
HAL Id: hal-04267389
https://hal.science/hal-04267389

Submitted on 1 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generative, High-Fidelity Network Traces
Xi Jiang, Shinan Liu, Aaron Gember-Jacobson, Paul Schmitt, Francesco

Bronzino, Nick Feamster

To cite this version:
Xi Jiang, Shinan Liu, Aaron Gember-Jacobson, Paul Schmitt, Francesco Bronzino, et al.. Generative,
High-Fidelity Network Traces. Twenty-Second ACM Workshop on Hot Topics in Networks, Nov 2023,
Cambridge (MA), US, United States. �10.1145/3626111.3628196�. �hal-04267389�

https://hal.science/hal-04267389
https://hal.archives-ouvertes.fr


Generative, High-Fidelity Network Traces
Xi Jiang*

University of Chicago
Shinan Liu*

University of Chicago
Aaron Gember-Jacobson

Colgate University

Paul Schmitt
University of Hawaii, Manoa / Invisv

Francesco Bronzino
Univ Lyon, EnsL, UCBL, CNRS, LIP

Nick Feamster
University of Chicago

ABSTRACT
Recently, much attention has been devoted to the develop-
ment of generative network traces and their potential use in
supplementing real-world data for a variety of data-driven net-
working tasks. Yet, the utility of existing synthetic traffic ap-
proaches are limited by their low fidelity: low feature granular-
ity, insufficient adherence to task constraints, and subpar class
coverage. As effective network tasks are increasingly reliant
on raw packet captures, we advocate for a paradigm shift from
coarse-grained to fine-grained traffic generation compliant
to constraints. We explore this path employing controllable
diffusion-based methods. Our preliminary results suggest its
effectiveness in generating realistic and fine-grained network
traces that mirror the complexity and variety of real network
traffic required for accurate service recognition. We further
outline the challenges and opportunities of this approach, and
discuss a research agenda towards text-to-traffic synthesis.

CCS CONCEPTS
• Networks → Network simulations; • Computing method-
ologies → Neural networks;

KEYWORDS
Network traffic, synthesis, diffusion model

1 INTRODUCTION
Network trace data, especially fine-grained packet captures
(pcaps), is indispensable in the realm of network management.
These traces are critical for a myriad of procedures, such as
developing and optimizing service recognition [2, 13, 14, 24],
anomaly detection [21], device identification [11, 26], and
activity recognition [12, 22] systems, as well as benchmarking
the performance of novel hardware and software solutions.
However, securing access to such traces is often a challenge
due to business confidentiality and privacy constraints.

A compelling alternative is to use synthetic trace data gen-
erated using simulations [4, 7, 19], heuristics [1, 35, 36], or
machine-learning (ML) [20, 30, 37, 39]. However, existing
approaches require a trade-off between data granularity and
data realism. For example, simulations and heuristics can gen-
erate synthetic traces with full packet headers and payloads,
but extensive domain knowledge and considerable human
effort is required to produce packets whose features (e.g.,
size, spacing, header field values) even vaguely resemble real

*Both authors contributed equally to this work.

traces. On the flip side, current ML approaches can produce
synthetic flow-level data that attempts to resemble statistical
distributions in real data, but they cannot produce complete
packet headers or satisfy inter-packet constraints (e.g., proto-
col usage patterns in flows) required for classification tasks
or replay-based benchmarking/testing. Additionally, existing
trace generation approaches are not easily transferable be-
tween contexts. For example, a simulator or generative model
for VPN and non-VPN Netflix traffic and non-VPN YouTube
traffic cannot readily produce VPN YouTube traffic.

Given the importance of fine-grained packet captures cou-
pled with the difficulty of obtaining real(istic) traces, we for-
mulate three essential research questions in future synthetic
pcap generation to achieve the goal of high fidelity:

(1) How can we design network traffic generators with
granular data support? We advocate for an approach
that can generate high resolution raw packets to ensure
a comprehensive encapsulation of real network traffic
intricacies required for accurately training models and
replaying traffic for testing or benchmarking.

(2) Can we strike a balance between generation diversity
and controllability? While diversity is crucial for exten-
sive coverage and desired randomness, the process must
also respect inherent constraints, such as protocol usage
patterns. This control not only ensures accuracy in ML-
driven downstream tasks but also instills authenticity
in the synthetic data for network traffic, enabling for
example replaying the traffic to test network functions.

(3) How can we devise a model that guarantees expansive
coverage across various types of network traces? We
envison a single model to generate pcaps that incor-
porate different protocols, applications, and network
conditions (e.g., latency). This increases the approach’s
versatility and overall utility.

We investigate the limitations of state-of-the-art Generative
Adversarial Networks (GAN)-based approaches in addressing
these questions. We further propose a general framework for
generative traffic synthesizers using a text-to-traffic approach
that builds on advances in image generation to meet these
requirements. Our preliminary results suggest that this ap-
proach has many avenues for improvement, and we outline a
research agenda to discuss its opportunities and challenges.

