Electronic Supplementary Materials

Early-life environmental effects on mitochondrial aerobic metabolism: a brood size manipulation in wild great tits

Nina Cossin-Sevrin^{1,4}, Antoine Stier^{1,2,4}, Mikaela Hukkanen³, Sandrine Zahn⁴, Vincent-A Viblanc⁴, Katja Anttila¹ & Suvi Ruuskanen^{1,5}

¹ Department of Biology, University of Turku, Turku, Finland

² Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France

³ Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland

⁴ Université de Strasbourg, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 67087 Strasbourg, France

⁵ Department of Biological and Environmental Sciences, University of Jyväskylä, Finland

Corresponding author

Nina Cossin-Sevrin Department of Biology, 20014 University of Turku, Finland <u>ninacossinsevrin@gmail.com</u>

Summary:

A. Parental feeding rates

- a) Material and methods
- b) Results: Fig.S1

B. Results for the correlative approach

- a) Growth metrics: Table S1
- b) Mitochondrial aerobic metabolism: Table S2

C. Complementary analyses, results for the control group only: Table S3

D. Complementary analyses, results without including the small brood sizes: Table S4

E. Results for the association between mitochondrial respiration rates in 14-days-old nestlings and survival as juvenile: Table S5

A. Parental feeding rates

a) Material and Methods

In order to test if parental feeding rates changed following the brood size manipulation, we video-recorded a subsample of nest boxes ($n_c = 8$, $n_E = 15$, $n_R = 14$ nest boxes) 8 days after hatching. The cameras were concealed at ca. 2 m distance from the nest boxes. Videos were recorded for approximately 2h (mean \pm SD = 137.58 \pm 25.19 min) between 7 and 12 am. Standardized parental feeding rate differences (number of nest visits divided by the total length of the video starting from the first visit) was quantified using *BORIS* software (Friard & Gamba, 2016), by a single observer blind to the experimental treatment.

Standardized parental feeding rate differences (i.e. total number of visits per hour in the nest by both parents) were tested according to treatment groups and the initial brood size, but also according to the number of nestlings at day 7, using in both cases a linear model without random effects (LM). We included the starting time of the video recordings as a covariate in models to account for differences in feeding rates during the day.

b) Results

Parental feeding rate (8 days after hatching) was significantly affected by the treatment ($F_{2, 32} = 4.64$, P = 0.02, see Fig.2A) with higher rates for the E group (raw data mean \pm SE = 41.26 \pm 6.03 visits per hour) compared to R group (raw data mean \pm SE = 25.75 \pm 4.05) (Tukey HSD *post hoc* comparison: P = 0.04). Differences in parental feeding rate between E and C groups (C: raw data mean \pm SE = 28.49 \pm 5.22) were close to significance (Tukey HSD *post hoc* comparison: P = 0.051). Parental feeding rate significantly increased with initial brood size (estimate \pm SE = 2.76 \pm 1.55 , $F_{1,32} = 7.91$, P = 0.008) and significantly decreased with time of day (estimate \pm SE = -2.67 \pm 6.13e-10, $F_{1,32} = 19.01$, P < 0.001).

Parental feeding rate significantly increased with the number of nestlings recorded 7 days after hatching (estimate \pm SE = 4.28 \pm 1.01, $F_{1, 34}$ = 22.41, P < 0.001).

Fig. S1: Parental feeding rate according to the brood size manipulation treatment groups: reduced (R), control (C), enlarged (E) brood sizes. Raw data distribution is presented with boxplots ($n_c = 8$, $n_E = 15$, $n_R =$ 14 nest boxes). Stars indicate the significance of Tukey HSD *post hoc* test (*** P < 0.001). R² = 0.53.

B) Results for the correlative approach

Table S1: Results of linear mixed model testing the associations between the number of nestlings in the nest and A) nestling body mass at day 7, B) nestling body mass at day 14, C) nestling wing length at day 14. For A), nestling body mass measured at day 2 was included as covariate in the model. For B), nestling body mass measured at day 7 was included as covariate in the model. Linear mixed models (LMM) estimates are reported with their 95% CI. Original nest box ID and nest box of rearing ID were included as random intercepts in the models. σ 2, within group variance; τ 00 between-group variance. Bold indicates significance (P < 0.05).

