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Let S be a closed surface of genus g ≥ 2, furnished with a Borel probability measure λ with total support. We show that if f is a λ-preserving homeomorphism isotopic to the identity such that the rotation vector rot f (λ) ∈ H1(S, R) is a multiple of an element of H1(S, Z), then f has infinitely many periodic orbits.

Moreover, these periodic orbits can be supposed to have their rotation vectors arbitrarily close to the rotation vector of any fixed ergodic Borel probability measure.
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By compactness of S, one knows by Krylov-Bogolioubov's theorem that the set M(f ) of f -invariant Borel probability measures is not empty. More precisely it is a non empty compact convex subset of the space M of Borel probability measures furnished with the weak * topology. Remind that the support of µ, denoted supp(µ), is the smallest closed set of µ-measure 1.

Let us recall the definition of the rotation vector of a measure µ ∈ M(f ) (see [START_REF] Matsumoto | Rotation sets of surface homeomorphisms[END_REF], [Pol] or [Sc]). Let I = (f t ) t∈[0,1] be an identity isotopy of f . Fix z ∈ S. The homotopy class of I(z), relative to the endpoints, contains a smooth path γ joining z to f (z). If α is a closed 1-form, the quantity γ α does not depend on the choice of γ and we denote it I(z) α. It is equal to h(f (z)) -h(z) if α is exact and h is a primitive of α. One gets a real valued morphism α → S I(z) α dµ(z) defined on the space of closed 1-forms, that vanishes on the space of exact 1-forms because µ is invariant by f . So, it induces a natural linear form on the first cohomology group H 1 (S, R). Hence, there exists a homology class rot I (µ) ∈ H 1 (S, R), uniquely defined by the equation where α is any closed 1-form, [α] ∈ H 1 (S, R) its cohomology class and

, : H 1 (S, R) × H 1 (S, R) → R
the natural bilinear form. By definition rot I (µ) ∈ H 1 (S, R) is the rotation vector of µ (for the isotopy I). It is well known that two identity isotopies of f are homotopic relative to the ends if the genus of S is larger than 1 (see [H]). In that case, I(z) α does not depend on I and one can write rot f (µ) = rot I (µ).

If O is a periodic orbit of f , one can define the rotation vector rot I (O) of O (or rot f (O) if the genus of S is larger than 1) as being equal to the rotation vector of µ O , where µ O is the probability measure equidistributed on O. In particular we have rot I (O) = 0 if O is a contractible periodic orbit, which means that the loop I q (z) is homotopic to zero, if z ∈ O.

Let us give an equivalent definition. Furnish S with a Riemannian metric and for every points z, z in S, choose a path γ z,z joining z to z in such a way that the lengths of the paths γ z,z are uniformly bounded. For every z ∈ S, and every n ≥ 1, consider the path

I n (z) = I(z)I(f (z)) • • • I(f n-1 (z))
defined by concatenation, and the loop Γ n (z) = I n (z)γ f n (z),z .

One can prove that there exists a µ-integrable function rot f : S → H 1 (S, R) such that for µ-almost every point z ∈ S, the sequence [Γ n (z)]/n converges to rot f (z). This allows to define rot I (µ) = rot f (z) dµ(z).

Let us give a last definition that will be used in this article. In the whole text we will write [Γ] ∈ H 1 (S, Z) for the homology class of an oriented loop Γ ⊂ S. Let U ⊂ S be a topological open disk (meaning a simply connected domain) such that µ(U ) = 0. Write ϕ U : U → U for the first return map of f and τ U : U → N \ {0} for the time of first return map. These maps are defined µ-almost everywhere on U . Kac's Lemma [K] tells us that ϕ U preserves the measure µ| U and that τ U is µ| U -integrable, and that moreover

U τ U dµ = µ   k≥0 f k (U )   = µ k∈Z f k (U ) .
We also denote by µ U the normalized probability measure µ| U /µ(U ). One can construct a map ρ U : U → H 1 (S, Z) defined µ U -almost everywhere as follows: if ϕ U (z) is well defined, one closes the trajectory I τ U (z)-1 (z) with a path γ contained in U that joins ϕ U (z) to z, and set ρ U (z) = [I τ U (z)-1 (z)γ], noting that [I τ U (z)-1 (z)γ] is independent of the choice of γ. If the genus of of S is bigger than 1 (what we suppose from now), then this map does not depend on the choice of I. It is easy to prove that the map ρ U /τ U is uniformly bounded on U and consequently that ρ U is µ U -integrable. So, by Birkhoff's theorem, there exist µ U -integrable functions ρ U * : U → H 1 (S, R) and τ U * : U → R such that for µ U -almost every point z it holds that

(1) lim

n→+∞ 1 n n-1 k=0 ρ U (ϕ k U (z)) = ρ U * (z), lim n→+∞ 1 n n-1 k=0 τ U (ϕ k (z)) = τ U * (z).
These quantities are related to the rotation number by the fact that for µ U -almost every point z, we have rot f (z) = ρ U * (z)/τ U * (z).

1.2. The main theorem. Let us begin this section by introducing the notion of homotopical interval of rotation. If S is an oriented closed surface, denote FHL(S) the free homotopy loop space of S. For every κ ∈ FHL(S) and every Γ ∈ κ, the homology class [Γ] ∈ H 1 (S, Z) does not depend on the choice of Γ, we denote it [κ]. If Γ : R/Z → S is a loop and k an integer, we can define the loop Γ k : t → Γ(kt). For every κ ∈ FHL(S), every Γ ∈ κ and every k ∈ Z, the free homotopy class of Γ k does not depend on the choice of Γ, we denote it κ k . A homotopical interval of rotation of f ∈ Homeo * (S) is a couple (κ, r), where κ ∈ F HL(S) and r is a positive integer, that satisfies the following: there exists an integer s > 0 such that for every p/q ∈ [0, 1] ∩ Q, one can find a point z ∈ S of period at least q/s, such that the loop naturally defined by I rq (z) belongs to κ p . In particular, we have rot f (z) = p/(rq) [κ].

Let us state the main result of the article.

Theorem A. Let S be an oriented closed surface of genus g ≥ 2. If f ∈ Homeo * (S) preserves a Borel probability measure λ such that supp(λ) = S and rot f (λ) ∈ RH 1 (S, Z), then f has infinitely many periodic points. More precisely, for every ergodic measure ν ∈ M(f ) that is not a Dirac measure at a contractible fixed point and every neighborhood U of rot f (ν) in H 1 (S, R), there exists a homotopical interval of rotation (κ, r) such that [κ]/r ∈ U.

Note that if f satisfies the hypotheses of the theorem and is different from identity, then by ergodic decomposition it has an ergodic invariant probability measure ν that is not supported on a fixed point. Theorem A applies and implies the existence of a homotopical interval of rotation; in particular f has an infinite number of periodic points, of arbitrarily large period, and of rotation vector arbitrarily close to 0. If rot f (λ) = 0, the measure ν can be chosen such that rot f (ν) = 0 and consequently, f has periodic orbits of arbitrary large period and with non zero rotation vector. In any case, any ergodic Borel probability measure, supported on a contractible fixed point or not, has its rotation vector approximated by rotation vectors of an infinite number of periodic points. Remark that this property is also true for f equal to the identity.

Before explaining what are the two different sources of creation of homotopical interval of rotation in Paragraph 1.3, let us comment Theorem A. We start by giving a direct application. If ω is a smooth area form on S, denote Diff r ω (S), 1 ≤ r ≤ ∞, the space of C r diffeomorphisms of S preserving ω, endowed with the C r -topology, and Diff r ω, * (S) the connected component of Diff r ω (S) that contains the identity. It is a classical fact that Diff r ω, * (S) = Diff r ω (S) ∩ Homeo * (S).

Corollary 1.1. Suppose that g ≥ 2. Then, for any 1 ≤ r ≤ ∞, the set of maps f ∈ Diff r ω, * (S) that have infinitely many periodic points is dense in Diff r ω, * (S).

Proof. There is no loss of generality by supposing that the measure µ ω naturally defined by ω is a probability measure. Note that the map f → rot f (µ ω ) is a morphism defined on Diff r ω (S). One can find a family of simple loops R). For every i ∈ {1, . . . , 2g} consider a closed tubular neighborhood W i of Γ i . It is easy to construct a divergence free smooth vector field ζ i supported on W i with an induced flow (h t i ) t∈R satisfying rot

(Γ i ) 1≤i≤2g in S such that the family ([Γ i ]) 1≤i≤2g generates H 1 (S,
h t i (µ ω ) = t[Γ i ]. For every t = (t 1 , . . . , t 2g ) ∈ R 2g , define f t = h t 1 1 • • • • • h t 2g 2g • f . We have rot f t (µ ω ) = rot f (µ ω ) + 2g i=1 rot h t i i (µ ω ) = rot f (µ ω ) + 2g i=1 t i [Γ i ].
So, we can find t "arbitrarily small" such that rot f t (µ ω ) ∈ H 1 (S, Q).

Remark.

A very close version of the theorem has been proved independently by Rohil Prasad. A very strong recent result of Cristofer-Prasad-Zhang [CPrZ], whose proof uses Periodic Floer Homology theory, asserts that if ω is a smooth area form on S, then for every k ∈ N ∪ {∞}, the set of maps f ∈ Diff k ω (S) that have a dense set of periodic points is dense in Diff k ω (S) (which of course implies that Corollary 1.1 holds in the smooth category, see also [EH] and [CPoPrZ]). The following result is used in their proof: in the case where f ∈ Diff ∞ ω, * (S) and rot f (µ ω ) ∈ H 1 (S, Q) \ {0}, the map f has a periodic orbit with non zero rotation vector. Moreover they find an explicit upper bound of the period related to rot(µ ω ) and to the genus of S. As explained by Prasad [Pr] in a recent note, a simple approximation process permits to extend this result to the case where f ∈ Homeo * (S) preserves µ ω and satisfies rot f (µ ω ) ∈ H 1 (S, Q) \ {0}. Moreover a blow-up argument allows to extend the result in the case where rot f (µ ω ) ∈ RH 1 (S, Z) \ {0}. Consequently it holds that f has infinitely many periodic orbits of period arbitrarily large. This last point is a consequence of previous works where area preserving homeomorphisms with finitely many periodic points are characterized ( [AdT] in the case of the torus, [START_REF] Calvez | Conservative surface homeomorphisms with finitely many periodic points[END_REF] in the case of surfaces with higher genus). Using Oxtoby-Ulam theorem [OxU] and the fact that every invariant probability measure is the barycenter of two invariant probability measures, the first one atomic and the second one with no atom, the measure µ ω can be replaced with any probability measure with total support. In the present article, we give some precisions about the structure of the periodic points.

Remark. The theorem is untrue in the sphere and in the torus. Indeed, suppose that α ∈ R \ Q.

The diffeomorphism f α of the Riemann sphere S 2 defined as follows

f α (z) = ∞ if z = ∞, e 2iπα z if z ∈ C,
preserves a probability measure µ ω associated to an area form and has no periodic point but 0 and ∞. If I is an identity isotopy of f , then rot

I (µ ω ) = 0 because H 1 (S 2 , R) = 0.
The diffeomorphism

g α : R 2 /Z 2 -→ R 2 /Z 2 (x, y) -→ (x + (α + Z), y)
preserves the area form ω = dx ∧ dy and has no periodic orbit.

If I = (R tα ) t∈[0,1] , then we have rot I (µ ω ) = α(1, 0) ∈ RH 1 (T 2 , Z).
Remark. In particular, the theorem asserts that if rot f (λ) = 0, then there exists infinitely many periodic orbits. Moreover the set of periods is infinite if f is not the identity because there exist ergodic invariant measures that are not Dirac measures at a fixed point. This result, that admits a version for the case g = 1, was already known (see [START_REF] Calvez | Periodic orbits of Hamiltonian homeomorphisms of surfaces[END_REF]). It is a generalization of a result stated in the differential setting (see [FH]) which itself is the two dimensional version of what is called Conley conjecture, later proved in any dimension (see [G]). Note that in [START_REF] Calvez | Periodic orbits of Hamiltonian homeomorphisms of surfaces[END_REF] it is proved that if f has finitely many fixed points, then there are infinitely many contractible periodic orbits.