2 BACKGROUND AND MOTIVATION
In this section, we motivate the need for fine-grained syn-
thetic data generation by discussing the limitations of the



status quo GAN-based approaches [20, 39]. To quantify and
validate these concerns, we conduct a case study using service
recognition as an example for downstream tasks.

2.1 Traffic Generation and Status Quo
The field of traffic generation, a recurring theme in network-
ing research, has been scrutinized through a multitude of
approaches such as traditional simulation-based, heuristics-
based, and more recent GAN-based ML techniques.

Traditional simulation-based approaches, typified by tools
like yans [19], NS-3 [7], and the recent DYNAMO [4], fabri-
cate network traffic by reproducing traffic in simulated net-
work environments. On the other hand, heuristics-based meth-
ods such as Harpoon [35], Swing [36], and the tool proposed
by Botta et al. [1], spawn synthetic live traffic using distribu-
tion parameters extracted from example traffic. Simulation-
and heuristics-based approaches require significant domain
knowledge and human effort and may not generalize well
across applications. These methods can not capture the realis-
tic patterns especially when the underlying traffic are complex
(e.g., network implementations are not always stateful) and
dynamic (e.g., configurations or environments may change).

Unlike traditional methods, state-of-the-art GAN-based ap-
proaches (e.g., DoppelGANger[20] and NetShare [39]) effec-
tively capture complex temporal correlations and long-term
patterns in network datasets, and synthesize coarse-grained
packet- or flow-level traces. However, these approaches strug-
gle to capture fine-grained features and adhere to constraints [39],
which we discuss in detail in the following sections.

2.2 Case Study Settings
Downstream task and datasets. Synthetic data generation
can aid various network management tasks. We select ser-
vice recognition, an operation crucial for functions like re-
source allocation and Quality of Service (QoS) assurance,
as a representative task to assess the performance of exist-
ing GAN-based network data synthesizers. Specifically, we
explore the potential to enhance ML-based application clas-
sification [2, 13, 22, 24] through synthetic data generation.
In typical ML model training for service recognition, both
training and testing are performed on real network data. This
practice becomes challenging due to the difficulty in obtaining
labeled real data amidst increasing encryption and Internet
consolidation. Consequently, synthetic data can supplement
these datasets and we aim to verify whether the model’s per-
formance remains consistent when trained on real data and
tested on synthetic data, or vice versa, compared to exclu-
sively using real data for both training and testing.

The specific task involves categorizing 4 macro-service
types and 11 micro-applications, including Video Streaming,
Video Conferencing, Social Media, and IoT Device usage, as
detailed in Table 1. Each of these macro-services encapsu-
lates several micro-applications, yielding a diverse, practical
dataset. Our curated dataset, comprising over 30,000 flows
with up to 10,000 flows per service type, is sufficiently large

Macro Services Total # of Flows Micro Application Labels

Video Streaming [3] 9465

Netflix (4104)
YouTube (2702)
Amazon (1509)
Twitch (1150)

Video Conferencing [25] 6511
MS Teams (3886)

Google Meet (1313)
Zoom (1312)

Social Media 3610
Facebook (1477)

Twitter (1260)
Instagram (873)

IoT Device [22] 3901 Other (3901)

Table 1: Service recognition dataset.

to facilitate effective evaluation. In training the models, we
employ a conventional 80-20 training-testing split.
Baseline. We employ NetShare [39], a state-of-the-art GAN-
based network synthesis approach, as the baseline. Built on
the open-source tool DoppelGANger [20], NetShare captures
flow metrics using a time series GAN, reformulating the
traffic generation task into a time series generation problem.

2.3 GAN-based Generation
Inadequate Feature Granularity. Existing ML-based traffic
generation methods [20, 30, 37, 39] are restricted by their fea-
ture granularity. Redzovic et al. [30], for instance, utilizes Hid-
den Markov Models to generate packet sizes and interarrival
times of IP traffic, but has limited coverage of various packet
features, such as the TCP window size. DoppelGANger gen-
erates few features across three example applications [20],
while NetShare produces NetFlow-like data comprising only
ten derived or aggregated features: source/destination IP ad-
dresses and port numbers, protocol, start time, duration, num-
ber of packets, number of bytes, and label. While NetShare
also attempts to generate individual packet header fields, this
generation is limited to 5-tuple fields and 6 other selected
features. These coarse-grained features often fall short in sup-
porting high performance in downstream tasks. For instance,
when conducting micro-level application classification on real
traffic flows with a Random Forest (RF) model, relying solely
on NetFlow features results in a performance drop (85% ac-
curacy) compared to using raw packet bits (94% accuracy).1

Hence we advocate for additional and fine-grained fea-
tures, such as those in raw packet captures, that transcend the
limitations of NetFlow attributes or aggregated statistics.
Insufficient Generation Control. Synthetic data, while re-
quiring a certain degree of randomness, must adhere to spe-
cific constraints to ensure downstream task performance. For
instance, it is essential for synthetic network data used for ser-
vice recognition model training to comply with real protocol
usage patterns - such as the predominance of TCP packets in
Netflix traffic and UDP packets in Teams traffic as observed

1For all evaluations in this study, dataset overfitting features like IP addresses,
port numbers, and flow start times are removed during preprocessing.

