,1 mγ,1 mδ,1 + e γ mα,1 mβ,1 mδ,1 + e δ mα,1 mβ,1 mγ,1 ] in Coker(D 4,2 ) ∼ = (Sym Q (E)/(e 2 1 , e α ; α 2))[ m0,3 ]. Using (4) and (5) of Proposition 3.21, we deduce that each one of these generators vanish in Coker(D 4,3 ) if δ 3, and it is equal to (3 • 2! -3!)[e α e β e γ m0,3 ] = 0 if δ = 2. If δ = 1, the generator is equal to 4e 1 [ m1,1 m1,1 m1,1 ] = -8e 2 1 [ m0,2 m1,1 ], which vanishes by the relation (4.2). Hence there is no additional relation, and thus ends the proof.

Fully determining the kernel of Ker(D 4 ) ∼ = H even st (Λ 4 HQ ) seems to be a difficult task. However, we recall from Corollary 3.26 that H 0 st (Λ 4 HQ ) = H 2 st (Λ 4 HQ ) = 0. Also, we compute the Tor-groups of H * st (Λ 4 HQ ) as follows.

Proposition 4.5 For any j > 0, we have

H j (Sym Q (E); H * st (Λ 4 HQ )) ∼ = Λ j-1 E 2 ⊕ Λ j E 2 ⊕ Λ j+1 E 2 ⊕ Λ j+2 E 2 .
Moreover, we have

H 0 (Sym Q (E); H * st (Λ 4 HQ )) ∼ = Q{[ ma,2 mb,2 -ma-1,3 mb+1,1 -mb-1,3 ma+1,1 ]; 2 a b} ⊕ Q{[ mγ-1,2 mα,1 mβ,1 -mα-1,2 mβ,1 mγ,1 ]; 1 α < β < γ} ⊕ Q{[ mγ-1,2 mα,1 mβ,1 -mβ-1,2 mα,1 mγ,1 ]; 1 α < β < γ} ⊕ Q{[ mγ-1,2 mα,1 mα,1 -mα-1,2 mα,1 mγ,1 ]; 1 α < γ 3} ⊕ Q{[ mγ-1,2 mα,1 mγ,1 -mα-1,2 mγ,1 mγ,1 ]; 1 α < γ} ⊕ Q{[ mα,1 mβ,1 mγ,1 mδ,1 ]; 1 α β γ δ} ⊕ Q ⊕ E 2 ⊕ Λ 2 E 2 .
Proof. By the computations (1.14) and Theorem 4.4, we deduce that HQ )) is computed above. Following the decomposition (3.24), we finish the proof by progressively determining the generators of Ker(∆ 4 ) associated to each summand Ker(D 4,k/k-1 ) for 1 k 3, via the chain complex (3.25) and Proposition 3.29.

H j (Sym Q (E); H odd st (Λ 4 HQ )) ∼ = Λ j-1 E 2 ⊕ Λ j E 2 for
For the summand Ker(D 4,1/0 ): for each 1 a b, the element D 4 ( ma-1,3 mb+1,1 + mb-1,3 ma+1,1ma,2 mb,2 ) is equal to ∂ 1 ( ma-1,3 ⊗ e b+1 + mb-1,3 ⊗ e a+1 ) ∈ H odd st (Λ 3 H Q ). By Theorem 4.4, we have Π( ma-1,3 ) ⊗ e b+1 + Π( mb-1,3 ) ⊗ e a+1 = 0 for all 2 a b, while Π( m0,3 ) ⊗ e b+1 + Π( mb-1,3 ) ⊗ e 2 is equal to 2Π( m0,3 ) ⊗ e 2 for b = 1, and Π( m0,3 ) ⊗ e b+1 for b 2. These elements are linearly independent in H 1 (Sym Q (E); H odd st (Λ 4 HQ )). Hence, by Proposition 3.29, the restriction of Ker(∆ 4 ) to H 0 (Sym Q (E); Ker(D 4,1/0 )) is isomorphic to the free Q-module generated by {[ ma,2 mb,2 -ma-1,3 mb+1,1 -mb-1,3 ma+1,1 ]; 2 a b}.

For the summand Ker(D 4,2/1 ): for each 1 α < β < γ, we compute similarly to relations (4.2) that D 4 ([ mγ-1,2 mα,1 mβ,1 -mα-1,2 mβ,1 mγ,1 ]) = ∂ 1 (-mα-1,2 mβ,1 ⊗ e γ ) and D 4 ([ mγ-1,2 mα,1 mβ,1mβ-1,2 mα,1 mγ,1 ]) = ∂ 1 (-mα-1,2 mβ,1 ⊗ e γ ). In H odd st (Λ 4 HQ ), we note that Π( mα-1,2 mβ,1 ) = -Π( mβ-1,2 mα,1 ), we recall from (4.2) that we have Π( mα-1,2 mβ,1 ) = 0 if β 3 and Π( m0,2 m2,1 ) = -Π(e 2 m0,3 ) = 0 for the remaining case (α, β) = (1, 2). Hence, by Proposition 3.29, all the classes [ mγ-1,2 mα,1 mβ,1 -mα-1,2 mβ,1 mγ,1 ] and [ mγ-1,2 mα,1 mβ,1 -mβ-1,2 mα,1 mγ,1 ] belong to Ker(∆ 4 ).

We now consider some 1 α < γ. For γ 3, we compute similarly to relations (4.2) that D 4 ([ mγ-1,2 mα,1 mα,1 -mα-1,2 mα,1 mγ,1 ]) = ∂ 1 (-mα-1,2 mα,1 ⊗ e γ ) and D 4 ([ mγ-1,2 mα,1 mγ,1mα-1,2 mγ,1 mγ,1 ]) = 0 = ∂ 1 (0). Now Π( mα-1,2 mα,1 ) = 0 for all α 1 by Theorem 4.4 and the relations (4.2), so all these classes for γ 3 belong to Ker(∆ 4 ) by Proposition 3.29.

The only remaining case is that of (α, γ) = (1, 2). We compute similarly to relations (4.2) that D 4 ([ m1,2 m1,1 m1,1 -m0,2 m1,1 m2,1 ]) = ∂ 1 ((2 m1,2 m1,1 -m0,2 m2,1 ) ⊗ e 1 -m0,2 m1,1 ⊗ e 2 ) and D 4 ([ m1,2 m1,1 m2,1 -m0,2 m2,1 m2,1 ]) = ∂ 1 ( m1,2 m2,1 ⊗ e 1 + ( m1,2 m1,1 -2 m0,2 m2,1 ) ⊗ e 2 ). Here, similarly to relations (4.2) in H odd st (Λ 4 HQ ), we compute that in H 1 (Sym Q (E); H odd st (Λ 4 HQ ))

Π(2 m1,2 m1,1 -m0,2 m2,1 ) ⊗ e 1 -Π( m0,2 m1,1 ) ⊗ e 2 = Π(-2e 1 m0,3 + e 2 m0,3 ) ⊗ e 1 -Π( 1 2 D 4 ( m0,2 m0,2 )) ⊗ e 2 = -2Π(e 1 m0,3 ) ⊗ e 1 which is non-null because Π(e 1 m0,3 ) ⊗ e 1 cannot belong to the image of ∂ 2 (thanks to the formal definition of that differential, see (1.18)), while Π( m1,2 m2,1 ) ⊗ e 1 + Π( m1,2 m1,1 -2 m0,2 m2,1 ) ⊗ e 2 = -Π(e 2 m0,3 ) ⊗ e 1 + Π(-e 1 m0,3 + 2e 1 m0,3 ) ⊗ e 2 = Π(e 1 m0,3 ) ⊗ e 2 = -Π(e 2 m0,3 ) ⊗ e 1 = 0.

Therefore all the classes introduced above of the type [ mγ-1,2 mα,1 mα,1 -mα-1,2 mα,1 mγ,1 ] and [ mγ-1,2 mα,1 mγ,1 -mα-1,2 mγ,1 mγ,1 ], except [ m1,2 m1,1 m1,1 -m0,2 m1,1 m2,1 ], are in the kernel Ker(∆ 4 ). Hence, by Proposition 3.29, the restriction of Ker(∆ 4 ) to H 0 (Sym Q (E); Ker(D 4,2/1 )) is isomorphic to the free Q-module generated by all the above classes.