Remark. The theorem was well known for the time one map of a conservative flow. Indeed, let X be a (time independent) vector field of class C 1 whose flow preserves ω. The equalities 0 = L

X ω = i X dω + di X ω tell us that the 1-form β = i X ω is closed. Moreover it is invariant by the flow of X because L X β = i X dβ + di X (i X ω) = 0. If f is the time one map of the flow (f t ) t∈R of X, then, denoting I = (f t ) t∈[0,1] ,
we know that for every closed 1-form α, we have

[α], rot I (µ ω ) = S I(z) α dµ ω (z) = S 1 0 α(X(f t (z))dt dµ ω (z) = 1 0 S α(X(f t (z))dµ ω (z) dt = S α(X(z))dµ ω (z) . Noting that 0 = i X (α ∧ ω) = i X α ∧ ω -α ∧ i X ω we deduce that [α], rot I (µ ω ) = S α ∧ β.
The fact that rot

I (µ ω ) ∈ RH 1 (S, Z) implies that [β] ∈ RH 1 (S, Z). Suppose for instance that [β] ∈ H 1 (S, Z).
Then there exists a function H : S → R/Z of class C 2 such that β = dH. Indeed, let us fix z 0 ∈ S. For every point z ∈ M , the value modulo 1, denoted H(z), of γ β does not depend on the C 1 path γ joining z 0 to z. We get in that way a function

H : S → R/Z of class C 2 such that β = dH. It is invariant by the flow of X because L X H = i X dH + di X H = i X β = i X (i X ω) = 0.
Denote sing(X) the set of singular points of X. Remind that the α-limit set α(z) and the ω-limit set ω(z) of a point z ∈ S are the sets of subsequential limits of the sequences (f -n (z)) n≥0 and (f n (z)) n≥0 respectively. If z is not singular, either the orbit of z is periodic, or its limit sets α(z) and ω(z) are contained in sing(X). In particular the ergodic invariant probability measures that are non supported on a singular point are supported on a periodic orbit of f lying on a periodic orbit of the flow with rational period, or supported on a whole periodic orbit of the flow with irrational period. The union W of periodic orbits of the flow is non empty (by Sard's theorem) and open. Moreover every connected component V of W is annular (meaning homeomorphic to R/Z × R). The genus being at least two, there exist singular points. Furthermore S is not a sphere. It implies that there exists at least one end of V such that for every sequence (z n ) n≥0 in V converging to this end, the period of z (for the flow) converges to +∞. So the period is not constant on V . It implies that f has periodic points of arbitrarily large period. More precisely, the loops Γ that appear in the Theorem are the simple loops contained in such a component V that are non homotopic to zero in V and suitably oriented. Note that if rot I (µ ω ) = 0, there exits at least one connected component V of W such that i * (H 1 (V, Z)) = {0}, where i * : H 1 (V, Z) → H 1 (S, Z) is the morphism naturally defined by the inclusion map i : V → S, meaning that the periodic points in V have non zero rotation vector.

Remark. The hypothesis rot f (λ) ∈ RH 1 (S, Z) is necessary to get the theorem. Indeed one can find smooth vector fields with finitely many singular points, whose flows preserves an area form ω and such that every orbit is dense if not reduced to a singular point. The time one map of this flow f has no periodic points but the singular points. Of course it holds that rot f (λ) ∈ RH 1 (S, Z). Classical examples are given by translation flows in a minimal direction.

Remark. Corollary 1.1 was already known. In fact we have a much stronger result: the set of maps f ∈ Diff r ω (S) that have a hyperbolic periodic point with transverse homoclinic intersection, is an open and dense subset of Diff r ω (S) (see [LecSa]). This result has been known for a long time in the case where g ≤ 1 (see [Ad], [AdT], [D], [START_REF] Oliveira | On the generic existence of homoclinic points[END_REF], [START_REF] Oliveira | On the C ∞ genericity of homoclinic orbits[END_REF], [Pi], [R]). A difficult step in the proof of the case g ≥ 2 is to show that the set of maps f ∈ Diff r ω, * (S) having at least 2g -1 periodic points is dense in Diff r ω, * (S). 1.3. Idea of the proof. The main tool of the proof is the forcing theory developed in [START_REF] Le Calvez | Forcing theory for transverse trajectories of surface homeomorphisms[END_REF][START_REF] Le Calvez | Topological horseshoes for surface homeomorphisms[END_REF][START_REF] Lellouch | Sur les ensembles de rotation des homéomorphismes de surface en genre ≥ 2[END_REF], which we introduce in Paragraphs 3.1 and 4.1. Using this tool, we analyse the possible configurations that can occur under the hypotheses of Theorem A. In most of the cases, we will find a rotational horseshoe (defined in Paragraph 2.5), which will allow us to get the conclusion of the theorem. In only one case we will not be able to find such a horsheshoe and indeed, there are some examples of homeomorphisms satisfying the hypotheses of Theorem A and without topological horseshoe, for example time one maps of area preserving flows. The conclusion will be obtained using an improved version of Poincaré-Birkhoff Theorem 2.1 in a suitable annulus. Caratheodory's theory of prime ends (see Paragraph 2.4) will be used in this last case.

More precisely, one can find a suitable identity isotopy I of f and a singular oriented foliation F on S whose regular set coincide with the set dom(I) of points with non trivial trajectory under the isotopy, that satisfy the following fundamental property: every non trivial trajectory I(z) is homotopic in dom(I) to a path transverse to F. Given an f -invariant ergodic probability measure ν such that ν(dom(I)) = 1, the proof starts by building an approximation of a typical orbit for ν (Lemma 5.1): it is an oriented loop Γ * transverse to F, such that [Γ * ] is close to rot f (ν), and such that, for ν-almost every point z, the transverse path defined naturally by the whole orbit of z draws this loop. We will consider an annular covering space dom(I) of dom(I) where Γ * is lifted to a non contractible simple loop Γ * . The isotopy I| dom(I) and the foliation F can be lifted to dom(I). The union of leaves that meet Γ * is an open annulus B. Depending of the properties of the trajectories of typical points for the measure ν with respect to this annulus B, we get different conclusions: if they cross or visit this annulus (see Paragraph 3.3 for definitions), then we are able to find a topological rotational horseshoe, by means of the forcing theory results proved in Paragraph 4.2; if they stay forever in this annulus then we prove that Poincaré-Birkhoff Theorem 2.1 applies and implies the existence of an infinite number of periodic orbits.

We strongly use, or develop, the results proved by Gabriel Lellouch in his PhD thesis [Lel]. In particular we will need the main result of [Lel], where ∧ denotes the natural intersection form on H 1 (S, R) (see Paragraph 4.1): if µ and µ are two invariant probability measures such that rot f (µ) ∧ rot f (µ ) = 0, then f has a rotational horseshoe. The hypothesis rot f (λ) ∈ RH 1 (S, Z) will be used once: with the help of Atkinson's theorem [At], it will permit us to assume that [Γ * ] ∧ rot f (λ) = 0. 1.4. Acknowledgements. We would like to thank Sobhan Seyfaddini for suggesting us this problem. While ending this article we received the recent note of Rohil Prasad. We would like to thank him for his useful comments.

Definitions, notations and preliminaries

In the sequel, the letter S will refer to a closed surface while the letter Σ will refer to any surface (not necessarily compact, not necessarily connected). If f is a surface homeomorphism, µ will refer to any f -invariant measure, λ to an f -invariant measure with total support, and ν to an f -invariant ergodic measure.

2.1. Loops and paths. Let Σ be an oriented surface (not necessarily closed, not necessarily boundaryless, not necessarily connected). A loop of Σ is a continuous map Γ : T → Σ, where T = R/Z. It will be called essential if it is not homotopic to a constant loop. A path of Σ is a continuous map γ : I → Σ where I ⊂ R is an interval. A loop or a path will be called simple if it is injective. The natural lift of a loop Γ : T → Σ is the path γ : R → Σ such that γ(t) = Γ(t + Z). A segment is a simple path σ : [a, b] → Σ, where a < b. The points σ(a) and σ(b) are the endpoints of σ. We will say that σ joins σ(a) to σ(b). More generally if A and B are disjoint, we will say that σ joins A to B, if σ(a) ∈ A and σ(b) ∈ B. A line is a proper simple path λ : R → Σ. As it is usually done we will use the same name and the same notation to refer to the image of a loop or a path γ.

Note that a simple loop or a simple path is naturally oriented. Let Γ be a simple loop of Σ, and denote Σ the connected component of Σ it belongs to. If Σ \ Γ has two connected components, we say that Γ separates Σ; in this case the connected component that is located on the right of Γ will be denoted R(Γ) and the other one L(Γ). We will use the same notations R(λ), L(λ) for a line λ that separates the connected component it belongs to.

Let f be an orientation preserving homeomorphism of Σ. A Brouwer line of f is a line λ that separates Σ such that f (λ) ⊂ L(λ) and f

-1 (λ) ⊂ R(λ). Equivalently it means that f (L(λ)) ⊂ L(λ) or that f -1 (R(λ)) ⊂ R(λ).
2.2. Poincaré-Birkhoff theorem. Let us consider the annulus A = T × I, where (0, 1) ⊂ I ⊂ [0, 1], and its universal covering space à = R × I. We define the covering projection π : (x, y) → (x + Z, y) and the generating covering automorphism T : (x, y) → (x + 1, y). We denote p1 : à → R the projection on the first factor.

Let f be a homeomorphism of A isotopic to the identity (meaning orientation preserving and fixing the boundary circles or ends) and f a lift of f to Ã. The map p 1 • f -p 1 lifts a continuous function ψ f : A → R because f and T commute. In particular, for every z ∈ A, for every lift z ∈ Ã of z and every n ≥ 1, we have

n-1 i=0 ψ f (f i (z)) = p 1 ( f n (z)) -p 1 (z).
Let z be a positively recurrent point. Say that f has rot f (z) ∈ R as a rotation number if for every subsequence (f n k (z)) k≥0 of (f n (z)) n≥0 that converges to z, we have

lim k→+∞ 1 n k n k -1 i=0 ψ f (f i (z)) = rot f (z).
If O is a periodic point of f of period q, then there exists p ∈ Z such that for every z ∈ π-1 (O) we have f q (z) = T p (z). In this case, p/q is the rotation number of O for the lift f . We will use the following extension of the classical Poincaré-Birkhoff Theorem (see for example [START_REF] Calvez | Une version feuilletée équivariante du théorème de translation de Brouwer[END_REF]):

Theorem 2.1. Let f be a homeomorphism of A isotopic to the identity and f a lift of f to Ã. We suppose that there exist two positively recurrent points z 1 and z 2 , such that rot f (z 1 ) < rot f (z 2 ). Then:

• either, for every rational number p/q ∈ (rot f (z 1 ), rot f (z 2 )), written in an irreducible way, there exists a periodic orbit O of f of period q and rotation number p/q for f ; • or there exists an essential simple loop Γ ⊂ T × (0, 1) such that

f (Γ) ∩ Γ = ∅.
Of course, we have a similar result in an abstract annulus, meaning a topological space homeomorphic to A.

Homeomorphisms of hyperbolic surfaces.

Let Σ be a connected oriented hyperbolic surface without boundary, meaning different from the sphere, the plane, the open annulus or the torus. One can furnish Σ with a complete Riemannian metric of constant negative curvature -1. The universal covering space of Σ is the disk D = {z ∈ C | |z| < 1} and the group of covering transformations, denoted G, is composed of Mőbius automorphisms of D. One can suppose that the metric is of first type, meaning that the closure in C of every G-orbit contains S 1 = {z ∈ C | |z| = 1} (see [START_REF] Matsumoto | Arnold conjecture for surface homeomorphisms[END_REF] for instance). Every hyperbolic element T ∈ G can be extended to a homeomorphism of D having two fixed points on the boundary: a repelling fixed point α(T ) and an attracting fixed point ω(T ). For every

z ∈ D \ {α(T ), ω(T )}, it holds that lim k→-∞ T k z = α(T ), lim k→+∞ T k z = ω(T ).
The metric being of first type, the set of points α(T ) and the set of points ω(T ), T among all hyperbolic automorphism, is dense in S 1 . Every parabolic element T ∈ G can be extended to a homeomorphism of D having one fixed point αω(T ) on the boundary. For every z ∈ D \ {αω(T )}, it holds that lim k→±∞

T k z = αω(T ).
A homeomorphism f of Σ isotopic to the identity has a unique lift f to D that commutes with the covering automorphisms. We will call it the canonical lift of f . It is well known that f extends to a homeomorphism f of D that fixes every point of S 1 . If T ∈ G is hyperbolic, then f lifts a homeomorphism f of Σ = Σ/T . Moreover f extends to a homeomorphism of the compact annulus Σ obtained by adding the two circles Ĵ = J/T and Ĵ = J /T , where J and J are the two connected components of S 1 \{α(T ), ω(T )}.

Note that every point of Ĵ ∪ Ĵ is fixed, with a rotation number equal to zero for the lift f | D\{α(T ), ω(T )} . Similarly, if T ∈ G is parabolic, then f lifts a homeomorphism f of Σ = Σ/T that extends to a homeomorphism of Σ obtained by adding the circle (S 1 \ {αω(T )})/T at one end of Σ. Every point of this circle is fixed, with a rotation number equal to zero for the lift f | D\{αω(T )} .

