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Non-linear non-zero-sum Dynkin games with
Bermudan strategies

1%
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Peng Yuan? *

L3University of Warwick
2Université Paris Cité

November 1, 2023

Abstract: In this paper, we study a non-zero-sum game with two players,
where each of the players plays what we call Bermudan strategies and opti-
mizes a general non-linear assessment functional of the pay-off. By using a
recursive construction, we show that the game has a Nash equilibrium point.

1 Introduction

Game problems with linear evaluations between a finite number of players
are by now classical problems in stochastic control and optimal stopping (cf.,
e.g., [1], [3], [5], [9], [13], [14], [15], [16], |L7], [18], [25], [26] and [28]) with var-
ious applications, in particular in economics and finance (cf., e.g., [13], [14],
[22] and [25]). In the recent years game problems with non-linear evaluation
functionals have attracted considerable interest: cf. [2] for the case of non-
linear functionals of the form of worst case expectations over a set of possibly
singular measures; [6], [7], [§] and ]|L0] for the case of non-linear functionals
induced by backward stochastic differential equations (BSDEs). Most of the
works dealing with non-linear games have focused on the zero-sum case (cf.,
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e.g., [2], [6], [7], [8] and [10]). Non-zero-sum games are notoriously more in-
tricate than their zero-sum counterparts even in the case of linear evaluations
(cf., e.g., [14], [16], [17], [27], [29] and [31]). Non-zero-sum games with non-
linear functionals have been considered in [12] in the discrete-time framework
and with non-linear functionals induced by Backward SDEs with Lipschitz
driver, in [21] in the continuous time framework and with non-linear func-
tionals of the form of expected exponential utilities.

In the current paper, we address the question of existence of a Nash equilib-
rium point in a framework with general non-linear evaluations and with a set
of stopping strategies which is in between the discrete time and the continu-
ous time stopping strategies. The results of [12] can be seen as a particular
case of the current paper.

The paper is organised as follows: In Section 2] we introduce the framework,
including the set of optimal stopping strategies of the agents (namely the
Bermudan strategies), the pay-off as well as the properties on the risk func-
tionals p' and p? of agent 1 and agent 2. In Section B, we present our main
results and show that the non-linear non-zero-sum game with Bermudan
strategies has a Nash equilibrium point.

2 The framework

Let T > 0 be a fixed finite terminal horizon.

Let (2, F, P) be a (complete) probability space equipped with a right-continuous
complete filtration F = {F;: t € [0, T]}.

In the sequel, equalities and inequalities between random variables are to be
understood in the P-almost sure sense. Equalities between measurable sets
are to be understood in the P-almost sure sense.

Let N be the set of natural numbers, including 0. Let N* be the set of natural
numbers, excluding 0.

We first define the so-called Bermudan stopping strategies (introduced in
[11]).
Let (0x)ken be a sequence of stopping times satisfying the following proper-
ties:

(a) The sequence (0;)ren is non-decreasing, i.e. for all k € N, 0, < 0yq,
a.s.

(b) limg_o 1 6k =T as.



Moreover, we set 6y = 0.

We note that the family of o-algebras (Fp, Jkeny is non- decreasing (as the
sequence (6) is non-decreasing). We denote by © the set of stopping times

7 of the form
+o0

T =Y 0cla, + 71, (1)
k=0
where {(Ay); %, A} form a partition of  such that, for each k € N, Ay € Fy,
and A € Fr.

The set © can also be described as the set of stopping times 7 such that for
almost all w € Q, either 7(w) =T or 7(w) = O (w), for some k = k(w) € N.

Note that the set © is closed under concatenation, that is, for each 7 € © and
each A € F,, the stopping time 714 + T'14. € ©. More generally, for each 7
€ O, 7" € © and each A € F, ./, the stopping time 714 + 7’14 is in ©. The
set O is also closed under pairwise minimization (that is, for each 7 € © and
7' € ©, we have 7 A 7" € ©) and under pairwise maximization (that is, for
each 7 € © and 7’ € ©, we have 7 v 7/ € ©). Moreover, the set © is closed
under monotone limit, that is, for each non-decreasing (resp. non-increasing)
sequence of stopping times (7, )nen € @N, we have lim,,_, ;. 7, € O.