2



in real data - to ensure that models trained on synthetic data
maintain their accuracy when applied to real data. Yet, enforc-
ing such control during the generation process to balance ran-
domness with property preservation constitutes a significant
technical challenge. To exemplify this, we utilize NetShare to
synthesize network traces and investigate changes in accuracy
using a RF model on real data and testing on synthetic data,
and vice versa. The types of features present in real NetFlow
data are consistent with those generated by NetShare.

Using service recognition as an example, when trained and
tested on real NetFlow data, the model attains an average
accuracy of 0.85 at the micro-level, as shown later in Ta-
ble 2. However, the performance substantially declines when
training with real NetFlow data and testing with NetShare-
generated NetFlow data, showing average accuracy of only
0.056 at the micro level. The same performance decline per-
sists when the model is trained on synthetic NetFlow data and
tested on real NetFlow data, exhibiting accuracy of 0.20.

These results underscore the significance of controllability
in synthetic data generation. NetShare, while useful, is inher-
ently limited by its architecture. Currently, it does not offer
support for stateful protocols, nor is it likely to autonomously
learn stateful generation [39]. This architectural constraint re-
sults in a synthetic dataset that fails to demonstrate controlled
dependencies between packets, thereby breaching key net-
working principles such as protocol usage patterns in flows.
Additionally, such non-compliance significantly curtails the
applicability of synthetic data, as it cannot be reliably re-
played to test network functions.
Subpar Class Coverage. A significant shortcoming of GAN-
based generators lies in their inability to produce traffic re-
flective of a wide spectrum of categories such as different
protocols, applications, or network conditions. This diversity
is fundamental to the efficacy of synthetic data generation
tools, particularly for ML-driven downstream tasks. For exam-
ple, NetShare’s current generation process is not constructed
with classification in mind, treating the flow category attribute
(denoted as ’type’ in NetShare) as an additional field to gener-
ate without considering its impact on other fields’ values. This
means that even though the aggregate distribution similarity
(or low distribution drift) may be high, it does not neces-
sarily translate into useful data for classification tasks. As a
result, the per-class results show a significant ’distribution
shift’ which impairs classification performance.

Moreover, a real dataset’s inherent class imbalance, while
mild and unlikely to significantly harm model accuracy, is
amplified during GAN’s generation process as it treats class
labels as just another feature. This amplified class imbalance
can negatively impact the model’s training as illustrated in
Figure 1. Our supplemental experiments indicate that even
when generating traces by training a GAN-based model per
class, there is negligible improvement, e.g., we still observe
∼20% accuracy in micro-level classification when the model
is trained on synthetic and tested on real NetFlow data. This

ne
tfli

x

yo
utu

be

am
azo

n
tw

itc
h
tea

ms
mee

t
zoo

m

fac
eb

oo
k

tw
itte

r

ins
tag

ramoth
er

10−1

100

101

Pr
op

or
tio

n 
(%

)

(a) 11-class generation

No Class Imbalance Real
GAN
Ours

ne
tfli

x

yo
utu

be

3 × 101

4 × 101

6 × 101

Pr
op

or
tio

n 
(%

)

(b) 2-class generation

Real
GAN
Ours

Figure 1: The distribution comparison between the real
and GAN-based, and our synthetic data: our framework
results in the most balanced class distribution, thereby
significantly reducing class imbalance.

minimal improvement is not due to aggregated metrics. Fac-
tors contributing to this include the relatively low feature
support range in many useful features, which any distribution
change can impact the ML inference logic when applied to
real data, despite the good performance of similarity scores.
Furthermore, the distribution learnt by these generators often
conform to certain assumptions (e.g., normal/Gaussian distri-
bution), which is often not the case in network traffic (e.g.,
port consolidation, distribution graphs).

3 TEXT-TO-TRAFFIC SYNTHESIS
To address the limitations of synthetic network data genera-
tion tools, we propose a text-to-traffic synthesis paradigm to
tackle the critical research questions in Section 1. We employ
Diffusion models as an example and show their potential for
high fidelity through preliminary performance analysis.

3.1 System Overview
Our proposed framework is grounded in a three-tiered struc-
ture, including a text-to-image base model for high granular-
ity, an add-on model fine-tuned for extended coverage, and a
controlling component to manage inter-packet dependencies.

The first component of this framework, the text-to-image
base model, is essential for capturing the fine details inher-
ent in network traffic data. As a powerful example of such a
model, we employ Stable Diffusion 1.5 [31] which sets the
stage for high-resolution synthesis, thereby preserving the
complexities of network traffic. The second component is an
add-on model specifically tuned to expand synthesis coverage.
It does so by allowing the flexible addition of new classes
via word embeddings. In our framework, we use LoRa [10],
which has been meticulously fine-tuned on our service recog-
nition dataset, exemplifying its efficacy in broadening class
representation. The final component of our framework is a
controlling element which governs the shape and inter-packet
dependencies within each class to ensure synthetic data re-
flect realistic protocol usage patterns in flows. ControlNet [40]
serves as a strong example of this component, guiding the
generation process via one-shot controls.