2.4. Caratheodory theory of prime ends. In this small subsection we state a result that will be used once in the article, consequence of what is called prime end theory (see [Math] for instance). Let S be a closed surface of genus ≥ 1 and U an open annulus of S. Say that an end e of U is singular if there exists a point z ∈ S and a neighborhood of e in U that is a punctured neighborhood of z in S. Otherwise say that e is regular. There is at least one regular end because S is not the 2-sphere. Suppose that U is invariant by an orientation preserving homeomorphism f . Then the homeomorphism f | U extends to a homeomorphism f U of a larger annulus U pe obtained by blowing up each regular end of U and replace it with the associated circle of prime ends. Moreover if U is a connected component of the complement of a closed subset X of fix(f ), then the extended map fixes each point of the circles of prime ends. More precisely, suppose that

I = (f t ) t∈[0,1] is an identity isotopy of f , such that f t (U ) = U and X ⊂ fix(f t ) for every t ∈ [0, 1].
Then, the rotation number of the points on the added circles (they are fixed) is equal to 0, for the lift of f U to the universal covering space of U pe , that extends the lift of f | U to the universal covering space of U , naturally defined by I| U .

2.5. Rotational topological horseshoes. Let Σ be a connected oriented surface. Say that Y ⊂ S is a topological horseshoe of f ∈ Homeo * (S) if Y is closed, invariant by a power f r of f , and if f r | Y admits a finite extension g : Z → Z on a Hausdorff compact space Z such that:

• g is an extension of the Bernouilli shift σ : {1, . . . , m} Z → {1, . . . , m} Z , where m ≥ 2; • the preimage of every s-periodic sequence of {1, . . . , m} Z by the factor map contains at least one s-periodic point of g. It means that g is a homeomorphism of Z that is semi-conjugated to f r | Y and that the fibers of the factor map are all finite with an uniform bound M in their cardinality. Note that, if h(f ) denotes the topological entropy of f , then it holds that

rh(f ) = h(f r ) ≥ h(f r | Y ) = h(g) ≥ h(σ) = log q,
and that f r has at least q n /M fixed points for every n ≥ 1.

Suppose now that S is a connected closed oriented surface. Say that a topological horseshoe Y of f ∈ Homeo * (S) is a rotational topological horseshoe of type (κ, r), where κ ∈ F HL(S) and r is a positive integer, if there exists a positive integer s such that for every p/q ∈ [0, 1] ∩ Q, there exists a point z ∈ Y of period at least q/s, such that the loop naturally defined by I rq (z) belongs to κ p . In particular the horseshoe defines a homotopical interval of rotation. The rotational topological horseshoes that appear in the present article will be constructed in an annular covering of an invariant open set, satisfying the geometric definition given in [PaPotSa].

Foliations on surfaces

In this section we will consider an oriented boundaryless surface Σ, not necessarily closed, not necessarily connected, and a non singular oriented topological foliation F on Σ. We will consider:

• the universal covering space Σ of Σ;

• the covering projection π : Σ → Σ;

• the group G of covering automorphisms;

• the lifted foliation F on Σ. For every point z ∈ Σ, we denote φ z the leaf of F that contains z. If φ z : R → Σ is a parametrization of φ z inducing the orientation, such that

φ z (0) = z, we set φ + z = φ z | [0,+∞) and φ - z = φ z | (-∞,0]
. Similarly, for every point z ∈ Σ, we denote φz the leaf of F that contains z and we define in the same way φ+ z and φz . 3.1. F-transverse intersections. A path γ : J → Σ is positively transverse1 to F if it locally crosses each leaf of F from the right to the left. Observe that every lift γ : J → Σ of γ is positively transverse to F and that for every a < b in J:

• γ| [a,b] meets once every leaf φ such that R( φγ(a) ) ⊂ R( φ) ⊂ R( φγ(b) );

• γ| [a,b] does not meet any other leaf.

Two transverse paths γ1 : J 1 → Σ and γ2 : J 2 → Σ are said equivalent if they meet the same leaves of F. Two transverse paths γ 1 : J 1 → Σ and γ 2 : J 2 → Σ are equivalent if there exists a lift γ1 : J 1 → Σ of γ and a lift γ2 : J 2 → Σ of γ 2 that are equivalent. Let γ1 : J 1 → Σ and γ2 : J 2 → Σ be two transverse paths such that there exist t 1 ∈ J 1 and t 2 ∈ J 2 satisfying γ1 (t 1 ) = γ2 (t 2 ). We will say that γ1 and γ2 have a F-transverse intersection at γ1 (t 1 ) = γ2 (t 2 ) if there exist

a 1 , b 1 ∈ J 1 satisfying a 1 < t 1 < b 1 and a 2 , b 2 ∈ J 2 satisfying a 2 < t 2 < b 2 such that: • φγ 1 (a 1 ) ⊂ L( φγ 2 (a 2 ) ), φγ 2 (a 2 ) ⊂ L( φ γ 1 (a 1 ) ); • φ γ 1 (b 1 ) ⊂ R( φγ 2 (b 2 ) ), φγ 2 (b 2 ) ⊂ R( φ γ 1 (b 1 ) ); γ1 (t 1 ) = γ2 (t 2 ) γ1 γ2 γ2 (b 2 ) γ1 (b 1 ) γ2 (a 2 ) γ1 (a 1 ) Figure 1. Example of F-transverse intersection.
• every path joining φγ 1 (a 1 ) to φγ 1 (b 1 ) and every path joining φγ 2 (a 2 ) to φγ 2 (b 2 ) must intersect.

It means that there is a "crossing" between the two paths naturally defined by γ1 and γ2 in the space of leaves of F, which is a one-dimensional topological manifold, usually non Hausdorff (see Figure 1). Now, let γ 1 : J 1 → Σ and γ 2 : J 2 → Σ be two transverse paths such that there exist t 1 ∈ J 1 and t 2 ∈ J 2 satisfying γ 1 (t 1 ) = γ 2 (t 2 ). Say that γ 1 and γ 2 have a F-transverse intersection at γ 1 (t 1 ) = γ 2 (t 2 ) if γ1 and γ2 have a F-transverse intersection at γ1 (t 1 ) = γ2 (t 2 ), where γ1 : J 1 → Σ and γ2 : J 2 → Σ are lifts of γ 1 and γ 2 such that γ1 (t 1 ) = γ2 (t 2 ). If γ 1 = γ 2 one speaks of a F-transverse self-intersection. This means that if γ 1 is a lift of γ 1 , there exists T ∈ G such that γ 1 and T γ 1 have a F-transverse intersection at γ 1 (t 1 ) = T γ 1 (t 2 ). is an open annulus which is F-saturated, meaning that it is a union of leaves.

Similarly B = π -1 ( B) = {z ∈ Σ | φz ∩ γ * = ∅}
is an F-saturated plane invariant by T . We will call such a set a strip or a T -strip if we want to be more precise. The frontier of B, denoted ∂ B, is a union of leaves (possibly empty) and can be written

∂ B = ∂ BR ∂ BL , where ∂ BR = ∂ B ∩ R(γ * ) , ∂ BL = ∂ B ∩ L(γ * ).
Let us state some facts that can be proven easily (see [START_REF] Le Calvez | Topological horseshoes for surface homeomorphisms[END_REF] or [Lel]). Note first that:

• if there is a leaf φ ⊂ ∂ B that is invariant by T , then the set ∂ BR or ∂ BL that contains φ is reduced to this leaf; • if γ : R → Σ is transverse to F, then the set of real numbers t such that γ(t) ∈ B is an interval (possibly empty).

Suppose now that γ : R → Σ is transverse to F and that

t ∈ R | γ(t) ∈ B = (a, b),
where -∞ ≤ a < b ≤ ∞. Say that • γ draws B if there exist t < t in (a, b) such that φγ(t ) = T φγ(t)) . If, moreover, we suppose that -∞ < a < b < +∞, say that:

• We will say that γ crosses B if it crosses it from the right to the left or from the left to the right. Similarly, we will say that γ visits B if it visits it on the right or on the left. Note that T (γ) satisfies the same properties as γ. Note also that if γ visits B on the right, then ∂ BR is not reduced to a T -invariant leaf. An analogous property holds if γ visits B on the left. Finally, observe that at least one of the following situations occurs (the two last assertions are not incompatible):

• γ crosses B; • γ visits B;
• γ is equivalent to γ * at +∞ or at -∞;

• γ accumulates on γ * positively or negatively. Let us conclude this list of properties by the following ones (see [START_REF] Lellouch | Sur les ensembles de rotation des homéomorphismes de surface en genre ≥ 2[END_REF]Section 2.1.2.c]): 3.4. More about the accumulation property. In this final paragraph, we will suppose moreover than Σ is connected and that Σ = R 2 /Z 2 . The goal is to prove the following result that has its own interest and will be used in the sequel to prove Theorem A. This statement is stronger than some results of [Lel, Section 2.1.1].

Proposition 3.2. Suppose that γ 1 : R → Σ is a positively recurrent transverse path that accumulates positively on a transverse path γ 2 : R → Σ.

Then, there exists a transverse simple loop Γ * ⊂ Σ with the following properties.

(1) The set B of leaves met by Γ * is an open annulus of Σ.

(2) The path γ 1 stays in B and is equivalent to the natural lift of Γ * .

(

) If γ1 , γ2 are lifts of γ 1 , γ 2 to the universal covering space Σ such that γ1 | [a 1 ,+∞) is equivalent to γ2 | [a 2 ,b 2 ) and if B is the lift of B that contains γ1 , then one of the inclusions φγ 2 (b 2 ) ⊂ ∂ BR , φ γ2 (b 2 ) ⊂ ∂ BL holds. 3 
In the first case, we have B ⊂ L( φ) for every φ ⊂ ∂ BR and in the second case, we have B ⊂ R( φ) for every φ ⊂ ∂ BL .

An example of a situation where Proposition 3.2 holds is depicted in Figure 2.

In Proposition 4.17 we will get additional properties when the paths are supposed to be trajectories that are typical for some ergodic f -invariant measures.

Proof. Let us start with a lemma. 0 Note that if moreover Γ is a simple path, then the conclusion of the lemma implies that R ∈ T .

ψ - z ψ + z Ψ z (W z ) = [-1, 1] 2 Ψ z (X ∩ W z )
This lemma can be reduced easily to the following fact.

Sub-lemma 3.4. Let F be a singular foliation on Σ, and Γ : T → Σ a loop of Σ that is transverse to F. Then, there exists z ∈ Γ such that φ + z does not meet Γ but at the end point.

Proof of Lemma 3.3. By Sub-lemma 3.4, there exist z, z in Γ (possibly equal) such that φ + z and φ - z do not meet Γ but at their end point. Denote z, z the respective lifts of z, z that belong to γ| [a,a+1) . We know that φ+ z ∩ Rγ = ∅, and that φz ∩ Rγ = ∅. We deduce that Rγ ∩ γ| [a,a+1) = ∅.

Proof of Sub-lemma 3.4. Fix z ∈ Γ. The loop Γ being transverse to F, there are finitely many parameters t ∈ T such that z = Γ(t). Consequently, there exists a compact neighborhood W z of z, a homeomorphism Φ z : W z → [-1, 1] 2 and a finite set I z such that:

• Φ z sends z onto (0, 0); • Φ z sends F| Wz onto the vertical foliation oriented upward;

• we have Φ z (Γ ∩ W z ) = i∈Iz gr(ψ i,z ), where ψ i,z : [-1, 1] → [-1, 1] is a continuous function satisfying ψ i,z (0) = 0.
Here the notation gr(ψ) denotes the graph of ψ : [-1, 1] → [-1, 1] oriented from the right to the left. See Figure 3 for an example of such a configuration. Consider the two continuous functions

ψ - z = min i∈Iz ψ i,z , ψ + z = max i∈Iz ψ i,z
and define

γ - z = Φ -1 z (gr(ψ - z )) , γ + z = Φ -1 z (gr(ψ + z )
). We will argue by contradiction by supposing that for any z ∈ Γ, the path φ + z meets Γ in a point that is not the end point. In that case, for every z ∈ Γ, there exists a sub-path

δ z : [0, 1] → Σ of φ + z such that δ z (0) = z, δ z (1) ∈ Γ, δ z ((0, 1)) ∩ Γ = ∅.
In particular we can define a first return map θ : Γ → Γ by setting θ(z) = δ z (1). We will prove that X = z∈Γ δ z ([0, 1]) is a compact sub-surface with boundary. Note that for every z ∈ Γ, the function θ induces a homeomorphism from a compact neighborhood α z of z in γ + z to a compact neighborhood ω z of θ(z) in γ - θ(z) and consequently that every point δ z (t), t ∈ (0, 1), belongs to the interior of X. Note also that for every z ∈ Γ, the set

Φ - z ({(x, y) | y ≥ ψ - z (x)}) is included in X.
By compactness, one can cover Γ with finitely many α z , z ∈ Γ. We deduce that the image of θ, denoted im(θ), is the union of finitely many compact subsets (the corresponding ω z ) and therefore is compact. We deduce also that X is compact because for every z ∈ Γ, the set z ∈αz δ z ([0, 1]) is compact. Now, observe that for every z ∈ Γ and every z ∈ γ - z , the sets γ - z and γ

- z coincide in a neighborhood of z . It implies that im(θ) ∩ γ - z is an open subset of γ - z . By connectedness of γ - z , ei- ther γ - z is contained in im(θ) or it is disjoint from im(θ). In the first case, W z is contained in X, in the second case W z ∩ X = Φ -1 z ({(x, y) | y ≥ ψ - z (x)}):
we have proved that X is a compact sub-surface of Σ (possibly with boundary). Note that for every z ∈ ∂X it holds that φ + z \ {z} ⊂ int(X) (in other terms the foliation is pointing inward on the boundary).

