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Non-linear non-zero-sum Dynkin games with Bermudan strategies

In this paper, we study a non-zero-sum game with two players, where each of the players plays what we call Bermudan strategies and optimizes a general non-linear assessment functional of the pay-off. By using a recursive construction, we show that the game has a Nash equilibrium point.

Introduction

Game problems with linear evaluations between a finite number of players are by now classical problems in stochastic control and optimal stopping (cf., e.g., [START_REF] Alario-Nazaret | Dynkin games[END_REF], [START_REF] Bismut | Sur un probleme de Dynkin[END_REF], [START_REF] Cvitanic | Backward stochastic differential equations with reflection and Dynkin games[END_REF], [START_REF] Dynkin | Game variant of a problem of optimal stopping[END_REF], [START_REF] Hamadene | Mixed zero-sum stochastic differential game and American game options[END_REF], [START_REF] Hamadene | The continuous time nonzero-sum Dynkin game problem and application in game options[END_REF], [START_REF] Hamadene | BSDEs with two reflecting barriers driven by a Brownian motion and a Poisson noise and related Dynkin game[END_REF], [START_REF] Hamadene | The multiplayer nonzero-sum Dynkin game in continuous time[END_REF], [START_REF] Hamadene | The multi-player nonzero-sum Dynkin game in discrete time[END_REF], [START_REF] Hamadene | Reflected BSDEs and mixed game problem[END_REF], [START_REF] Kobylanski | Optimal multiple stopping time problem[END_REF], [START_REF] Kobylanski | Dynkin games in a general framework[END_REF] and [START_REF] Lepeltier | Le jeu de Dynkin en theorie generale sans l'hypothese de Mokobodski[END_REF]) with various applications, in particular in economics and finance (cf., e.g., [START_REF] Hamadene | Mixed zero-sum stochastic differential game and American game options[END_REF], [START_REF] Hamadene | The continuous time nonzero-sum Dynkin game problem and application in game options[END_REF], [START_REF] Kifer | Game options[END_REF] and [START_REF] Kobylanski | Optimal multiple stopping time problem[END_REF]). In the recent years game problems with non-linear evaluation functionals have attracted considerable interest: cf. [START_REF] Bayraktar | On the robust Dynkin game[END_REF] for the case of nonlinear functionals of the form of worst case expectations over a set of possibly singular measures; [START_REF] Dumitrescu | Game options in an imperfect market with default[END_REF], [START_REF] Dumitrescu | Mixed Generalized Dynkin Games and Stochastic control in a Markovian framework[END_REF], [START_REF] Dumitrescu | Generalized Dynkin games and doubly reflected BSDEs with jumps[END_REF] and [START_REF] Grigorova | Doubly Reflected BSDEs and E f -Dynkin games: beyond the right-continuous case[END_REF] for the case of non-linear functionals induced by backward stochastic differential equations (BSDEs). Most of the works dealing with non-linear games have focused on the zero-sum case (cf.,

In the current paper, we address the question of existence of a Nash equilibrium point in a framework with general non-linear evaluations and with a set of stopping strategies which is in between the discrete time and the continuous time stopping strategies. The results of [START_REF] Grigorova | Optimal stopping and a non-zero-sum Dynkin game in discrete time with risk measures induced by BSDEs[END_REF] can be seen as a particular case of the current paper.

The paper is organised as follows: In Section 2, we introduce the framework, including the set of optimal stopping strategies of the agents (namely the Bermudan strategies), the pay-off as well as the properties on the risk functionals ρ 1 and ρ 2 of agent 1 and agent 2. In Section 3, we present our main results and show that the non-linear non-zero-sum game with Bermudan strategies has a Nash equilibrium point.

The framework

Let T ą 0 be a fixed finite terminal horizon.

Let pΩ, F , P q be a (complete) probability space equipped with a right-continuous complete filtration F " tF t : t P r0, T su.

In the sequel, equalities and inequalities between random variables are to be understood in the P -almost sure sense. Equalities between measurable sets are to be understood in the P -almost sure sense.

Let N be the set of natural numbers, including 0. Let N ˚be the set of natural numbers, excluding 0.

We first define the so-called Bermudan stopping strategies (introduced in [START_REF] Grigorova | Optimal stopping: Bermudan strategies meet non-linear evaluations[END_REF]).

Let (θ k q kPN be a sequence of stopping times satisfying the following properties:

(a) The sequence pθ k q kPN is non-decreasing, i.e. for all k P N, θ k ď θ k`1 , a.s.

(b) lim kÑ8 Ò θ k " T a.s.

Moreover, we set θ 0 " 0.

We note that the family of σ-algebras pF θ k q kPN is non-decreasing (as the sequence pθ k q is non-decreasing). We denote by Θ the set of stopping times τ of the form

τ " `8 ÿ k"0 θ k 1 A k `T 1 Ā, (1) 
where tpA k q `8 k"0 , Āu form a partition of Ω such that, for each k P N, A k P F θ k , and Ā P F T .

The set Θ can also be described as the set of stopping times τ such that for almost all ω P Ω, either τ pωq " T or τ pωq " θ k pωq, for some k " kpωq P AE.

