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A B S T R A C T

Neuropathic pain, caused by a lesion or disease affecting the somatosensory system, affects between 3 and 17%
of the general population. The treatment of neuropathic pain is challenging due to its heterogeneous etiologies,
lack of objective diagnostic tools and resistance to classical analgesic drugs. First-line treatments recommended
by the Special Interest Group on Neuropathic Pain (NeuPSIG) and European Federation of Neurological Societies
(EFNS) include gabapentinoids, tricyclic antidepressants (TCAs) and selective serotonin noradrenaline reuptake
inhibitors (SNRIs). Nevertheless these treatments have modest efficacy or dose limiting side effects. There is
therefore a growing number of preclinical and clinical studies aim at developing new treatment strategies to treat
neuropathic pain with better efficacy, selectivity, and less side effects. In this review, after a brief description of
the mechanisms of action, efficacy, and limitations of current therapeutic drugs, we reviewed new preclinical
and clinical targets currently under investigation, as well as promising non-pharmacological alternatives and
their potential co-use with pharmacological treatments.

© 20XX

1. Introduction

Chronic pain is defined as any type of pain that persists more than
three months following the initial triggering event (Scholz et al., 2019).
Around 20% of the population worldwide is affected by this condition,
and multiple disorders are associated with chronic pain, including
mood disorders such as anxiety and major depressive disorders that af-
fect 50% of patients with chronic pain. Chronic pain and its comorbidi-
ties are thus one of the most important causes of disability and impaired
quality of life, with a societal cost that can reach $700 billion in the
United States, and over €340 billion in the European Union annually
(Barham, 2012; Institute of Medicine (U.S.), 2011). Among its seven di-
agnostic categories defined by the 11th revised International Classifica-
tion of Diseases and related health problems (ICD-11), neuropathic pain
is one of the most prevalent pain conditions, affecting one in ten adults
worldwide (Scholz et al., 2019).

Neuropathic pain is defined as a pain caused by a lesion or disease
affecting the somatosensory system (Jensen et al., 2011; Treede et al.,
2008). It can originate peripherally (nerves, plexus, etc.) or centrally
(spinal cord and brain). Neuropathic pain can result from trauma
(spinal cord injury, carpal tunnel syndrome, etc.), metabolic disorders

(peripheral diabetic polyneuropathy), viral infections (postherpetic
neuralgia, Human Immunodeficiency Viruses-1 (HIV)), autoimmune
disorders (multiple sclerosis) and chemotherapeutics affecting the ner-
vous system (for review see (Baron et al., 2010)). Due to its diverse eti-
ology, neuropathic pain remains difficult to diagnose clinically, espe-
cially when comorbid with other pathological conditions. As there is no
generalizable classification allowing a clear diagnosis, a grading sys-
tem, proposed by International Association for the Study of Pain (IASP)
Special Interest Group on Neuropathic Pain (NeuPSIG), is often used
(Finnerup et al., 2016). However, this grading system only determines
the level of certainty for the presence of a neuropathic pain (possible,
probable or definite) based on the patient's history, tests confirming le-
sions or diseases affecting the nervous system, and the neuroanatomical
distribution of pain and its association with sensory signs. Symptoms of
neuropathic pain include the presence of (i) paroxysmal or spontaneous
pain, (ii) evoked pain, (iii) abnormal sensations, and/or (iv) sensory
deficits (Bennett et al., 2007; Rasmussen et al., 2004). Paroxysmal pain
corresponds to episodic pain that can occur several times a day and is
described as a sensation of electrical shocks or stabbing, while sponta-
neous pain is a constant dull pain that can be described as sensation of
cold, burning or itching associated with pins and needles. On the other

Abbreviations: ICD-11, 11th revised International Classification of Diseases and related health problems; α2A-Ars, a2A-adrenoceptors; ALA, α-Lipoic Acid; AAV,
Adeno-Associated Virus; ATP, Adenosine Trisphosphate; AT2Rs, Angiotensin II Type 2 Receptors; ACC, Anterior Cingulate Cortex; AD, Antidepressant Drugs;
β2-ARs, β2-adrenoceptors; BMI, Body Mass Index; BoNT/A, Botulinum Toxin type A; BDNF, Brain-Derived Neurotrophic Factor; CGRP, Calcitonin Gene Related
Protein; CREB, cAMP-Response Element-Binding protein; CBD, Cannabidiol; CB1R, Cannabinoid Receptor type 1; CB2R, Cannabinoid Receptor type 2; CSF1-R,
Colony-Stimulating Factor 1 Receptor; cAMP, cyclic Adenosine Monophosphate; DOR, δ-Opioid Receptor; THC, Δ9-Tetrahydrocannabinol; DRGs, Dorsal Root
Ganglia; DLPFC, Dorsolateral Prefrontal Cortex; EFNS, European Federation of Neurological Societies; EMEA, European Medicines Agency; FLT3, FMS-Like
Receptor Tyrosine Kinase 3; FSTL1, Follistatin-like 1; FDA, Food and Drug Administration; GABA, γ-Aminobutyric Acid; GLA, γ-Linolenic Acid; GIRKs, G
protein-coupled Inwardly-Rectifying Potassium channels; GPCRs, G Protein-coupled Receptors; GFLs, GDNF Family Ligands; GDNF, Glial cell line-Derived
Neurotrophic Factor; HVACC, High-Voltage-Activated Calcium Channel; HIV, Human Immunodeficiency Viruses-1; IL-1β, Interleukin-1β; IASP, International
Association for the Study of Pain; KOR, κ-Opioid Receptor; LTD, Long-Term Depression; LTP, Long-Term Potentiation; MMP2, Matrix Metalloprotease 2; MKP-1,
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Mitogen-Activated Protein Kinase Phosphatase 1; MAPK/ERK, Mitogen-Activated Protein Kinase/ Extracellular signal-Regulated Kinase; MOR, μ-Opioid Receptor;
NGF, Nerve Growth Factor; NPD1/PD1, Neuroprotectin D1/Protectin D1; NT3, Neurotrophin 3; NO, Nitric Oxide; NMDAR, N-Methyl-d-Aspartate Receptor; NOR,
Nociceptin Opioid Receptor; N/OFQ, Nociceptin/Orphanin FQ; NSAID, Non-Steroidal Anti-Inflammatory Drugs; NNH, Number Needed to Harm; NNTs,
Number-Needed-To-Treat; PAG, Periaqueductal Gray; PGE2, Prostaglandin E2; PKC, Protein Kinases C; P2XRs, Purinergic receptors; RTKs, Receptors Tyrosine
Kinase; rTMS, repetitive Transcranial Magnetic Stimulation; RMT, Resting Motor Threshold; RVM, Rostral Ventral Medulla; SSRIs, Selective Serotonin Reuptake
Inhibitors; SNRIs, Serotonin Noradrenaline Reuptake Inhibitors; Na