For the summand Ker(D 4,3/2 ): for all 1 α β γ δ, the element D 4 ( mα,1 mβ,1 mγ,1 mδ,1 ) is equal to

∂ 1 ( mα,1 mβ,1 mγ,1 ⊗ e δ + mα,1 mβ,1 mδ,1 ⊗ e γ + mα,1 mγ,1 mδ,1 ⊗ e β + mβ,1 mγ,1 mδ,1 ⊗ e α ∈ H odd st (Λ 3 H Q ) ⊗ E).
Our further computations are based on the relations proved in the paragraph on the computation of Coker(D 4,3 ) in the proof of Theorem 4.4. If γ 3, then the image by Π ⊗ E of this class vanishes in H 1 (Sym Q (E); H odd st (Λ 4 HQ ). Since we have Π( mα,1 mβ,1 m2,1 ) = Π(2e α e β m0,3 ) = 0, the image by Π ⊗ E of this class also vanishes when γ = 2. Finally if γ = 1, then α = β = 1. Hence the image by Π ⊗ E of this class is equal to 4Π( m1,1 m1,1 m1,1 ) ⊗ e 1 for δ = 1, and Π( m1,1 m1,1 m1,1 ) ⊗ e δ for δ 2. Since Π( m1,1 m1,1 m1,1 ) = Π(2e 2 1 m0,3 ) = 0, it follows from Proposition 3.29 that the restriction of Ker(∆ 4 ) to H 0 (Sym Q (E); Ker(D 4,3/2 )) is isomorphic to the free Q-module generated by {[ mα,1 mβ,1 mγ,1 mδ,1 ]; 1 α β γ δ}.

Fifth exterior power

We consider the exact sequence (3.7) for d = 5 and apply the contraction formulas of Proposition 1.19 to compute the images of the derivation D 5 . We introduce the following notations in order to compute H even st (Λ 5 HQ ).

Notation 4.6 We denote by L the torsion Sym

Q (E)-module (Sym Q (E)/(e 3 1 , e α e β , e γ ; α, β 1 except α = β = 1, γ 4)){ m0,4 ; m0,2 m0,2 } ⊕(Sym Q (E)/(e α , e β e γ ; α 3, β, γ 1)){ m0,3 m1,1 } ⊕(Sym Q (E)/(e α , e β e γ ; α 2, β, γ 1)){ m0,3 m2,1 }.
Also, we denote by K the submodule of L defined by the direct sum of the trivial Sym Q (E)-modules {2e 2 m0,3 m1,1 + 3e 1 m0,3 m2,1 }, {e 2 m0,2 m0,2 + 6e 1 m0,3 m1,1 } and {e 3 m0,2 m0,2 -6e 2 1 m0,4 }. Theorem 4.7 The Sym Q (E)-module H even st (Λ 5 HQ ) is isomorphic to the quotient L/K.

Proof. We progressively compute Coker(D 5,k ) for 0 k 4 using the exact sequence (3.14).

Computation of Coker(D 5,1 ): we compute that for a, b 0 and α 1: D 5,1/0 ( ma,4 mα,1 ) = ma+1,3 mα,1 ; D 5,1/0 ( m0,3 mb,2 ) = m1,2 mb,2 + m0,3 mb+1,1 ; D 5,1/0 ( ma+1,3 mb,2 -ma,4 mb+1,1 ) = ma+2,2 mb,2 .

Hence {[ m0,2 m0,2 ]; [ m0,2 m1,2 ] = -[ m0,3 m1,1 ]; [ m1,2 m1,2 ] = -[ m0,3 m2,1 ]} is a Sym Q (E)-free basis of Coker(D 5,1/0 ). We compute that for a, b 2: D 5,1/0 ( ma-1,3 mb,2 -ma-2,4 mb+1,1 ) = ma,2 mb,2 = D 5,1/0 ( mb-1,3 ma,2 -mb-2,4 ma+1,1 ).

It follows from the structure of the filtration F 1 H * st (Λ 5 H Q ) and the formulas for D 5,1/0 that the above equality is the only possibility to get an element of Ker(D 5,1/0 ). Hence { ma-1,3 mb,2ma-2,4 mb+1,1 -mb-1,3 ma,2 + mb-2,4 ma+1,1 ; 2 a < b} is a Sym Q (E)-free basis of Ker(D 5,1/0 ). By the formal definition of the connecting homomorphism defined by the snake lemma, each one of these generators is mapped by δ 5,0 to [e a+1 mb-2,4 -e b+1 ma-2,4 ] in Coker(D 5,0 ). Also, we recall from ( 2 Computation of Coker(D 5,2 ): we compute that for 0 a b and α, β 1: D 5,2/1 ( ma,3 mα,1 mβ,1 ) = ma+1,2 mα,1 mβ,1 ; D 5,2/1 ( m0,2 m0,2 mα,1 ) = 2 m0,2 m1,1 mα,1 ; D 5,2/1 ( m0,2 mb+1,2 mα,1 -mb,3 m1,1 mα,1 ) = m0,2 mb+2,1 mα,1 ; D 5,2/1 ( ma+1,2 mb+1,2 mα,1 -ma,3 mb+2,1 mα,1 -mb,3 ma+2,1 mα,1 ) = 0.

It follows from these formulas shows that Coker(D 5,2/1 ) = 0, and that Ker(D 5,2/1 ) is a Sym Q (E)free module with basis { ma+1,2 mb+1,2 mα,1 -ma,3 mb+2,1 mα,1 -mb,3 ma+2,1 mα,1 ; 0 a b, α 1} ⊔{ m0,2 mb+1,2 mc+2,1 -mb,3 m1,1 mc+2,1 -m0,2 mc+1,2 mb+2,1 + mc,3 m1,1 mb+2,1 ; 0 b < c} ⊔{ m0,2 m0,2 mb+2,1 -2 m0,2 mb+1,2 m1,1 + 2 mb,3 m1,1 m1,1 ; b 0}.

Then the connecting homomorphism δ 5,1 respectively maps each one of these generators to the classes in Coker(D 5,1 ) of following elements e α ( ma+1,2 mb+1,2 -ma,3 mb+2,1 -mb,3 ma+2,1 ) -e b+2 ma,3 mα,1 -e a+2 mb,3 mα,1 ; e 1 ( mc,3 mb+2,1 -mb,3 mc+2,1 ) -e b+2 ( m0,2 mc+1,2 -mc,3 m1,1 ) + e c+2 ( m0,2 mb+1,2 -mb,3 m1,1 ); e b+2 m0,2 m0,2 + 2e 1 (2 mb,3 m1,1 -m0,2 mb+1,2 ).

We denote these elements by M a,b,α , N b,c and P b respectively. Using (3) and (4) in Proposition 3.21, we compute them explicitly in Coker(D 5,1 ) to determine further relations in Coker(D 5,2 ) as follows. 

M a,b,α =                0 if 2 a( b), (4 + δ a,b )e α e b+2 m0,4 if 1 = a( b), -e b+2 m0,3 mα,1 if a = 0 and b 2, 4e α e 2 m0,4 -e 3 m0,3 mα,1 if a = 0 and b = 1, -3e α m0,3 m2,1 -2e 2 m0,3 mα,1 if a = b = 0, (4.4) for 0 a b, α 1, N b,c =          0 if 2 b(< c), 2e 1 e c+2 m0,4 if 1 = b(< c), -2e c+2 m0,3 m1,1 if b = 0, c 2, -2e 1 e 2 m0,4 -2e 3 m0,3 m1,1 if b = 0, c = 1,
P b =      e b+2 m0,2 m0,2 if b 2, e 3 m0,2 m0,2 -6e 2 1 m0,4 if b = 1, e 2 m0,2 m0,2 + 6e 1 m0,3 m1,1 if b = 0. (4.6)
Furthermore, we deduce from (3) and (4) in Proposition 3.21 that:

[ m0,3 mα,1 ] =          0 if α 4, -e 2 [ m0,4 ] if α = 3, -[ m1,2 m1,2 ] if α = 2, -[ m0,2 m1,2 ] if α = 1.
Combining all the above relations, we deduce that Coker(D 5,2 ) is isomorphic to the quotient of Coker(D 5,1 ) by the following relations where we consider integers ℓ 4 and α 1:

e ℓ [ m0,3 m2,1 ] = e ℓ [ m0,3 m1,1 ] = e ℓ [ m0,2 m0,2 ] = 0 ; e 2 2 [ m0,4 ] = e 1 e 2 [ m0,4 ] = e α e 3 [ m0,4 ] = 0 ; e 3 [ m0,3 m2,1 ] = e 3 [ m0,3 m1,1 ] = e 2 [ m0,3 m2,1 ] = 0 ; 3e 1 [ m0,3 m2,1 ] = -2e 2 [ m0,3 m1,1 ] ; e 3 [ m0,2 m0,2 ] = 6e 2 1 [ m0,4 ] ; e 2 [ m0,2 m0,2 ] = -6e 1 [ m0,3 m1,1 ]. (4.7)
In addition, we deduce from the combinations of the relations (4.7) that for all α 2 and β 3:

e 2 e α [ m0,3 m1,1 ] = -3 2 e α e 1 [ m0,3 m2,1 ] = 0, e 3 e α [ m0,2 m0,2 ] = 6e 2 1 e α [ m0,4 ] = 0, e 2 e β [ m0,2 m0,2 ] = -6e 1 e β [ m0,3 m1,1 ] = 0. (4.8)
Computation of Coker(D 5,3 ): we compute that for a 0 and α, β, γ 1: D 5,3/2 ( ma,2 mα,1 mβ,1 mγ,1 ) = ma+1,1 mα,1 mβ,1 mγ,1 .