Note that the set Θ is closed under concatenation, that is, for each τ P Θ and each A P F τ , the stopping time τ 1 A `T 1 A c P Θ. More generally, for each τ P Θ, τ 1 P Θ and each A P F τ ^τ 1 , the stopping time τ 1 A `τ 1 1 A c is in Θ. The set Θ is also closed under pairwise minimization (that is, for each τ P Θ and τ 1 P Θ, we have τ ^τ 1 P Θ) and under pairwise maximization (that is, for each τ P Θ and τ 1 P Θ, we have τ _ τ 1 P Θ). Moreover, the set Θ is closed under monotone limit, that is, for each non-decreasing (resp. non-increasing) sequence of stopping times pτ n q nPN P Θ AE , we have lim nÑ`8 τ n P Θ.

We note also that all stopping times in Θ are bounded from above by T .

Remark 1. We have the following canonical writing of the sets in (1):

A 0 " tτ " θ 0 u; A n`1 " tτ " θ n`1 , θ n`1 ă T uzpA n Y ... Y A 0 q; for all n P N Å " pY `8 k"0 A k q c
From this writing, we have:

if ω P A k`1 X tθ k ă T u, then ω R tτ " θ k u.
For each τ P Θ, we denote by Θ τ the set of stopping times ν P Θ such that ν ě τ a.s. The set Θ τ satisfies the same properties as the set Θ. We will refer to the set Θ as the set of Bermudan stopping strategies, and to the set Θ τ as the set of Bermudan stopping strategies, greater than or equal to τ (or the set of Bermudan stopping strategies from time τ perspective). For simplicity, the set Θ θ k will be denoted by Θ k . Definition 1. We say that a family φ " pφpτ q, τ P Θq is admissible if it satisfies the following conditions 1. for all τ P Θ, φpτ q is a real valued random variable, which is F τmeasurable.

2. for all τ, τ 1 P Θ, φpτ q " φpτ 1 q a.s. on tτ " τ 1 u.

Moreover, for p P r1, `8s fixed, we say that an admissible family φ is p-integrable, if for all τ P Θ, φpτ q is in L p .

Let φ " pφpτ q, τ P Θq be an admissible family. For a stopping time τ of the form (1), we have

φpτ q " `8 ÿ k"0 φpθ k q1 A k `φpT q1 Ā a.s. ( 2 
)
Given two admissible families φ " pφpτ q, τ P Θq and φ 1 " pφ 1 pτ q, τ P Θq, we say that φ is equal to φ 1 and write φ " φ 1 if, for all τ P Θ, φpτ q " φ 1 pτ q a.s. We say that φ dominates φ 1 and write φ ě φ 1 if, for all τ P Θ, φpτ q ě φ 1 pτ q a.s.

Let p P r1, `8s. We introduce the following properties on the non-linear operators ρ S,τ r¨s, which will appear in the sequel.

For S P Θ, S 1 P Θ, τ P Θ, for η, η 1 and η 2 in L p pF τ q, for ξ " pξpτ qq an admissible p-integrable family: (i) ρ S,τ : L p pF τ q ÝÑ L p pF S q (ii) (admissibility) ρ S,τ rηs " ρ S 1 ,τ rηs a.s. on tS " S 1 u.

(iii) (knowledge preservation) ρ τ,S rηs " η, for all η P L p pF S q, all τ P Θ S .

(iv) (monotonicity) ρ S,τ rη 1 s ď ρ S,τ rη 2 s a.s., if η 1 ď η 2 a.s. (v) (consistency) ρ S,θ rρ θ,τ rηss " ρ S,τ rηs, for all S, θ, τ in Θ such that S ď θ ď τ a.s. (vi) ("generalized zero-one law") I A ρ S,τ rξpτ qs " I A ρ S,τ 1 rξpτ 1 qs, for all A P F S , τ P Θ S , τ 1 P Θ S such that τ " τ 1 on A. (vii) (monotone Fatou property with respect to terminal condition) ρ S,τ rηs ď lim inf nÑ`8 ρ S,τ rη n s, for pη n q, η such that pη n q is non-decreasing, η n P L p pF τ q, sup n η n P L p , and lim nÑ`8 Ò η n " η a.s. (viii) (left-upper-semicontinuity (LUSC) along Bermudan stopping times with respect to the terminal condition and the terminal time), that is,

lim sup nÑ`8 ρ S,τn rφpτ n qs ď ρ S,ν rlim sup nÑ`8 φpτ n qs,
for each non-decreasing sequence pτ n q P Θ N S such that lim nÑ`8 Ò τ n " ν a.s., and for each p-integrable admissible family φ such that sup nPN |φpτ n q| P L p . (ix) lim sup nÑ`8 ρ θn,T rηs ď ρ T,T rηs, for all η P L p pF T q.

These assumptions on ρ ensure that the one-agent's non-linear optimal stopping problem admits a solution and that the first hitting time (when the value family "hits" the pay-off family) is optimal (cf. [START_REF] Grigorova | Optimal stopping: Bermudan strategies meet non-linear evaluations[END_REF] for more details).