We note also that all stopping times in © are bounded from above by T

Remark 1. We have the following canonical writing of the sets in (1I):

AO = {7’ = 00},
Api1 ={17=0,41,0,1 <T}\ (A, U ... U Ap); for all n e N*
A= (VA

From this writing, we have: if w € Agq 0 {0 < T}, then w ¢ {T = O}.

For each 7 € ©, we denote by O, the set of stopping times v € © such that
v = 7 a.s. The set O, satisfies the same properties as the set ©. We will
refer to the set © as the set of Bermudan stopping strategies, and to the
set ©, as the set of Bermudan stopping strategies, greater than or equal to
7 (or the set of Bermudan stopping strategies from time 7 perspective). For
simplicity, the set ©y, will be denoted by ©j.

Definition 1. We say that a family ¢ = (¢(7), 7 € O) is admissible if it
satisfies the following conditions
1. forall T € ©, ¢(1) is a real valued random variable, which is F,-

measurable.
2. forallT, 7€ ©, (1) = d(1') a.s. on{T =171}
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Moreover, for p € [1,4+0] fized, we say that an admissible family ¢ is
p-integrable, if for all T € ©, ¢(T) is in LP.

Let ¢ = (¢(7), T € ©) be an admissible family. For a stopping time 7 of the
form (), we have

+o0
O(7) = D, 6(0i)1a, + &(T)1x as. (2)
k=0
Given two admissible families ¢ = (¢(7), 7€ ©) and ¢’ = (¢/(7), T € O), we
say that ¢ is equal to ¢’ and write ¢ = ¢’ if, for all 7 € O, ¢(7) = ¢'(7) a.s.
We say that ¢ dominates ¢’ and write ¢ > ¢’ if, for all 7€ ©, ¢(1) = ¢'(7)
a.s.

Let p € [1,+o0]. We introduce the following properties on the non-linear
operators pg[-], which will appear in the sequel.

For S € ©, 8 € ©, 7 € ©, for n, gy and 1y in LP(F,), for & = (£(7)) an
admissible p-integrable family:
(i) ps,r: LP(Fr) — LP(Fs)
(i) (admissibility) ps-[n] = ps +[n] a.s. on {S = 5'}.
(iii) (knowledge preservation) p.s[n] = n, for all n € LP(Fg), all 7 € Og.
(iv) (monotonicity) ps.[m] < psz[ne] a.s., if m <o as.
(v) (consistency) pselpe-[n]] = ps-[n], for all S,0,7 in © such that S <
0 <7 as.
(vi) ("generalized zero-one law”) Iaps-[£(T)] = Taps~[£(7')], for all A e
Fg, T € Og, 7 € Og such that 7 = 7 on A.
(vii) (monotone Fatou property with respect to terminal condition)
ps.-[n] < liminf, .o ps.[nn], for (n,), n such that (n,,) is non-decreasing,
Ny € LP(F;), sup,, n, € LP, and lim,, ;o 1 1, = 1 a.s.
(viii) (left-upper-semicontinuity (LUSC) along Bermudan stopping times with
respect to the terminal condition and the terminal time), that is,

lim sup pg., [¢(7)] < ps,p[lim sup ¢(7,)],
n—+00 n—+o0
for each non-decreasing sequence (7,,) € OF such that lim, o T 7, =
v a.s., and for each p-integrable admissible family ¢ such that sup,,.y [¢(7,,)| €
LP.
(ix) limsup,,, o po,.r[n] < prr(n], for all ne LP(Fr).