Hence the derivation D 5,3/2 has a section which maps each element mα,1 mβ,1 mγ,1 mδ,1 where α, β, γ, δ 1 to the element 1 4 ( mα-1,2 mβ,1 mγ,1 mδ,1 + mα,1 mβ-1,2 mγ,1 mδ,1 + mα,1 mβ,1 mγ-1,2 mδ,1 + mα,1 mβ,1 mγ,1 mδ-1,2 ). Therefore, we have Coker(D 5,3/2 ) = 0 and Ker(D 5,3/2 ) is a free Sym Q (E)module with basis {3 ma,2 mα,1 mβ,1 mγ,1 -ma+1,1 Q α,β,γ ; a 0, 1 α β γ} where Q α,β,γ := mα-1,2 mβ,1 mγ,1 + mα,1 mβ-1,2 mγ,1 + mα,1 mβ,1 mγ-1,2 .

From now on, we fix some 1 α β γ. From the relations (3), (4) and (3.15) of Proposition 3.21 and from the above computation of Coker(D 5,2 ), we have

Q α,β,γ =          0 if γ 4, -4e α e β m0,4 if γ = 3, 2 m0,3 (e α mβ,1 + e β mα,1 ) if γ = 2, -3 2 e 1 m0,2 m0,2 if α = β = γ = 1, (4.9)
Then, the connecting homomorphism δ 5,2 maps each 3 ma,2 mα,1 mβ,1 mγ,1 -ma+1,1 Q α,β,γ to the class in Coker(D 5,2 ) of the following element: R a,α,β,γ := 3 ma,2 (e α mβ,1 mγ,1 + e β mγ,1 mα,1 + e γ mα,1 mβ,1 ) -ma+1,1 (e β mα-1,2 mγ,1 + e γ mα-1,2 mβ,1 + e γ mβ-1,2 mα,1 +e α mβ-1,2 mγ,1 + e α mγ-1,2 mβ,1 + e β mγ-1,2 mα,1 ) -e a+1 Q α,β,γ .

Since we work in Coker(D 5,2 ) and as m0,2 D 4 (e α mβ-1,2 mγ-1,2 +e β mγ-1,2 mα-1,2 +e γ mα-1,2 mβ-1,2 ) 

R a,α,β,γ + e a+1 Q α,β,γ =      0 if a 3, 36e α e β e γ [ m0,4 ]
if a = 2, -12 m0,3 (e α e β mγ,1 + e β e γ mα,1 + e γ e α mβ,1 ) if a = 1.

We recall that we assume 1 α β γ. All the following computations for R a,α,β,γ are done thanks to the above computation of Coker(D 5,2 ), in particular using the relations in (4.7) and (4.8), and the equalities (3), (4) and (3.15) of Proposition 3.21. For a 3, we have e a+1 Q α,β,γ = 0, and therefore R a,α,β,γ = 0. For a = 2, we compute that

R 2,α,β,γ = 36e α e β e γ m0,4 -e 3 Q α,β,γ = 45e 3 1 [ m0,4 ] if α = β = γ = 1, 0 otherwise. ( 4.10) 
For a = 1, we first compute that:

-12 m0,3 (e α e β mγ,1 + e β e γ mα,1 + e γ e α mβ,1 ) =

     -16e 1 e 2 [ m0,3 m1,1 ] if α = β = 1, γ = 2, -36e 2 1 [ m0,3 m1,1 ] if α = β = γ = 1, 0 otherwise,
Then, since R 1,α,β,γ = -12 m0,3 (e α e β mγ,1 + e β e γ mα,1 + e γ e α mβ,1 ) -e 2 Q α,β,γ , we deduce that:

R 1,α,β,γ =      -20e 1 e 2 [ m0,3 m1,1 ] = 30e 2 1 [ m0,3 m2,1 ] if α = β = 1, γ = 2, -45e 2 1 [ m0,3 m1,1 ] if α = β = γ = 1, 0 otherwise. (4.11)
For a = 0, we first compute that:

m0,2 S α,β,γ =                -19e 3 1 [ m0,4 ] if α = β = 1, γ = 3, 62 3 e 1 e 2 [ m0,3 m1,1 ] if α = 1, β = γ = 2, 19e 2 1 [ m0,3 m1,1 ] if α = β = 1, γ = 2, -3 2 e 2 1 [ m0,2 m0,2 ] if α = β = γ = 1 0 otherwise.
Therefore, we obtain that:

R 0,α,β,γ = m0,2 S α,β,γ -e 1 Q α,β,γ =          -15e 3 1 [ m0,4 ] if α = β = 1, γ = 3, 20e 1 e 2 [ m0,3 m1,1 ] if α = 1, β = γ = 2, 15e 2 1 [ m0,3 m1,1 ] if α = β = 1, γ = 2, 0 otherwise.
(4.12) Furthermore, by (5) in Proposition 3.21, we have e α e β e γ [ m0,4 ] = 0 ∈ Coker(D 5,3 ) for any α, β, γ 1, and e α e β u = 0 ∈ Coker(D 5,3 ) except for α = β = 1. In particular, we have 3e 2 1 [ m0,3 m2,1 ] = -2e 1 e 2 [ m0,3 m1,1 ] = 0.

Therefore, combining all these new relations to (4.7) and (4.8), Coker(D 5,3 ) is isomorphic to the quotient of Coker(D 5,1 ) by the following relations where we consider integers ℓ 4 and α, β 1: 

= β = 1 ; 3e 1 [ m0,3 m2,1 ] = -2e 2 [ m0,3 m1,1 ] ; e 3 [ m0,2 m0,2 ] = 6e 2 1 [ m0,4 ] ; e 2 [ m0,2 m0,2 ] = -6e 1 [ m0,3 m1,1 ].
Computation of Coker(D 5,4 ): since the target of D 5,4/3 is zero, we have Coker(D 5,4/3 ) = 0 and Ker(D 5,4/3 ) is generated by the elements of type mα1,1 mβ,1 mγ,1 mǫ,1 mξ,1 . The connecting homomorphism δ 5,3 maps them to 1 24 σ∈S5 e σ(α) mσ(β),1 mσ(γ),1 mσ(ǫ),1 mσ(ξ),1 ∈ Coker(D 5,3 ). If ǫ = max(α, β, γ, ǫ), then we compute from (4) in Proposition 3.21 that ). This provides the last additional relations in Coker(D 5,4 ) = H even (Λ 5 HQ ), which ends the proof.

Computing Ker(D 5 ) ∼ = H odd st (Λ 5 HQ ) seems very difficult and out of reach with our methods. However, we recall from Corollary 3.26 that H 1 st (Λ 5 HQ ) = H 3 st (Λ 5 HQ ) = 0.

Tor-group computations

We now compute the Tor-goups of the Sym Q (E)-module H even st (Λ 5 HQ ). Namely, our goal is to show the following result, whose proof is decomposed in several computations and occupies the rest of the present section.

Theorem 4.8 For the Sym Q (E)-module H * st (Λ 5 HQ ), with the convention that Λ l E 4 = 0 for l < 0, we have for any j 1

H j (Sym Q (E); H * st (Λ 5 HQ )) ∼ = (Λ j-3 E 4 ) ⊕6 ⊕ (Λ j-2 E 4 ) ⊕17 ⊕ (Λ j-1 E 4 ) ⊕21 ⊕(Λ j E 4 ) ⊕21 ⊕ (Λ j+1 E 4 ) ⊕15 ⊕ (Λ j+2 E 4 ) ⊕4 .
Moreover, H 0 (Sym Q (E); H * st (Λ 5 HQ )) ∼ = Q ⊕21 ⊕ E ⊕15 4 ⊕ (Λ 2 E 4 ) ⊕4 ⊕ S 5 with 

⊕ Q ⊕21 ⊕ E ⊕15 4 ⊕ (Λ 2 E 4 ) ⊕4 ,
where Ma,b,α := ma+1,2 mb,2 mα,1 -mb-1,3 ma+2,1 mα,1 -ma,3 mb+1,1 mα,1 , Nb,c := m0,2 mb+1,2 mc+2,1mb,3 m1,1 mc+2,1 -m0,2 mc+1,2 mb+2,1 + mc,3 m1,1 mb+2,1 and Ra,α,β,γ := 3 ma,2 mα,1 mβ,1 mγ,1 -ma+1,1 Q α,β,γ .