The game problem

We consider two agents, agent 1 and agent 2, whose pay-offs are defined via four admissible families X 1 " pX 1 pτ qq τ PΘ , X 2 " pX 2 pτ qq τ PΘ , Y 1 " pY 1 pτ qq τ PΘ and Y 2 " pY 2 pτ qq τ PΘ . We assume that X 1 , X 2 , Y 1 and Y 2 are p-integrable families such that

(A1) X 1 ď Y 1 , X 2 ď Y 2 (
that is, for each τ P Θ, X 1 pτ q ď Y 1 pτ q, and X 2 pτ q ď Y 2 pτ q).

(A2) X 1 pT q " Y 1 pT q, X 2 pT q " Y 2 pT q.

(A3) ess sup τ PΘ X 1 pτ q P L p , ess sup τ PΘ X 2 pτ q P L p , ess sup τ PΘ Y 1 pτ q P L p and ess sup τ PΘ Y 2 pτ q P L p .

(A4) lim sup kÑ`8 X 1 pθ k q ď X 1 pT q, lim sup kÑ`8 X 2 pθ k q ď X 2 pT q.

The set of stopping strategies of each agent at time 0 is the set Θ of Bermudan stopping times. If the first agent plays τ 1 P Θ and the second agent plays τ 2 P Θ, the pay-off of agent 1 (resp. agent 2) at time τ 1 ^τ2 is given by:

I 1 pτ 1 , τ 2 q :" X 1 pτ 1 q½ tτ 1 ďτ 2 u `Y 1 pτ 2 q½ tτ 2 ăτ 1 u presp. I 2 pτ 1 , τ 2 q :" X 2 pτ 2 q½ tτ 2 ăτ 1 u `Y 2 pτ 1 q½ tτ 1 ďτ 2 u q,
where we have adopted the convention: when τ 1 " τ 2 , it is the first agent who is responsible for stopping the game. The agents evaluate their respective pay-offs via possibly different evaluation functionals. Let ρ 1 " pρ S,τ r¨sq be the family of evaluation operators of agent 1, and let ρ 2 " pρ S,τ r¨sq be the family of evaluation operators of agents 2. If agent 1 plays τ 1 P Θ, and agent 2 plays τ 2 P Θ, then the assessment (or evaluation) of agent 1 (resp. agent 2) at time 0 of his/her pay-off is given by:

J 1 pτ 1 , τ 2 q :" ρ 1 0,τ 1 ^τ2 rX 1 pτ 1 q½ tτ 1 ďτ 2 u `Y 1 pτ 2 q½ tτ 2 ăτ 1 u s. presp. J 2 pτ 1 , τ 2 q :" ρ 2 0,τ 1 ^τ2 rX 2 pτ 2 q½ tτ 2 ăτ 1 u `Y 2 pτ 1 q½ tτ 1 ďτ 2 u sq.
We assume that both ρ 1 and ρ 2 satisfy the properties (i) -(ix). We will investigate the problem of existence of a Nash equilibrium strategy pτ 1 , τ 2 q.

Definition 2. A pair of Bermudan stopping times pτ 1 , τ 2 q P Θ ˆΘ is called a Nash equilibrium strategy (or a Nash equilibrium point) for the above nonzero-sum non-linear Bermudan Dynkin game if: J 1 pτ 1 , τ 2 q ě J 1 pτ 1 , τ 2 q, for any τ 1 P Θ, and J 2 pτ 1 , τ 2 q ě J 2 pτ 1 , τ 2 q, for any τ 2 P Θ.

In other words, any unilateral deviation from the strategy pτ 1 , τ 2 q by one of the agent (the strategy of the other remaining fixed) does not render the deviating agent better off.

Theorem 1. Under assumptions (i) -(ix) on ρ 1 and ρ 2 , there exists a Nash equilibrium point pτ 1 , τ 2 q for the game described above.

We will construct a sequence pτ 2n`1 , τ 2n q nPAE (by induction), for which we will show that it converges to a Nash equilibrium point.

We set τ 1 :" T and τ 2 :" T . We suppose that τ 2n´1 P Θ and τ 2n P Θ have been defined. We set, for each k P AE,

ξ 2n`1 pθ k q :" X 1 pθ k q½ tθ k ăτ 2n u `Y 1 pτ 2n q½ tτ 2n ďθ k u . (3) 
Moreover, ξ 2n`1 pT q :" Y 1 pτ 2n q. This definition is "consistent" with the above, as by (3),

½ tθ k "T u ξ 2n`1 pθ k q " ½ tθ k "T u Y 1 pτ 2n q.
For τ P Θ of the form τ "

ř kPAE θ k ½ A k `T ½ Ā , where ppA k q, Āq is a partition, A k is F θ k -measurable for each k P AE, and Ā is F T -measurable, ξ 2n`1 pτ q :" ÿ kPAE ξ 2n`1 pθ k q½ A k `ξ2n`1 pT q½ Ā . (4) 
We note that ξ 2n`1 pθ k q is the pay-off at θ k ^τ2n of agent 1 (up to the equality tθ k " τ 2n u) if agent 1 plays θ k and agent 2 plays τ 2n .

We also note that:

ξ 2n`1 pτ q " X 1 pτ q½ tτ ăτ 2n u `Y 1 pτ 2n q½ tτ 2n ďτ u .
Thus, ξ 2n`1 pτ q is the pay-off at τ ^τ2n of agent 1 (up to the equality tτ " τ 2n u) if agent 1 plays τ and agent 2 plays τ 2n .

