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Abstract-This paper considers two estimators of the intensity λ of the Shot Noise process for high values of λ. They are based on the first and the second empirical cumulants of the Shot Noise. For both statistics, it is shown that their respective variance grows respectively linearly and quadratically with λ. We construct Variance Stabilizing Transforms (and their corresponding inverse transforms) for both estimators thanks to the Delta method so as to make their respective variance constant (regardless of λ). Asymptotic distributions of the variance stabilized estimators are established. Finally, variance stabilization property is validated by Monte-Carlo simulations.
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I. INTRODUCTION

T HE continuous time Shot Noise process is a well known stochastic process stemming from physics [START_REF] Campbell | The fluctuation theorem. (shot effect)[END_REF], [START_REF] Schottky | Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern[END_REF]. This stochastic process can also be found in other application domains such as telecommunications [START_REF] Charalambous | Statistical analysis of the received signal over multipath fading channels via generalization of shotnoise[END_REF], [START_REF] Ridolfi | Ultrawide bandwidth signals as shot noise: a unifying approach[END_REF], biology (see [START_REF] Privault | Nonstationary shot noise modeling of neuron membrane potentials by closed-form moments and Gram-Charlier expansions[END_REF] and references therein), and finance [START_REF] Schmidt | Shot-noise processes in finance[END_REF] as well. It is defined by:

X(t) = k u k h(t -τ k )
where h(t) is a known nonzero causal integrable function with finite support, representing a causal impulse response function (h(t) = 0 for all t < 0). The u k are independent identically distributed (i.i.d.) random variables called marks of the Shot Noise and τ k are arrival times of an (unobserved) Poisson process with intensity λ (see [START_REF] Rice | On generalized shot noise[END_REF] for thorough details). John Gubner's works [START_REF] Gubner | A method to recover counting distributions from their characteristic functions[END_REF], [START_REF] Gubner | Computation of Shot-Noise Probability Distributions and Densities[END_REF] focused on Shot Noise probability distributions and intensity estimation [START_REF] Sequeira | Intensity estimation from shot-noise data[END_REF], [START_REF]Blind intensity estimation from shot-noise data[END_REF]. The estimation of the density of marks is sought in [START_REF] Ilhe | Nonparametric estimation of mark's distribution of an exponential shot-noise process[END_REF], [START_REF] Ilhe | Nonparametric estimation of a shot-noise process[END_REF].

We focus on the estimation of the intensity parameter λ which reflects the number of events ("shots", like particles impinging a detector) that can occur in time: the higher λ, the more "shots" can be observed. As a direct consequence, the higher λ, the more likely events can occur simultaneously or at least very close to one another. As each pulse occurring at τ k are each observed through h(t -τ k ), the larger the support of h, the more likely the two signals can superimpose and This is the author's version of the manuscript accepted for publication in IEEE Signal Processing Letters, Volume 30, August 2023. The codes are included at the end of this document. The paper can be found in its final format at: IEEE Signal Processing Letters website doi : 10.1109/LSP.2023.3299191 Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including eprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
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sum: this phenomenon is known as "pile-up" effect. For recent works focusing on the estimation of the intensity of the Shot Noise with piled-up events using sparse signal representation of nuclear measurements see [START_REF] Trigano | Sparse reconstruction algorithm for nonhomogeneous counting rate estimation[END_REF], [START_REF] Mclean | Non-parametric decompounding of pulse pile-up under gaussian noise with finite data sets[END_REF]. In this work, we consider (very) high intensity regime, where all event pile-up so that one can not distinguish any single one.