Notation 4.9 Following Notation 4.6, we respectively denote by L ′ and K ′ the canonical torsion Sym Q (E 3 )-modules such that L ∼ = L ′ ⊗ Q E 4 and K ∼ = K ′ ⊗ Q E 4 , where Q E 4 denotes the trivial Sym Q (E 4 )-module. Then, following the decomposition of L in Notation 4.6, we denote by L ′ m the summand of L ′ corresponding to m ∈ { m0,4 ; m0,3 m1,1 ; m0,3 m2,1 ; m0,2 m0,2 }.

The proof of Theorem 4.8 begins with the observation from Theorem 4.7 that the Sym Q (E)-module H even st (Λ 5 HQ ) is isomorphic to (L ′ /K ′ ) ⊗ Q Q E 4 . Hence it is enough to compute the Tor-groups of L ′ /K ′ and we will be done using the formulas (1.14).

Tor-groups for L ′ m0,3 m2,1 . We consider the torsion Sym Q (E 3 )-module L ′ m0,3 m2,1 := Sym Q (E 3 )/(e 2 1 , e 2 , e 3 ).

Lemma 4.10

The group H j (Sym Q (E 3 ); L ′ m0,3 m2,1 ) is equal to

               Q[1] ∼ = Q if j = 0, [de 2 ], [de 3 ], [e 1 de 1 ] ∼ = Q 3 if j = 1, [e 1 de 1 ∧ de 2 ], [e 1 de 1 ∧ de 3 ], [de 2 ∧ de 3 ] ∼ = Q 3 if j = 2, [e 1 de 1 ∧ de 2 ∧ de 3 ] ∼ = Q if j = 3, 0 otherwise.
Proof. Using the finite chain complex (1.17 Tor-groups for L ′ /K ′ . Using Lemmas 4.11-4.12, we can now compute the Tor-groups for the Sym Q (E 3 )-module L ′ /K ′ . Proposition 4. 13 We have

H j (Sym Q (E 3 ); L ′ /K ′ ) ∼ =                Q 4 if j = 0, Q 15 if j = 1, Q 17 if j = 2, Q 6 if j = 3, 0 otherwise.
Proof. We consider the three elements ρ 1 := 2e 2 m0,3 m1,1 + 3e 1 m0,3 m2,1 , ρ 2 := e 2 m0,2 m0,2 + 6e 1 m0,3 m1,1 and ρ 3 := e 3 m0,2 m0,2 -6e 2 1 m0,4 in L ′ . For each 1 k 3, we denote by Q ρ k the trivial Sym Q (E 3 )-submodule of L ′ generated by ρ k , by ι k : Q ρ k → L ′ the map sending 1 to ρ k , by (ι k ) j the induced map H j (Sym Q (E 3 ); ι k ), and by ι the direct sum ι 1 ⊕ ι 2 ⊕ ι 3 . In particular, we note that

K ′ ∼ = Q ρ1 ⊕ Q ρ2 ⊕ Q ρ3 ∼ = ρ 1 ,
ρ 2 , ρ 3 and that H j (Sym Q (E 3 ); Q ρ k ) ∼ = Λ j {de 1 , de 2 , de 3 } by Lemma 1.27.

We recall that the Tor-groups H * (Sym Q (E 3 ); L ′ ) are computed from Lemmas 4.10, 4.11 and 4.12. So we compute the Tor-groups H * (Sym Q (E 3 ); L ′ /K ′ ) by using the H * (Sym Q (E 3 ); -)-long exact sequence associated with short exact sequences of Sym Q (E 3 )-modules K ′ ֒→ L ′ ։ L ′ /K ′ as follows. Each map ι k induces a chain map from the (1.16)-type chain complex for Q ρ k to the (1.17)-type chain complex for L ′ , that we then use to make the calculations below via formal straightforward computations on formulas (1.18). We will also make use of the following filtration on L ′ to compute the cokernel of each map (ι) k : m0,3 m2,1 ⊂ m0,3 m2,1 , m0,3 m1,1 ⊂ m0,3 m2,1 , m0,3 m1,1 , m0,2 m0,2 ⊂ L ′ .

(4.14)

For H 0 (Sym Q (E 3 ); L ′ /K ′ ): It is clear from the computations in the proofs of Lemmas 1.27 that the image of each ρ k ∈ K ′ is hit by ∂ 1 . Therefore, we have (ι 1 ) 0 (1) = (ι 2 ) 0 (1) = (ι 3 ) 0 (1) = 0. Hence we obtain the Q-basis {[ m0,3 m2,1 ], [ m0,3 m1,1 ], [ m0,2 m0,2 ], [ m0,4 ]} for H 0 (Sym Q (E 3 ); L ′ /K ′ ), and that the connecting homomorphism H 1 (Sym Q (E 3 ); L ′ /K ′ ) → H 0 (Sym Q (E 3 ); K ′ )) is surjective.

For H 1 (Sym Q (E 3 ); L ′ /K ′ ): using the results and relations for H 1 (Sym Q (E 3 ); L ′ ) deduced Lemmas 4.10, 4.11 and 4.12, we compute that:

(ι 1 ) 1 (de 1 ) = 3[e 1 de 1 ] m0,3 m2,1 + [e 1 de 2 + e 2 de 1 ] m0,3 m1,1 ;

(ι 1 ) 1 (de 2 ) = 2[e 2 de 2 ] m0,3 m1,1 ; (ι 1 ) 1 (de 3 ) = 0;

(ι 2 ) 1 (de 1 ) = 6[e 1 de 1 ] m0,3 m1,1 + 1 2 [e 1 de 2 + e 2 de 1 ] m0,2 m0,2 ; (ι 2 ) 1 (de 2 ) = 3[e 1 de 2 + e 2 de 1 ] m0,3 m1,1 + [e 2 de 2 ] m0,2 m0,2 ;

(ι 2 ) 1 (de 3 ) = 1 2 [e 2 de 3 + e 3 de 2 ] m0,2 m0,2 ; (ι 3 ) 1 (de 1 ) = 1 2 [e 1 de 3 + e 3 de 1 ] m0,2 m0,2 -6[e 2 1 de 1 ] m0,4 ; (ι 3 ) 1 (de 2 ) = 1 2 [e 2 de 3 + e 3 de 2 ] m0,2 m0,2 = (ι 2 ) 1 (de 3 ); (ι 3 ) 1 (de 3 ) = [e 3 de 3 ] m0,2 m0,2 .

We deduce that the kernel of the map (ι) 1 : H 1 (Sym Q (E 3 ); K ′ ) → H 1 (Sym Q (E 3 ); L ′ )) is isomorphic to Q 2 . Furthermore, by using the filtration (4.14), we deduce that the kernel of the connecting homomorphism H 1 (Sym Q (E 3 ); L ′ /K ′ ) ։ H 0 (Sym Q (E 3 ); K ′ )) ∼ = Q 3 has the following basis:

[e 1 de 1 ] m0,3 m2,1 ; [de 2 ] m0,3 m2,1 ; [de 3 ] m0,3 m2,1 ;

[e 1 de 1 ] m0,3 m1,1 ; [de 3 ] m0,3 m1,1 ; [e 2 1 de 1 ] m0,2 m0,2 ; 1 2 [e 3 de 1 + e 1 de 3 ] m0,2 m0,2 ; [e 2 de 2 ] m0,4 ; [e 3 de 3 ] m0,4 ; 1 2 [e 1 de 2 + e 2 de 1 ] m0,4 ; 1 2 [e 2 de 3 + e 3 de 2 ] m0,4 ; 1 2 [e 3 de 1 + e 1 de 3 ] m0,4 .

This provides the computation of H 1 (Sym Q (E 3 ); L ′ /K ′ ).