For each S P Θ, we define V 2n`1 pSq :" ess sup τ PΘ S ρ 1 S,τ ^τ2n rξ 2n`1 pτ qs τ2n`1 :" ess inf Ã1 , where Ã1 :" tτ P Θ : V 2n`1 pτ q " ξ 2n`1 pτ qu τ 2n`1 :" pτ 2n`1 ^τ2n´1 q½ tτ 2n`1 ^τ2n´1 ăτ 2n u `τ2n´1 ½ tτ 2n`1 ^τ2n´1 ěτ 2n u .

(5)

Assuming that lim sup kÑ`8 X 1 pθ k q ď X 1 pT q (from (A4)) ensures that lim sup kÑ`8 ξ 2n`1 pθ k q ď ξ 2n`1 pT q. This is a technical condition on the payoff which we use to apply Theorem 2.3 in [START_REF] Grigorova | Optimal stopping: Bermudan strategies meet non-linear evaluations[END_REF].

We recall that under the assumptions of Theorem 2.3 in [START_REF] Grigorova | Optimal stopping: Bermudan strategies meet non-linear evaluations[END_REF], the Bermudan stopping time τ2n`1 is optimal for the optimal stopping problem with value V 2n`1 p0q, that is

V 2n`1 p0q " ρ 1 0,τ 2n`1 ^τ2n rξpτ 2n`1 qs " sup τ PΘ ρ 1 0,τ ^τ2n rξ 2n`1 pτ qs. (6) 
We also recall that V 2n`1 pT q " ξ 2n`1 pT q, under the assumption of knowledge preservation on ρ.

Remark 2. i) It is not difficult to show, by induction, that for each n P AE, pξ 2n`1 pτ qq τ PΘ is an admissible L p -integrable family, and τ 2n`1 is a Bermudan stopping time (for the latter property, we use that Θ has the property of stability by concatenation of two Bermudan stopping times).

ii) For each n P AE, for each τ P Θ, ξ 2n`1 pτ q " ξ 2n`1 pτ ^τ2n q.

Indeed, we have:

ξ 2n`1 pθ k q " X 1 pθ k q½ tθ k ăτ 2n u `Y 1 pτ 2n q½ tτ 2n ďθ k u " X 1 pθ k ^τ2n q½ tθ k ^τ2n ăτ 2n u `Y 1 pτ 2n q½ tτ 2n ďθ k ^τ2n u " ξ 2n`1 pθ k ^τ2n q. (7) Now, let τ P Θ be of the form τ " ř kPAE θ k ½ A k `T ½ Ā .
By definition of ξ 2n`1 pτ q, of ξ 2n`1 pT q and by Eq. (7), we have:

ξ 2n`1 pτ q " ÿ kPAE ξ 2n`1 pθ k q½ A k `ξ2n`1 pT q½ Ā " ÿ kPAE ξ 2n`1 pθ k ^τ2n q½ A k `Y 1 pτ 2n q½ Ā " ξ 2n`1 pτ ^τ2n q.
Proposition 1. i) ξ 2n`1 pτ q½ tτ 2n ďθ k u " Y 1 pτ 2n q½ tτ 2n ďθ k u .

ii) V 2n`1 pθ k q½ tτ 2n ďθ k u " Y 1 pτ 2n q½ tτ 2n ďθ k u .

iii) V 2n`1 pτ q½ tτ 2n ďτ u " Y 1 pτ 2n q½ tτ 2n ďτ u . iv) For each n P AE, τ2n`1 " ess inftτ P Θ : V 2n`1 pτ q " X 1 pτ qu ^τ2n . In particular, τ2n`1 ď τ 2n .

Proof. i) On the set tτ " T u, we have ξ 2n`1 pτ q " ξ 2n`1 pT q " Y 1 pτ 2n q.

On the set tτ " θ k ă T u, by the second statement in Remark 2, we have ξ 2n`1 pτ q " ξ 2n`1 pθ k q " ξ 2n`1 pθ k ^τ2n q. Hence, on the set tτ " θ k ă T u X tτ 2n ď θ k u, we have ξ 2n`1 pτ q " ξ 2n`1 pτ 2n q " Y 1 pτ 2n q, which proves the desired property.

ii) We have:

½ tτ 2n ďθ k u V 2n`1 pθ k q " ½ tτ 2n ďθ k u ess sup τ PΘ k ρ θ k ,τ ^τ2n rξ 2n`1 pτ ^τ2n qs " ess sup τ PΘ k ½ tτ 2n ďθ k u ρ θ k ,τ ^τ2n rξ 2n`1 pτ ^τ2n qs " ess sup τ PΘ k ½ tτ 2n ďθ k u ρ θ k ,τ ^τ2n ^θk rξ 2n`1 pτ ^τ2n ^θk qs, where we have used the "genrealized zero-one law" to obtain the last equality.

For any τ P Θ k , τ ^τ2n ^θk " τ 2n ^θk ď θ k . Hence, ½ tτ 2n ďθ k u ρ θ k ,τ ^τ2n ^θk rξ 2n`1 pτ ^τ2n ^θk qs " ½ tτ 2n ďθ k u ρ θ k ,τ 2n ^θk rξ 2n`1 pτ 2n ^θk qs " ½ tτ 2n ďθ k u ξ 2n`1 pτ 2n ^θk q,

where we have used the knowledge-preserving property of ρ to obtain the last equality.