3



0

-1

1

TCP
(480)

UDP
(64)

ICMP
(64)

IPv4
(480)

Header fields (number of bit-level features)

Se
qu

en
tia

l p
ac

ke
ts

 in
 fl

ow
 (r

ow
s 

of
 p

ix
el

s) Feature
Values

Figure 2: Color processed synthetic data for Amazon: all
packets (rows of pixels) are of the protocol type TCP. -1
denotes vacant header fields.

Traffic generation begins with fine-tuning the base model
using real data, following which the model generates raw
synthetic data. A real pcap file used for fine-tuning is first
converted into nprint format, which is a bit-level representa-
tion of raw packet header field values. This format preserves
all packet headers such as IP, TCP, UDP, and ICMP, with
each bit encoded as 1 or 0 for content, and -1 for vacant
bits. As shown in Figure 2, these packets are then organized
into an image where each pixel row represents a packet (up
to 1024 packets), comprising 1088 bit-level features. We as-
sign pixel colors red for bits valued 1, green for 0, and grey
for -1. For each image, we generate text prompts that de-
scribe its class type in an encoded format (e.g., ’Type-0’ for
’Netflix’) to minimize the influence of base model’s original
word embeddings. These images and prompts are then used
to fine-tune the base model, supplemented by LoRa. During
generation, a class-specific prompt and image are fed into the
fine-tuned base model and ControlNet respectively, guiding
the synthetic image creation. This synthetic image is then
color processed to restrict it to the aforementioned distinct
colors and back-transformed into nprint and finally into pcap
format. This marks the completion of our detailed, controlled
network trace synthesis.
Why Diffusion models? The paradigm shift toward diffusion
models in computer vision stems from the impressive genera-
tive quality and diversity they offer. Since the first diffusion-
based model’s launch [34], these models have displayed su-
perior generative capabilities across various tasks [6], out-
classing GANs in detail and diversity [15, 16]. For example,
Stable Diffusion [31] uses pre-trained autoencoders for dif-
fusion model training, effectively balancing detail retention
and complexity reduction. Similarly, Dall-E 2 [29] employs a
two-stage model that generates image embeddings from text,
subsequently creating diverse yet realistic images.

According to Kotelnikov et al. [18], this contributed to
the perceived "victory" of Diffusion models over GANs. Un-
like GANs, which often grapple with issues such as mode

collapse or mode dropping, diffusion models deliver stable
training dynamics, demonstrating less sensitivity to hyper-
parameter choices, and thereby ensuring reliable, consis-
tent outcomes[38]. Diffusion models’ versatility has been
demonstrated across various domains, producing realistic,
high-fidelity, fine-grained datasets for complex tasks. This in-
cludes tasks like the generation of image [29, 31], video [8, 9],
tabular dataset [18], and other structured data types [17].
Why ControlNet? Recent research has strived to strike a bal-
ance between diversity in generation and controllability. For
instance, ControlNet [40] employs task-specific conditions,
enhancing Stable Diffusion with inputs like edge maps. Uni-
ControlNet [41] advances this further with a universal Con-
trolNet addressing all conditions. DreamBooth [32] enables
personalization by assigning unique identifiers to subjects in
text-to-image models, aiding the creation of varied, realistic
images. DragDiffusion [33], influenced by DragGAN [28],
offers an interactive image editing system with guidance.

As in the context of networking, Diffusion models together
with ControlNet provides a couple of notable benefits. Firstly,
these models simplify generator training for class-aware data
generation by leveraging word embeddings. Secondly, in con-
junction with ControlNet, they support the generation of an
expansive feature space. This enables the capture of intricate
inter- and intra-packet relations, which translates to a richer,
more detailed synthetic dataset.

3.2 Pilot Analysis
In our pilot analysis, we assess the efficacy of our fine-grained
synthetic data when applied to downstream tasks, specifically
on service recognition as outlined in our case study. We do
this by comparing classification accuracy, which serves as an
indicator of performance for service recognition, when using
our synthetic data versus GAN-based data across various
training and testing scenarios. To conform to later generation
protocols, we trialed using the first 1024 packets of each
network flow. However, fine-tuning the LoRa model on the
entire dataset resulted in substantial overhead. To ensure a
fair comparison with GANs, we fine-tune the LoRa model on
a smaller subset of flows (100 for each class).

Training and testing our model on real data using raw pcap
data in nprint format, which our framework generates, yields
average accuracies of 1.00 and 0.94 at the macro- and micro-
levels respectively. The models utilizing real NetFlow data,
analogous to NetShare-generated data, also deliver relatively
high accuracies. These results serve as strong references for
subsequent scenarios involving synthetic data. We then gener-
ate synthetic nprint-formatted pcap data using our framework
and NetFlow data using NetShare, and assess the model accu-
racies when these synthetic datasets are employed. As detailed
in Table 2, models trained on real data and tested on our syn-
thetic data outperform those tested on NetShare-generated
data by a significant margin at both macro- and micro-levels.
This superiority is maintained when the models are trained
on synthetic data and tested on real data.