These assumptions on p ensure that the one-agent’s non-linear optimal stop-
ping problem admits a solution and that the first hitting time (when the
value family “hits” the pay-off family) is optimal (cf. [11] for more details).
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3 The game problem

We consider two agents, agent 1 and agent 2, whose pay-offs are defined
via four admissible families X! = (X1(7))co, X? = (X?(7))reo, Y! =
(YY(7))reo and Y2 = (Y%(7)),;co. We assume that X! X2 V! and Y? are
p-integrable families such that

(A1) X! < Y X? < Y? (that is, for each 7 € ©, X(7) < Y!(7), and
X2(1) < Y*(1)).

(A2) XN(T) = YN(T), XX(T) = Y*(T).

(A3) ess sup,.oX (1) € LP, ess sup,.oX2(7) € LP,

ess sup, .Y (7) € LP and ess sup,oY?(7) € LP.
(A4) limsup,_,. o, X' (6k) < XYT), limsup,_, ., X*(0r) < X*(T).

The set of stopping strategies of each agent at time 0 is the set © of Bermudan
stopping times. If the first agent plays 7 € © and the second agent plays
Ty € O, the pay-off of agent 1 (resp. agent 2) at time 71 A 75 is given by:

]1(7_1’ TZ) = Xl(Tl)l{nSTg} + Yl(TQ)]'{’T2<T1}

(resp. [2<T17T2) = X2(7-2>1{7'2<T1} + Y2<T1)1{T1 <72}>7

where we have adopted the convention: when 7 = 73, it is the first agent who
is responsible for stopping the game. The agents evaluate their respective
pay-offs via possibly different evaluation functionals. Let p' = (ps.[-]) be
the family of evaluation operators of agent 1, and let p* = (ps,[-]) be the
family of evaluation operators of agents 2. If agent 1 plays 71 € ©, and agent
2 plays 1 € ©, then the assessment (or evaluation) of agent 1 (resp. agent
2) at time 0 of his/her pay-off is given by:

Jl(Tla 7_2) = p(l),nm—g [Xl(Tl)l{TléTz} + YI(TQ)I{T2<T1}]'

(resp. Jo(T1,72) = P 1y o [ X2 (72) Ly <rry + Y2 (70) 1y <r])-

We assume that both p' and p? satisfy the properties (i) - (ix). We will
investigate the problem of existence of a Nash equilibrium strategy (7, 7).

Definition 2. A pair of Bermudan stopping times (11, 75) € © x O is called
a Nash equilibrium strateqy (or a Nash equilibrium point) for the above non-
zero-sum non-linear Bermudan Dynkin game if: Ji(1i,75) = Ji(11,75), for
any 11 € O, and Jo(1,75) = Jo(7], 72), for any T € O.
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In other words, any unilateral deviation from the strategy (77", 75) by one
of the agent (the strategy of the other remaining fixed) does not render the
deviating agent better off.

Theorem 1. Under assumptions (i) - (iz) on p* and p?, there exists a Nash
equilibrium point (17, 75) for the game described above.

We will construct a sequence (To,41, Ton)neN (by induction), for which we will
show that it converges to a Nash equilibrium point.

We set 71 =T and 75 == T. We suppose that 7, 1 € © and 7, € © have
been defined. We set, for each k € N,

E(0) = X (0k) Loy <rany + Y (T20) L {ra <4 (3)
Moreover, £*""Y(T) := Y(7y,). This definition is “consistent” with the
above, as by @), (g, &> 1 (0k) = 149, =1 Y (T20).

For 7 € © of the form 7 = 3, N 0k1a, +T14, where ((A), A) is a partition,
Ay, is Fp,-measurable for each k € N, and A is Fp-measurable,

() i= Y €0 O, + €T )

keN

We note that £2"+1(0,) is the pay-off at 0y A T2, of agent 1 (up to the equality
{0 = T2, }) if agent 1 plays 6 and agent 2 plays To,.

We also note that:
§2n+1(7—) = X1(7)1{7<T2n} + Y1(7—2n)1{7_2n <7}~

Thus, £2"71(7) is the pay-off at 7 ATy, of agent 1 (up to the equality {7 = 72,})
if agent 1 plays 7 and agent 2 plays 7o,.