Finally, we get

½ tτ 2n ďθ k u V 2n`1 pθ k q " ½ tτ 2n ďθ k u ξ 2n`1 pτ 2n q " ½ tτ 2n ďθ k u Y 1 pτ 2n q.
iii) Let τ P Θ be the form τ "

ř kPAE θ k ½ A k `T ½ Ā .
Then, by admissibility, we have

V 2n`1 pτ q " ÿ kPAE V 2n`1 pθ k q½ A k `V 2n`1 pT q½ Ā .
Hence,

V 2n`1 pτ q½ tτ 2n ďτ u " ÿ kPAE V 2n`1 pθ k q½ A k Xtτ 2n ďτ u `V 2n`1 pT q½ ĀXtτ 2n ďτ u " ÿ kPAE V 2n`1 pθ k q½ A k Xtτ 2n ďθ k u `V 2n`1 pT q½ ĀXtτ 2n ďT u " ÿ kPAE Y 1 pτ 2n q½ A k Xtτ 2n ďθ k u `ξ2n`1 pT q½ ĀXtτ 2n ďT u ,
where we have used the previous property (ii) to obtain the last equality. Hence, we get

V 2n`1 pτ q½ tτ 2n ďτ u " ÿ kPAE Y 1 pτ 2n q½ A k Xtτ 2n ďθ k u `ξ2n`1 pT q½ ĀXtτ 2n ďT u " ÿ kPAE Y 1 pτ 2n q½ A k Xtτ 2n ďθ k u `Y 1 pτ 2n q½ ĀXtτ 2n ďT u " Y 1 pτ 2n q½ tτ 2n ďτ u .
iv) By the previous property (iii), we have, V 2n`1 pτ q " ξ 2n`1 pτ q if and only if V 2n`1 pτ q½ tτ ăτ 2n u " ξ 2n`1 pτ q½ tτ ăτ 2n u . Hence, τ2n`1 " ess inftτ P Θ : V 2n`1 pτ q " X 1 pτ qu ^τ2n .

Similarly to (3), ( 4) and ( 5), we define:

ξ 2n`2 pθ k q :" X 2 pθ k q½ tθ k ăτ 2n`1 u
`Y 2 pτ 2n`1 q½ tτ 2n`1 ďθ k u , and ξ 2n`2 pT q :" Y 2 pτ 2n`1 q.

For τ P Θ of the form τ "

ř kPAE θ k ½ A k `T ½ Ā , we define ξ 2n`2 pτ q :" ÿ kPAE ξ 2n`2 pθ k q½ A k `ξ2n`2 pT q½ Ā V 2n 
`2 pSq :" ess sup τ PΘ S ρ 2 S,τ ^τ2n`1 rξ 2n`2 pτ qs τ2n`2 :" ess inf Ã2 , where Ã2 :" tτ P Θ : V 2n`2 pτ q " ξ 2n`2 pτ qu τ 2n`2 :" pτ 2n`2 ^τ2n q½ tτ 2n`2 ^τ2n ăτ 2n`1 u `τ2n ½ tτ 2n`2 ^τ2n ěτ 2n`1 u .

(8)

The random variable ξ 2n`2 pτ q is exactly the pay-off at τ ^τ2n`1 of agent 2, if agent 1 plays τ 2n`1 and agent 2 plays τ . Hence, V 2n`2 pSq is the optimal value at time S for agent 2, when agent 1's strategy is fixed to τ 2n`1 . Assuming that lim sup kÑ`8 X 2 pθ k q ď X 2 pT q leads to lim sup kÑ`8 ξ 2n`2 pθ k q ď ξ 2n`2 pT q, which we use in applying Theorem 2.3 in [START_REF] Grigorova | Optimal stopping: Bermudan strategies meet non-linear evaluations[END_REF]. By Theorem 2.3 in [START_REF] Grigorova | Optimal stopping: Bermudan strategies meet non-linear evaluations[END_REF], the Bermudan stopping time τ2n`2 is optimal for the problem with value V 2n`2 p0q, that is, V 2n`2 p0q " ρ 2 0,τ 2n`2 ^τ2n`1 rξ 2n`2 pτ 2n`2 qs " sup τ PΘ ρ 2 0,τ ^τ2n`1 rξ 2n`2 pτ qs.

Remark 3. Let us recall that (cf. [START_REF] Grigorova | Optimal stopping: Bermudan strategies meet non-linear evaluations[END_REF]) τn " ess inftτ P Θ : V n pτ q " ξ n pτ qu satisfies the property: V n pτ n q " ξ n pτ n q. (This is due to the property of stability of Θ by monotone limit and to the right-continuity-along Bermudan stopping strategies of the families pV n pτ qq and pξ n pτ qq).

Remark 4. By analogy with Remark 2, we have: i) pξ 2n`2 pτ qq is a admissible L p -integrable family;

ii) for each n P AE, for each τ P Θ, ξ 2n`2 pτ q " ξ 2n`2 pτ ^τ2n`1 q.