By hypothesis, Σ is connected and different from R 2 /Z 2 . So, it does not bear a non-singular foliation. We deduce that X is a surface with boundary. More precisely it is homeomorphic to the closed annulus because it bears a non singular foliation. Let Ψ : X → S 2 be a topological embedding compatible with the usual orientations. The loop Ψ(Γ) is homologous to 0 in S 2 and one can define a dual function δ : S 2 \ Ψ(Γ) → Z. Such a function is defined by the following property: for every z, z in S 2 \ Ψ(Γ) and every path β joining z to z , the algebraic intersection number Ψ(Γ) ∧ β is equal to δ(z )-δ(z). Let U be a connected component of S 2 \Ψ(Γ) where δ reaches its maximum. The set Ψ(Γ) being connected, the closure of U is a topological disk. Moreover the fact that δ reaches its maximum in U implies that for every z ∈ ∂U it holds that φ + z \{z} ⊂ U . So U is not a connected component of S 2 \ Ψ(X) and it holds that U ⊂ ψ(X). Summarizing, we have found a closed topological disk bearing a non-singular foliation pointing inward on the boundary. We have got a contradiction.

Let us explain how to construct the simple loop Γ * that appears in Proposition 3.2. As γ 1 is positively recurrent, there exist two numbers c 1 < c 1 , with c 1 > a 1 , such that φ γ 1 (c 1 ) = φ γ 1 (c 1 ) (see Figure 4 for these different points). is non empty (because it contains (c 1 , c 1 )) and compact. Indeed, it is closed in

It implies that γ 1 | [c 1 ,c 1 ] is equivalent to a transverse path γ * : [c 1 , c 1 ] → Σ such that γ * (c 1 ) = γ * (c 1 ). The set X = (t, t ) ∈ [c 1 , c 1 ] 2 | t < t and γ * (t) = γ * (t )
{(t, t ) ∈ [c 1 , c 1 ] 2 | t < t }, an its closure in the compact set {(t, t ) ∈ [c 1 , c 1 ] 2 | t ≤ t }
does not contain any couple (t, t). The function (t, t ) → t -t being continuous and positive on X, reaches its minimum at a couple (c 1 , c 1 ). So, replacing (c 1 , c 1 ) with (c 1 , c 1 ) if necessary, one can always suppose that the loop Γ * naturally defined by γ * is simple. We denote B the union of leaves met by Γ * .

By hypothesis there exist two lifts γ1 and γ2 of respectively Proof. We will argue by contradiction and suppose it is not. Then there exists d 1 > c 1 , uniquely defined, such that γ1 (d 1 ) / ∈ B and γ1

| [c 1 ,d 1 ) ⊂ B.
Claim 3.6. There exists a deck transformation R ∈ G and real numbers e 1 < e 1 , with e 1 ≥ a 1 , such that either Rγ 1 | [e 1 ,e 1 ] draws and crosses B, or it draws and visits B.

Proof. Note that to prove this claim one has to find R ∈ G and e 1 < e 1 such that Rγ 1 | [e 1 ,e 1 ] draws B and both Rγ 1 (e 1 ) and Rγ 1 (e 1 ) do not belong to B. As γ 1 is positively recurrent, there exist real numbers e 1 < e 1 , with e 1 > d 1 , and a deck transformation

R ∈ G such that Rγ 1 | [e 1 ,e 1 ] is equivalent to γ1 | [c 1 ,d 1 ] ; in particular: • γ1 | [c 1 ,c 1 ] is equivalent to a subpath of Rγ 1 | [e 1 ,e 1 ] ;
• Rγ 1 ([e 1 , e 1 )) ⊂ B and Rγ 1 (e 1 ) / ∈ B. To prove the claim, it is sufficient to show that Rγ 1 ([a 1 , e 1 )) ⊂ B, because in that case there exists e 1 ∈ [a 1 , e 1 ] such that Rγ 1 ((e 1 , e 1 )) ⊂ B and Rγ 1 (e 1 ) / ∈ B.

We argue by contradiction. Suppose that Rγ 1 ([a 1 , e 1 )) is contained in B. Then γ1 ([a 1 , e 1 )) is contained in R -1 ( B). Recall that there exists t such that γ * |

[t,t+1] is equivalent to γ1 | [c 1 ,c 1 ] which is a subpath of γ1 | [a 1 ,e 1 ) . It implies that γ * | [t,t+1] is equivalent to a subpath of R -1 γ * because γ1 ([a 1 , e 1 )
) is contained in R -1 ( B). Lemma 3.3 applies and ensures that R -1 ∈ T . As B is invariant by T , the condition Rγ 1 ([a 1 , e 1 )) ⊂ B gives γ1 ([a 1 , e 1 )) ⊂ B. This contradicts the condition γ1 (d 1 ) / ∈ B, because a 1 < d 1 < e 1 .

As γ 1 is positively recurrent, there exist sequences (e 1,n ) n≥0 and (e 1,n ) n≥0 with a 1 < e 1,n < e 1,n < e 1,n+1 , and a sequence (R n ) n≥0 of deck transformations, such that Indeed, otherwise, as γ 1 is positively recurrent, there exist deck transformations

R n γ1 | [e 1,n ,e 1,n ] is equivalent to Rγ 1 | [e 1 ,
∈ N, the path R n γ2 | [e 2,n ,e 2,n ] intersects γ * . Replacing R n with T k N • R n for a certain k N ∈ Z if necessary, one can suppose that R n γ2 | [e 2,n ,e 2,n ] intersects γ * | [t,t+1] and so R -1 n (γ * | [t,t+1] ) intersects γ2 ([a 2 , b 2 ]). It
(R n ) n≥0 ∈ G and parameters d n < d n both going to +∞ such that γ1 | [dn,d n ] is equivalent to R n γ1 | [c 1 ,c 1 ] , which is itself equivalent to R n γ * | [t,t+1] .
The fact that γ1 accumulates in γ * implies that R n / ∈ T eventually. Recall that for any n, the path γ1 | [dn,d n ] is equivalent to a subpath of γ * ; this allows to apply Lemma 3.3 to the simple path Γ * , which implies that R n ∈ T , a contradiction.

Hence, there exists

t 1 ∈ R such that γ1 | [c 1 ,+∞) is equivalent to γ * | [t 1 ,+∞) . Moreover it is equivalent to γ2 | [c 2 ,b 2 ) , where c 2 ∈ [a 2 , b 2 ]. It implies that φγ 2 (b 2 ) ⊂ ∂ B.
We do not lose generality by supposing that φγ 2 (b 2 ) ⊂ ∂ BL . 

We choose a

2 ∈ [c 2 , b 2 ) such that γ2 ([a 2 , b 2 ]) ∈ L(γ * ).
= (γ 2 | [a 2 ,b 2 ) ) -1 φ+ γ2 (a 2 ) , λ3 = γ3 | (a 3 ,b 3 ] φ+ γ3 (b 3 ) .
The line γ * intersects φγ 2 (a 2 ) in a unique point z2 and we have z2 ∈ φ+ γ2 (a 2 ) . Similarly, γ * intersects φγ 3 (b 3 ) in a unique point z3 and we have z3 ∈ φ+ γ3 (b 3 ) . Denote σ2 ⊂ φγ 2 (a 2 ) the segment that joins γ2 (a 2 ) to z2 and σ3 ⊂ φγ(b 3 ) the segment that joins γ3 (b 3 ) to z3 . By compactness of all segments, if n is large enough, then we have

T n (γ 3 ([a 3 , b 3 ]) ∪ σ3 ) ∩ γ2 ([a 2 , b 2 ]) ∪ σ 2 = ∅.
Moreover, one can suppose that and φ+ γ3 (b 3 ) are included in R(γ * ) tells us that

T n φγ 3 (b 3 ) ⊂ L( φγ 2 (a 2 ) ).
T n φγ(b 3 ) ∩ γ2 ([a 2 , b 2 ]) ∪ σ2 = ∅.
We deduce that the lines λ2 and T n λ3 are disjoint.

The sub-path of γ * that joins z2 to T n z3 is disjoint from λ2 and T n λ3 but at the endpoints, entering in L B ( λ2 ) at z2 and leaving R B (T n λ3 ) at T n z3 .

Consequently the following inclusion

L B (T n λ3 ) ⊂ L B ( λ2 ) holds. Every leaf φ ⊂ L B ( φT n z3 ) is disjoint from T n λ3 . It is contained in L(T n λ3 ) because
the sub-path of γ * that joins φT n (z 3 ) to φ is disjoint from T n λ3 but at T n z3 and enters in L B (T n λ3 ) at T n z3 . The contradiction comes from the fact

that φ must intersect γ2 | [a 2 ,b 2 ) because φ ⊂ L B ( φz 2 ).
Lemma 3.8. The set B is an open annulus of Σ.

Proof. Suppose it is not. Then there exists a deck transformation R / ∈ T of Σ such that R B ∩ B = ∅. As B is the set of leaves met by γ * , it implies the existence of t ∈ R such that Rγ * (t) ∈ B. The line γ * lifts the simple loop Γ * and so we have Rγ * ∩ γ * = ∅. Moreover, there is at least one leaf of F that is met both by γ * and Rγ * . Consequently, one of the following inclusions L(Rγ * ) ⊂ L(γ * ), L(γ * ) ⊂ L(Rγ * ) holds. Replacing R by R -1 if necessary, one can suppose that the first inclusion holds, which implies that Rγ * ⊂ L(γ * ).

Note that Rγ * cannot accumulate on γ * (neither positively nor negatively) because the natural lift γ * of Γ * is recurrent and so, by Lemma 3.3, cannot accumulate on itself. Moreover it cannot be equivalent to γ * neither at +∞ nor at -∞ (by using Lemma 3.3). It cannot cross B because Rγ * ∩ γ * = ∅. It remains to prove that it cannot visit B.

Using the fact that Rγ * ⊂ L(γ * ), the line Rγ * must visit B by the left if it visits B. This contradicts Lemma 3.7: no transverse trajectory enters in B by the left side.

To prove Proposition 3.2, it remains to prove that γ 1 is entirely contained in B (which will imply that γ1 is entirely contained in B). But this is implied by the facts that γ 1 | [a 1 ,+∞) is contained in B and that γ 1 is recurrent. This finishes the proof of Proposition 3.2.

The following results (and others related to the accumulation property) were already stated by Lellouch in [START_REF] Lellouch | Sur les ensembles de rotation des homéomorphismes de surface en genre ≥ 2[END_REF]Section 2.1.1]. Using the precise description given here, we get them as a trivial corollary.

Corollary 3.9. Suppose that γ 1 : R → Σ is a positively recurrent transverse path that accumulates positively on a transverse path γ 2 : R → Σ. Then there is no positively or negatively recurrent transverse path γ 0 : R → Σ that accumulates positively or negatively on γ 1 . In particular a positively recurrent transverse path does not accumulate on itself. Also, the accumulated leaf φ γ 2 (b 2 ) is not met by γ 1 .

Proof. To prove the first point, it suffices to note that by Proposition 3.2, the function t → φ γ 1 (t) is locally injective. The last point comes from the fact that γ 1 is contained in B while φ γ 2 (b 2 ) is contained in the frontier of B.