For H 2 (Sym Q (E 3 ); L ′ /K ′ ): using the results and relations for H 2 (Sym Q (E 3 ); L ′ ) deduced Lemmas 4.10, 4.11 and 4.12, we compute that:

(ι 1 ) 2 (de 2 ∧ de 3 ) = 2[e 2 de 2 ∧ de 3 ] m0,3 m1,1 ;

(ι 1 ) 2 (de 3 ∧ de 1 ) = 3[e 1 de 3 ∧ de 1 ] m0,3 m2,1 -[(e 1 de 2 + e 2 de 1 ) ∧ de 3 ] m0,3 m1,1 ; (ι 1 ) 2 (de 1 ∧ de 2 ) = 3[e 1 de 1 ∧ de 2 ] m0,3 m2,1 + 2[e 2 de 1 ∧ de 2 ] m0,3 m1,1 ;

(ι 2 ) 2 (de 2 ∧ de 3 ) = 3[(e 1 de 2 + e 2 de 1 ) ∧ de 3 ] m0,3 m1,1 + [e 2 de 2 ∧ de 3 ] m0,2 m0,2 ; (ι 2 ) 2 (de 3 ∧ de 1 ) = 6[e 1 de 3 ∧ de 1 ] m0,3 m1,1 + [e 2 de 3 ∧ de 1 ] m0,2 m0,2 , (ι 2 ) 2 (de 1 ∧ de 2 ) = 6[e 1 de 1 ∧ de 2 ] m0,3 m1,1 + [e 2 de 1 ∧ de 2 ] m0,2 m0,2 ; (ι 3 ) 2 (de 2 ∧ de 3 ) = [e 3 de 2 ∧ de 3 ] m0,2 m0,2 ;

(ι 3 ) 2 (de 3 ∧ de 1 ) = [e 3 de 3 ∧ de 1 ] m0,2 m0,2 -6[e 2 1 de 3 ∧ de 1 ] m0,4 ; (ι 3 ) 2 (de 1 ∧ de 2 ) = [e 3 de 1 ∧ de 2 ] m0,2 m0,2 -6[e 2 1 de 1 ∧ de 2 ] m0,4 . Hence the kernel of the map (ι) 2 : H 2 (Sym Q (E 3 ); K ′ ) → H 2 (Sym Q (E 3 ); L ′ )) vanishes. Also, using the filtration (4.14), we obtain the following basis for the kernel of the connecting homomorphism

H 2 (Sym Q (E 3 ); L ′ /K ′ ) ։ Q 2 :
[e 1 de 1 ∧ de 2 ]m 0,3 m 2,1 ; [e 1 de 1 ∧ de 3 ]m 0,3 m 2,1 ; [de 2 ∧ de 3 ]m 0,3 m 2,1 ;

[e 1 de 1 ∧ de 2 ]m 0,3 m 1,1 ; [e 1 de 1 ∧ de 3 ]m 0,3 m 1,1 ; [e 2 1 de 1 ∧ de 2 ]m 0,2 m 0,2 ; [e 2 1 de 1 ∧ de 3 ]m 0,2 m 0,2 ; [e 3 de 3 ∧ de 1 ]m 0,2 m 0,2 ; [e 3 de 1 ∧ de 2 ]m 0,2 m 0,2 ; [e 2 de 2 ∧ de 3 ]m 0,4 ; [e 2 de 2 ∧ de 1 ]m 0,4 ; [e 3 de 3 ∧ de 1 ]m 0,4 ; [e 3 de 3 ∧ de 2 ]m 0,4 ; [e 2 de 3 ∧ de 1 ]m 0,4 ; [e 3 de 1 ∧ de 2 ]m 0,4 ; For H 3 (Sym Q (E 3 ); L ′ /K ′ ): using the results and relations for H 3 (Sym Q (E 3 ); L ′ ) deduced Lemmas 4.10, 4.11 and 4.12, we compute that: (ι 1 ) 3 (de 1 ∧ de 2 ∧ de 3 ) = 3[e 1 de 1 ∧ de 2 ∧ de 3 ] m0,3 m2,1 + 2[e 2 de 1 ∧ de 2 ∧ de 3 ] m0,3 m1,1 ;

(ι 2 ) 3 (de 1 ∧ de 2 ∧ de 3 ) = 6[e 1 de 1 ∧ de 2 ∧ de 3 ] m0,3 m1,1 + [e 2 de 1 ∧ de 2 ∧ de 3 ] m0,2 m0,2 ; (ι 3 ) 3 (de 1 ∧ de 2 ∧ de 3 ) = [e 3 de 1 ∧ de 2 ∧ de 3 ] m0,2 m0,2 -6[e 2 1 de 1 ∧ de 2 ∧ de 3 ] m0,4 . In particular, the kernel of the map (ι) 3 : H 3 (Sym Q (E 3 ); K ′ ) → H 3 (Sym Q (E 3 ); L ′ )) vanishes. Furthermore, by using the filtration (4.14), we deduce that the kernel of the connecting homomorphism H 3 (Sym Q (E 3 ); L ′ /K ′ ) → H 2 (Sym Q (E 3 ); K ′ )) ∼ = Q 3 has the following basis:

[e 1 de 1 ∧ de 2 ∧ de 3 ] m0,3 m2,1 ;

[e 1 de 1 ∧ de 2 ∧ de 3 ] m0,3 m1,1 ; [e 2 1 de 1 ∧ de 2 ∧ de 3 ] m0,2 m0,2 ; [e 3 de 1 ∧ de 2 ∧ de 3 ] m0,2 m0,2 ; [e 2 de 1 ∧ de 2 ∧ de 3 ] m0,4 ; [e 3 de 1 ∧ de 2 ∧ de 3 ] m0,4 .

For H j (Sym Q (E 3 ); L ′ /K ′ ) with j 4: since H j (Sym Q (E 3 ); K ′ )) = H j (Sym Q (E 3 ); L ′ )) = 0 for j 4 while the kernel of the map (ι) 3 : H 3 (Sym Q (E 3 ); K ′ ) → H 3 (Sym Q (E 3 ); L ′ )) is trivial, we deduce from the long exact sequnce for the Tor-groups that H j (Sym Q (E 3 ); L ′ /K ′ )) = 0 which ends the proof.

Proof of Theorem 4.8. We are now ready to compute the Tor-groups for the Sym Q (E)-module H * st (Λ 5 HQ ). Using the computations (1.14), it follows from Proposition 4.13 that for all j 0 H j (Sym Q (E); H even st (Λ 5 HQ )) ∼ = (Λ j-3 E 4 ) ⊕6 ⊕ (Λ j-2 E 4 ) ⊕17 ⊕ (Λ j-1 E 4 ) ⊕15 ⊕ (Λ j E 4 ) ⊕4 .

In particular, we have H 0 (Sym Q (E); H even st (Λ 5 HQ )) ∼ = Q ⊕4 . Combining this computation with the isomorphism (3.20), we deduce that for i > 0

H i (Sym Q (E); H odd st (Λ 5 HQ )) ∼ = (Λ i-1 E 4 ) ⊕6 ⊕ (Λ i E 4 ) ⊕17 ⊕ (Λ i+1 E 4 ) ⊕15 ⊕ (Λ i+2 E 4 ) ⊕4 .

( 2 )

 2 .14) Proposition 3.21 We have the following properties for the filtration by the monomials. (1) The Sym Q (E)-modules Coker(D d,k/(k-1) ) and Ker(D d,k/(k-1) ) are free. The Sym Q (E)-module Coker(D d,0 ) is free, generated by m0,d-1 if d 3 and vanishes if d = 2.

  1 by D k-1 for simplicity. Since a 0 1, we compute from Proposition 1.19 that k ma0-k,p0+k D k-1 ( ma1,p1 . . . man,pn ) = a0 k=1 (-1) k ma0-k+1,p0+k-1 D k-1 ( ma1,p1 . . . man,pn ) + a0 k=1 (-1) k ma0-k,p0+k D k ( ma1,p1 . . . man,pn ) = -ma0,p0 ma1,p1 . . . man,pn + (-1) a0 m0,p0+a0 D a0 ( ma1,p1 . . . man,pn ).