Proposition 2. We assume that ρ satisfies the usual "zero-one law". Then, for all m ě 1, τm`2 ď τ m .

Proof. We suppose, by way of contradiction, that there exists m ě 1 such that P pτ m`2 ą τ m q ą 0, and we set n :" mintm ě 1 : P pτ m`2 ą τ m q ą 0u.

We have τn`1 ď τ n´1 , by definition of n. This observation, together with the definition of τ n`1 and with the inequality of part (iv) of Proposition 1 gives:

τ n`1 " pτ n`1 ^τn´1 q½ tτ n`1 ^τn´1 ăτnu `τn´1 ½ tτ n`1 ^τn´1 ěτnu " τn`1 ½ tτ n`1 ăτnu `τn´1 ½ tτ n`1 ěτnu " τn`1 ½ tτ n`1 ăτnu `τn´1 ½ tτ n`1 "τnu (9) 
For similar reasons, we have

τ n " τn ½ tτn ăτ n´1 u `τn´2 ½ tτn "τ n´1 u . (10) 
For the easing of the presentation, we set Γ :" tτ n ă τn`2 u.

On the set Γ, we have:

1) τ n ă τn`2 ď τ n`1 , the last inequality being due to property (iv) of Proposition 1.

2) τ n`1 " τ n´1 . This is due to (1), together with Eq. ( 9).

3) ξ n`2 " ξ n . This is a consequence of ( 2) and the definitions of ξ n`2 and ξ n .

4) τ n " τn .

We prove that tτ n " τ n´1 u X Γ " H, which together with Eq. ( 10), gives the desired statement.

Due to Eq. ( 10), we have tτ n " τ n´1 u " tτ n " τ n´1 u X tτ n " τ n´2 u. Thus, we have

tτ n " τ n´1 u X Γ " tτ n " τ n´1 , τ n " τ n´2 ă τn`2 u.
Now, we have τn ď τ n´2 (due to the definition of n). Hence,

tτ n " τ n´1 u X Γ " tτ n " τ n´1 ď τ n´2 " τ n ă τn`2 u " H,
where the equality with H is due to τn`2 ď τ n´1 .

We note that combining properties (1) and ( 4) gives τn ă τn`2 on Γ. We will obtain a contradiction with this property. To this end, we will show that:

Due to property (3) on Γ, V n`2 Γ and V n Γ have the same pay-off, and by applying again Proposition 4 and property (4) on Γ, we have

½ Γ V n`2 Γ pτ n q " ½ Γ V n Γ pτ n q " ½ Γ V n pτ n q " ½ Γ V n pτ n q.
We have shown that ½ Γ V n`2 pτ n q " ½ Γ V n pτ n q, which is the desired equality. Hence, we get τn`2 ď τn on Γ (as by definition τn`2 " ess inftτ P Θ :

V n`2 pτ q " ξ n`2 pτ qu). However, this is in contradiction with the property τn`2 ą τn on Γ. The proof is complete.

Lemma 1. i) For all n ě 2, τ n`1 " τn`1 ½ tτ n`1 ăτnu `τn´1 ½ tτ n`1 "τnu .
ii) For all n ě 2, τn`1 " τ n`1 ^τn .

iii) On tτ n " τ n´1 u, τ m " T , for all m P t1, ..., nu.

Proof. i) This property follows from the definition of τ n`1 , together with Proposition 2, and with property (iv) of Proposition 1.

ii) By using (i), we get τ n`1 ^τn " pτ n`1 ^τn q½ tτ n`1 ăτnu `pτ n´1 ^τn q½ tτ n`1 "τnu " τn`1 ½ tτ n`1 ăτnu `pτ n´1 ^τ n`1 q½ tτ n`1 "τnu " τn`1 ½ tτ n`1 ăτnu `τ n`1 ½ tτ n`1 "τnu , where we have used Proposition 2 for the last equality.

Finally, by using property (iv) of Proposition 1, we get τ n`1 ^τn " τn`1 .

iii) To prove this property, we proceed by induction. The property is true for n " 2. We suppose that the property is true at rank n ´1 (where n ě 3), that is on tτ n´1 " τ n´2 u, τ m " T , for all m P t1, ..., n ´1u.

From the expression for τ n from statement (i), we get

τ n " τn ½ tτn ăτ n´1 u `τn´2 ½ tτn "τ n´1 u .
Hence, τ n " τ n´2 on the set tτ n " τ n´1 u. We conclude by the induction hypothesis.

Lemma 2. The following inequalities hold true: i) J 1 pτ, τ 2n q ď J 1 pτ 2n`1 , τ 2n q, for all τ P Θ.

ii) J 2 pτ 2n`1 , τ q ď J 2 pτ 2n`1 , τ 2n`2 q, for all τ P Θ.

Proof. Let us first prove statement i):

By (A1), we have X 1 ď Y 1 ; it follows X 1 pτ q½ tτ ďτ 2n u `Y 1 pτ 2n q½ tτ 2n ăτ u ď ξ 2n`1 pτ q.

Hence, by monotonicity, and by definition of V 2n`1 p0q, we have

J 1 pτ, τ 2n q ď V 2n`1 p0q (12) 
We will now show that V 2n`1 p0q " J 1 pτ 2n`1 , τ 2n q, which will complete the proof of statement i).