For each S € ©, we define
VEL(S) 1= ess SUP o Ps,ram, 671 (T)]
Fong1 = essinf A, where A' = {7 € © : VI"*l(7) = £20*1(1)} (5)

T2n+1 = (7—2n+1 AN Tanl)l{f'gn_‘_l /\Tgn_1<T2n} + 7-2n711{7~—2n+1 /\Tgn_1>T2n}'

Assuming that limsup,_, ., X*(6;x) < X*(T) (from (A4)) ensures that
limsup,,_, ., £"1(0k) < £2"*1(T'). This is a technical condition on the pay-
off which we use to apply Theorem 2.3 in [11].

We recall that under the assumptions of Theorem 2.3 in [11], the Bermudan



stopping time 7o,,1 is optimal for the optimal stopping problem with value
V2 H1(0), that is

VIH0) = P05 1 nron [€(Fans1)] = UD iy £ o, [€77H(7)]. (6)

TEO

We also recall that V2" ™1(T) = £2"1(T'), under the assumption of knowledge
preservation on p.

Remark 2. i) It is not difficult to show, by induction, that for each n € N,
(€2"7Y(T))1co is an admissible LP-integrable family, and To, .1 is a Bermudan
stopping time (for the latter property, we use that © has the property of
stability by concatenation of two Bermudan stopping times).

ii) For each n € N, for each 7 € ©, £2"T1(1) = 2" (1 A 1,).

Indeed, we have:

EM (k) = X (00) 110y <rony + V" (T20) L ran <0}

= Xl(ek A 7—2n)1{9k ATon<Ton} T Yl(TZn)l{TanGkATzn} = §2n+1(

O A Ton).

(7)
Now, let T € © be of the form 7 = >, NOkla, + T15. By definition of
EU(r), of €"YT) and by Eq. (@), we have:

€2n+1(7_) _ Z §2n+1(0k)]‘f4k + §2n+1(T)1A
keN

= Z E O, A Ton)1a, + Y (720) 14 = E"HT A T2n).
keN

Proposition 1. i) &1 (7)1, <60 = Y (T20) 1{rn <00} -

i) V01 r <000 = Y (T2n) L <04} -

1wi) V" U )y <ry = Y (T00) Lirg, <r}-

w) For each n € N, Top 1 = essinf{T € © : V(1) = XY(7)} A 72,. In
particular, Topi1 < Top.

Proof. i) On the set {r = T}, we have £""(7) = & U(T) = Y(1,).
On the set {7 = 0, < T}, by the second statement in Remark 2] we have
£t (r) = £771(0) = €2 (0p A T2,). Hence, on the set {7 = 0, < T} N
{Ton < O}, we have £2"Tl(1) = £>""(1y,) = Y!(7,), which proves the
desired property.

ii) We have:

I{TQngek}VQnJrl(ek) = I{TQngek}eSS SupTEkaeknT/\7—2n [§2n+1(7— N 7—277/)]
= €88 Sup’rE@k]‘{T2n<9k}p9k77'/\7'2n [§2n+1(7_ N 7_271)]

= €88 Supfre®k1{’rzn <01} POy, T ATan A0y [§2n+1(7_ N Top A ek)]u



where we have used the “genrealized zero-one law” to obtain the last equality.

For any 7 € Ok, 7 A Top, A O = T2, A 0 < 0. Hence,

1{T2n<9k}p9kﬂ'/\7'2n/\9k [§2n+1(7 A Top A ek)] = 1{T2n <01} PO, 720 A O3, [£2n+1<7-2n A ek)]
= ]-{Tgn g@k}§2n+1(7_2n AN 0k)7
where we have used the knowledge-preserving property of p to obtain the

last equality.
Finally, we get

1{T2n<9k}v2n+1<9k‘> = 1{T2n<9k}£2n+1<7-2n) = 1{T2n<9k}Y1<T2n)'

iii) Let 7 € © be the form 7 = >, N0kla, + T145. Then, by admissibility,
we have
V2n+1(7_) _ Z V2n+1(0k‘)1Ak + V2n+1(T)].A
keN