Theorem 3. 22

 22 Let us fix d 3. Then m 0,d-1 ∈ Coker(D d ) is a non-trivial torsion element. Proof. First, we recall from (2) in Proposition 3.21 that m 0,d-1 ∈ Coker(D d,0 ) is non-trivial. We consider the exact sequence (3.14) for each k 1. By definition, Sym Q (E)-modules Ker(D d,k/(k-1) ) is free on a linear combination of products of k+1 twisted Mumford-Morita-Miller classes {m i,j ; i 0, j 1}. Then, using the formal definition from the snake lemma of a connecting homomorphism, we deduce that the image δ d,k-1 is generated by linear combinations of products of k classes {m i,j ; i 0, j 1}, each product being multiplied by at least one classical Mumford-Morita-Miller class {e i ; i 1}. Hence the class m 0,d-1 does not belong to the image of any δ d,k-1 for all 1 k d -2. Therefore m 0,d-1 is a non-trivial class in each Coker(D d,k ) for all 0 k d -1, and in particular on Coker(D d,d-1 ) = Coker(D d ). That m 0,d-1 is a torsion element follows from (5) in Proposition 3.21, whence the result. Corollary 3.23 If d 3, the Sym Q (E)-module H ‡ st (Λ d HQ ) is a non-trivial and torsion. Proof. We already know from Corollary 3.16 that the Sym Q (E)-module H ‡ st (Λ d HQ ) = Coker(D d ) is torsion. Now it follows from Theorem 3.22 that H ‡ st (Λ d HQ ) has a non-trivial torsion Sym Q (E)module summand containing the class m 0,d-1 .

  and thus a morphism D d d,k/(k-1) analogous to (3.13) for each k 1. Theorem 3.25 We assume that d 3. Then Ker(D d d ) = 0.

  and only if b 0 = d and a 0 = 0. So, by the formula (1.12), we deduce that D d d,0 is injective. Now, let us assume that Ker(D d d,k-1 ) = 0 for some k 1. By the snake lemma, there is an exact sequence for each k 1 0 / / Ker(D d d,k-1 ) / / Ker(D d d,k ) / / Ker(D d d,k/(k-1) ) δ d d,k-1 / / Coker(D d d,k-1 ). (3.16) Hence, it is enough to prove that Ker(D d d,k/(k-1) ) = 0 for 0 k d -2, because then we are done by using (3.16) and the inductive assumption on k.

  ai,bi . Let us prove by induction on ℓ 1 that any M ℓ in the kernel of D d d,k/(k-1) vanishes if its number of terms is not greater than ℓ. Since k d -2, note that b

  Let L b0,a0 be the set {l ∈ L b0 | a (l) 0 a (l ′ ) 0 , ∀l ′ ∈ L b0 }. For each j ∈ L b0,a0 , let I j be the maximum i ∈ {0, . . . , k} such that a denote by I the maximum of the set {I j | j ∈ L b0,a0 } and by L b0,a0 (I) the set {j ∈ L b0,a0 | I j = I}. By definition of the source of D d d,k/(k-1) , note that I k -1 since 0 i k a (j) i k and there is at least one a (j) i

  denote by I the maximum of the set {I j | j ∈ L a0 } and by L a0 (I) the set {j ∈ L a0 | I j = I}. By definition of the source of D d d,k/(k-1) , note that I k -1 since 0 i k a (j) i k and there is at least one a (j) i

  least for small d, see Theorems 4.4, 4.2 and 4.7), and we are then able to fully deduce the Tor-groups of H * st (Λ d HQ ) for j > 0 from those of H ‡ st (Λ d HQ ) thanks to (3.20); see Propositions 4.3, 4.5 and Theorem 4.8. Moreover, we have the following general result which refines Corollary 3.23: Theorem 3.27 If d 3, for any j 0, we have H j (Sym Q (E); H ‡ st (Λ d HQ )) = 0, and a fortiori

  [ mα,1 mβ,1 ] = 0 in Coker(D 3,1 ) for β > 1 by (4) in Proposition 3.21 and [e 1 m0,2 ] = -[ m1,1 m1,1 ] in Coker(D 3,1 ) by (3) in Proposition 3.21, we compute that: [e α mβ,1 mγ,1 + e β mα,1 mγ,1 + e γ mα,1 mβ,1 ] = -3[e γ e 1 m0,2 ] if α = β = 1last additional relation [e 2 1 m0,2 ] = 0 in Coker(D 3,2 ), which ends the proof.

  ) in Proposition 3.21 that Coker(D 5,0 ) ∼ = Sym Q (E)[ m0,4 ]. Hence we have Im(δ 5,0 ) = (e α ; α 4)[ m0,4 ] and thus Coker(D 5,1 ) ∼ = (Sym Q (E)) ⊕3 ⊕ Sym Q (E)[ m0,4 ]/(e α ; α 4) where the first three summands correspond to Coker(D 5,1/0 ).

  < c, and finally for b 0:

  e ℓ [ m0,3 m2,1 ] = e ℓ [ m0,3 m1,1 ] = e ℓ [ m0,2 m0,2 ] = 0 ; e 3 1 [ m0,4 ] = e α e β [ m0,4 ] = 0 except α = β = 1 ; e 3 [ m0,3 m2,1 ] = e 2 [ m0,3 m2,1 ] = e α e β [ m0,3 m2,1 ] = 0 ; e 3 [ m0,3 m1,1 ] = e α e β [ m0,3 m1,1 ] = 0 ; e α e β [ m0,2 m0,2 ] = 0 except α

  2e α e β [ m0,3 mγ,1 ] + 2e β e γ [ m0,3 mα,1 ] + 2e γ e α [ m0,3 mβ,1 ] if ǫ = 2,In particular, we have e 3 1 m0,2 m0,2 = 0 ∈ Coker(D 5,4

S 5 :

 5 = Q{[ ma-1,3 mb,2 -ma-2,4 mb+1,1 -mb-1,3 ma,2 + mb-2,4 ma+1,1 ]; b > a 3} ⊕ Q{[ Ma,b,α ] | 2 a b, α 1} ⊕ Q{[ M1,b,α ] | b 3, α 1 ; b ∈ {1, 2}, α 4} ⊕ Q{[ M0,b,α ] | b 2, α 4} ⊕ Q{[3 M0,b,2 -M0,1,b+1 ] | b 3} ⊕ Q{[ M1,2,2 -M1,1,3 ]; [ M1,2,2 -M0,2,3 ]; [ M0,1,3 + 20M 1,1,2 -15 M0,2,2 -8M 1,2,2 ]} ⊕ Q{[ Nb,c ] | c > b 1} ⊕ Q{[2 M0,b,1 -N0,b-1 ] | b 3} ⊕ Q{[ Ra,α,β,γ ] | a 0, 1 α β γ, (a, α, β, γ) = (2, 1, 1, 1), (1, 1, 2, 2), (1, 1, 1, 2), (1, 1, 1, 1), (0, 1, 1, 3), (0, 2, 2, 2), (0, 1, 2, 2), (0, 1, 1, 2)} ⊕ Q{[ R2,1,1,1 + 3 R0,1,1,3 ]; [12 R1,1,2,2 + 7 R0,2,2,2 ]} ⊕ Q{[5 R1,1,1,2 + 2 R0,1,2,2 ]; [ R1,1,1,1 + 3 R0,1,1,2 ]}⊕ Q{[ mα,1 mβ,1 mγ,1 mǫ,1 mξ,1 ] | 1 α β γ ǫ ξ such that ξ 2}

  ) and formulas (1.18), the result follows from Lemma 1.27 via the following computations for all c, c′ , b k , b ′ k , a k , a ′ k ∈ Q with 1 k 3: ∂ 3 ((c + c ′ e 1 )(de 1 ∧ de 2 ∧ de 3 )) = ce 1 (de 2 ∧ de 3 ), ∂ 2 ((b 1 + b ′ 1 e 1 )(de 2 ∧ de 3 )) = 0, ∂ 2 ((b 2 + b ′ 2 e 1 )(de 3 ∧ de 1 )) = -b 2 e 1 de 3 , ∂ 2 ((b 3 + b ′ 3 e 1 )(de 1 ∧ de 2 )) = b 3 e 1 de 2 , ∂ 1 (3 k=1(a k + a ′ k e 1 )de k ) = a 1 e 1 .

  g,1 -representations if g 7; see [Kas22, Th. 1.1, Rem. 1.2.(2)]. Therefore, H Q (g) and HQ (g) are fundamental blocks of the representation theory of the mapping class group Γ g,1 . Moreover, the families of representations {Λ d H Q (g)} g∈N and {Λ

d HQ (g)} g∈N for each d 1 define polynomial functors UM 2 → Ab in the sense of §1.3, denoted by Λ d H Q and Λ d HQ respectively; see Example 1.4.

  is polynomial of degree less than or equal to d + d ′ . N} define a polynomial covariant system H : UM 2 → Ab of degree 1; see [KS22, Prop. 3.3]. Finally, for each d 1, it is easy to deduce from Proposition 1.3 that the d th exterior powers of H and H define polynomial covariant systems UM 2 → Ab of degree exactly d, denoted by Λ d H and Λ d H respectively. We also consider rational versions of the above functors, namely functors Λ d H Q and Λ d HQ of the form UM 2 → Q-Mod → Ab for all d 1, satisfying the exact same polynomiality properties. For each d 1, the covariant systems Λ d H and Λ d H are functors UM 2 → Ab such that the image of each morphism of type [Σ 1,1 , id Σg+1,1 ] has a canonical Γ g,1 -equivariant splitting.