+
/K

+
-ATPase, Sodium potassium pump; NeuPSIG, Special Interest Group on Neuropathic Pain;

SCS, Spinal Cord Stimulations; SNAP-25, Synaptosomal-Associated Protein, 25 kDa; tDCS, transcranial Direct Current Stimulations; TENS, Transcutaneous
Electrical Nerve Stimulation; TRPA1, Transient Receptor Potential Ankyrin 1; TRPM8, Transient Receptor Potential Melastatin-8; TRPV1, Transient Receptor
Potential Vanilloid member 1; TCAs, Tricyclic Antidepressants; Trk, Tropomyosin receptor kinase; TNF-α, Tumor Necrosis Factor α; Nav, Voltage-Gated sodium
channels; VGCCs, Voltage-Gated Calcium Channels; VGPCs, Voltage-Gated Potassium Channels; VSCCs, Voltage-Sensitive Calcium Channels
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hand, symptoms of evoked pain include allodynia (pain due to a stimu-
lus that does not normally provoke pain), hyperalgesia (increased pain
from a stimulus that normally provokes pain), and hyperpathia (abnor-
mally painful reaction to a stimulus, especially a repetitive stimulus, as
well as an increased threshold). Abnormal sensations include paresthe-
sia and dysesthesia, corresponding to stinging or tingling sensations
that can be spontaneous or evoked. Finally, sensory deficits include par-
tial or total loss of sensation of cold, warm or touch (hypoesthesia) in
the painful area.

Treatment of neuropathic pain is challenging due to its heterogenic
etiologies, lack of objective diagnosis tools and its resistance to classical
analgesic drugs. As a result, neuropathic pain management strategies
focus primarily on treating symptoms. According to NeuPSIG, sub-
classes of classical antidepressant drugs and anticonvulsants remain
among the first-line treatments for many neuropathic pain conditions
(Attal et al., 2010). Lidocaine, capsaicin, tramadol and tapentadol are
recommended as second-line treatment while third-line treatments for
neuropathic pain include strong opioids and Botulinum Toxin type A
(BoNT/A) (Colloca et al., 2017; Dworkin et al., 2007) (Table 1). Besides
these drugs, non-pharmacological alternatives such as neuromuscular
and neuronal stimulations are used especially when none of the classi-
cal drugs is efficient, or as adjuvant therapy (Fig. 2). Finally, several
clinical trials (Table 2) and preclinical studies (Table 3) have been con-

ducted to develop therapeutic targets that are more specific, more po-
tent and/or with less side effects.

In this review, we will first describe the mechanisms of action, limi-
tations and side effects of the current pharmacological treatments rec-
ommended for neuropathic pain. We will then focus on promising re-
cently developed clinical and preclinical targets and their mechanism of
action (Fig. 1). Finally, we will discuss the existing alternative non-
pharmacological approaches,with their known mechanisms (Fig. 2), ef-
ficacy and limitations, and their prospective application to potentiate
pharmacological treatments.

2. Pharmacological treatments

2.1. First line treatments

2.1.1. Anticonvulsants
2.1.1.1. Gabapentinoids. Gabapentinoid drugs, initially described as
anticonvulsants, include pregabalin (300–600 mg/day, twice a day)
and gabapentin (1200–3600 mg/day, three times a day). Over the last
two decades, they became the first-choice treatment and have been ap-
proved by the Food and Drug Administration (FDA) to treat neuro-
pathic pain associated with diabetic peripheral neuropathy, spinal
cord injury and postherpetic neuralgia (Attal et al., 2010; Colloca et

Table 1
Current pharmacological treatments for neuropathic pain.