We have J 1 pτ 2n`1 , τ 2n q " ρ 1 0,τ 2n`1 ^τ2n pX 1 pτ 2n`1 q½ tτ 2n`1 ďτ 2n u `Y 1 pτ 2n q½ tτ 2n ăτ 2n`1 u q " ρ 1 0,τ 2n`1 ^τ2n pξ 2n`1 pτ 2n`1 qq, where we have used iii) from Lemma 1, and X 1 pT q " Y 1 pT q from (A2) to show the last equality.

On the other hand, by ii) from Remark 2 and ii) from Lemma 1, ρ 1 0,τ 2n`1 ^τ2n pξ 2n`1 pτ 2n`1 qq " ρ 1 0,τ 2n`1 ^τ2n pξ 2n`1 pτ 2n`1 ^τ2n qq " ρ 1 0,τ 2n`1 ^τ2n pξ 2n`1 pτ 2n`1 qq.

By optimality of τ2n`1 for V 2n`1 p0q (cf. Eq. ( 6)), we get ρ 1 0,τ 2n`1 ^τ2n pξ 2n`1 pτ 2n`1 qq " V 2n`1 p0q.

Hence, we conclude J 1 pτ 2n`1 , τ 2n q " ρ 1 0,τ 2n`1 ^τ2n pξ 2n`1 pτ 2n`1 qq " ρ 1 0,τ 2n`1 ^τ2n pξ 2n`1 pτ 2n`1 qq " V 2n`1 p0q. (13) From Eq. ( 13) and Eq. ( 12), we get J 1 pτ, τ 2n q ď J 1 pτ 2n`1 , τ 2n q.

Let us now prove statement ii):

We have

J 2 pτ 2n`1 , τ q ď V 2n`2 p0q, (14) 
by definition of V 2n`2 p0q (cf. Eq. ( 8)).

We will now show that J 2 pτ 2n`1 , τ 2n`2 q " V 2n`2 p0q, which will complete the proof.

By definition of ξ 2n`2 pτ 2n q, by ii) from Remark 4, and by ii) from Lemma 1, we have J 2 pτ 2n`1 , τ 2n`2 q " ρ 2 0,τ 2n`1 ^τ2n`2 pX 2 pτ 2n`2 q½ tτ 2n`2 ăτ 2n`1 u `Y 2 pτ 2n`1 q½ tτ 2n`1 ďτ 2n`2 u q " ρ 2 0,τ 2n`1 ^τ2n`2 pξ 2n`2 pτ 2n`2 qq " ρ 2 0,τ 2n`1 ^τ2n`2 pξ 2n`2 pτ 2n`2 ^τ2n`1 qq " ρ 2 0,τ 2n`2 ^τ2n`1 pξ 2n`2 pτ 2n`2 qq.

By Eq. ( 8), we have ρ 2 0,τ 2n`2 ^τ2n`1 pξ 2n`2 pτ 2n`2 qq " V 2n`2 p0q.

Hence, we conclude J 2 pτ 2n`1 , τ 2n`2 q " ρ 2 0,τ 2n`1 ^τ2n`2 pξ 2n`2 pτ 2n`2 qq " ρ 2 0,τ 2n`2 ^τ2n`1 pξ 2n`2 pτ 2n`2 qq " V 2n`2 p0q. (15) From Eq. ( 15) and Eq. ( 14), we get J 2 pτ 2n`1 , τ q ď J 2 pτ 2n`1 , τ 2n`2 q.

Remark 5. As a by-product of the previous proof, we find that τ 2n`1 is optimal for the problem with value V 2n`1 p0q, and τ 2n`2 is optimal for the problem with value V 2n`2 p0q. Definition 3. We define τ 1 " lim nÑ`8 τ 2n`1 , and τ 2 " lim nÑ`8 τ 2n . Proposition 3. We assume that ρ 1 and ρ 2 satisfy properties piq ´pviiq, and the following additional property: for i P t1, 2u, lim sup nÑ`8 ρ i 0,νn rξpν n qs " ρ i 0,ν rξpνqs,

for any sequence pν n q Ă Θ AE , ν P Θ, such that ν n Ó ν. We have:

i) For all τ P Θ, lim nÑ`8 J 1 pτ, τ 2n q " J 1 pτ, τ 2 q.

ii) For all τ P Θ, lim nÑ`8 J 2 pτ 2n`1 , τ q " J 2 pτ 1 , τ q.

iii) For all τ P Θ, lim nÑ`8 J 1 pτ 2n`1 , τ 2n`2 q " J 1 pτ 1 , τ 2 q.

iv) For all τ P Θ, lim nÑ`8 J 2 pτ 2n`1 , τ 2n`2 q " J 2 pτ 1 , τ 2 q.

Proof. Let us first show statement i):

Let us recall the following notation:

for a fixed τ P Θ, I 1 pτ, νq :" X 1 pτ q½ tτ ďνu `Y 1 pνq½ tνăτ u , I 1 pτ, τ 2 q :" X 1 pτ q½ tτ ďτ 2 u `Y 1 pτ 2 q½ tτ 2 ăτ u .