	[KS22] that the groups { H(g); g ∈ We also note the following property for the covariant systems of Example 1.4 which will be of key
	use for cohomological stability with twisted coefficients (see §1.3.1 and §1.3.2):
	Lemma 1.5
	Example 1.4 A first example of polynomial covariant system is given by the first homology
	group of the surfaces, defining a covariant system H : (UM 2 , ♮, D 2 ) → (Ab, ⊕, 0), which is strong
	monoidal and thus polynomial of degree one; see [KS22, §2.1]. Also, the constant functor at any
	ring R defines a polynomial covariant system R : UM 2 → Ab of degree 0. Moreover, we prove in

  Furthermore, Theorem 3.14 allows us to measure to what extent the Sym Q (E)-algebra H * st (Λ * HQ ) may be generated from the Sym Q (E)-module H * st ( HQ ) computed in [KS22, Th. A]; see Theorem 1.24. Namely, we define the free commutative algebra Sym Sym Q (E) (H * st ( HQ )) from the Sym Q (E)-module structure of H * st ( HQ ). Because there is a canonical inclusion H * The localisation functor Sym Q (E ± ) ⊗ Sym Q (E) -induces the following commutative square, where Υ ′

	st ( HQ ) ֒→ H * st (Λ * st ( HQ )) provides a unique canonical Sym Q (E)-algebra mor-HQ ), the universal property of Sym Sym Q (E) (H *
	phism:	Υ : Sym Sym Q (E) (H * st ( HQ )) -→ H * st (Λ *	HQ ).	(3.10)
	Corollary 3.17 The Sym Q (E)-algebra morphism Υ is injective but not surjective.
	Proof.			
	14, we deduce the following property about the cokernel Coker(D) which corresponds to the Sym Q (E)-module H even st (Λ odd HQ ) ⊕ H even st (Λ odd HQ ):
	Corollary 3.16 The Sym Q (E)-module H even st	(Λ odd	HQ ) ⊕ H even st (Λ odd	HQ ) is torsion.

Proof. This follows from the fact that Coker(D) vanishes after applying the localisation functor Sym Q (E ± ) ⊗ Sym Q (E) -.

  ∼ = Λ j+2 E 2 ⊕ Λ j+1 E 2 ,and thus ends the proof of the first part of the proposition.

	all j 1, and H 0 (Sym Q (E); H odd st (Λ 4 with the isomorphism (3.20) for d = 4, we deduce that H j (Sym Q (E); H even HQ )) ∼ = Q. Combining this computation st (Λ 4 HQ )) For the second part of the proposition, we first have the contribution of H 0 (Sym Q (E); H odd HQ )) st (Λ 4 computed above. By Lemma 3.28, we compute H 0 (Sym Q (E); H even st (Λ 4 HQ )) thanks to the exact
	sequence (3.23). We recall that H 2 (Sym Q (E); H odd st (Λ 4

  belongs to F 2 H * st (Λ 5 H Q ), we have: R a,α,β,γ + e a+1 Q α,β,γ = 3 ma,2 (e α mβ,1 mγ,1 + e β mγ,1 mα,1 + e γ mα,1 mβ,1 ) -D 2 ( ma,2 )D 4 (e α mβ-1,2 mγ-1,2 + e β mγ-1,2 mα-1,2 + e γ mα-1,2 mβ-1,2 ) where S α,β,γ := 5(e α mβ,1 mγ,1 + e β mγ,1 mα,1 + e γ mα,1 mβ,1 ) + 2(e α e β mγ-1,2 + e β e γ mα-1,2 + e γ e α mβ-1,2 ). Hence, recalling that D 2-a+1

	= 3 ma,2 (e α mβ,1 mγ,1 + e β mγ,1 mα,1 + e γ mα,1 mβ,1 )
	+ ma,2 (D 3 • D 4 )(e α mβ-1,2 mγ-1,2 + e β mγ-1,2 mα-1,2 + e γ mα-1,2 mβ-1,2 )
	=5 ma,2 (e α mβ,1 mγ,1 + e β mγ,1 mα,1 + e γ mα,1 mβ,1 )
	+ 2 ma,2 (e α e β mγ-1,2 + e β e γ mα-1,2 + e γ e α mβ-1,2 )
	= ma,2 S α,β,γ ,

  • • • • • D 2 isdenoted by D a for a 1, we deduce from the general formula (3.15) that R a,α,β,γ + e a+1 Q α,β,γ = (-1) a m0,a+2 D a (S α,β,γ ) and thus by the relations (4.7) that:

The graded-commutativities of the cup product and the exterior powers cancel each other, so there are no Koszul signs.

Vespa and Shun Wakatsuki for illuminating discussions and questions. The authors were supported by the PRC CNRS-JSPS French-Japanese Project "Cohomological study of MCG and related topics". The first author was supported in part by the grants JSPS KAKENHI 15H03617, 18K03283, 18KK0071, 19H01784, 20H00115 and 22H01120. The second author was supported by a Rankin-Sneddon Research Fellowship of the University of Glasgow, by the Institute for Basic Science IBS-R003-D1 and by the ANR Project AlMaRe ANR-19-CE40-0001-01.

α = β = γ, and it vanishes if γ 2 because ∂ 2 ( m0,2 ⊗ e 1 ∧ e γ ) = e 1 m0,2 ⊗ e γ . This element is also equal to ∆ 3 ([ mα,1 mβ,1 mγ,1 ]) by Proposition 3.29, so the restriction of Ker(∆ 3 ) to H 0 (Sym Q (E); Ker(D 3,2/1 )) is the free Q-module generated by {[ mα,1 mβ,1 mγ,1 ]; 1 α β γ 2}.

Fourth exterior power

We consider the exact sequence (3.7) for d = 4. We apply the contraction formulas of Proposition 1.19 to compute the following images of the derivation D 4 and prove the following result.

Theorem 4. 4 The Sym Q (E)-module H odd st (Λ 4 HQ ) is isomorphic to

1 , e α , α 2)) { m0,3 } .

Proof. We progressively compute Coker(D 4,k ) for 0 k 3 using the exact sequence (3.14).

Computation of Coker(D 4,1 ): we compute that for all a, b, c 0 and α 1 D 4,1/0 ( ma,3 mα,1 ) = ma+1,2 mα,1 ; D 4,1/0 ( mb,2 mc,2 ) = mb,2 mc+1,1 + mc,2 mb+1,1 .

Also, we define a section σ 4,1/0 of the map D 4,1/0 by assigning σ 4,1/0 ( ma,2 mα,1 ) =      1 2 m0,2 m0,2 , if a = 0 and α = 1, m0,2 mα-1,2 -mα-2,3 m1,1 , if a = 0 and α 2, ma-1,3 mα,1 , if a 1 and α 1.

Hence Coker(D 4,1/0 ) = 0. Also, by using the section σ 4,1/0 , we deduce from the formulas of D 4,1/0 that {[ ma,2 mb,2 -ma-1,3 mb+1,1 -mb-1,3 ma+1,1 ]; 1 a b} defines a basis of Ker(D 4,1/0 ) as a free Sym Q (E)-module. By the formal definition of the connecting homomorphism defined by the snake lemma, each one of these generators is mapped by [ ma,2 mα,1 ] =

and D 4 ( m0,2 m0,2 ) = 2 m0,2 m1,1 .

Computation of Coker(D 4,2 ): we compute that for all a 0 and α, β 1 D 4,2/1 ( ma,2 mα,1 mβ,1 ) = ma+1,1 mα,1 mβ,1 .

We deduce from this formula that Coker(D 4,2/1 ) = 0 and Ker(D 4,2/1 ) is a free Sym Q (E)-module with basis:

3, using the relation (4) of Proposition 3.21, we deduce from the above relations in Coker(D 4,1 ) that the connecting homomorphism δ 3,1 sends each one of these generators to 0 in Coker(D 4,1 ). For (α, γ) = (1, 2), by the relations (4.2) and (3) of Proposition 3.21, we compute that δ 3,1 ( m1,2 m1,1 m1,1 -m0,2 m1,1 m2,1 ) = -3e 2 1 m0,3 and that δ 3,1 ( m1,2 m1,1 m2,1 -m0,2 m2,1 m2,1 ) = 0. Thus Coker(D 4,2 ) ∼ = (Sym Q (E)/(e 2 1 , e α ; α 2))[ m0,3 ].