We consider two estimators of the intensity λ for a stationary discretely sampled high intensity Shot Noise. The respective variances of these estimators are shown to increase with λ, a property called heteroskedasticity in statistics. One way to deal with heteroskedasticity is to seek to make the variance "stable" (constant) by constructing a Variance Stabilizing Transform (VST) [START_REF] Lehmann | Elements of Large-Sample Theory[END_REF], [START_REF] Bickel | Mathematical Statistics: basic ideas and selected topics[END_REF], [START_REF] Sen | From Finite Sample to Asymptotic Methods in Statistics[END_REF]. Such a transformation makes the variance of the quantity of interest constant and asymptotically gaussian. One well known VST is the Anscombe transform [START_REF] Anscombe | The transformation of Poisson, binomial and negativebinomial data[END_REF] for the mean of Poisson random variables. Using a VST T may require the knowledge of the inverse transform T -1 (defined as T -1 (T (x)) = x). This is typically the case in signal/image processing where the denoising process is usually T → Denoising → T -1 (see [START_REF] Mäkitalo | Optimal inversion of the generalized Anscombe transformation for Poisson-gaussian noise[END_REF] for instance). Many applications make use of VST for Poisson denoising in signal processing [21, sec. 4], and in image processing such as astronomical imaging [START_REF] Murthagh | Image restoration with noise suppression using a multiresolution support[END_REF], radar imaging [START_REF] Deledalle | MuLoG, or How to Apply Gaussian Denoisers to Multi-Channel SAR Speckle Reduction?[END_REF], biological imaging [START_REF] Borges | Unbiased Injection of Signal-Dependent Noise in Variance-Stabilized Range[END_REF], [START_REF] Azzari | Variance stabilization for noisy+estimate combination in iterative Poisson denoising[END_REF], [START_REF]Variance stabilization in Poisson image deblurring[END_REF], [START_REF] Zhang | A poisson-gaussian denoising dataset with real fluorescence microscopy images[END_REF], [START_REF] Wang | ConvexVST: A Convex Optimization Approach to Variance-stabilizing Transformation[END_REF] or medical imaging [START_REF] Pieciak | Non-Stationary Rician Noise Estimation in Parallel MRI Using a Single Image: A Variance-Stabilizing Approach[END_REF], [START_REF] Bria | Improving the Automated Detection of Calcifications using Adaptive Variance Stabilization[END_REF], [START_REF] Ma | Denoise magnitude diffusion magnetic resonance images via variance-stabilizing transformation and optimal singular-value manipulation[END_REF].

The main contributions in this work are the variance stabilizing transforms established for two intensity estimators of the Shot Noise process. More precisely it is first noted that the respective variance of the first two cumulants estimators of the Shot Noise are linear and quadratic functions of the intensity λ in section II. Consequently, the two intensity estimators considered here inherit this property. Based on the Delta method, we derive two variance stabilizing transforms T 1 and T 2 (and their inverses) in section III which lead to two intensity estimators with constant variances. Asymptotic distributions of these variance-stabilized estimators are established in section IV and validated by Monte-Carlo simulations in section V.

II. INTENSITY ESTIMATORS

We consider a (very) high intensity discretely sampled Poisson Shot Noise process X(kT s ) = X(k) assuming without loss of generality a sampling period T s = 1. By high intensity, we mean that individual pulses u k h(k -τ k ) can not be individually distinguished [START_REF] Papoulis | High Density Shot Noise and Gaussianity[END_REF], [START_REF] Heinrich | Normal convergence of multidimensional shot noise and rates of this convergence[END_REF]. Let define

c j = E[u j k ] n h j (n)
and assume c 1 and c 2 are known. Let κ j denote the order j cumulant of X(k) given by the Campbell theorem [START_REF] Rice | On generalized shot noise[END_REF], [34, p. 223]

κ j = λc j .
We seek to estimate λ based on the "plugin" intensity estimators:

λj = κj c j (1) 
for j = 1 and j = 2, and c j ̸ = 0. These estimators, named first and second order intensity estimators in the following, are typically used in neutronics [START_REF] Dubridge | Campbell theorem -system concepts and results[END_REF], [START_REF] Lux | Higher order Campbell techniques for neutron flux measurement. I. Theory[END_REF], [START_REF]Higher order Campbell techniques for neutron flux measurement. II. Correlated Campbelling[END_REF], [START_REF] Vermeeren | Experimental verification of the fission chamber gamma signal suppression by the campbelling mode[END_REF].

A. First order estimator

We set j = 1 in (1) and use the empirical mean estimator for n observations

κ1 = 1 n n k=1 X(k).
We seek an expression of the variance of κ1 taking into account that the samples X(k) may be correlated. Correlation may stem from large support of h, since the covariance function of X is [34, p. 223]

γ(m) = λE[u 2 k ] k≥m h(k)h(k -m). (2) 
Property 1. Assuming that the impulse response h(k) verifies