With this notation, we have J 1 pτ, τ 2n q " ρ 1 0,τ ^τ2n rIpτ, τ 2n qs, and J 1 pτ, τ 2 q " ρ 1 0,τ ^τ 2 rIpτ, τ 2 qs.

We note that the sequence pτ 2n q and pτ ^τ2n q converges from above to τ 2 and τ ^τ 2 , respectively. Moreover, for each τ P Θ, the family pI 1 pτ, νqq νPΘ is admissible. Indeed, for each ν P Θ, I 1 pτ, νq is F ν -measurable. Moreover, if tν " ν 1 u, Ipτ, νq " Ipτ, ν 1 q a.s. Hence, as any admissible family in our framework is right-continuous along Bermudan stopping strategies (cf. Remark 2.10 in [START_REF] Grigorova | Optimal stopping: Bermudan strategies meet non-linear evaluations[END_REF]), we get lim nÑ`8

Ipτ, τ 2n q " Ipτ, τ 2 q.

Hence, by property ( 16) on ρ 1 , we get lim sup nÑ`8 ρ 1 0,τ ^τ2n rIpτ, τ 2n qs " ρ 1 0,τ ^τ 2 rIpτ, τ 2 qs.

Now, let us prove statement ii):

For τ P Θ, we recall the following notation:

I 2 pν, τ q :" X 2 pτ q½ tτ ăνu `Y 2 pνq½ tνďτ u ,

The family pI 2 pν, τ q νPΘ is admissible. Indeed, for each ν P Θ, I 2 pν, τ q is F νmeasurable. Moreover, on tν 1 " ν 2 u, I 2 pν 1 , τ q " I 2 pν 2 , τ q a.s.

As pτ 2n`1 q converges from above to τ 1 , and as pI 2 pν, τ q νPΘ q is right-continuous along Bermudan stopping strategies (cf. Remark 2.10 in [START_REF] Grigorova | Optimal stopping: Bermudan strategies meet non-linear evaluations[END_REF]), we get lim nÑ`8

I 2 pτ 2n`1 , τ q " I 2 pτ 1 , τ q.

By property ( 16) on ρ 2 , we get lim sup nÑ`8 ρ 2 0,τ 2n`1 ^τ rI 2 pτ 2n`1 , τ qs " ρ 2 0,τ 1 ^τ rI 2 pτ 1 , τ qs.

We now prove statement iii).

The proof relies again on the Bermudan structure on Θ. For any sequence pτ n q P Θ AE converging from above to τ P Θ, we have: for almost each ω P Ω, there exists n 0 " n 0 pωq such that for all n ě n 0 , τ n pωq " τ pωq (cf. Remark

½ Γ V n`2 pτ n q " ½ Γ ξ n`2 pτ n q.(11)By definition of τn and by Remark 3, we have:V n pτ n q " ξ n pτ n q.This property, together with property (3) on Γ, gives V n pτ n q " ξ n pτ n q " ξ n`2 pτ n q on Γ. In order to show Eq. (11), it suffices to show½ Γ V n`2 pτ n q " ½ Γ V n pτ n q.By property (4) on Γ and Proposition 4 (applied with A " Γ P F τn and τ " τ n ), we have½ Γ V n`2 pτ n q " ½ Γ V n`2 pτ n q " ½ Γ V n`2 Γ pτ n q.

10 in [START_REF] Grigorova | Optimal stopping: Bermudan strategies meet non-linear evaluations[END_REF]).

Hence, for almost each ω P Ω, there exists n 0 " n 0 pωq such that for n ě n 0 , τ 2n`1 pωq " τ 1 pωq, τ 2n`2 pωq " τ 2 pωq and

By property ( 16) on ρ 1 , we get lim nÑ`8

The proof of iv) is based on the same arguments.

We are now ready to complete the proof of Theorem 1.

Proof of Theorem 1. By combining Lemma 2 and Proposition 3, we get:

Hence, pτ 1 , τ 2 q is a Nash equilibrium point.

We have thus shown that the non-linear non-zero-sum Dynkin game with Bermudan strategies admits a Nash equilibrium point.

4 Appendix Proposition 4. (Localisation property) Let pξpτ qq τ PΘ be a given admissible p-integrable family. Let pV pτ qq τ PΘ be the value family of the optimal stopping problem: for S P Θ, V pSq " ess sup τ PΘ S ρ S,τ rξpτ qs.

Let S P Θ, and let A be in F S . We consider the pay-off family pξpτ q½ A q τ PΘ S , and we denote by pV A pτ qq τ PΘ S the corresponding value family, defined by:

If ρ satisfies the usual "zero-one law" (that is ½ A ρ S,τ rηs " ½ A ρ S,τ r½ A ηs for all A P F S , for all η P L p pF τ q), then for each τ P Θ S ,

Proof. By the definition of V pτ q and the usual "zero-one law", we have ½ A V pτ q " ½ A ess sup νPΘτ ρ τ,ν rξpνqs " ess sup νPΘτ ½ A ρ τ,ν rξpνqs " ess sup νPΘτ ½ A ρ τ,ν r½ A ξpνqs " ½ A ess sup νPΘτ ρ τ,ν r½ A ξpνqs " ½ A V A pτ q.