Hence,

V2n+1<7—)1{72n<7'} = Z V2n+1<9k‘>114k N{Ten <7} + V2n+1<T)1Aﬁ{T2n<T}
keN

= 2 V2n+1<9k‘>1Ak {12, <04} + V2n+1<T)1Aﬁ{T2n<T}
keN

= Z Yl(TZH)lAk ~ron<} T €2n+1(T)114m{72n<T}’
keN

where we have used the previous property (ii) to obtain the last equality.
Hence, we get

VI (D) U mery = DL Y (T2t afmanzty + £ H (D) i (ranery
keN

= Z Yl (TQn)lAk N{T2n <O} + Yl (TZn)IAﬂ{T2n<T} = Yl (TQn)l{TQn<T}'
keN

iv) By the previous property (iii), we have, V?"*1(7) = £2"*1(7) if and only
if V2 () aryy = €PN (T)1{r<ry,y. Hence,

Foni1 = essinf{r € © : V2" (1) = X1(7)} A 7.

Similarly to [3]), ) and (&]), we define:
§2n+2(‘9k) = X2(9k)1{0k <Ton+1} + Y2<T2n+1)1{72n+1 <Oi}> and
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€2n+2(T) — Y2(7—2n+1)-
For 7 € © of the form 7 = Y, N 0kla, + 114, we define

£2n+2(7_) = Z §2n+2(‘9k)1Ak + £2n+2(T)1g

keN
VE2(S) i €55 SUD ey P my s [€7F2(7)] @®

Fongo = essinf A%, where A% = {r € © : V>"*2(7) = £2772(7)}

Ton+2 = (T2n+2 N T2n>1{7~'2n+2 AT2n <T2n+1} + 7—2n1{7”'2n+2 AT2n ZTon+1}"

The random variable £2"+2(7) is exactly the pay-off at 7 A Ty, 41 of agent 2, if
agent 1 plays 7y,,1 and agent 2 plays 7. Hence, V?"*2(9) is the optimal value
at time S for agent 2, when agent 1’s strategy is fixed to 75, 11. Assuming that
limsup,_, .o X2(6) < X2(T) leads to limsup,_, . 2" 2(0,) < &7,
which we use in applying Theorem 2.3 in [11]. By Theorem 2.3 in [11],
the Bermudan stopping time 75,,o is optimal for the problem with value
V2 +2(0), that is,

VI0) = P62z nmanin [€7 (Fang2) ] = Sup Porarana [E7 ()]
TE

Remark 3. Let us recall that (cf. [11]) T, = essinf{T € © : V(1) = £"(7)}
satisfies the property: V™(7,) = £™(T.). (This is due to the property of
stability of © by monotone limit and to the right-continuity-along Bermudan
stopping strategies of the families (V™ (7)) and (£"(7))).

Remark 4. By analogy with Remark[2, we have:
i) (£2"*2(7)) is a admissible LP-integrable family;

i) for each n € N, for each 7 € ©, £*"2(7) = £2"F2(7 A Tony1).

Proposition 2. We assume that p satisfies the usual “zero-one law”. Then,
forallm =1, Ti0 < Ty

Proof. We suppose, by way of contradiction, that there exists m > 1 such
that P(Tnee > Tpn) > 0, and we set n := min{m > 1 : P(T40 > 7n) > 0}.
We have 7,,,1 < 7,,_1, by definition of n. This observation, together with the
definition of 7,1 and with the inequality of part (iv) of Proposition [l gives:

Thn+1 = (Tn+1 A Tn—l)l{’?n+1 ATn—1<Tn} + Tn—ll{’?nJrl ATn—12Tn}
= Tn+11{7~'n+1 <Tn} + Tnfll{f'nﬂ?%} (9)

= Tnt1l{F1<m) T Tao11{F, 1 =)



For similar reasons, we have
Th = 7~_nl{’Fn<7'n,1} + Tn—21{’?n=7'n,1}~ (10)

For the easing of the presentation, we set I' := {7, < T,,12}.
On the set I', we have:

1) 7, < Tat2 < Tua1, the last inequality being due to property (iv) of Propo-
sition [II

2) Tpy1 = Tp—1. This is due to (1), together with Eq. (@).
3) €72 = ¢". This is a consequence of (2) and the definitions of £"*2 and &£
4) 7, = Tp.