∃ 0 < ρ < 1, C > 0 such that ∀k ≥ 0, |h(k)| ≤ Cρ k , we have as ρ → 0: lim n→+∞ nvar[κ 1 ] = κ 2 + o(1).
Proof. Recall that (see [39, sec 4.2])

lim n→+∞ nvar[κ 1 ] = ∞ m=-∞ γ(m)
with γ(m) given by [START_REF] Schottky | Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern[END_REF]. Using the upper bound on |h(k)| we obtain:

|γ(m)| ≤ λC 2 E[u 2 k ] ρ m 1 -ρ 2 (3) 
and

| m̸ =0 γ(m)| ≤ λC 2 E[u 2 k ] 2ρ (1 -ρ 2 )(1 -ρ)
and consequently as ρ → 0

lim n→+∞ nvar[κ 1 ] = γ(0) + o(1)
where γ(0) = κ 2 = λc 2 .

Property 1 suggests to approximate var[κ 1 ] for n sufficiently large and a sufficiently fast decay of the impulse response h(k) by:

var[κ 1 ] = κ 2 n = λ c 2 n (4) 
which is a linear function of λ. From (1), we clearly have E[ λ1 ] = λ, and as a first order approximation

var[ λ1 ] = λ n c 2 c 2 1 ( 5 
)
showing that the variance of λ1 is proportional to λ. We use this expression in section III-B.

B. Second order estimator

We set j = 2 in (1) and consider the empirical variance estimator:

κ2 = 1 n -1 n k=1 (X(k) -κ1 ) 2 .
It is asymptotically unbiased (and, since it is a k-statistic, no other cumulant estimator with a smaller variance exist [START_REF] Halmos | The Theory of Unbiased Estimation[END_REF]). We seek an expression of the variance of κ2 as in the previous section.

Property 2. Assuming that the impulse response h(k) verifies

∃ 0 < ρ < 1, C > 0 such that ∀k ≥ 0, |h(k)| ≤ Cρ k we have lim n→∞ nvar[κ 2 ] = 2κ 2 2 + 2κ 4 + o(ρ)
Proof. According to [39, Th. 4.1], the asymptotic variance of the empirical variance (Bartlett formula) is:

lim n→∞ nvar[κ 2 ] = +∞ m=-∞ 2γ 2 (m) + Cum 4 (m, m, 0). (6) 
where Cum 4 (m, m, 0) is an order 4 cumulant of X.

In an analogous way to the proof of Property 1, (3) implies:

| m̸ =0 γ 2 (m)| ≤ λ 2 C 4 E[u 2 k ] 2 2ρ 2 (1 -ρ 2 ) 3 . (7) 
Following the proof of ( 8) in [34, p. 223] we can show:

Cum 4 (m, m, 0) = λE[u 4 k ] k≥m h 2 (k)h 2 (k -m) (8) 
which implies

|Cum 4 (m, m, 0)| ≤ λC 4 E[u 4 k ] ρ 2m 1 -ρ 4 | m̸ =0 Cum 4 (m, m, 0)| ≤ λC 4 E[u 4 k ] 2ρ 2 (1 -ρ 2 )(1 -ρ 4 ) (9) 
Replacing ( 7) and ( 9) in ( 6) leads to

lim n→∞ nvar[κ 2 ] = 2γ 2 (0) + Cum 4 (0, 0, 0) + o(ρ).
with Cum 4 (0, 0, 0) = κ 4 = λc 4 .

In an analogous way to the first order estimator, Property 2 shows that for n sufficiently large and a sufficiently fast decay of the impulse response h(k)

var[κ 2 ] = 2λ 2 c 2 2 n + λc 4 n (10) 
and the variance of λ2 is a second order polynomial function of λ

var[ λ2 ] = 2λ 2 n + λc 4 nc 2 2 , ( 11 
)
which we will use in section III-C.

III. VARIANCE STABILIZING TRANSFORMS

A. Background

A VST is a data transformation whose main aim is to render the variance independent of the mean and provide constant (stable) variance. VST were introduced in the pioneering works [START_REF] Fisher | Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population[END_REF], [START_REF] Bartlett | The square root transformation in analysis of variance[END_REF], [START_REF] Anscombe | The transformation of Poisson, binomial and negativebinomial data[END_REF]. For a statistic Z n with mean E[Z n ] = µ and variance var[Z n ] = g(µ) where g is a continuous function, let define the VST T as Y n = T (Z n ). Using the Delta method (see for example [START_REF] Bickel | Mathematical Statistics: basic ideas and selected topics[END_REF]) for T around the mean µ, we have