Drugs Dose range Main mechanisms Main side effects

First-line Treatments
Anticonvulsants Gabapentinoids Pregabalin (300–600 mg/

day)
- Inhibition of VSCCs through the binding of α2δ-1
subunit
- Increase of noradrenaline level
- Modulate glial cells

Dizziness, somnolence, peripheral oedema, and gait
disturbance

Gabapentin (1200–
3600 mg/day)

Others Oxcarbazepine 900 mg/day - Blocking of Nav
- Inhibition of spontaneous ectopic activity

Dizziness, drowsiness
Carbamazepine 800 mg/day

Antidepressants TCAs Amitriptyline (10–150 mg/
day)

- Inhibition of the reuptake of noradrenaline and
serotonin
- Activation of the endogenous opioid system (MOR &
DOR)
- Inhibition of microglia activation

Sedation, dizziness, dry mouth, constipation,
urinary retention and headaches

SNRIs Duloxetine (60–120 mg/
day)

Sedation or insomnia, headache, and/or decreased
appetite or libido

Venlafaxine (120–255 mg/
day)

Second-line Treatments
Topical agents Lidocaine - 5% patch

- 8% spray
- Suppression of ectopic discharges in injured
peripheral nerves by inactivating Nav1.7 and Nav1.8
- Blocking of VGPCs and VGCCs
- Modulation of GPCRs (acetylcholine, glutamate,
opioid and serotonin receptors)

Itching and erythema

Capsaicin - 0.025%
cream
- 0.075%
cream
- 0.075% oil
- 8% patches

- Desensitization of TRPV1
- Mitochondrial dysfunction

Itching, redness or pain, intense burning at high
concentration

Weak opioids Tramadol 100–400 mg/
day

- Activation of the endogenous opioid system (MOR)
- Inhibition of the reuptake of serotonin and
noradrenaline

Nausea, vomiting, constipation, dizziness,
somnolence, and a risk of abuse

Tapentadol 50–600 mg/
day

Third-line Treatments
Strong opioids Morphine 10–120 mg/

day
- Activation of the endogenous opioid system (MOR >
DOR > KOR)

Nausea, vomiting, constipation, dizziness,
somnolence, respiratory depression and a risk of
abuseMethadone 10–80 mg/day

Oxycodone 10–120 mg/
day

Buprenorphine 0.2–0.6 mg
Fentanyl 12.5-50 μg/h

Neurotoxic proteins BoNT/A 5–100 U - Inhibition of release of pro-nociceptive
neurotransmitters and neuropeptides
- Inhibition of microglial activation
- Inhibition of the upregulation of Nav1.7

Pain at the injection side

Abbreviations: Botulinum Toxin type A (BoNT/A); δ-Opioid Receptor (DOR); G Protein-coupled Receptors (GPCRs); κ-Opioid Receptor (KOR); μ-Opioid Receptor
(MOR); Serotonin Noradrenaline Reuptake Inhibitors (SNRIs); Transient Receptor Potential Vanilloid member 1 (TRPV1); Tricyclic Antidepressants (TCAs); Voltage
gated sodium channels (Nav); Voltage-Gated Calcium Channels (VGCCs); Voltage-Gated Potassium Channels (VGPCs); Voltage-Sensitive Calcium Channels (VSCCs).
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Table 2
Non exhaustive list of new clinical targets for the treatment of neuropathic pain.

Drug Pharmacology Dose range Type of pain Clinical phase

New clinical drugs
Sodium channels
blockers

Vixotrigine Nav1.7 blockers 400 mg twice daily Small fiber neuropathy Phase II
PF-05089771 150 mg twice daily Diabetic neuropathy Phase II
BIIB095 Not provided Healthy volunteers and diabetic

neuropathy
Phase I

GDC-0276 15–540 mg twice daily Healthy volunteers Phase I
(discontinued)

VX 150 Nav1.8 blocker 1250 mg/day Small fiber neuropathy Phase II
P2XRs blockers Gefapixant P2X3 antagonist 50–300 mg/day Pain associated with interstitial cystitis Phase II

NC-2600 P2X4 antagonist Not provided Not provided Phase I
NMDA blockers Ketamine NMDA antagonist Intravenously infusions – subanesthetic

dose
Chronic pain (not specified) Observational study

TRPA1 blockers GRC 17356 TRPA1 antagonist Not provided Diabetic neuropathy Phase II
(discontinued)

RTK modulators Tanezumab Anti-NGF monoclonal
antibodies

20 mg every 8 weeks Diabetic neuropathy Phase II

NOR modulator Cebrenopadol NOR agonist 100–600 μg/day Diabetic neuropathy Phase II
AT2Rs blocker EMA401 AT2Rs antagonist Not provided Diabetic neuropathy Phase II
Antidepressants Mirogabalin Gabapentinoid 10–30 mg/day Diabetic neuropathy & postherpetic

neuralgia
Phase III

Cannabinoids Dronabinol THC 10 mg/day Diabetic neuropathy Phase II
Epidolex CBD 800 mg/day
Nabiximols THC + CBD 10.8 mg/day THC + 10 mg/day CBD

Abbreviations: Angiotensin II Type 2 Receptors (AT2Rs); Cannabidiol (CBD); Nerve Growth Factor (NGF); N-Methyl-d-Aspartate Receptor (NMDAR); Nociceptin Opi-
oid Receptor (NOR); Purinergic receptors (P2XRs); Receptors Tyrosine Kinase (RTKs); Transient Receptor Potential Ankyrin 1 (TRPA1); Voltage gated sodium chan-
nels (Nav); Δ9-Tetrahydrocannabinol (THC).