4



Training/Testing Data Granularity Average Accuracy

Macro-level Micro-level

Real/Real
nprint-formatted pcap 1.00 0.94

NetFlow 0.96 0.85

Real/Synthetic (Ours) nprint-formatted pcap 0.71 0.40
Real/Synthetic (GAN) NetFlow 0.12 0.056

Synthetic/Real (Ours) nprint-formatted pcap 0.72 0.31
Synthetic/Real (GAN) NetFlow 0.42 0.20

Table 2: RF model performance across different train-
ing/testing scenarios.

Granularity. Our approach substantially outperforms tradi-
tional GANs by leveraging nprint representation in conjunc-
tion with standard image representation and resolution scaling.
This strategy allows us to attain up to 1088 individual fea-
tures (all available packet headers) for up to 1024 packets
per flow for each training record. In contrast, GAN-based
approaches generate tens of fields at best. It enables us to
generate highly detailed synthetic data. Figure 2 shows the
image representation of the processed synthetic flow in nprint
representation, using Amazon traffic data as an example. This
increased granualarity brings two major benefits:

• Increased performance in data-driven classification
tasks. Allowing synthetic data to encapsulate fine-grained
features enhances feature representation, which can
lead to improvements in data-driven downstream tasks
as follows: (1) More comprehensive data structure:
Expanding the feature set, such as including stateful
protocol header fields, may allow the synthetic data
to capture a broader range of features present in the
actual data, thereby offering a more comprehensive
and accurate representation of the underlying structure.
(2) Accurate capture of interactions and dependencies:
Increased representation enables synthetic data to more
accurately capture complex cross-feature interactions
and dependencies that are often observed in real-world
data (e.g., temporal patterns between packets and se-
quential dependency of TCP/IP protocol flags). This
is particularly beneficial as network traffic data distri-
butions become increasingly homogeneous due to the
widespread encryption of features (e.g., TLS encryp-
tion, QUIC/VPN tunneling). (3) Improved downstream
model complexity: Including more features can poten-
tially lead to more expressive models, particularly deep
learning (DL) models and neural networks. These mod-
els generally benefit from extensive feature spaces, en-
hancing their capability to capture the subtleties and
intricacies of the actual data. (4) Mitigation of over-
fitting in ML-dependent tasks: Incorporating a larger
feature space can help to prevent models from overfit-
ting to specific features (e.g., port, time to live fields) or
characteristics of the synthetic data, resulting in robust
models that are more generalizable to unseen data.

• Expanded scope of downstream tasks. Fine-grained gen-
erative traces containing all header fields from packet
captures (pcap) can enable a variety of downstream
tasks beyond data-driven classification. Examples of
these tasks include replaying synthetic traffic for stress
testing and conducting traditionally performed network
analysis using tools such as WireShark [27] and DPDK [5].

Controllability. These results from Table 2 validate our ap-
proach’s capacity to improve the performance of downstream
tasks, in particular service recognition, over traditional GAN-
based methods. The observed improvement is primarily due
to the framework’s controllability, realized through guided
generation via ControlNet. For instance, a prominent attribute
used by many service recognition models for precise clas-
sification is the dominant protocol type characterizing the
flow packets. Contrasting with conventional GAN-based so-
lutions, this diffusion-based generation framework, ensures
that all packets strictly conform to the dominant protocol type
typically exhibited by real data packets for each application
during the traffic flow data generation process. As shown in
Figure 2 which illustrates a synthetic Amazon network traf-
fic flow in image representation, all generated packet (rows
of pixels) for this particular application adheres to the TCP
protocol type by filling the TCP feature pixels with colors
signifying non-vacant bits, mirroring its real data counterpart.
This behavior is consistent across all other application types
as the synthetic traces comply with the transport protocol
types seen in actual data traces, e.g., Teams using UDP. While
compliance with the general protocol type is just one exam-
ple of controllability in network data generation, it serves
as a preliminary indicator that this framework can preserve
desired constraints useful for downstream tasks.
Coverage. When it comes to coverage, diffusion-based mod-
els exhibit remarkable capabilities by virtue of its incorpora-
tion of class notions through adaptive word embeddings in
prompting. This approach enables us to generate class-aware
traffic data using a single model. Take synthetic data genera-
tion for service recognition as an example, during the training
phase, the model associates prompt keywords, such as ’Type-
0’ - the encoded form of ’Netflix’ - with the corresponding
network traffic patterns. During the text-to-traffic generation
process, given the appropriate keywords, the model is ca-
pable of generating synthetic data that accurately mimics
specific traffic styles. Therefore, to create a balanced syn-
thetic network dataset spanning all classes or categories, we
merely invoke the generation process an equal number of
times for each. Additionally, we can adjust the frequency
of invocation for each class or category to yield a synthetic
dataset with any desired distribution. In our preliminary re-
sults, we successfully produce synthetic data representing at
least 11 distinct classes with even distribution as depicted
in Figure 1(a), free from the class imbalance problem of-
ten encountered with traditional GAN-based synthesizers. To
demonstrate our framework’s ability to maintain this balance
regardless of the class and category count, we also conduct a

5



comparative study on a two-class network dataset generation
problem. Here, our approach shows similar improvement, as
shown in Figure 1(b). This shows the the expansive coverage
potential of our method.