T (Z n ) ≈ T (µ) + T ′ (µ)(Z n -µ), whose variance writes var[Y n ] ≈ (T ′ (µ)) 2 g(µ)
. Equaling this last expression to an arbitrary fixed constant C 2 , set to 1 in the following, a VST T (Z n ) can be found by finding the primitive of

T ′ (Z n ) ≈ Cg -1/2 (Z n ) T (Z n ) = Zn 1 g(x) dx. (12) 

B. VST for the first order estimator

Here Z n = λ1 and g(λ) is given by [START_REF] Privault | Nonstationary shot noise modeling of neuron membrane potentials by closed-form moments and Gram-Charlier expansions[END_REF]. Applying [START_REF] Ilhe | Nonparametric estimation of mark's distribution of an exponential shot-noise process[END_REF] gives

λ * 1 = T 1 ( λ1 ) = 2c 1 √ c 2 n λ1 . (13) 
The inverse algebric transformation (obtained by squaring ( 13) then isolating λ1 ) is

λ1 = T -1 1 (λ * 1 ) = c 2 4nc 2 1 λ * 2 1 .

C. VST for the second order estimator

Here Z n = λ2 , the variance function g is given by [START_REF]Blind intensity estimation from shot-noise data[END_REF]. Applying [START_REF] Ilhe | Nonparametric estimation of mark's distribution of an exponential shot-noise process[END_REF] gives [43, formula 2.261]

n 2 ln 2 2 n 2x 2 n + c 4 x nc 2 2 + 4x n + c 4 nc 2 2 ( 14 
)
λ * 2 = T 2 ( λ2 ) = √ n √ 2 × ln 2 √ 2 n 2 λ2 2 + c 4 c 2 2 λ2 + 4 n λ2 + c 4 nc 2 2 . ( 15 
)
The inverse algebric transform (obtained after taking exponential of (15) and isolating λ2 ) writes

λ2 = T -1 2 (λ * 2 ) = √ n exp 2 √ 2λ * 2 √ n 2 -2c4 nc 2 2 exp √ 2λ * 2 √ n + c 2 4 n 2 c 4 2 √ 32 exp √ 2λ * 2 √ n
.

IV. ASYMPTOTIC PROPERTIES

The Delta theorem [16, chap. 2] allows to establish asymptotic distributions of VST for a sequence of statistics Z n such that (

D -→ denoting convergence in distribution) √ n (Z n -θ) D -→ N (0, g(θ)) , g ′ (θ) ̸ = 0.
Moreover, if the process is linear (see [44, chap. 7]), asymptotic distributions of κ1 and κ2 are gaussian with covariances given by ( 4) and [START_REF] Sequeira | Intensity estimation from shot-noise data[END_REF]. We will assume this hypothesis holds in the following.

A. First order estimator

Assuming the empirical first cumulant of the stationary Shot Noise is asymptotically gaussian distributed and Property 1 holds:

√ n(κ 1 -µ) D -→ N (0, λc 2 )
as n → ∞. In the same way the first order intensity estimator (see [START_REF] Liese | Asymptotic Properties of Intensity Estimators for Poisson Shot-Noise Processes[END_REF])

√ n( λ1 -λ) D -→ N 0, λ c 2 c 2 1 .
According to the Delta theorem with Z n = λ1 , θ = λ, and T 1 given by ( 13), one obtains 

B. Second order estimator

Assuming the empirical second cumulant of the stationary Shot Noise is asymptotically gaussian distributed (see [START_REF] Dandawate | Asymptotic properties and covariance expressions of kth-order sample moments and cumulants[END_REF], [START_REF] Sen | From Finite Sample to Asymptotic Methods in Statistics[END_REF]Th. 7.5.1] ) and Property 2 holds:

√ n(κ 2 -κ 2 ) D -→ N (0, 2κ 2 2 + κ 4 ) with 2κ 2 2 = 2λ 2 c 2 2 ,
as n → ∞. The second order intensity estimator is also asymptotically gaussian according to

√ n( λ2 -λ) D -→ N 0, 2λ 2 + c 4 c 2 2 λ .
With Z n = λ2 , θ = λ, T 2 given by ( 15), one obtains according to the Delta theorem Theorem 2. Under the previous hypothesis,

√ n (λ * 2 -T 2 (λ 2 )) D -→ N (0, 1) .