al., 2017; Finnerup et al., 2015). The use of gabapentinoids has been
shown effective mainly for two different types of neuropathic pain,
postherpetic neuralgia (with pain reduction of at least 50% observed
in 41% of patients for pregabalin and 32% of patients for gabapentin),
and diabetic peripheral neuropathic pain (with pain reduction of at
least 50% of observed in 41% of patients for pregabalin and 38% of
patients for gabapentin) (Moore et al., 2009, 2014). Other studies
showed a moderate effect of gabapentinoids on neuropathic pain in-
duced by spinal cord injury, and contradictory effects on central neu-
ropathic pain and on HIV-induced neuropathic pain (La Spina et al.,
2001; Moore et al., 2009; Tong et al., 2021). However, there are few
studies on their efficacy in other neuropathic pain conditions. Finally,
Cochrane Data Base Analyses demonstrated that at least one adverse
event has been reported in 62% of patients using gabapentin, and 11%
discontinues due to an adverse event (19% suffer dizziness, 14% som-
nolence, 7% peripheral oedema, and 9% gait disturbance). However,
only 3% of serious adverse effects were detected (Moore et al., 2014).
The same results were obtained with pregabalin (Derry et al., 2019).

Both gabapentin and pregabalin bind to the α2δ subunits of the Volt-age-Sensitive Calcium Channels (VSCCs). The α2δ-1 subunit is their pri-
mary target, as gabapentinoids-induced analgesia in neuropathic pain
is lost in α2δ-1 knock out mice (Field et al., 2006). This subunit is
densely expressed in Dorsal Root Ganglia (DRGs), spinal cord and in
supraspinal structures such as the anterior cingulate cortex (ACC), the
periaqueductal gray (PAG), the amygdala and the insular cortex that
are involved in the nociceptive and/or emotional aspects of chronic
pain. The α2δ-1 subunit has been shown to be upregulated in the DRG
and/or in the dorsal horn of the spinal cord in different animal models
of neuropathic pain (Luo et al., 2002, 2001; Narita et al., 2007; Xiao et
al., 2007), while chronic administration of gabapentinoids normalizes
this overexpression (Bauer et al., 2009; Morimoto et al., 2012; Xiao et
al., 2007). Binding to α2δ-1 triggers inhibition of cellular calcium influx
and transmission of different neurotransmitters (including glutamate,
noradrenaline and substance P). Even though the primary target of
gabapentinoids is α2δ-1 subunits, they recruit the descending noradren-
ergic pathway by activating the locus coeruleus and increase extracellu-
lar noradrenaline levels in the spinal cord (Hayashida et al., 2008; Suto
et al., 2014). Gabapentinoids indirectly block the γ-Aminobutyric Acid

(GABA) transmission and increase spinal GABA release in neuropathic
pain models. In addition to neurons, they also affect glial cells, espe-
cially microglia as well as the balance between anti- vs pro- inflamma-
tory cytokine (Lee et al., 2013).

New gabapentinoid molecules continue to be developed, although
classical gabapentinoids are already efficiently used for the treatment
of neuropathic pain. For instance, Mirogabalin, a novel gabapentionoid
with a better binding affinity for α2δ-1 and α2δ-2 subunits than prega-
balin (Kato et al., 2021), showed more potent and longer-lasting anal-
gesic effects than classical gabapentinoids in rat models of nerve injury,
spinal cord injury, or diabetic neuropathy (Domon et al., 2018;
Murasawa et al., 2020). Various clinical trials, including Phase III trials,
also showed strong efficacy against diabetic neuropathic pain and pos-
therpetic neuralgia (Baba et al., 2019; Javed et al., 2018). However,
same side effects as classical gabapentinoids are observed, with a simi-
lar -if not higher- rate of treatment discontinuation due to somnolence
side effect.

2.1.1.2. Besides gabapentinoids. Oxcarbazepine and carbamazepine
are also considered effective against neuropathic pain, although they
are currently considered a first-line treatment only for trigeminal
neuralgia (with pain reduction of at least 30% observed in 88.3% of
patients for carbamazepine and 90.9% of patients for oxcarbazepine
(Di Stefano et al., 2021; Gambeta et al., 2020)), with drowsiness and
dizziness being the main side effects. They are voltage-gated sodium
channel (Nav) blockers and have been shown to inhibit spontaneous
ectopic activity induced by nerve injuries (Burchiel, 1988; Chapman
et al., 1998). This inhibition could depend of Nav1.1, selectively up-
regulated in trigeminal nerves but not somatic nerves, which could
explain their greater efficacy in treating trigeminal neuropathic pain
compared to other conditions (Pineda-Farias et al., 2021). Besides
trigeminal pain, clinical studies demonstrated analgesic effect of ox-
carbazepine against diabetic neuropathy, neuropathic pain induced
by radiculopathy (pinching of a nerve root in the spinal cord) and
mixed neuropathies (Zhou et al., 2017). However, the use of carba-
mazepine to treat other types of neuropathic pain than trigeminal
neuralgia has not yet been demonstrated (Wiffen et al., 2014).
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Table 3
Non exhaustive list of new pre-clinical targets for the treatment of neuro-
pathic pain.