We prove that {7, = 7,-1} n ' = &, which together with Eq. (I0), gives the
desired statement.

Due to Eq. ([I0), we have {7, = 7,_1} = {7, = Tu_1} 0 {7w = Tn_2}. Thus,
we have
{%n = Tnfl} NnI'= {%n =Tn-1,Tn = Th—2 < %n+2}-

Now, we have 7,, < 7,_5 (due to the definition of n). Hence,
{%n = Tnfl} NnI'= {%n =Tp-1 S Tp2 =Ty < %n+2} = @7

where the equality with ¢J is due to 7,10 < 7,_1.

We note that combining properties (1) and (4) gives 7,, < 7,42 on I'. We will
obtain a contradiction with this property. To this end, we will show that:

1r V(7)) = 108" (7). (11)
By definition of 7,, and by Remark B we have:
Vn(%n) = En(%n>

This property, together with property (3) on I', gives V™(7,) = {"(7.) =
£"*2(7,) on I'. In order to show Eq. (), it suffices to show

1 V"7, = 10 V(7).

By property (4) on I' and Proposition M (applied with A = T" € F, and
T =1T,), we have

IFV"“(%n) = lpvn+2(7n) = IFVIZH_Q(Tn).
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Due to property (3) on I', V"% and Vi® have the same pay-off, and by
applying again Proposition ] and property (4) on I', we have

IFV;‘H_Z(Tn) = IFVIZL(Tn) = lpvn(Tn) = IFV"(%n)

We have shown that 11 V"2(7,) = 1rV"™(7,), which is the desired equality.
Hence, we get 7,,2 < 7, on I' (as by definition 7,2 = essinf{r € © :
V(1) = €"72(7)}). However, this is in contradiction with the property
Tnao > T, on I'. The proof is complete.

U

Lemma 1. i) For alln > 2, Tpp1 = Tni1 Lz, <m} T Tn11{fa1 —ra} -
i) For alln = 2, Tpy1 = Tyl A Tn-
iii) On {1, = Tn_1}, Tm =T, for all m e {1,...,n}.

Proof. i) This property follows from the definition of 7,1, together with
Proposition [2, and with property (iv) of Proposition [II

ii) By using (i), we get
Tpt1 A To = (Tt A To) Lz <m) T (Tao1 A To) Lm0 =)

= 7-n+11{7~'n+1 <Tn} + (Tn,1 A 7~—n+1>1{7~'n+1:7'n}

= 7’:n+1]-{7~'n+1 <Tn} + 7’:7L+11{71n+1:Tn}7
where we have used Proposition 2] for the last equality.
Finally, by using property (iv) of Proposition [I, we get 7,11 A 7, = Tpy1-

iii) To prove this property, we proceed by induction. The property is true
for n = 2. We suppose that the property is true at rank n—1 (where n > 3),
that is on {7,_1 = 7,2}, T =T, forall me {1,....n — 1}.

From the expression for 7,, from statement (i), we get
Tn = 7~—nl{f?n<7'n,1} + Tn721{%n=7'n,1}-

Hence, 7, = 7,_2 on the set {r, = 7,,_1}. We conclude by the induction
hypothesis. O

Lemma 2. The following inequalities hold true:
i) Ji(T, Ton) < J1(Tont1, Ton), for all T € ©.

“) J2(7—2n+17 7_) < J2(7—2n+17 7_2n+2)a f07" all 7€ ©.