		A) Mass day	7		B) Mass day	14			(day 14	
Predictors	Estimates	CI 95%	P-value	Estimates	CI 95%	P-value	-	Predictors	Estimates	CI 95%	P-value
(Intercept)	2.15	-1.34 - 5.65	0.223	4.42	0.32 - 8.51	0.035		(Intercept)	20.79	13.77 - 27.81	<0.001
previous mass measured (day 2 or day 7)	1.91	1.75 - 2.06	<0.001	0.55	0.49 - 0.62	<0.001		number of nestlings	0.23	-0.003 - 0.46	0.053
number of nestlings	-0.16	-0.290.03	0.017	0.03	-0.13 - 0.18	0.726	<u> </u>	hatching date	0.42	0.30 - 0.54	<0.001
hatching date	0.07	0.01 - 0.12	0.027	0.11	0.04 - 0.18	0.003	_	Random effects			
Random effects]	σ2	5.60		
σ2	0.60			0.60			_	τ00 nest of origin	2.68		
τ00 nest of origin	0.27			0.14			_	τ00 nest of rearing	2.30		
τ00 nest of rearing	1.07			1.75				N observations	403		
N observations	419			403				Marginal R ² / Conditional R ²	0.345/ 0.653		
Marginal R ² / Conditional R ²	0.525/ 0.852			0.348/ 0.844							

Table S2: Results of linear mixed models testing the associations between the number of nestlings in the nest (14 days after hatching) and mitochondrial respiration rates measured on 14-day-old nestlings (N = 102 individuals, n = 55 nest boxes). Mitochondrial respiration rates were corrected for the mitochondrial DNA copy number (i.e., proxy of mitochondrial density). Linear mixed models (LMM) estimates are reported with their 95% CI. Original nest box ID and nest box of rearing ID were included as random intercepts in the models. σ 2, within group variance; τ 00 between-group variance. Bold indicates significance (*P* < 0.05).

	ROUTINE			Cl				Cl + ll		LEAK		
Predictors	Estimates	CI 95%	P- value	Estimates	CI 95%	P-value	Estimates	CI 95%	P-value	Estimates	CI 95%	P-value
(Intercept)	4.55	2.37 – 6.72	<0.001	20.12	12.93 - 27.31	< 0.001	29.39	18.21 – 40.57	<0.001	2.70	1.20 – 4.20	<0.001
number of nestlings	-0.13	-0.220.04	0.005	-0.44	-0.72 – -0.17	0.002	-0.66	-1.09 – -0.23	0.003	-0.10	-0.160.04	<0.001
mtDNA <i>cn</i>	0.34	0.25 – 0.42	<0.001	0.91	0.69 – 1.12	<0.001	1.44	1.10 – 1.77	<0.001	0.18	0.14 – 0.23	<0.001
hatching date	-0.02	-0.06 - 0.02	0.305	-0.17	-0.290.04	0.009	-0.24	-0.43 – -0.05	0.013	-0.01	-0.04 - 0.01	0.384
Random effects												
σ2	0.32			1.31			3.13			0.06		
т00 nest of origin	0.05			1.10			2.52			0.04		
τ00 nest of rearing	0.33			4.21			10.35			0.19		
Observations	102			102			102			102		
Marginal R ² / Conditional R ²	0.488 / 0.767			0.487 / 0.898			0.483 / 0.899			0.454 / 0.889		

C. Complementary analyses, results for the control group only

Table S3: Results of linear mixed models testing the associations between the number of nestlings in the nest (14 days after hatching) and mitochondrial respiration rates measured on 14-day-old nestlings (N = 26 individuals from the control group only). We found similar results as in statistical analyses conducted on the whole data set (same direction for significant effects). Mitochondrial respiration rates were corrected for the mitochondrial DNA copy number (i.e., proxy of mitochondrial density). Linear mixed models (LMM) estimates are reported with their 95% CI. The original nest box ID and the nest box of rearing ID were both included as random intercepts in the models. σ 2, within group variance; T00 between-group variance. Bold indicates significance (P < 0.05).

		ROUTINE			Cl			Cl + ll				
Predictors	Estimates	CI 95%	P-value	Estimates	CI 95%	P-value	Estimates	CI 95%	P-value	Estimates	CI 95%	P-value
(Intercept)	6.85	1.13 – 12.57	0.026	27.36	12.74 – 41.98	0.002	42.52	18.77 – 66.28	0.002	4.84	2.21 – 7.48	0.002
number of nestlings	-0.26	-0.65 – 0.12	0.162	-1.18	-2.14 – -0.22	0.020	-1.82	-3.38 – -0.25	0.026	-0.25	-0.420.09	0.007
mtDNAcn	0.29	-0.03 – 0.60	0.070	0.54	-0.26 – 1.34	0.175	0.88	-0.39 – 2.16	0.163	0.14	0.01 – 0.26	0.037
hatching date	- 0.04	-0.15 – 0.07	0.433	-0.18	-0.46 – 0.10	0.179	-0.30	-0.75 – 0.16	0.181	- 0.03	-0.08 – 0.02	0.252
Random effects												
σ2	0.53			2.95			6.58			0.05		
τ00 nest of origin	0.01			1.47			3.28			0.08		
τ00 nest of rearing	0.45			2.56			8.35			0.09		
Observations	26			26			26			26		
Marginal R ² / Conditional R ²	0.483 / 0.724			0.585 / 0.824			0.571 / 0.845			0.684 / 0.932		