Drug Pharmacology Animal
model(s)
used

Species

New pre-clinical drugs
Sodium
channels
blockers

Nav1.7 Narirutin Flavonoid
active
constituent

SNI Rat

VY-NAV01 AAV Nerve injury
Oxaliplatin

Rodents
Primates

Nav1.7-CRS Not
provided

Not
provided

Nav1.8 Dexpramipexole Benzothiazole-
like compound

CCI
Oxaliplatin
STZ-Induced
Diabetic
neuropathic
pain

Mice

Na+/K + -ATPase
modulators

FXYD2-LASO-
Gapmer

AAV SNL Rat

TRPM8 modulators IGM5 TRPM8 agonist CCI Mice
IGM-18 TRPM8

antagonist
TRPA1 modulators HC-030031 TRPA1

antagonist
Oxaliplatin Rat

P2XRs blockers Dexmedetomidine α2 adrenergic
receptor
agonist with
P2X7
inhibition
properties

CCI Rat

IgG#191-
Bbbt0626

Anti-P2X4
monoclonal
antibody

PSNL Mice

NP-1815-PX P2X4
antagonist

Postherpetic
neuralgia

Mice

RTKs modulators BT44 Ret agonist SNL
STZ-Induced
Diabetic
neuropathic
pain

Rat

Democlocycline Tetracyclines
inhibiting the
EphB1 receptor

Tissue injury
by formalin

Mice
Chlortetracycline
Minocycline
BDT001 FLT3 negative

allosteric
modulator

CCI
SNL
SNI

Mice

NOR modulators Ro64–6198 Selective NOR
agonist

CCI Rat

BU08028 Partial agonist
of NOR and
MOR

CCI Mice
SR16435

Abbreviations: Chronic Constriction Injury of the sciatic nerve (CCI); FMS-Like
Receptor Tyrosine Kinase 3 (FLT3); μ-Opioid Peptide receptor (MOR); Noci-
ceptin Opioid Receptor (NOR); Purinergic receptors (P2XRs); Receptors Tyro-
sine Kinase (RTKs); Spared Nerve Injury; Spinal Nerve Ligation (SNL); Sodium
potassium pump (Na+/K+-ATPase); Streptozotocin (STZ); The Partial Sciatic
Nerve Ligation (PSNL); Transient Receptor Potential Ankyrin 1 (TRPA1); Tran-
sient Receptor Potential Melastatin-8 (TRPM8); Voltage gated sodium channels
(Nav).

2.1.2. Antidepressants
Along with anticonvulsants, antidepressants -and especially the Tri-

cyclic Antidepressants (TCAs) and the selective Serotonin-
Noradrenaline Reuptake Inhibitors (SNRIs)- are the most prescribed
treatments against neuropathic pain (for review see (Kremer et al.,
2016)). For TCAs, the Number-Needed-To-Treat (NNTs) is 3.6 to
achieve at least moderate pain relief compared to placebo, the Number-
Needed-To-Harm (NNH) for major adverse effects leading to with-
drawal is 28 and for minor adverse effects (sedation, dizziness, dry
mouth, constipation, urinary retention and headaches) is 6 (Saarto &
Wiffen, 2007). SNRIs have a NNT of 6.4 for 50% pain relief as primary

endpoint, and NNH (sedation or insomnia, headache, and/or decreased
appetite or libido) of 11.8 (Finnerup et al., 2015). The effect of antide-
pressants on neuropathic pain is independent of the patient's emotional
state and involves mechanisms different from their antidepressant ef-
fect (Perahia et al., 2006). Indeed, lower therapeutic doses are suffi-
cient to treat neuropathic pain than their use in major depressive disor-
ders, and with a shorter duration of action (Onghena & Van
Houdenhove, 1992). Among TCAs, amitriptyline (10–150 mg/day, at
bedtime) is the most prescribed to treat postherpetic neuralgia, diabetic
polyneuropathic pain and central neuropathic pain (Saarto & Wiffen,
2007). Among SNRIs, duloxetine (60–120 mg/day) and venlafaxine
(120–255 mg/day) are mainly used for diabetic polyneuropathy and
recommended by the European Federation of Neurological Societies
(EFNS) and NeuPSIG as first line treatment for neuropathic pain. In ad-
dition, duloxetine is the only drug approved by the FDA and the Euro-
pean Medicines Agency (EMEA) for painful diabetic polyneuropathy.
Since both TCAs and SNRIs inhibit the reuptake of the noradrenalin and
serotonin, most of the preclinical and clinical studies have focused on
these two systems to understand their mechanisms of action in neuro-
pathic pain. While several studies showed that the antinociceptive ef-
fect of chronic antidepressant administration is mediated by both nora-
drenergic and serotonergic systems, other studies suggest that the nora-
drenergic system is the primary target of their effects on neuropathic
pain. Indeed,most preclinical and clinical studies showed that Selective
Serotonin Reuptake Inhibitors (SSRIs) are ineffective or poorly effective
in the treatment of neuropathic pain when administered alone (Attal et
al., 2010; Otto et al., 2008). Concerning noradrenergic system,
supraspinal structures, and in particular the locus coeruleus activating
noradrenergic descending pathway, spinal cord and peripheral sites in-
cluding dorsal root ganglia, are involved in the mechanisms of action of
antidepressants (Obata, 2017). Besides monoamine component, com-
plex interactions with ion channels, and especially Nav, in peripheral
neurons have also been reported with TCAs (Cardoso et al., 2022).
Since the effect of chronic antidepressants can be blocked by opioid an-
tagonists such as naloxone and are lost in δ-Opioid Receptor (DOR)-
deficient mice, the involvement of the opioid system in the effect of the
antidepressants on neuropathic pain has been suggested. Interestingly,
the adrenergic and opioidergic receptors recruited for the antiallodynic
effect of antidepressants can differ between acute and chronic adminis-
tration. Indeed, it has been shown that two distinct mechanisms exist
by which antidepressants relieve neuropathic allodynia: one is ob-
served after acute administration requiring central nervous system, de-
scending noradrenergic inhibitory controls and α2A-Adrenoceptors
(α2A-Ars), as well as the μ-Opioid Peptide receptor (MOR) and DOR.
The second one is delayed, peripheral and requires noradrenaline from
peripheral sympathetic endings and β2-Adrenoceptors (β2-Ars), as well
as DOR from small peptidergic sensory neurons (Ceredig et al., 2018;
Kremer et al., 2020, 2018).