4 OPEN CHALLENGES
Replayable synthetic network traces. It is challenging to
generate replayable, synthetic network traces that reflect the
complex patterns of real-world traffic. This shortcoming arises
from the intrinsic trade-off between diversity and controllabil-
ity in deep generative models. Even though we can apply a va-
riety of generative guidance techniques like ControlNet [40],
DreamBooth [32], and GroundingDino [23] to GAN-based
or diffusion models to create traces with more constraints,
there’s still a need to further explore methods for enforcing
stricter constraints such as those offered by network proto-
cols. For instance, the existing generative models and their
control schemes are tailored for computer vision or natural
language processing tasks. However, these paradigms don’t
directly translate to network traffic analysis. In contrast to
the smooth transitions between pixel boundaries commonly
seen in image tasks, network traffic data doesn’t follow such
a pattern. Replayable traces learned correctly can potentially
benefit existing pcap-based analysis tasks, including anom-
aly detection, traffic classification, network monitoring, user
behavior analysis, and network function testing, and etc.
Generative speed. The operational efficiency of diffusion-
based models, particularly in the context of inference, presents
a significant hurdle [18, 38]. Despite a more manageable train-
ing process compared to GANs, diffusion models necessitate
a multi-step sampling procedure during inference, extend-
ing the processing time. This becomes particularly problem-
atic for real-time applications like network traffic generation,
where the demand is for the rapid generation of tens of thou-
sands of flows per second, especially in high-throughput set-
tings. This situation underscores the need for optimization
techniques that can expedite the inference process of diffusion
models while preserving generative quality.
Dimensionality of traffic. Generating network traffic data
introduces unique challenges stemming from the intrinsic
structure of the data. For instance, both input and output
lengths can vary, requiring a model capable of handling an
inconsistent number of packets in each flow. Additionally,
the high dimensionality of each packet, particularly when
payloads are included, can complicate the training process
and necessitate significant computational resources. Finally,
network traffic flows can encompass up to tens of thousands
of packets, further escalating the task’s complexity. Tradi-
tional machine learning models might struggle with this sheer
scale of data, underscoring the need for tailored solutions for
network traffic data synthesis.
Generative foundation model beyond traffic generation.
Other than generating synthetic traffic, network traffic anal-
ysis, like many other fields, can immensely benefit from the

development of generative foundation models. Drawing from
the success of the computer vision and natural language pro-
cessing communities [6, 17, 38], we envision the creation of a
similar foundation model for networking. This model would
leverage self-supervised learning on a large-scale dataset of
real-world raw network traces. To understand the semantic
meaning of network traces, we’ll need word embeddings for
network protocols, service types, and more. Upon the suc-
cessful establishment of such a foundation model, a host of
downstream tasks could be built upon it. These tasks include,
but are not limited to: (1) traffic deblurring: This involves
the restoration of missing header fields or corrupted parts
within network traffic; (2) network condition transfers: it en-
tails transferring across varying network conditions such as
latency, throughput, and loss rate; (3) traffic-to-traffic transla-
tions: these translations can involve complex combinations
of conditions. For example, using a training set comprised
of VPN traffic and non-VPN traffic for Netflix, alongside
non-VPN traffic for YouTube, we could generate a predictive
output of VPN traffic for YouTube; (4) discriminative tasks:
foundation models could also find use in various discrimina-
tive tasks, such as taffic filtering, classification, and anomaly
detection. In these instances, they could aid in the identifica-
tion and classification of objects or anomalous behavior; (5)
explanations: furthermore, these models can be instrumental
in generating interpretable explanations for complex phenom-
ena or processes, enhancing our understanding and control
over network traffic.

5 CONCLUSION
Existing approaches for synthetic traffic generation struggle
with feature granularity, task compliance, and class coverage.
As network tasks depend more on raw packet-based models,
we advocate for a shift from coarse-grained to fine-grained
traffic generation. By exploring controllable diffusion-based
techniques, we’re generating realistic network traces that re-
flect real-world traffic diversity. Acknowledging the chal-
lenges and opportunities intrinsic to this novel approach, we
propose an ambitious research agenda that aims to catapult
the field of high-fidelity text-to-traffic synthesis.

REFERENCES
[1] Alessio Botta, Alberto Dainotti, and Antonio Pescapé. 2012. A tool for

the generation of realistic network workload for emerging networking
scenarios. Computer Networks 56, 15 (2012), 3531–3547.

[2] Francesco Bronzino, Paul Schmitt, Sara Ayoubi, Hyojoon Kim, Renata
Teixeira, and Nick Feamster. 2021. Traffic refinery: Cost-aware data
representation for machine learning on network traffic. Proceedings
of the ACM on Measurement and Analysis of Computing Systems 5, 3
(2021), 1–24.