11



Proof. Let us first prove statement i):

By (A1), we have X! < Y'!; it follows
X1<T)1{7-<7-2n} +Y! (T2n) Lirg, <1} < (7).
Hence, by monotonicity, and by definition of V?""1(0), we have
J(T,72n) < VFEH0) (12)

We will now show that V**1(0) = Jy(72n41, T2n), which will complete the
proof of statement i).

We have

J1(Tons1, Ton) = p(l),mnﬂ ATon (X1(72n+1)1{T2n+1 <rn} T v (TZn)l{Tzn <T2n+1})
= pé772n+1 ANT2n (§2n+1(7—2n+1))a
where we have used iii) from Lemma [I and X'(T) = YY(T) from (A2) to
show the last equality.
On the other hand, by ii) from Remark [2 and ii) from Lemma [I]

2n+1 2n+1( 2n+1

p5772n+1 /\T2n(§ (TZn-i-l)) = pé,TQn+1 AT2n (5 Ton4+1 N TZn)) = p(1)7~2n+1/\7—2n (6 (7:2714-1))-

By optimality of 7o, for V2"*1(0) (cf. Eq. (@), we get

p(l)ﬁ-gn_H ATon (§2n+1 (%Zn-i-l)) = V2n+1 (0) .

Hence, we conclude

J1(7'2n+1,7'2n) = ptl),mnﬂmm (§2n+1(7'2n+1)) = P(l),;gnHMQn (€2n+1(7~_2n+1)) = V2n+1(0).

(13)
From Eq. (I3) and Eq. (I2), we get
Ji(7, 720) < Ji(T2ns1, Ton)-
Let us now prove statement ii):
We have
Jo(Tans1, ) < VI(0), (14)

by definition of V**2(0) (cf. Eq. (@)).

We will now show that Jy(Toni1, Tons2) = V2"72(0), which will complete the
proof.

12



By definition of £2"*2(1y,), by ii) from Remark @] and by ii) from Lemma [T}
we have

J2(72n+1, 7—2""'2) - p%77_2n+1 AT2n+2 (X2(72n+2)1{7_2n+2 <mns1} T Y2(7_2n+1)1{7'2n+1 <T2n+2})
= p%,TQnJrl AT2n+2 (€2n+2(7—2n+2))
_ 2 2n+2
= P0,72n+1 AT2n42 (5 (72n+2 A 7—2n+1))
(€

= pgv%2n+2/\7_2n+1 ant? (7:277/4’2))

By Eq. (8), we have

p%,f‘gnJrg ATon+1 (€2n+2(%2n+2)) = V2n+2(0)-

Hence, we conclude
Jo(Ton+1, Tons2) = Pg,mm A72n+2<€2n+2(7'2n+2)) = Pg,%gwrg AT2n+1<£2n+2(7~'2n+2))1: [ (0).
From Eq. (I8) and Eq. (I4]), we get )
J2(Tant1, 7) < Jo(Tont1, Tons2)-
]

Remark 5. As a by-product of the previous proof, we find that To,.1 is
optimal for the problem with value V?"*1(0), and T2 is optimal for the
problem with value V*"2(0).

Definition 3. We define 7 = lim,,_, ;o Tont1, and 75 = lim,_, 1 o Top,.
Proposition 3. We assume that p' and p? satisfy properties (i) — (vii), and
the following additional property: forie {1,2},

lim sup py,,, [€(va)] = £, [E(V)], (16)

n—+0o0

for any sequence (v,) < ON, v e O, such that v, | v. We have:
i) For all 7 € ©, lim,_, o J1 (T, Ton) = J1(7, 7).

ii) For all T € ©, lim,,_,, o Jo(Tont1,7) = Jo(75, 7).

ii1) For all T € ©, lim,_,, o J1(T2ns1, Tons2) = J1(75, 7).

i) For all T € ©, lim,,, 1o Jo(Tons1, Tont2) = Jo(79, 75).
Proof. Let us first show statement i):

Let us recall the following notation:

13



for a fixed 7 € ©,
N7, v) = XN ) ey + Y ()1 ey,

IN713) = XN parsy + Y103 <.