V. NUMERICAL EXPERIMENTS

In this section, we illustrate thanks to computer simulations the heteroskedasticity property of λ1 and λ2 and the variance stabilization achieved by T 1 and T 2 wrt λ and n.

A. Setup

Shot Noise sample paths were generated with different intensities λ ranging from 5.10 5 to 2.10 6 , with sampling period T s = 10 -5 s. For each intensity, λ1 and λ2 are estimated as well as their respective variance. T 1 ( λ1 ) and T 2 ( λ2 ) are applied in order to stabilize variance for each λ. 

B. Parameter settings

The impulse response is h(t) = exp(-t), t > 0. Marks u k were generated following a uniform distribution U(0, 300) with mean 150, so c 1 = 150, c 2 = 150 2 /2.

C. Results

Figure 1 shows the linear relation between λ1 and its variance as expected by (4) and a linear regression of the estimated variances with n = 2000 Shot Noise samples. A good agreement between the theoretical/estimated values of the slope can be noticed. Figure 2 shows the quadratic relation between λ2 and its variance as expected by [START_REF] Sequeira | Intensity estimation from shot-noise data[END_REF] and a quadratic regression (again with n = 2000 Shot Noise samples). The coefficient of order 2 monomial ( 2n-1 = 10 -3 is very close to the estimated one (= 9.995 × 10 -4 ).

Variance stabilization wrt λ can be observed on the bottom of figure 3 Variance stabilization wrt n is shown on top of figure 3 and 4 for λ1 and λ2 respectively: the more data the more stable the variance. For both quantities, good variance stabilization is obtained from n = 1000 and beyond.

VI. CONCLUSION

We have proved that the two intensity estimators λ1 and λ2 of a Shot Noise process are heteroskedastic quantities whose variances vary linearly and quadratically, respectively. Variance stabilizing transforms T 1 and T 2 (and their inverse) were built, and asymptotic normality theorems were established. Numerical experiments were conducted in order to characterize their statistical properties. The VST-based denoising process of [START_REF] Mäkitalo | Optimal inversion of the generalized Anscombe transformation for Poisson-gaussian noise[END_REF] adapted with T 1 and T 2 (and their inverses) targets typical real heteroskedastic neutron measurement signals based on Shot Noise empirical mean and variance (see [START_REF] Lux | Higher order Campbell techniques for neutron flux measurement. I. Theory[END_REF], [START_REF] Vermeeren | Experimental verification of the fission chamber gamma signal suppression by the campbelling mode[END_REF]). Application of this process is planned in a forthcoming work.
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 1 Under the previous hypothesis, √ n (λ * 1 -T 1 (λ 1 )) D -→ N (0, 1) .
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 1 Figure 1. Linear variation of the variance of λ1 as a function of λ with n = 2000.
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 2 Figure 2. Quadratic variation of the variance of λ2 as a function of λ with n = 2000.

  Figure1shows the linear relation between λ1 and its variance as expected by (4) and a linear regression of the estimated variances with n = 2000 Shot Noise samples. A good agreement between the theoretical/estimated values of the slope can be noticed. Figure2shows the quadratic relation between λ2 and its variance as expected by[START_REF] Sequeira | Intensity estimation from shot-noise data[END_REF] and a quadratic regression (again with n = 2000 Shot Noise samples). The coefficient of order 2 monomial (2n-1 = 10 -3 is very close to the estimated one (= 9.995 × 10 -4 ).Variance stabilization wrt λ can be observed on the bottom of figure3and figure 4 for λ1 and λ2 respectively: variance of both transformed quantities λ * 1 and λ * 2 attain the asymptotic theoretical value 1. Boxplots were obtained based on 100000 Monte Carlo simulations with n = 2000 Shot Noise samples.
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 3 Figure 3. Top: Variance convergence for T 1 as a function of n for (fixed) λ = 2.10 6 . Bottom: Variance stabilization of λ * 1 = T 1 ( λ1 ) for n = 2000. The dashed line corresponds to the theoretical asymptotic value of the variance after applying VST .
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 4 Figure 4. Top: Variance convergence for T 2 as a function of n for (fixed) λ = 2.10 6 . Bottom: Variance stabilization of λ * 2 = T 2 ( λ2 ) for n = 2000. The dashed line corresponds to the theoretical asymptotic value of the variance after applying VST .