[3] Francesco Bronzino, Paul Schmitt, Sara Ayoubi, Guilherme Martins,
Renata Teixeira, and Nick Feamster. 2019. Inferring streaming video
quality from encrypted traffic: Practical models and deployment ex-
perience. Proceedings of the ACM on Measurement and Analysis of
Computing Systems 3, 3 (2019), 1–25.

[4] Tobias Bühler, Roland Schmid, Sandro Lutz, and Laurent Vanbever.
2022. Generating representative, live network traffic out of millions of

6



code repositories. In Proceedings of the 21st ACM Workshop on Hot
Topics in Networks. 1–7.

[5] Ivano Cerrato, Mauro Annarumma, and Fulvio Risso. 2014. Supporting
fine-grained network functions through Intel DPDK. In 2014 Third
European Workshop on Software Defined Networks. IEEE, 1–6.

[6] Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and
Mubarak Shah. 2023. Diffusion Models in Vision: A Survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2023).
https://doi.org/10.1109/TPAMI.2023.3261988 Conference Name: IEEE
Transactions on Pattern Analysis and Machine Intelligence.

[7] Thomas R Henderson, Mathieu Lacage, George F Riley, Craig Dowell,
and Joseph Kopena. 2008. Network simulations with the ns-3 simulator.
SIGCOMM demonstration 14, 14 (2008), 527.

[8] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao,
Alexey Gritsenko, Diederik P Kingma, Ben Poole, Mohammad Norouzi,
David J Fleet, et al. 2022. Imagen video: High definition video genera-
tion with diffusion models. arXiv preprint arXiv:2210.02303 (2022).

[9] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Moham-
mad Norouzi, and David J Fleet. 2022. Video diffusion models. arXiv
preprint arXiv:2204.03458 (2022).

[10] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi
Li, Shean Wang, Lu Wang, and Weizhu Chen. 2021. Lora: Low-rank
adaptation of large language models. arXiv preprint arXiv:2106.09685
(2021).

[11] Danny Yuxing Huang, Noah Apthorpe, Frank Li, Gunes Acar, and
Nick Feamster. 2020. Iot inspector: Crowdsourcing labeled network
traffic from smart home devices at scale. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies 4, 2 (2020),
1–21.

[12] Xi Jiang and Noah Apthorpe. 2021. Automating Internet of Things
network traffic collection with robotic arm interactions. arXiv preprint
arXiv:2110.00060 (2021).

[13] Xi Jiang, Shinan Liu, Saloua Naama, Francesco Bronzino, Paul Schmitt,
and Nick Feamster. 2023. AC-DC: Adaptive Ensemble Classification
for Network Traffic Identification. arXiv preprint arXiv:2302.11718
(2023).

[14] Xi Jiang, Saloua Naama Shinan Liu, Francesco Bronzino, Paul Schmitt,
and Nick Feamster. [n. d.]. Towards Designing Robust and Efficient
Classifiers for Encrypted Traffic in the Modern Internet. ([n. d.]).

[15] Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shecht-
man, Sylvain Paris, and Taesung Park. 2023. Scaling up gans for
text-to-image synthesis. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 10124–10134.

[16] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehti-
nen, and Timo Aila. 2020. Analyzing and improving the image quality
of stylegan. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 8110–8119.

[17] Heejoon Koo. 2023. A Survey on Generative Diffusion Models for
Structured Data. arXiv preprint arXiv:2306.04139 (2023).

[18] Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem
Babenko. 2022. TabDDPM: Modelling Tabular Data with Diffusion
Models. arXiv preprint arXiv:2209.15421 (2022).

[19] Mathieu Lacage and Thomas R Henderson. 2006. Yet another network
simulator. In Proceedings of the 2006 Workshop on ns-3. 12–es.

[20] Zinan Lin, Alankar Jain, Chen Wang, Giulia Fanti, and Vyas Sekar.
2020. Using gans for sharing networked time series data: Challenges,
initial promise, and open questions. In Proceedings of the ACM Internet
Measurement Conference. 464–483.

[21] Shinan Liu, Francesco Bronzino, Paul Schmitt, Arjun Nitin Bhagoji,
Nick Feamster, Hector Garcia Crespo, Timothy Coyle, and Brian Ward.
2023. LEAF: Navigating Concept Drift in Cellular Networks. Proceed-
ings of the ACM on Networking 1, 2 (2023), 1–24.

[22] Shinan Liu, Tarun Mangla, Ted Shaowang, Jinjin Zhao, John Paparrizos,
Sanjay Krishnan, and Nick Feamster. 2023. AMIR: Active Multimodal
Interaction Recognition from Video and Network Traffic in Connected

Environments. Proceedings of the ACM on Interactive, Mobile, Wear-
able and Ubiquitous Technologies 7, 1 (2023), 1–26.

[23] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie
Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, et al. 2023.
Grounding dino: Marrying dino with grounded pre-training for open-
set object detection. arXiv preprint arXiv:2303.05499 (2023).

[24] Mohammad Lotfollahi, Mahdi Jafari Siavoshani, Ramin Shirali Hos-
sein Zade, and Mohammdsadegh Saberian. 2020. Deep packet: A novel
approach for encrypted traffic classification using deep learning. Soft
Computing 24, 3 (2020), 1999–2012.