Forcing theory

4.1. Maximal isotopies and transverse foliations. Let Σ be an oriented boundaryless surface, not necessarily closed, not necessarily connected and f a homeomorphism isotopic to the identity. Recall that if I = (f t ) t∈[0,1] is an identity isotopy of f , the trajectory I(z) of a point z ∈ Σ is the path t → f t (z) defined on [0, 1]. We can define the whole trajectory of z as being the path

I Z (z) = k∈Z I(f k (z))
constructed by concatenation. More precisely, on every interval [k, k + 1], k ∈ Z, it is defined by the formula:

I Z (z) : t → f t-k (f k (z)).
We define the fixed point set and the domain of I as follows:

fix(I) = t∈[0,1] fix(f t ) , dom(I) = Σ \ fix(I).
Denote I the set of identity isotopies of f . We have a preorder on I defined as follows: say that I I if

• fix(I) ⊂ fix(I ); • I is homotopic to I relative to fix(I).
Let us state two important results. The first one is due to Béguin-Crovisier-Le Roux [BeCLer] (see also [J] for a weaker version). The second can be found in [START_REF] Calvez | Une version feuilletée équivariante du théorème de translation de Brouwer[END_REF].

Theorem 4.1. For every I ∈ I, there exists I ∈ I such that I I and such that I is maximal for the preorder.

Remark. An isotopy I is maximal if and only if, for every z ∈ fix(f ) \ fix(I), the loop I(z) is not contractible in dom(I). Equivalently, if we lift the isotopy I| dom(I) to an identity isotopy I = ( f t ) t∈[0,1] on the universal covering space dom(I) of dom(I), the maximality of I means that f 1 is fixed point free. Note that every connected component of dom(I) must be a topological plane.

Theorem 4.2. If I ∈ I is maximal, then there exists a topological oriented singular foliation F on M such that • the singular set sing(F) coincides with fix(I); • for every z ∈ dom(I), the trajectory I(z) is homotopic in dom(I), relative to the ends, to a transverse path γ joining z to f (z).

We will say that F is transverse to I. It can be lifted to a non singular foliation F on dom(I) which is transverse to I. This last property is equivalent to saying that every leaf φ of F is a Brouwer line of the lift f induced by I, as defined in Section 2.1. The path γ is uniquely defined up to equivalence: if γ 1 and γ 2 are two such paths and if z ∈ dom(I) lifts z ∈ dom(I), then the respective lifts γ1 , γ2 of γ 1 , γ 2 starting at z join this point to f (z) and consequently meet the same leaves of F. We will write γ = I F (z) and call this path the transverse trajectory of z. It is defined, up to equivalence, on [0, 1]. For every n ≥ 1, we will define by concatenation the path

I n F (z) = I F (z)I F (f (z)) • • • I F (f n-1 (z)).
We can also define the whole transverse trajectory of z as being the path

I Z F (z) = k∈Z I F (f k (z)) coinciding on [k, k + 1], k ∈ Z, with I F (f k (z)) after translation by -k. Similarly, we define Ĩn F (z) = Ĩ F (z) Ĩ F ( f (z)) • • • Ĩ F ( f n-1 (z)) and ĨZ F (z) = k∈Z Ĩ F ( f k (z)).
Recall that a flow-box of F is an open disk Ũ of dom(I) such that the foliation F| Ũ is homeomorphic to the foliation of R 2 by verticals. The following results, easy to prove (see [START_REF] Le Calvez | Forcing theory for transverse trajectories of surface homeomorphisms[END_REF]), will be useful in the article.

Proposition 4.3. For every z ∈ dom(I) and every pair of integers k 1 < k 2 there exists a neighborhood Ũ of z such that ĨZ

F (z)| [k 1 ,k 2 ] is a subpath (up to equivalence) of ĨZ F (z )| [k 1 -1,k 2 +1] .
Proposition 4.4. For every z ∈ dom(I) and every neighborhood Ṽ of z, there exists a flow-box Ũ ⊂ Ṽ containing z, such that for every z ∈ Ũ , the path ĨZ F (z ) intersects every leaf that meets Ũ . Remind that if f is a homeomorphism of Σ, a point z is positively recurrent if z ∈ ω(z) and negatively recurrent if z ∈ α(z). In the case where z ∈ α(z) ∩ ω(z), we say that z is recurrent. For instance, if µ is an invariant finite Borel measure on S, then µ-almost every point is recurrent. The following result is an immediate consequence of Proposition 4.3. Let us state now the key lemma of [START_REF] Le Calvez | Forcing theory for transverse trajectories of surface homeomorphisms[END_REF] (Proposition 20) that is the elementary brick of the forcing theory and which will be used later.

Lemma 4.6. Suppose that there exist z1 , z2 in dom(I) and positive integers n 1 , n 2 such that Ĩn 1 F (z 1 ) and Ĩn 2 F (z 2 ) have an

F-transverse intersec- tion at Ĩn 1 F (z 1 )(t 1 ) = Ĩn 2 F (z 2 )(t 2 ). Then there exists z3 ∈ dom(I) such that Ĩn 1 +n 2 F (z 3 ) is equivalent to Ĩn 1 F (z 1 )| [0,t 1 ] Ĩn 2 F (z 2 )| [t 2 ,n 2 ] .
Let us give now the principal result of [START_REF] Le Calvez | Topological horseshoes for surface homeomorphisms[END_REF]. Here, G is the group of covering automorphisms of dom(I) and [T ] F HL ∈ FHL(S) is the free homotopy class (in S) of a loop Γ ⊂ dom(I) naturally defined by T (see Paragraph 2.5). Proof. What is proved in [START_REF] Le Calvez | Topological horseshoes for surface homeomorphisms[END_REF] is the following, where dom(I) = dom(I)/T and f is the homeomorphism of dom(I) induced by f .

There exists an f r -invariant compact set Ŷ such that

• f r is an extension of the Bernouilli shift σ : {1, 2} Z → {1, 2} Z ;
• the preimage of every q-periodic sequence of {1, 2} Z by the factor map contains at least one q-periodic point of f r ; • for every p/q ∈ [0, 1] ∩ Q written in an irreducible way, there exists ẑp/q ∈ Ŷ such that f rq (z p/q ) = T p (z p/q ) if zp/q ∈ dom(I) lifts ẑp/q .

The image Y of Ŷ by the covering projection π : dom(I) → dom(I) is invariant by f r . It is a topological horseshoe because π| Ŷ is a semi-conjugacy from f r | Ŷ to f r | Y and because every z ∈ Y has finitely many lifts in Ŷ (with an uniform bound s) because Ŷ is compact. The loop of S naturally defined by I rq (z p/q ), where z p/q = π(z p/q ), belongs to [T ] p F HL . Moreover, the f rorbit of ẑp/q has q points because p and q are relatively prime. It projects onto the f r -orbit of z p/q , which has at least q/s points. So, the period of z p/q (for f ) is at least q/s.

Remark. In particular, the theorem asserts the existence of a topological horseshoe, and so the positiveness of the topological entropy, in the case where there exists z ∈ dom(I) such that I Z F (z) has an F-transverse selfintersection. It was proved in [START_REF] Le Calvez | Forcing theory for transverse trajectories of surface homeomorphisms[END_REF] that such a situation occurs in the case where there exist two positively (or negatively) recurrent points z 1 , z 2 in dom(I) such that I Z F (z 1 ) and I Z F (z 2 ) have an F-transverse intersection. For example this happens if f preserves a Borel probability measure with total support and if there exist two points z 1 , z 2 in dom(I) such that I Z F (z 1 ) and I Z F (z 2 ) have an F-transverse intersection. Indeed, by Proposition 4.3, it is also the case for I Z F (z 1 ) and I Z F (z 2 ) if z 1 , z 2 are close to z 1 , z 2 respectively. But if f preserves a Borel probability measure λ with total support, then λ-almost every point is recurrent and so, the set of recurrent points is dense.

What follows, which is stronger than what is said in the previous remark, is crucial in [Lel] and will also be fundamental in our study.

Corollary 4.8. Suppose that Σ is a closed surface and that ν 1 , ν 2 are ergodic invariant probability measures. If there exists z1 ∈ dom(I) ∩ supp(ν 1 ) and z2 ∈ dom(I)∩supp(ν 2 ) such that ĨZ F (z 1 ) and ĨZ F (z 2 ) intersect F-transversally, then for every neighborhood U of rot f (ν 1 ) in H 1 (S, R), there exists T ∈ G \ {Id} and r ≥ 1 such [T ]/r ∈ U and such that f admits a rotational horseshoe of type ([T ] F HL , r).

Note that this corollary can be applied in the case where ν 1 = ν 2 and some z ∈ dom(I) ∩ supp(ν 1 ) is such that ĨZ F (z) has an F-transverse selfintersection.

Proof. Let j ∈ {1, 2}. One knows that ν j -almost every point z j satisfies the following properties:

• z j is recurrent; • its orbit is dense in supp(ν j ); γi,i ĨZ F (z 3 ) T -1 1,i ĨZ F (z 1 ) ĨZ F (z 2 ) T -1 1,i z 1 z 2 T -1 1,i T -1 2,i ĨZ F (z 3 ) z3 Figure 6
. The configuration of the proof of Corollary 4.8. The orange lines are leaves.

• if z j ∈ dom(I) is a lift of z j , then there exists a sequence (T j,i ) i≥0 in G and a sequence (n

j,i ) i≥0 in N \ {0} such that lim i→+∞ n j,i = +∞ , lim i→+∞ [T j,i ] n j,i = rot f (ν j ) , lim i→+∞ T -1 j,i f n j,i (z j ) = z j .
By Proposition 4.3 and the hypothesis of the corollary we know that I Z F (z 1 ) and I Z F (z 2 ) intersect F-transversally. So there exists r ∈ N \ {0}, s 1 , s 2 ∈ Z and two lifts z 1 and z 2 of z 1 and z 2 such that Ĩr F ( f s 1 (z 1 )) and Ĩr F ( f s 2 (z 2 )) intersect F-transversally. Denote z j = f s j (z j ). See Figure 6 for a description of the proof configuration.

By Proposition 4.3, if i is large enough then, up to equivalence, Ĩr

F (z j ) is a subpath of T -1 j,i Ĩr +2 F ( f n j,i -1 (z j )). So T -1 1,i Ĩr +2 F ( f n 1,i -1 (z 1 )) and Ĩr F (z 2 ) have an F-transverse intersection at T -1 1,i Ĩr +2 F ( f n 1,i -1 (z 1 ))(a) = Ĩr F (z 2 )(b), as well as T -1 2,i Ĩr +2 F ( f n 2,i -1 (z 2 )) and Ĩr F (z 1 ) have an F-transverse intersection at T -1 2,i Ĩr +2 F ( f n 2,i -1 (z 2 ))(c) = Ĩr F (z 1 )(d) (
we omit here the dependences on i, i for briefness of notations).

Lemma 4.6 then implies that for any i, i , there exists z3 ∈ dom(I) such that Ĩ2r +2+n 1,i +n 2,i

F (z 3 ) is equivalent to the path γi,i = T -1 1,i Ĩr +1+n 1,i F (z 1 )| [0,n 1,i -1+a] • Ĩr +1+n 2,i F (z 2 )| [b,r +1+n 2,i ] .
Consider the parameter e ∈ [0, 2r

+ 3 + n 1,i + n 2,i ] such that ĨZ F (z 3 )(e) = T -1 1,i ĨZ F (z 1 )(n 1,i -1 + a) = ĨZ F (z 2 )(b). Note that if i, i are large enough, then n 1,i -1+a ≥ d, and b ≤ n 2,i -1+c. It implies that T 1,i γi,i has an F-transverse intersection with T -1 2,i γi,i at a point T 1,i γi,i (e ) = T -1 2,i γi,i (e )
, where e < e < e . So, γi,i has an F-transverse intersection with T 2,i T 1,i γi,i at a point γi,i (e ) = T 2,i T 1,i γi,i (e ), where e < e . By Theorem 4.7, there exists s ≥ 1 such that f admits a rotational horseshoe of type ([T 2,i T 1,i ] F HL , 2r + 2 + n 1,i + n 2,i ). If i is large enough (i being fixed but large enough to ensure that the above properties hold), then we have [T 2,i T 1,i ] F HL /(2r

+ 2 + n 1,i + n 2,i ) ∈ U.
Let us finish this quick introduction to some forcing theory tools by the following theorem of Lellouch's thesis [Lel, Théorème C]: Theorem 4.9. Suppose that g ≥ 2. If f ∈ Homeo * (S) preserves two Borel probability measures µ 1 and µ 2 such that rot f (µ 1 ) ∧ rot f (µ 2 ) = 0, then f has a topological horseshoe. In particular, f has infinitely many periodic points.