With this notation, we have
Ji (T’ 7_271) = péﬂ'/\’r‘gn [I(T’ 7_271)]’ and J; (T’ 7_2*) = p(l],q—m—Q* [I(T’ 7_2*)]

We note that the sequence (73,) and (7 A To,) converges from above to 7
and T A 7, respectively. Moreover, for each 7 € O, the family (I'(7,v)).co
is admissible. Indeed, for each v € ©, I'(7,v) is F,-measurable. Moreover, if
{v="1"}, I(r,v) = I(7,V) a.s. Hence, as any admissible family in our frame-
work is right-continuous along Bermudan stopping strategies (cf. Remark
2.10 in [11]), we get

nErJIrloo I(7,79,) = I(1,75).

Hence, by property (I6) on p', we get

Hm sup pg ; . [ (7, T20)] = /Jé,TAT; [1(7, 75)]-
n—-+0oo

Now, let us prove statement ii):

For 7 € ©, we recall the following notation:

I*(v,7) = X2(7)1{7<V} + Yz(l/)l{,,@},
The family (I%(v, T),co is admissible. Indeed, for each v € ©, I?*(v,T) is F,-
measurable. Moreover, on {v; = 1o}, I*(v1,7) = [*(1n,T) a.s.

As (Ton41) converges from above to 7}, and as (I*(v, T),ce) is right-continuous
along Bermudan stopping strategies (cf. Remark 2.10 in |11]), we get

lim 12(72n+1,7') = 12(7'1*,7').
n— 400

By property (I6) on p?, we get

llm iup p%,T2n+1 AT[‘[Q(Tzn+17 T):I = pg,Tl*/\T[Iz(Tl*7 T):I
n——+0ao

We now prove statement iii).

The proof relies again on the Bermudan structure on ©. For any sequence
(o) € ON converging from above to 7 € ©, we have: for almost each w € €,
there exists ng = ng(w) such that for all n = ng, 7,(w) = 7(w) (cf. Remark
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10 in [11]).
Hence, for almost each w € Q, there exists nyg = ng(w) such that for n = ny,
Ton+1(w) = 71 (W), Tont2(w) = 73'(w) and

I(Ton 1, Tant2) (W) = X (1) (@) Lgps <oy (W) + YV 75) (W)L <y ().
By property () on p', we get

im Ji(Tons1, Tons2) = (17, 75).
n— 400

The proof of iv) is based on the same arguments. O
We are now ready to complete the proof of Theorem [Il

Proof of Theorem [Il. By combining Lemma 2] and Proposition B, we get:
Ji(1, 1) < Ji(r5,75), for all T € ©.
Jo(1,7) < Jo(7], 7)), for all T € ©.

Hence, (7f,75) is a Nash equilibrium point. u

We have thus shown that the non-linear non-zero-sum Dynkin game with
Bermudan strategies admits a Nash equilibrium point.
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4 Appendix
Proposition 4. (Localisation property) Let (£(7))rco be a given admissible

p-integrable family. Let (V(7))reo be the value family of the optimal stopping
problem: for S € ©,

V(S) = ess sup,eeyps.-[E(7)]-

Let S € ©, and let A be in Fs. We consider the pay-off family (£(7)14)rcoq,
and we denote by (Va(T))reoq the corresponding value family, defined by:

Va(T) = ess sup,ce, prol§(¥)1a]

If p satisfies the usual “zero-one law” (that is 1aps-[n] = Laps.[1an] for
all A e Fg, for allme LP(F;)), then for each T € Og,

IAVA(T) = IAV(T).
Proof. By the definition of V(7) and the usual “zero-one law”, we have

14V(T) = 14685 SUD,eq_prp[(V)] = ess sup,eo 1apru[E(V)]
= €88 SUP,c, 1apry[14€§(V)] = Laess sup,co pro[1a&(V)] = 14 V(7).

O
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