[25] Kyle MacMillan, Tarun Mangla, James Saxon, and Nick Feamster. 2021.
Measuring the performance and network utilization of popular video
conferencing applications. In Proceedings of the 21st ACM Internet
Measurement Conference. 229–244.

[26] Yair Meidan, Michael Bohadana, Asaf Shabtai, Juan David Guarnizo,
Martín Ochoa, Nils Ole Tippenhauer, and Yuval Elovici. 2017. Profil-
IoT: A machine learning approach for IoT device identification based
on network traffic analysis. In Proceedings of the symposium on applied
computing. 506–509.

[27] Angela Orebaugh, Gilbert Ramirez, and Jay Beale. 2006. Wireshark &
Ethereal network protocol analyzer toolkit. Elsevier.

[28] Xingang Pan, Ayush Tewari, Thomas Leimkühler, Lingjie Liu, Abhimi-
tra Meka, and Christian Theobalt. 2023. Drag Your GAN: Interactive
Point-based Manipulation on the Generative Image Manifold. In ACM
SIGGRAPH 2023 Conference Proceedings.

[29] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark
Chen. 2022. Hierarchical text-conditional image generation with clip
latents. arXiv preprint arXiv:2204.06125 (2022).

[30] Hasan Redžović, Aleksandra Smiljanić, and Milan Bjelica. [n. d.]. IP
Traffic Generator Based on Hidden Markov Models. parameters 1, 2
([n. d.]), 1.

[31] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser,
and Björn Ommer. 2022. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 10684–10695.

[32] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael
Rubinstein, and Kfir Aberman. 2023. DreamBooth: Fine Tuning Text-
to-Image Diffusion Models for Subject-Driven Generation. (March
2023). https://doi.org/10.48550/arXiv.2208.12242 arXiv:2208.12242
[cs].

[33] Yujun Shi, Chuhui Xue, Jiachun Pan, Wenqing Zhang, Vincent Y. F.
Tan, and Song Bai. 2023. DragDiffusion: Harnessing Diffusion Models
for Interactive Point-based Image Editing. (June 2023). https://doi.org/
10.48550/arXiv.2306.14435 arXiv:2306.14435 [cs].

[34] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya
Ganguli. 2015. Deep unsupervised learning using nonequilibrium
thermodynamics. In International Conference on Machine Learning.
PMLR, 2256–2265.

[35] Joel Sommers, Hyungsuk Kim, and Paul Barford. 2004. Harpoon: a
flow-level traffic generator for router and network tests. ACM SIGMET-
RICS Performance Evaluation Review 32, 1 (2004), 392–392.

[36] Kashi Venkatesh Vishwanath and Amin Vahdat. 2009. Swing: Realistic
and responsive network traffic generation. IEEE/ACM Transactions on
Networking 17, 3 (2009), 712–725.

[37] Shengzhe Xu, Manish Marwah, Martin Arlitt, and Naren Ramakrishnan.
2021. Stan: Synthetic network traffic generation with generative neural
models. In Deployable Machine Learning for Security Defense: Second
International Workshop, MLHat 2021, Virtual Event, August 15, 2021,
Proceedings 2. Springer, 3–29.

[38] Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu,
Yue Zhao, Yingxia Shao, Wentao Zhang, Bin Cui, and Ming-Hsuan
Yang. 2022. Diffusion models: A comprehensive survey of methods
and applications. arXiv preprint arXiv:2209.00796 (2022).

[39] Yucheng Yin, Zinan Lin, Minhao Jin, Giulia Fanti, and Vyas Sekar.
2022. Practical gan-based synthetic ip header trace generation using
netshare. In Proceedings of the ACM SIGCOMM 2022 Conference.

7

https://doi.org/10.1109/TPAMI.2023.3261988
https://doi.org/10.48550/arXiv.2208.12242
https://doi.org/10.48550/arXiv.2306.14435
https://doi.org/10.48550/arXiv.2306.14435


458–472.
[40] Lvmin Zhang and Maneesh Agrawala. 2023. Adding Conditional

Control to Text-to-Image Diffusion Models. (Feb. 2023). https://doi.
org/10.48550/arXiv.2302.05543 arXiv:2302.05543 [cs].

[41] Shihao Zhao, Dongdong Chen, Yen-Chun Chen, Jianmin Bao, Shaozhe
Hao, Lu Yuan, and Kwan-Yee K. Wong. 2023. Uni-ControlNet: All-in-
One Control to Text-to-Image Diffusion Models. (May 2023). http:
//arxiv.org/abs/2305.16322 arXiv:2305.16322 [cs].

8

https://doi.org/10.48550/arXiv.2302.05543
https://doi.org/10.48550/arXiv.2302.05543
http://arxiv.org/abs/2305.16322
http://arxiv.org/abs/2305.16322

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Traffic Generation and Status Quo
	2.2 Case Study Settings
	2.3 GAN-based Generation

	3 Text-to-traffic Synthesis
	3.1 System Overview
	3.2 Pilot Analysis

	4 Open Challenges
	5 Conclusion
	References