D. Complementary analyses, results without including the small brood sizes

Table S4. Results of linear mixed models testing the associations between the number of nestlings in the nest (14 days after hatching) and mitochondrial respiration rates measured on 14-day-old nestlings (N = 90 individuals from 46 nests, broods having less than 5 nestlings at day 14 are not included in the analyses). Mitochondrial respiration rates were corrected for the mitochondrial DNA copy number (i.e. proxy of mitochondrial density). Linear mixed models (LMM) estimates are reported with their 95% CI. The nest box of rearing ID was included as random intercept in the models. Nest box of origin could not be included as random intercept because of convergence issues. σ 2, within group variance; T00 between-group variance. Bold indicates significance (P < 0.05).

	ROUTINE			CI			CI + II			LEAK		
Predictors	Estimates	CI 95%	P-value	Estimates	CI 95%	P-value	Estimates	CI 95%	P-value	Estimates	CI 95%	P-value
(Intercept)	3.84	1.53 – 6.16	0.002	16.69	9.32 – 24.07	<0.001	24.27	12.82 – 35.72	<0.001	2.37	1.06 – 3.69	0.001
number of nestlings	-0.09	-0.20 - 0.03	0.143	-0.29	-0.66 – 0.08	0.117	-0.39	-0.96 – 0.19	0.182	-0.04	-0.10 – 0.03	0.247
mtDNAcn	0.30	0.20 - 0.40	<0.001	0.74	0.48 – 1.00	<0.001	1.18	0.78 – 1.59	<0.001	0.15	0.10 – 0.20	<0.001
hatching date	-0.01	-0.05 – 0.03	0.563	-0.12	-0.24 – -0.002	0.055	-0.18	-0.36 – 0.01	0.062	-0.01	-0.03 – 0.01	0.246
Random effects												
σ2	0.33			2.09			4.91			0.08		
τ00 nest of rearing	0.32			3.91			9.51			0.12		
Observations	90			90			90			90		
Marginal R ² / Conditional R ²	0.293 / 0.643			0.250 / 0.739			0.248 / 0.744			0.248 / 0.682		

E. Results for the association between mitochondrial respiration rates in 14-days-old nestlings and survival as juvenile

Table S5. Results of generalized linear mixed models (GLMM, with logistic binary distributions of the dependent variables, survival: 0=dead, 1=alive) testing whether mitochondrial respiration rates measured at day 14 predict juvenile recapture probability (i.e. proxy of medium-term apparent survival). Models only include individuals for which mitochondrial metabolic rates have been measured at day 14 (N = 102 individuals). 67 individuals (from 34 nests) have been recaptured as juveniles. Random intercepts could not be included in the models because of convergence issues. Odds ratios are reported with their 95% CI. R^2 values are estimated from the *coefficient of determination D* (Tjur's approach). Bold indicates significance (P < 0.05).

	ROUTINE			CI				CI+II		LEAK		
Predictors	Odds Ratios	CI 95%	P-value									
(Intercept)	82.24	0.43 – 1.7e4	0.10	60.96	0.26 – 1.4e4	0.14	75.12	0.35 – 1.7e4	0.11	114.31	0.67 – 2.2e4	0.07
Mitochondrial respiration rate d14	1.30	0.87 – 1.95	0.20	1.08	0.95 – 1.23	0.24	1.04	0.96 – 1.14	0.31	1.33	0.66 – 2.47	0.38
hatching date	0.89	0.80 – 0.97	0.01	0.89	0.81 – 0.98	0.01	0.89	0.80 - 0.97	0.01	0.89	0.80 – 0.98	0.01
Observations	102			102			102			102		
R ²	0.09			0.09			0.08			0.08		

References:

Friard, O., & Gamba, M. (2016). BORIS: a free, versatile open- source event- logging software for video/audio coding and live observations. *Methods in ecology and evolution*, 7(11), 1325-1330.