Moreover, if µ 1 is ergodic, then these periodic points can be supposed to have rotation vectors arbitrarily close to rot f (µ 1 ) and with arbitrarily large period: for every neighbourhood U of rot f (µ 1 ) in H 1 (S, R), there exists a rotational horseshoe of type (κ, r) with [κ]/r ∈ U.

Here ∧ is the intersection form. It is the symplectic form on H 1 (S, R) defined by the property that if Γ 1 and Γ 2 are two loops in S, then

[Γ 1 ] ∧ [Γ 2 ]
is the algebraic intersection number between Γ 1 and Γ 2 . Equivalently, up to a multiplicative constant, it is the form induced via Poincaré duality by

∧ : H 1 (S, R) × H 1 (S, R) → H 2 (S, R).

4.2.

Forcing theory in the annular covering space. We suppose now that Σ is an oriented closed surface and denote it S. We keep the other notations. We consider T ∈ G \ Id and a T -strip B ⊂ dom(I) (we suppose that T coincides with the identity on the connected components of dom(I) that do not contain B). We fix a T -invariant line γ * ⊂ B. We define Note that all these sets are invariant by f and by T . Note also that they are open, as a consequence of Proposition 4.3. We define the respective projections in dom(I)

Ŵ R→L , Ŵ L→R , Ŵ R→R , Ŵ L→L , Ŵ D ,
that are open and invariant by f and the respective projections in dom(I)

W R→L , W L→R , W R→R , W L→L , W D ,
that are open and invariant by f . Finally, we define

• the set ∞R → ∞L of points ẑ ∈ dom(I) such that lim k→-∞ f k (ẑ) = ∞R , lim k→+∞ f k (ẑ) = ∞L ; • the set ∞L → ∞R of points ẑ ∈ dom(I) such that lim k→-∞ f k (ẑ) = ∞L , lim k→+∞ f k (ẑ) = ∞R .
We will state some results that have been proven in [Lel] and will add some others that do not explicitely appear there. The following result has been proved in [Lel] (Proposition 2.2.12).

Lemma 4.10. Suppose that ν ∈ M(f ) is ergodic and that ν-almost every point z has a lift z ∈ dom(I) such that ĨZ F (z) is equivalent in +∞ or -∞ to γ * . Then there exists a ≥ 02 such that rot(ν) = a[T ].

The next one also has been proved in [Lel] (Lemma 2.2.3 and Proposition 2.2.4).

Lemma 4.11. Suppose that ν ∈ M(f ) is ergodic. We have the following:

(

1) if [T ] ∧ rot f (ν) > 0, then ν(π( ∞R → ∞L )) = 1; (2) if [T ] ∧ rot f (ν) < 0, then ν(π( ∞L → ∞R )) = 1.
Let us prove now:

Lemma 4.12. If there exists µ ∈ M(f ) with total support such that [T ] ∧ rot f (µ) = 0, then every essential simple loop of dom(I) meets its image by f .

Proof. Suppose that there exists an essential simple loop Γ such that f ( Γ) ∩ Γ = ∅. Orient Γ in such a way that ∞L is the common end of dom(I) and L( Γ) and ∞R the common end of dom(I) and R( Γ). There is no loss of generality by supposing that f ( Γ) is included in L( Γ). Consider the line γ of S that lifts Γ. We have f (L(γ)) ⊂ L(γ) and more generally f (L(T (γ))) ⊂ L(T (γ)) for every T ∈ G because f commutes with T .

If γ is an oriented line of dom(I), recall that dom(I) γ is the connected component of dom(I) that contains γ . Denote η γ the function defined on dom(I) γ that is equal to 0 on R(γ ), to 1 on L(γ ) and to 1/2 on γ . Noting that T (γ) = T (γ) if T -1 T ∈ T , one deduces that the notation τ γ has a sense for every left coset τ ∈ G/ T . Furthermore, if ν ∈ M(f ) is ergodic, then for ν-almost every point z, the following holds for every lift z of z:

[T ] ∧ rot f (ν) = lim n→+∞ 1 n τ ∈G/ T η τ γ ( f n (z)) -η τ γ (z) .
Indeed, if one considers the loop Γ = π( Γ) of S, then τ ∈G/ T η τ γ ( f n (z))η τ (γ) (z) (note that the sum is finite) is equal to the sum of the algebraic intersection numbers between all lifts of Γ with the trajectory Ĩn (z) (at least when z and f n (z) are not on Γ), meaning the algebraic intersection number between Γ and I n (z).

Observe that for every τ ∈ G/ T , the function η τ γ • f -η τ γ is non negative on dom(I) γ and positive in the strip between γ and f (γ). We deduce that for every ergodic invariant probability measure ν it holds that [T ] ∧rot f (ν) ≥ 0. Moreover, we have a strict inequality if the measure of the strip between γ and f (γ) is non zero for the measure ν that lifts ν. By using the ergodic decomposition of µ, we deduce that [T ] ∧ rot f (µ) > 0, which contradicts the hypothesis. Corollary 4.14. Suppose that ν ∈ M(f ) is ergodic and satisfies

ν(W R→L ∩ W D ) = 1 , [T ] ∧ rot f (ν) < 0.
Then, for ν-almost every point z, the path I Z F (z) has an F-transverse self intersection.

Using the ergodic decomposition of λ dom(I)\(W R→L ∩W D ) , we deduce that there exists ν ∈ M(f ) such that [T ] ∧ rot f (ν ) < 0. Here again we refer to Lemma 4.13 to ensure that the conclusion of Lemma 4.16 holds.

Let us conclude this section with a new result that will be useful for our purpose.

Proposition 4.17. Suppose that ν ∈ M(f ) and ν ∈ M(f ) are ergodic and that for ν-almost every point z ∈ dom(I) and ν -almost every point z ∈ dom(I), the path

I Z F (z ) accumulates on I Z F (z), then rot f (ν) ∧ rot f (ν ) = 0.
Proof. There is no loss of generality by supposing that I Z F (z ) accumulates positively on I Z F (z). By Proposition 3.2, there exists a transverse simple loop Γ * ⊂ Σ such that The point z can be chosen recurrent and so every leaf of F met by I Z F (z) is met infinitely many often in the past and in the future. In particular, I Z F (z) goes in and out of B infinitely many times, but it never enters in B on the left because B ⊂ R( φ) for every φ ⊂ ∂ BL . We deduce that every lift z ∈ B of z crosses B from the right to the left. So, referring to the notations of the whole section, we have ν(W R→L ) = 1. Proof. By Lemma 4.10 there exists a ≥ 0 such that rot f (ν ) = a[T ]. We need to prove that a = 0. Let U ⊂ B be a topological open disk such that ν (U ) = 0. We can suppose that U is a flow-box that satisfies the conclusion of Proposition 4.4. Write ϕ U : U → U for the first return map of f and τ U : U → N \ {0} for the time of first return map, which are defined ν -almost everywhere on U . Note that ν | U is an ergodic invariant measure for ϕ U . Fix a lift Ũ ⊂ B of U . For every point z ∈ U such that τ U (z) exists, denote z the lift of z that is in Ũ and δ U (z) the integer such that f τ U (z) (z) ∈ T δ(z) Ũ . One gets a map δ U : U → Z defined ν -almost everywhere on U . Remind that a map ρ U : U → H 1 (S, Z) has been defined in the introduction and that ρ U (z) = δ(z) [T ]. Note also that δ(z) > 0. The measure ν being ergodic, by Kac's theorem one knows that

• I Z F (z )
U τ U dν = ν   k≥0 f k (U )   = ν k∈Z f k (U ) = 1,
and consequently that τ * U (z) = 1/ν (U ) for ν -almost every point z ∈ U , where τ * U and ρ * U has been defined in (1) (page 3). Furthermore, for νalmost every point z ∈ U , it holds that

rot f (ν ) = rot f (z) = ρ U * (z)/τ * U (z) = ν (U )ρ * U (z) = U δ(z) dν (z) [T ].
Observe now that U δ(z) dν (z) > 0. This proves the lemma.

To prove Proposition 4.17 it remains to prove that rot f (ν ) ∧ rot f (ν) > 0 which would lead to the result with Theorem 4.9. Let U ⊂ B be a topological open disk such that ν(U ) = 0 and that is a flow-box that satisfies the conclusion of Proposition 4.4. Perturbing Γ * and reducing U if necessary, one can suppose that U ∩ Γ * = ∅. Write ϕ U : U → U for the first return map of f and τ U : U → N \ {0} for the time of first return map, which are defined ν-almost everywhere on U . We will define a function δ U : U → Z in a different way. For every point z ∈ U such that τ U (z) exists, set m = τ U (z) and consider the set 

X z = t ∈ [0, m] | I t F (z) ⊂ U . Suppose first that X z = [0, τ U (z)]. Then denote (J ξ ) ξ∈Ξ the family of con- nected components of X z . One component J ξ -can be written J ξ -= [0, b ξ -), one component J ξ + can be written J ξ -= (a ξ + ,
δ ξ = 0 if Ĩm F (z)(b ξ ) ∈ ∂ BR , 1 if Ĩm F (z)(b ξ ) ∈ ∂ BL .
In the first situation Ĩm F (z)| [a ξ ,b ξ ] visits B on the right, in the second one it crosses B for the right to the left. Note that there are finitely many ξ ∈ Ξ such that δ ξ = 1 because there are finitely many ξ ∈ Ξ such that

I m F (z)([a ξ , b ξ ]) ∩ Γ * = ∅. Indeed, γ * is contained in B, while each such I m F (z)([a ξ , b ξ ]) meets ∂ B; the conclusion follows by a compactness argument.
The path I m F (z) can be lifted to a path Ĩm

F (z) such that Ĩn F (z)([0, b ξ -)) ⊂ B. Set δ ξ -= 1/2 if Ĩm F (z)(b ξ -) ∈ ∂B L , -1/2 if Ĩn F (z)(b ξ -) ∈ ∂B R . Finally, set δ ξ + = 1/2. Observe now that we have [Γ * ] ∧ ρ U (z) = δ U (z),
where ρ U is defined page 3, and

δ U (z) = ξ∈Ξ δ i if X z = [0, τ U (z)], 0 if X z = [0, τ U (z)].
The function δ U is non negative but does not vanishes almost ν U -everywhere because I Z Z (z) does not stay in B for ν-almost every point. So, we have

[Γ] ∧ rot f (ν) = ν(U )[Γ] ∧ ρ * U (z) = U δ U (z) dν(z) > 0.
Remark. Using Lellouch's techniques [START_REF] Lellouch | Sur les ensembles de rotation des homéomorphismes de surface en genre ≥ 2[END_REF]Section 3.4], one can more generally show that if z and z are recurrent points (not necessarilly trajectories of typical points for ergodic measures) and if I Z F (z ) accumulates on I Z F (z), then f has a topological horseshoe3 . However, we will not use this property in the sequel.

Proof of the main theorem

We suppose in this section that the hypotheses of Theorem A are satisfied. We consider an oriented closed surface S of genus g ≥ 2 and a homeomorphism f of S isotopic to the identity that preserves a Borel probability measure λ with total support such that rot f (λ) = sρ, with ρ ∈ H 1 (S, Z)\{0} and s ∈ R. We keep the notations of the article. We consider a Borel probability measure ν, invariant by f and ergodic. We consider a neighborhood U of rot f (ν) in H 1 (S, R) and want to prove that there exists a homotopical interval of rotation (κ, r) such that [κ]/r ∈ U.

There is no loss of generality by supposing that f is not the identity map; in this case one can consider a maximal isotopy I of f by Theorem 4.1 with non empty domain. By Theorem 4.2, one can find a non singular foliation F on dom(I) transverse to I. Remind that:

• dom(I) is the universal covering space of dom(I); • dom(I) X is the connected component of dom(I) that contains a given connected set X ⊂ dom(I); • π : dom(I) → dom(I) is the covering projection; • G is the group of covering automorphism of π;

• [T ] ∈ H 1 (S, Z) is the homology class of a loop Γ ⊂ dom(I) associated to T ∈ G; • Ĩ is the lift of I| dom(I) to dom(I) that starts from the identity; • f is the lift of f | dom(I) to dom(I) that is the end point of Ĩ; • F is the lift of F to dom(I); • I Z F (z) is the whole F-transverse trajectory of a point z ∈ dom(I); • ĨZ F (z)
is the whole F-transverse trajectory of a point z ∈ dom(I). Suppose first that rot f (ν) ∧ rot f (λ) = 0. Using the ergodic decomposition of λ, we deduce that there exists ν ∈ M(f ) ergodic such that rot f (ν) ∧ rot f (ν ) = 0. By Theorem 4.9, we know that f | dom(I) has a rotational topological horseshoe of type (κ, r) with [κ]/r ∈ U. If Γ ⊂ dom(I) is a loop associated to T , then for every p/q ∈ [0, 1] written in an irreducible way, there exists a periodic point z ∈ dom(I) of period rq such that I rq (z) is freely homotopic to [Γ] p in dom(I): it is freely homotopic to [Γ] p in S. Hence, f has a homotopical interval of rotation of type (κ, r) such that [κ]/r ∈ U, and the conclusion of Theorem A holds.