Finally, antidepressants could also regulate the activation of mi-
croglial cells and proinflammatory actors in the spinal cord, involved in
the maintenance of neuropathic pain. For example, it has been demon-
strated in a rat model of diabetic neuropathic pain that duloxetine and
atomoxetine, another SNRI, are able to reduce the microglial activation
and the level of proinflammatory cytokines Tumor Necrosis Factor α
(TNF-α) and Interleukin-1β (IL-1β) in the spinal cord, through the inhi-
bition of the p-p38 and p-JNK pathways (Zhang et al., 2018). Another
study showed that recruitment of noradrenaline in the peripheral ner-
vous system leads to the stimulation of β2-Ars in the DRG and a de-
crease in the level of the proinflammatory cytokines TNF-α (Bohren et
al., 2013).

2.2. Second line treatments

Second line treatments include topical agents such as lidocaine and
capsaicin, as well as tramadol.
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Fig. 1. Possible mechanisms of action of new preclinical and clinical molecules against neuropathic pain.
New pharmacological molecules target in majority receptors and ion channels localized in the synapse between primary sensory neurons and spinal interneu-
rons or projecting neurons, by activating inhibitory GPCRs (MOR, NOR, CB1R, CB2R), or inhibiting pronociceptive actors (P2XRs, ion channels, NMDARs,
RTKs).Abbreviations: Angiotensin II Type 2 Receptors (AT2Rs); Adenosine Trisphosphate (ATP); Brain-Derived Neurotrophic Factor (BDNF); Cannabinoid Re-
ceptor type 1 (CB1R); Cannabinoid Receptor type 2 (CB2R); Colony-Stimulating Factor 1 Receptor (CSF1-R); FMS-Like Receptor Tyrosine Kinase 3 (FLT3); μ-
Opioid Receptor (MOR); N-Methyl-d-Aspartate; Receptor (NMDAR); Nociceptin Opioid Receptor (NOR); Purinergic receptors (P2XRs); Sodium potassium pump
(Na+/K+-ATPase); Transient Receptor Potential Ankyrin 1 (TRPA1); Transient Receptor Potential Melastatin-8 (TRPM8); Tropomyosin receptor kinase (Trk);
Voltage gated sodium channels (Nav); Voltage-Gated Calcium Channels (VGCCs).

Fig. 2. Alternative non-pharmacological treatments for neuropathic pain and their possible mechanisms.
Abbreviations: γ-Aminobutyric Acid (GABA); Long-Term Depression (LTD); Long-Term Potentiation (LTP); μ-Opioid Peptide receptor (MOR); N-Methyl-d-Aspartate
Receptor (NMDAR).

Lidocaine is an amino amide used as local anesthetic, applied to the
skin as 5% patch, cream, gel or 8% spray to treat neuropathic pain. For-
mulations of 5% patch corresponding to 700 mg of lidocaine have been
developed since the 1990s, originally to treat postherpetic neuralgia

(Binder et al., 2009). In addition to this type of neuropathic pain, mod-
erate effects have been observed against diabetic neuropathic pain,
carpal tunnel syndrome and nerve injuries induced by surgery (Baron et
al., 2009; Nalamachu et al., 2006; Voute et al., 2021). Pain relief (typi-
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cally at least 50% reduction in pain intensity) is modest, generally 10 to
25% more than placebo and with NNT of 4–10. A maximum of 3
patches can be applied simultaneously each day for 12 h. Due to its lo-
cal application, lidocaine patches have very few side effects, including
itching and erythema at the application site.More recently, the efficacy
of intravenous lidocaine infusions has been studied against spinal cord
injury, peripheral nerve injury, diabetic polyneuropathy, or posther-
petic neuralgia. However, the results remain inconclusive as there is
considerable heterogeneity and variation between studies, or between
patients within each study (Lee et al., 2022). It has been demonstrated
in xenopus oocytes expressing Nav1.7 or Nav1.8, that lidocaine can
suppress ectopic discharges in injured peripheral nerves by inactivating
Nav1.7- or Nav1.8- dependent Na + currents (Chevrier et al., 2004).
Moreover, lidocaine can induce a frequency-dependent blockade,
meaning that the higher the frequency of action potential firing (as it is
the case during neuropathic pain), the greater the efficacy of lidocaine.
In addition to Na + channels, lidocaine is also able to block the Volt-
age-Gated Potassium Channels (VGPCs), Voltage-Gated Calcium Chan-
nels (VGCCs) and modulate different G Protein-coupled Receptors
(GPCRs), including acetylcholine, glutamate, opioid, or serotonin re-
ceptors (Hermanns et al., 2019; Lirk et al., 2018; Tanelian & Maclver,
1991).