Tor-groups for L ′ m0,3 m1,1 . We consider the torsion Sym Q (E 3 )-module

1 , e 2 2 , e 1 e 2 , e 3 ).

Lemma 4.11

The group H j (Sym

Proof. Using the finite chain complex (1.17) and formulas (1.18), the result follows from Lemma 1.27 by computing that for all c, c

Tor-groups for L ′ m0,4; m0,2 m0,2 . The Sym

1 , e 2 2 , e 2 3 , e 1 e 2 , e 1 e 3 , e 2 e 3 ).

Lemma 4.12

The group H j (Sym

Proof. Using the finite chain complex (1.17) and formulas (1.18), the result follows from Lemma 1.27 by computing that for all c, c, c

This ends the first part of the theorem.

For the computation of H 0 (Sym Q (E); H * st (Λ 5 HQ )), we first have the contribution of the Torgroup H 0 (Sym Q (E); H even st (Λ 5 HQ )) computed above. By Lemma 3.28, we compute the Tor 0group H 0 (Sym Q (E); H odd st (Λ 5 HQ )) thanks to the exact sequence (3.23). We have already computed

HQ ) above. Following the decomposition (3.24), we now progressively determine the generators of Ker(∆ 4 ) associated to each summand Ker(D 4,k/k-1 ) for 1 k 4 for 1 k 2 to finish the proof. For this aim, we use the chain complex (3.25) and Proposition 3.29.

For the summand Ker(D 5,1/0 ): for each 2 a < b, the image by D 5 of the element ma-1,3 mb,2ma-2,4 mb+1,1 -mb-1,3 ma,2 + mb-2,4 ma+1,1 is equal to ∂ 1 ( mb-2,4 ⊗ e a+1 -ma-2,4 ⊗ e b+1 ) in H even st (Λ 4 HQ ). We deduce from Theorem 4.7, we have Π( mb-2,4 ) ⊗ e a+1 -Π( ma-2,4 ) ⊗ e b+1 = 0 if and only if a = 2 and b > 2. In that case, they are equal to Π( m0,4 ) ⊗ e b+1 , and so they are linearly independent. Hence, by Proposition 3.29, the kernel Ker(D 5,1/0 ) associated to that summand is isomorphic to the free Q-module generated by {[ ma-1,3 mb,2 -ma-2,4 mb+1,1 -mb-1,3 ma,2 + mb-2,4 ma+1,1 ]; b > a 3}.

For the summand Ker(D 5,2/1 ): Firs of all, we stress that all the following computations are made by using Theorem 4.7 and the fact that ∂ 2 (m ⊗ de k ∧ de l ) = e k m ⊗ de l -e l m ⊗ de k .

For all integers 0 a b 1 and α 1, we begin with setting Ma,b,α := ma+1,2 mb,2 mα,1ma,3 mb+1,1 mα,1 -mb-1,3 ma+2,1 mα,1 . We compute that

, where M ⊗ a,b,α := ( ma+1,2 mb,2 -ma,3 mb+1,1 -mb-1,3 ma+2,1 ) ⊗ e α -ma,3 mα,1 ⊗ e b+1 -mb-1,3 mα,1 ⊗ e a+2 . We compute in a similar way to relations (4.4) that:

if (a, b, α) = (0, b, α) with b 3, α 2, 5e 2 m0,4 ⊗ e 3 if (a, b, α) = (0, 2, 3), 4e α m0,4 ⊗ e α -m0,3 mα,1 ⊗ e 3 if (a, b, α) = (0, 2, α) with α 2, -3 m0,3 m2,1 ⊗ e α if (a, b, α) = (0, 1, α) with α 3, -5 m0,3 m2,1 ⊗ e 2 if (a, b, α) = (0, 1, 2), -3 m0,3 m2,1 ⊗ e 1 -2 m0,3 m1,1 ⊗ e 2 if (a, b, α) = (0, 1, 1), 0 otherwise. Now, we set Nb,c := m0,2 mb+1,2 mc+2,1 -mb,3 m1,1 mc+2,1 -m0,2 mc+1,2 mb+2,1 + mc,3 m1,1 mb+2,1 for all integers 0 b < c. Then we compute that

where

We compute in a similar way to relations (4.5) that

Hence, by Proposition 3.29, the contribution of the generators Ma,b,α and Nb,c to the kernel Ker(D 5,2/1 ) is isomorphic to the free Q-module with basis

Finally, we set Pb := m0,2 m0,2 mb+2,1 -2 m0,2 mb+1,2 m1,1 + 2 mb,3 m1,1 m1,1 for each b 0. We have D 5 ( Pb ) = ∂ 1 (P ⊗ b ), where

Then, we compute in a similar way to relations (4.6) that

These elements are linearly independent modulo the generators Ma,b,α and Nb,c stated above. Hence, by Proposition 3.29, for any b 0, the generator Pb does not contribute to the kernel Ker(D 5,2/1 ).

For the summand Ker(D 5,3/2 ): we set Ra,α,β,γ := 3 ma,2 mα,1 mβ,1 mγ,1 -ma+1,1 Q α,β,γ where Q α,β,γ is defined in (4.9), for all a 0 and 1 α β γ. We compute that D 5 ( Ra,α,β,γ

We recall that we denote by D 2-a+1 • • • • • D 2 by D a for a 1. By similar computations to that of R a,α,β,γ in the proof of Theorem 4.7, we have: All the following computations are made by using Theorem 4.7, the equality (4.9) and the fact that ∂ 2 (m ⊗ de k ∧ de l ) = e k m ⊗ de l -e l m ⊗ de k .

If a 3, we deduce that (Π ⊗ E)(R ⊗ a,α,β,γ ) = -Q α,β,γ ⊗ e a+1 by Theorem 4.7. Then, using the computations (4.9), we may re-write Q α,β,γ ⊗ e a+1 so that e a+1 is on the left-hand side of the tensor product, multiplying some mi,j . But for a 3, the element e a+1 annihilates any element of H even st (Λ 5 HQ ), so Q α,β,γ ⊗ e a+1 = 0. Therefore, we have (Π ⊗ E)(R ⊗ a,α,β,γ ) = 0 if a 3. If a = 2, we compute similarly to relations (4.10) that:

otherwise.

If a = 1, we compute similarly to relations (4.11) that:

If a = 0, we compute similarly to relations (4.12) that:

Hence, by Proposition 3.29, the kernel Ker(D 5,3/2 ) associated to that summand is isomorphic to the free Q-module with basis:

{ Ra,α,β,γ | a 0, 1 α β γ, (a, α, β, γ) = (2, 1, 1, 1), (1, 1, 2, 2), (1, 1, 1, 2), (1, 1, 1, 1), (0, 1, 1, 3), (0, 2, 2, 2), (0, 1, 2, 2), (0, 1, 1, 2)} ∪ { R2,1,1,1 + 3 R0,1,1,3 ; 12 R1,1,2,2 + 7 R0,2,2,2 ; 5 R1,1,1,2 + 2 R0,1,2,2 ; R1,1,1,1 + 3 R0,1,1,2 }.

For the summand Ker(D 5,4/3 ): for each 1 α β γ ǫ ξ, we compute that

Then, we make the following computations in a similar way to those of the relations (4.13), by using Theorem 4. (Π ⊗ E)(C ⊗ α,β,γ,ǫ,3 ) = mα,1 mβ,1 mγ,1 mǫ,1 ⊗ e 3 + 12e α e β e γ m0,4 ⊗ e ǫ = -e 3 mβ,1 mγ,1 mǫ-1,2 ⊗ e α -e 3 mγ,1 mα,1 mǫ-1,2 ⊗ e β -e 3 mα,1 mβ,1 mǫ-1,2 ⊗ e γ = 0.

If ξ = 2, we note that each product e a e b for any a, b 1 annihilates the generators m0,3 m1,1 and m0,3 m2,1 of H even st (Λ 5 HQ ). Then it is an easy routine to check by analogous computations to those of (4.13) that (Π ⊗ E)(C ⊗ α,β,γ,ǫ,2 ) = 0. Finally, for ξ = 1, we compute that (Π ⊗ E)(C ⊗ 1,1,1,1,1 ) = -15 2 e 2 1 m0,2 m0,2 ⊗ e 1 = 0. Then it follows from Proposition 3.29 that the kernel Ker(D 5,3/2 ) associated to the summand Ker(D 5,3/2 ) is isomorphic to the free Q-module with basis {[ mα,1 mβ,1 mγ,1 mǫ,1 mξ,1 ] | 1 α β γ ǫ ξ such that ξ 2}.