It remains to study the case where rot f (ν) ∧ rot f (λ) = 0.

Lemma 5.1. Suppose that rot f (ν) ∧ rot f (λ) = 0. There exists T ∈ G \ {Id} satisfying [T ] ∧ rot f (λ) = 0 and a T -strip B such that ν-almost every point z ∈ dom(I) has a lift z such that ĨZ F (z) draws B. Moreover if U is a neighborhood of rot f (ν), one can suppose that there exists r ≥ 1 such that [T ]/r ∈ U.

Proof. Fix z 0 ∈ supp(ν) ∩ dom(I) and a lift z0 ∈ dom(I) of z 0 . One can find a topological open disk U ⊂ dom(I) containing z 0 such that the connected component Ũ of π-1 (U ) containing z0 is a flow-box that satisfies the conclusion of Proposition 4.4. Write ϕ U : U → U for the first return map of f and τ U : U → N\{0} for the time of first return map, which are defined ν-almost everywhere on U . Note that ν| U is an ergodic invariant measure of ϕ U . Remind that a map ρ U : U → H 1 (S, Z) has been defined in the introduction. For every point z ∈ U such that τ U (z) exists, denote z the preimage of z by π that is in Ũ and δ U (z) the automorphism such that f τ U (z) (z) ∈ δ U (z)( Ũ ). One gets a map δ U : U → G defined ν-almost everywhere on U such that ρ U (z) = [δ U (z)]. The measure ν being ergodic, one knows that By Atkinson's Theorem [At], one knows that if ε > 0 is fixed, then for ν| U almost every point z, there exists n ≥ 1 such that

n-1 k=0 ρ U (ϕ U k (z)) ∧ rot f (λ) < ε.
As observed by Lellouch [Lel], we can slightly improve this result: for ν| U almost every point z, it holds that lim inf

n→+∞ n-1 k=0 ρ U (ϕ U k (z)) ∧ rot f (λ) = 0.
So, if we fix a norm on H 1 (S, R) and η > 0, we can find z 1 ∈ supp(µ)∩U and n ≥ 1 such that (recall that rot f (λ) = sρ, with ρ ∈ H 1 (S, Z) \ {0} and -If [T ] ∧ rot f (ν) < 0, then one can apply Corollary 4.14 which shows that for ν-almost every point z, the path I Z F (z) has an F-transverse self intersection; this allows to apply Corollary 4.8 and to get a suitable rotational horseshoe.

-If [T ] ∧ rot f (ν) = 0, then one can apply Lemma 4.15 which shows that for ν-almost every point z, the path I Z F (z) has an F-transverse self intersection; as before this allows to apply Corollary 4.8 and to get a suitable rotational horseshoe.

-If [T ] ∧ rot f (ν) > 0, then one can apply Lemma 4.16. It tells us that there exists an ergodic invariant probability measure ν such that for ν-almost every point z and ν -almost every point z , either the paths I Z F (z) and I Z F (z ) have an F-transverse intersection, or the path I Z F (z ) accumulates on I Z F (z). In the first case one can apply Corollary 4.8 to get a suitable rotational horseshoe. In the second case Proposition 4.17 tells us that rot f (ν) ∧ rot f (ν ) = 0. Lellouch's Theorem 4.9 then gives us a suitable rotational horseshoe.

• The case ν(W L→R ∩ W D ) = 1 is identical to the case ν(W R→L ∩ W D ) = 1. In all these cases the existence of a suitable homotopical interval of rotation is due to the presence of a rotational topological horseshoe. To get Theorem A it remains to study a last case where the existence of a suitable homotopical interval of rotation will have another reason. One can write T = T m , m ≥ 1, where T ∈ G is irreductible. The following proposition will permit us to finish the proof of Theorem A. Indeed, let U be a neigborhood of rot f (ν) in H 1 (S, R). One can find p 0 /q 0 ∈ (0, a) written in an irreducible way such that p 0 [T ]/q 0 ∈ U. By Proposition 5.2, for every p/q ∈ [0, 1] written in an irreducible way, there exists zp/q such that f qq 0 (z) = T pp 0 (z). The image z p/q = π(z p/q ) ∈ S is fixed by f qq 0 and the loop of S defined by I qq 0 (z p/q ) belongs to [T ] F HL pp 0 . Denote q = qq 0 /s the period of z p/q . There exists R ∈ G such that f q (z p/q ) = R(z p/q ). We deduce that T pp 0 (z p/q ) = f qq 0 (z p/q ) = R s (z p/q ). It implies that T pp 0 = R s . The group T , R being a free group, it must be infinite cyclic. We deduce that R is a power of T because T is irreducible and so s divides pp 0 and qq 0 . The integers p 0 and q 0 being relatively prime, it holds that s gcd(s, p 0 ) -1 gcd(s, q 0 ) -1 is an integer. Moreover it is relatively prime with p 0 and with q 0 . So it divides p and q. These integers being relatively prime, we have s = gcd(s, p 0 ) gcd(s, q 0 ) ≤ p 0 q 0 and hence the period q = qq 0 /r = s of z p/Q satisfies q ≥ q/p 0 . We deduce that ([T ] F HL p 0 , q 0 , p 0 ) is a homotopical interval of rotation.

Proposition 5.2. If the sets

W R→L ∩ W D , W L→R ∩ W D , W R→R ∩ W D , W L→L ∩ W D
are ν-null sets, then there exists a > 0 such that :

• one has rot f (ν) = a[T ];

• for every p/q ∈ [0, a) ∩ Q, written in an irreducible way, there exists z such that f q (z) = T p (z).

is equivalent to a subpath of γ * . By the second point above, the second situation is impossible. Hence, R k ĨZ F (z)| [n k +a+1,+∞) is equivalent to a subpath of γ * .

In particular, this implies that R k γ * is equivalent at +∞ to γ * . By Lemma 3.3, this implies that R k γ * ∩ γ * = ∅; more precisely it implies that for any n large enough, R k γ * ∩ γ * | [b+n,b+n+1) = ∅, hence that R k γ * ∩ γ * is infinite. This implies that R k γ * = γ * , in other words R k = T i k for some i k ∈ Z.

We deduce that T This proves that ĨZ F (z) is equivalent to a subpath of γ * . As it cannot accumulate in γ * , this proves that ĨZ F (z) is equivalent to γ * . To get the second part of the lemma, consider a neighborhood Ũ of z such that for every z ∈ Ũ , the path ĨZ Proof. We know that ν-almost every point z is positively recurrent and has a lift z in dom(I) γ * that draws B. We have seen in Lemma 5.3 that ĨZ F (z) is equivalent to γ * and that there exists a neighborhood Ũ of z such that if the orbit of z meets R Ũ , for some R ∈ G, then R is a power of T . Using the fact that z is recurrent, we deduce that z = π( z) is positively recurrent. By the argument given in the proof of Lemma 4.18, we deduce that z has rotation number a > 0. Moreover we have rot f (ν) = a[T ]. Now there are two cases to consider. The first case is the case where the stabilizer of dom(I) γ * is generated by T and the second case is when it is larger. In the first case, π sends homeomorphically dom(I) γ * onto a connected component of dom(I). Moreover, the frontier of this annulus is made of contractible fixed points of f . In the second case, π sends dom(I) γ * onto a hyperbolic surface whose universal covering space is dom(I) γ * and the group of covering automorphisms is the stabilizer of dom(I) γ * in G. In both cases, there exists an extension dom(I) γ * of dom(I) γ * obtained by blowing

  3.2. Recurrence, equivalence and accumulation. A transverse path γ : R → Σ is positively recurrent if, for every a < b, there exist c < d, with b < c, such that γ|[a,b] and γ|[c,d] are equivalent. Similarly γ is negatively recurrent if, for every a < b, there exist c < d, with d < a, such that γ|[a,b] and γ|[c,d] are equivalent. Finally γ is recurrent if it is both positively and negatively recurrent. Two transverse paths γ 1 : R → Σ and γ 2 : R → Σ are equivalent at +∞ if there exists a 1 and a 2 in R such that γ 1 | [a 1 ,+∞) and γ 2 | [a 2 ,+∞) are equivalent. Similarly γ 1 and γ 2 are equivalent at -∞ if there exists b 1 and b 2 in R such that γ 1 | (-∞,b 1 ] and γ 2 | (-∞,b 2 ] are equivalent. A transverse path γ 1 : R → Σ accumulates positively on the transverse path γ 2 : R → Σ if there exist real numbers a 1 and a 2 < b 2 such that γ 1 | [a 1 ,+∞) and γ 2 | [a 2 ,b 2 ) are equivalent. Similarly, γ 1 accumulates negatively on γ 2 if there exist real numbers b 1 and a 2 < b 2 such that γ 1 | (-∞,b 1 ] and γ 2 | (a 2 ,b 2 ] are equivalent. Finally γ 1 accumulates on γ 2 if it accumulates positively or negatively on γ 2 . 3.3. Strips. We fix T ∈ G \ {0} and consider • the annulus Σ = Σ/T ; • the covering projections π : Σ → Σ and π : Σ → Σ; • the foliation F on Σ induced by F. Suppose that Γ * is a simple loop transverse to F. Then, Γ * is essential and γ * = π -1 ( Γ * ) is an oriented line of Σ, invariant by T and transverse to F. The set B = {ẑ ∈ Σ | φẑ ∩ Γ * = ∅}

  γ crosses B from the right to the left if γ(a) ∈ ∂ BR and γ(b) ∈ ∂ BL ; • γ crosses B from the left to the right if γ(a) ∈ ∂ BL and γ(b) ∈ ∂ BR ; • γ visits B on the right if γ(a) ∈ ∂ BR and γ(b) ∈ ∂ BR ; • γ visits B on the left if γ(a) ∈ ∂ BL and γ(b) ∈ ∂ BL .

Figure 2 .

 2 Figure 2. An example where Proposition 3.2 holds.

Figure 3 .

 3 Figure 3. Local configuration of the path Γ and the foliation F (in red) around the point 0 = Ψ z (z).

Figure 4 .

 4 Figure 4. The different objects appearing in the proof of Proposition 3.2, Lemma 3.5 and Claim 3.6. The leaves are in orange.

  γ 1 and γ 2 to Σ such that γ1 | [a 1 ,+∞) and γ2 | [a 2 ,b 2 ) are equivalent. We denote B the strip that lifts B and contains γ1 | [c 1 ,c 1 ] . We denote γ * a lift of Γ * that lies inside B and T ∈ G the primitive deck transformation associated to B (chosen accordingly to the orientation of γ * ). Lemma 3.5. The path γ1 | [c 1 ,+∞) is included in B.

  contradicts the fact that the action of G on compact subsets is proper. Suppose now that Rγ 1 | [e 1 ,e 1 ] draws and visits B. Then Rγ 1 | [e 1 ,e 1 ] and T Rγ 1 | [e 1 ,e 1 ] have an F-transverse intersection. One deduces that for any n ∈ N, one has R n γ2 | [e 2,n ,e 2,n ] and T Rγ 1 | [e 1 ,e 1 ] have an F-transverse intersection because R n γ2 | [e 2,n ,e 2,n ] and Rγ 1 | [e 1 ,e 1 ] are equivalent. Consequently, it holdsthat R n γ2 | [e 2,n ,e 2,n ] ∩ T Rγ 1 | [e 1 ,e 1 ] = ∅ and so that R n γ2 | [a 2 ,b 2 ] ∩ T Rγ 1 | [e 1 ,e 1 ] = ∅.It contradicts once again the fact that the action of G on compact subsets is proper. This finishes the proof of Lemma 3.5. By Lemma 3.5, we know that γ1 | [c 1 ,+∞) stays in B. We first prove that γ1 cannot accumulate in γ * .

Figure 5 .

 5 Figure 5. The configuration of the proof of Lemma 3.7.

  The fact that γ2 ([a 2 , b 2 ]) and γ3 ([a 3 , b 3 ]) are included in L(γ * ) while φ+ γ2 (b 2 )

  Proposition 4.5. If z ∈ dom(I) is positively recurrent, then I Z F (z) is positively recurrent. If z is negatively recurrent, then I Z F (z) is negatively recurrent.

Theorem 4. 7 .