Another second-line treatment is capsaicin, a member of the vanil-
loid receptors family, that binds to the Transient Receptor Potential
Vanilloid member 1 (TRPV1) expressed in peripheral sensory neurons.
Prolonged activation of TRPV1 by capsaicin induces increased perme-
ability of the receptor to calcium, followed by an increase in intracellu-
lar calcium in peripheral neurons. As a result of the calcium influx, cal-
cium-dependent enzymes such as the calcineurin are then activated,
leading to the dephosphorylation and desensitization of TRPV1. In ad-
dition to TRPV1, the High-Voltage-Activated Calcium Channel
(HVACC) is also at the origin of the analgesic effects of capsaicin (Arora
et al., 2021; Fattori et al., 2016; Holzer, 1991). At high doses, capsaicin
can induce mitochondrial dysfunction leading to neuronal degenera-
tion that could participate in impaired nociceptors function (Arora et
al., 2021; Chiang et al., 2015). Various formulations have been devel-
oped for the local administration of capsaicin. Low doses of capsaicin
gels (0.025%), creams (0.075%) or oil (0.075%) have been shown to be
effective against diabetic and non-diabetic polyneuropathies, HIV-
induced neuropathy or postherpetic neuralgia when treated for two to
three months (Derry & Moore, 2012; Watson et al., 1993). For higher
doses, conflicting results have been reported depending on the dose
used, but a single application of 8% capsaicin patches showed an anal-
gesic effect for up to 12 weeks after application, especially when used
against diabetic neuropathy (Backonja et al., 2008; Vinik et al., 2016).
Similar to lidocaine, capsaicin has very few side effects due to its local
application which mainly consist of skin reaction such as itching, red-
ness or pain at the time of the application. When 8% capsaicin patches
are used, a local anesthetic is applied beforehand to avoid an intense
burning sensation after application (Simpson et al., 2010).

Finally, tramadol (100–400 mg/day) and tapentadol (50–600 mg/
day) are also used as second line treatment against neuropathic pain.
They are weak opioid agonists with low affinity only for MOR (Hennies
et al., 1988). However, the activation of opioid receptors can partially
explain analgesic effect of tramadol and tapendol since blocking the
opioid system cannot fully block the effects of tramadol (Ide et al.,
2006). Indeed, tramadol and tapentadol also inhibit the reuptake of
serotonin and noradrenaline both involved in inhibitory descending
pathway of pain (Garrido et al., 2000). With regard to tramadol, it has
been showed that its main metabolite, M1 O-desmethyltramadol, more
potent than the parent drug for producing analgesia, has better affinity
for MOR, and is therefore considered as the main actor in the analgesic
effects of tramadol (Gong et al., 2014). These analgesic effects of M1
are largely abolished in MOR knock-out mice, suggesting that the effect
of tramadol on MOR are dependent on M1 (Ide et al., 2006). Even

though they share similar mechanisms of action and display moderate
efficacy against diabetic or non-diabetic peripheral neuropathy (Bates
et al., 2019), tapentadol has been shown to be two to three times more
potent than tramadol (Mu et al., 2017). However, both have multiple
side effects limiting their use, including nausea, vomiting, constipation,
dizziness, somnolence, and a risk of abuse, although this risk is present
to a lesser extent than with strong opioids.

2.3. Third line treatments

Due to the opioid crisis currently occurring especially in North
America, strong opioids are only used as third-line treatment when
first- and second-line treatments are inefficient for neuropathic pain.
While the efficacy of morphine (10–120 mg/day), methadone
(10–80 mg/day) and oxycodone (10–120 mg/day) has been clearly
demonstrated in neuropathic pain, especially in postherpetic neuralgia
or peripheral neuropathic pain (Sommer et al., 2020), results are con-
tradictory for buprenorphine (0.2–0.6 mg, two to three times a day) or
fentanyl (one day patch, 12.5-50 μg/h) (Derry et al., 2016;Wiffen et al.,
2015). The effective dose of these different opioids is generally higher
than their doses used in acute or non-neuropathic chronic pain. In addi-
tion to the classical side effects already described for tramadol, strong
opioids can induce respiratory depression, and more importantly, a
high risk of substance abuse and overdose mortality, which are the
main reason of their use as a third choice and limitation of their long-
term use (Benyamin et al., 2008). Clinically used opioids bind to MOR
and, to a lesser extent, to the DOR and the κ-Opioid Receptor (KOR).
These receptors, expressed throughout the somatosensory system, are
coupled to the Gi/o protein. They inhibit the adenylyl cyclase pathway,
activate G protein-coupled Inwardly-Rectifying Potassium channels
(GIRKs), and block the VGCCs which in turn lead to neuronal inhibition
(Corder et al., 2018).