 7 Suppose that there exists z ∈ dom(I), T ∈ G \ {Id} and r ≥ 1 such that Ĩr F (z) and T Ĩr F (z) have an F-transverse intersection at Ĩr F (z)(a) = T ( Ĩr F (z))(a ) where a < a. Then f admits a rotational horseshoe of type ([T ] F HL , r).

•

  the surface dom(I) = dom(I)/T ; • the projections π : dom(I) → dom(I) and π : dom(I) → dom(I); • the identity isotopy Î on dom(I) lifted by Ĩ; • the lift f of f | dom(I) to dom(I) lifted by f ; • the foliation F on dom(I) lifted by F; • the loop Γ * = π(γ * ). The complement of Γ * in its connected component has two annular connected components L( Γ * ) and R( Γ * ). We denote ∞L the common end of dom(I) and L( Γ * ) and ∞R the common end of dom(I) and R( Γ * ). We consider • the set W R→L of points z ∈ dom(I) such that ĨZ F (z) crosses B from the right to the left; • the set W L→R of points z ∈ dom(I) such that ĨZ F (z) crosses B from the left to the right; • the set W R→R of points z ∈ dom(I) such that ĨZ F (z) visits B on the right; • the set W L→L of points z ∈ dom(I) such that ĨZ F (z) visits B on the left; • the set W D of points z ∈ dom(I) such that ĨZ F (z) draws B.

  Lemma 4.13. Suppose that ν ∈ M(f ) and ν ∈ M(f ) are ergodic and satisfy ν(W R→L ∩ W D ) = 1 , [T ] ∧ rot f (ν ) < 0.Then one of the following assertions holds:• for ν-almost every point z and ν -almost every point z , the paths I Z F (z) and I Z F (z ) have an F-transverse intersection; • for ν-almost every point z and ν -almost every point z , the pathI Z F (z ) accumulates on I Z F (z). Proof. Define three f -invariant sets W 1 , W 2 , W 3 as follows: • z ∈ W 1 if it has a lift z such that ĨZ F (z ) is equivalent to γ * at +∞ or at -∞; • z ∈ W 2 if it has a lift z such that ĨZ F(z ) accumulates on γ * positively or negatively; • z ∈ W 3 if it has a lift z such that ĨZ F (z ) crosses B from the left to the right. By Lemma 4.11, we know that ν -almost every point z has a lift ẑ ∈ dom(I) that belongs to ∞L → ∞R . Consequentlyν (W 1 ∪ W 2 ∪ W 3 ) = 1, which implies by ergodicity of ν that one of the sets W 1 , W 2 , W 3 has ν -measure 1. By Lemma 4.10, ν (W 1 ) = 1 because rot f (ν ) / ∈ R[T ] (by the hypothesis [T ] ∧ rot f (ν ) < 0). If ν (W 2 ) = 1,then the second item of the lemma holds because for every leaf φ ⊂ B, ν-almost every point z belongs to W D and so has a lift z ∈ dom(I) such that ĨZ F (z) meets φ. By Proposition 3.1, if ν (W 3 ) = 1, then the first item of the lemma holds.

  is equivalent to the natural lift of Γ * ; • the union B of leaves met by Γ * is an open annulus of S; • if γ * is a lift of Γ * to dom(I), then for ν-almost every point z ∈ dom(I), there is a lift z ∈ dom(I) such that ĨZ F (z) meets ∂ BL ; • for every φ ⊂ ∂ BL it holds that B ⊂ R( φ).

Lemma 4. 18 .

 18 Let ν be an f -invariant ergodic probability measure such that ν (dom(I)) = 1. Suppose that there is some deck transformation T ∈ G \{Id} and a T -strip B projecting an an open annulus B of S such that ν -almost every point z ∈ dom(I) satisfies I Z F (z ) ⊂ B. Then there exists a > 0 such that rot f (ν ) = a[T ].

  m] and the remaining components can be written J ξ = (a ξ , b ξ ). Consider such a component J ξ . The path I m F (z) can be lifted to a path Ĩm F (z) (the lift depending on ξ) such that Ĩn F (z)((a ξ , b ξ )) ⊂ B. By assumptions, one knows that Ĩm F (z)(a ξ ) ∈ ∂ BR and we set

  τ U * (z) = 1/ν(U ) for ν-almost every point z ∈ U , where τ U * and ρ U * has been defined in (1) (page 3). Furthermore, for νalmost every point z ∈ U , it holds thatU ρ U (z) dν(z) = ν(U )ρ U * (z) = rot f (z) = rot f (ν), which implies that U ρ U (z) ∧ rot f (λ) dµ(z) = ν(U )ρ U * (z) ∧ rot f (λ) = rot f (ν) ∧ rot f (λ) = 0.

  i k ĨZ F (z)| [n k +a+1,+∞) is equivalent to a subpath of γ * , equivalently (as γ * is T -invariant), for any k ∈ N, the path ĨZ F (z)| [n k +a+1,+∞) is equivalent to a subpath of γ * .

F

  (z ) draws γ * . If f k (z) ∈ R Ũ , R ∈ G, then ĨZ F (z) draws R(γ * ). We deduce that ĨZ F (z) is equivalent to Rγ * . What was done above tells us that R ∈ T . Now, let us consider • the connected component dom(I) γ * of dom(I) that contains γ * , • the quotient space dom(I) = dom(I)/T , • the foliation F of dom(I) lifted by F, • the covering projection π : dom(I) → dom(I), • the annulus dom(I) γ * = dom(I) γ * /T , • the universal covering projection π : dom(I) γ * → dom(I) γ * . Lemma 5.4. It holds that ν-almost every point z has a lift in dom(I) γ * that is positively recurrent and has a rotation number a > 0 (in the annulus). Moreover we have rot f (ν) = a[T ].

  e 1 ] . As γ1 accumulates on γ2 , a similar statement holds for γ2 : there exist sequences (e 2,n ) n≥0 and (e 2,n ) n≥0 with a 2 < e 2,n < e 2,n < e 2,n+1 < b 2 such that R n γ2 | [e 2,n ,e 2,n ] , is equivalent to Rγ 1 | [e 1 ,e 1 ] . Note that the R n are all different because every leaf of F intersects γ2 ([a 2 , b 2 ]) at most once. We have two possibilities given by Claim 3.6: either Rγ 1 | [e 1 ,e 1 ] draws and crosses B, or it draws and visits B.

Suppose that Rγ 1 | [e 1 ,e 1 ] draws and crosses B. In this case, for any n

In the whole text, "transverse" will mean "positively transverse".

The proof given in[Lel] says that a ≥ 0 but we will slightly improve it in Lemma 4.18 to obtain a > 0.

Be careful, in this case we do not have that I Z F (z ) and I Z F (z) intersect F-transversally.

Proof. Let us apply Lemma 4.13 with ν = ν and use the fact that a recurrent transverse path does not accumulate on itself (Corollary 3.9). This result is still true if ν(W R→L ∩ W D ) = 1 and [T ] ∧ rot f (ν) = 0. More precisely we have (see [Lel], Proposition 3.3.1).

Lemma 4.15. Suppose that ν ∈ M(f ) is ergodic and satisfies

Then ν(W L→R ) = 1 and for ν-almost every point z, the path I Z F (z) has an F-transverse self intersection.

Remark. The conclusion ν(W L→R ) = 1 is not explicitely stated in [Lel], Proposition 3.3.1. But, as explained by the author at the beginning of the proof, it is the key point that permits to get the second conclusion. The first condition says that there are points "that go up", which implies by the second condition, that there are points "that go down". We have a situation very similar to the one that occurs under the hypothesis of Corollary 4.14, but more subtle arguments of ergodic theory are needed.

Lemma 4.16. Suppose that there exist λ ∈ M(f

then there exists ν ∈ M(f ) ergodic, such that one of the following assertions holds:

• for ν-almost every point z and ν -almost every point z , the paths I Z F (z) and I Z F (z ) have an F-transverse intersection; • for ν-almost every point z and ν -almost every point z , the path I Z F (z ) accumulates on I Z F (z). Proof. By hypothesis W R→L ∩ W D is a non empty invariant open set and so we have

we can apply Lemma 4.13 and so the conclusion of Lemma 4.16 holds. If [T ] ∧ rot f (ν ) = 0 we know that ν (W L→R ) = 1 by Lemma 4.15 and so the first item of the conclusion of Lemma 4.16 holds thanks to Proposition 3.1.

and such that 1

and denote z1 the lift of z 1 that belongs to Ũ . The automorphism T such that f r (z 1 ) ∈ T ( Ũ ) can be written

where T k is an automorphism conjugated to δ U (ϕ U k (z 1 )), so we have

Consequently, it holds that

Note that we have f r (z 1 ) ∈ T ( Ũ ) if z1 is the lift of z 1 that belongs to Ũ . The property of Ũ stated in Proposition 4.4 tells us that ĨZ F (z 1 ) intersects every leaf that meets Ũ and every leaf that meets T ( Ũ ). So, there is subpath γ1 of ĨZ 4 Strictly speaking one has to modify the path γ1 lifted by γ1 to be able to concatenate T k (γ1) with T k+1 (γ1): it is sufficient to move it along the leaves so that the last endpoint of γ1 with the first endpoint of T (γ1) coincide.

Proof. Recall that T = T m , where m ≥ 1. Let us begin by proving that B is invariant by T . It is sufficient to prove that for every n > 0 we have L(T n φ) ⊂ L( φ). If L( φ) ⊂ L(T n φ), then for every k ≥ 1 we have L(T nk φ) ⊂ L(T n(k+1) φ) and so we deduce that L( φ) ⊂ L(T nm φ), which contradicts the inclusion L(T nm φ) ⊂ L( φ). If L( φ) ∩ L(T n φ) = ∅, then L( φ) is disjoint from its image by T n . The map T n being fixed point free, Brouwer Translation Theorem [Br] tells us that L( φ) is disjoint from its image by T nm , which contradicts the inclusion L(T nm φ) ⊂ L( φ). Similarly, if R( φ) ∩ R(T n φ) = ∅, then R( φ) is disjoint from its image by T nm , which contradicts the inclusion R( φ) ⊂ R(T nm φ). The only remaing case is the case where L(T n φ) ⊂ L( φ).

In the following instead of seeing B as a T -strip, we will see it as a T -strip: one can choose γ * to be invariant by T and suppose that γ * (t) = T γ * (t) for every t ∈ R.

By construction of B we know that ν(W D ) = 1. So, ν-almost every point z ∈ dom(I) is recurrent and has a lift z ∈ dom(I) such that ĨZ F (z) is equivalent to γ * at +∞ or -∞. Indeed if z ∈ W D is recurrent and if z was a lift of z such that ĨZ F (z) accumulates on γ * , then there would exist k ∈ Z such that ĨZ F (z) accumulates on ĨZ F (T k (z)). It is impossible because z is recurrent and so has no self-accumulation by Corollary 3.9. Hence, ĨZ F (z) does not accumulate on γ * , and by the hypothesis of the proposition it cannot go out of B both before and after it draws B. This implies that it has to be equivalent to γ * at +∞ or -∞.

In fact we can be more precise: if there are a < a and b ∈ R such that ĨZ ) is equivalent to a subpath of γ * (and equivalent to γ * at +∞ but we will not use this property) or ĨZ F (z)| (-∞,a ] is equivalent to a subpath of γ * . From this we will deduce the following lemma.

Lemma 5.3. The transverse path ĨZ F (z) is equivalent to γ * . Moreover there is neighborhood Ũ of z such that if the orbit of z meets R Ũ for some R ∈ G, then R is a power of T .

Proof. Let us treat the case where ĨZ F (z)| [a,+∞) is equivalent to a subpath of γ * , the other case being identical.

Suppose that ĨZ F (z) is not equivalent to γ * . Then, as we have already seen that it cannot accumulate in γ * , this means that there exists b < a, b ∈ Z, such that Ĩb F (z) / ∈ B. By recurrence of the point z, there exists a sequence of integers n k → -∞, and a sequence of deck transformations (R k ) k∈N ∈ G such that R k f n k (z) tends to z; in particular for any k large enough:

By the same reasoning as before the lemma, we deduce that either the trajec-

at least one end e with a circle Γe and f extends to a homeomorphism f of dom(I) γ * (see Paragraph 2.4). Furthermore, the rotation number(s) induced on the added circle(s) by the lift of f that extends f are equal to 0. By Lemma 5.4, there exist positively recurrent points with rotation number a > 0 where rot f (ν) = a[T ]. Consequently, according to Theorem 2.1 that can be applied thanks to Lemma 4.12, for every rational number p/q ∈ (0, a), written in an irreducible way, there exists a point z such that f q (z) = T p (z). As f also has a fixed point by Lefschetz index theorem, this means that f has a homotopical interval of rotation of type (κ, r) such that [κ]/r ∈ U.