BoNT/A, a neurotoxic protein, is also used as a third-line treatment
against neuropathic pain when patients are resistant to other treat-
ments. Single or repeated subcutaneous administration of BoNT/A is
used to treat postherpetic neuralgia, diabetic neuropathy, trigeminal
neuralgia, and intractable neuropathic pain such as poststroke pain and
spinal cord injury (Park & Park, 2017). Apart from pain at the injection
side, BoNT/A induces no side effects. BoNT/A inhibits acetylcholine re-
lease at neuromuscular junctions, causing muscular paralysis at high
doses and a muscle relaxant effect at low doses that is used to treat au-
tonomic and movement disorders (Saffarian & Fooladi, 2018). For a
long time, the analgesic effect of BoNT/A was considered to be due to
its muscle relaxation effect but recent studies using BoNT/A animal
models of neuropathic pain demonstrated that it has an analgesic effect
independent of muscle relaxation. Indeed, BoNT/A has been shown to
be able to cleave Synaptosome-associated Protein, 25 kDa (SNAP-25) in
peripheral sensory neurons, thereby blocking the formation of a func-
tional SNARE complex and inhibiting the release of pronociceptive neu-
rotransmitters and neuropeptides such as substance P, glutamate and
Calcitonin Gene Related Protein (CGRP) from nerve endings and DRG
(Durham et al., 2004; Pantano & Montecucco, 2014; Rapp et al., 2006).
Furthermore, intraplantar injection of BoNT/A in a rat model of nerve
injury reduced microglia activation and release of the pro-
inflammatory cytokines IL-1β and IL-18, and increased the release of
anti-nociceptive cytokines (IL-10 and IL-RA) (Zychowska et al., 2016).
Finally, it has been shown in a rat model of trigeminal neuropathic pain
that BoNT/A is able to inhibit the upregulation of Nav1.7, known to be
involved in neuropathic pain mechanisms (Black et al., 2008; Hameed,
2019), which could participate in its analgesic effects (Yang, Shan, et
al., 2022).
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2.4. New pharmacological strategies

Treating neuropathic pain remains a challenge since 30–50% of pa-
tients are resistant to current treatment strategies, and side effects
threaten patients' compliance. There is thus an urgent need to identify
new mechanisms and thus targets to refuel the pharmaceutical pipeline
with more efficient and better tolerated drugs. In the next section, we
will focus on preclinical targets as well as drugs currently in clinical tri-
als (Tables 2 and 3; Fig. 1). Finally, we will present alternative pharma-
cological treatments such as dietary supplements or traditional medici-
nal plants that could potentially help to complement neuropathic pain
treatment.

2.4.1. New pharmacological target
2.4.1.1. Ion channels. A growing number of preclinical and clinical
studies have been focusing on ion channels whose involvement in
the development and maintenance of neuropathic pain has been
demonstrated. It is well known that in neuropathic pain, the expres-
sion and function of Nav channels contributing to the generation
and propagation of action potentials are increased in peripheral sen-
sory neurons, leading to increased excitability (Laedermann et al.,
2013; Li et al., 2018). In addition, dysregulation of sodium channels,
especially the Nav1.7, Nav1.8 and Nav1.9 subtypes, plays an impor-
tant role in the central nervous system sensitization responsible for
the maintenance of neuropathic pain. Genetic studies revealed that
mutation of Nav1.7 in humans is responsible for the congenital in-
sensitivity to pain. Likewise, inactivation of Nav1.7 in mice results
in a global insensitivity to acute or chronic pain, as well as to me-
chanical, thermal, or chemical stimuli (Gingras et al., 2014). At the
mechanistic level, the endogenous opioid system, in particular
enkephalin, has been shown to be upregulated in Nav1.7 deficient
mice (Minett et al., 2015). Several Nav1.7-specific blockers have al-
ready been tested in various clinical trials, such as vixotrigine
(phase II), PF-05089771 (phase II), BIIB095 (phase I), or GDC-0276
(Phase I) (for a review, see (Alsaloum et al., 2020)). Unfortunately,
so far, none of them succeeded to show pain relief in trigeminal and
postherpetic neuralgia, even though they significantly improve the
proportion of responders (50% pain relief) as secondary outcomes
without demonstrating any side effects (Price et al., 2017). Accord-
ingly, Nav1.7 still remains an interesting target and new strategies,
such as gene therapy with an Adeno-Associated Virus (AAV) target-
ing Nav1.7 (VY-NAV01) or Nav1.7-targeting monoclonal antibodies,
are in preclinical development. Moreover, targeting a specific
Nav1.7 domain through an AAV (Nav1.7-CRS) recently showed good
results to downregulate Nav1.7 in rodents and primates, and pre-
vented the establishment of neuropathic pain in preclinical model of
nerve injury and chemotherapy-induced neuropathic pain, without
altering physiological sensations (Gomez et al., 2023). Very recently,
a preclinical study showed that a new natural compound isolated
from the Citrus unshiu, Narirutin, has antinociceptive effects in neu-
ropathic pain in a model of spare nerve injury in rats, which is me-
diated by the blocking of Nav1.7 (Yang, Shan, et al., 2022; Yang,
Zhang, et al., 2022). Concerning the Nav1.8, new compounds have
been identified to inhibit it specifically for the treatment of neuro-
pathic pain. In particular, Dexpramipexole, a benzothiazole-like com-
pound, was shown to induce analgesia in a mouse model of sciatic
nerve constriction, chemotherapy-induced and diabetic neuropathic
pain, without altering physiological functions of the sodium channel.
A clinical study strengthened these results by reporting analgesic ef-
fect of a selective Nav1.8 inhibitor, VX 150 (Phase I), in neuropathic
pain (Hijma et al., 2021).

Another possible preclinical target is the Transient Receptor Poten-
tial Melastatin-8 (TRPM8), a non-selective cation channel activated by
cold (McKemy et al., 2002). However, its involvement in neuropathic
pain is ambiguous as both activation and inhibition of TRPM8 by local

application of a high-dose of an agonist (IGM-5) and systemic or local
application of an antagonist (IGM-18) respectively, induced analgesic
effect in neuropathic condition (De Caro et al., 2019, 2018; Proudfoot
et al., 2006). These contrary effects could be explained by extracellular
Ca2+-dependent desensitization observed after enhanced activation,
leading to receptor inactivation, similarly to antagonist-induced effects
(Rohács et al., 2005).

Transient Receptor Potential Ankyrin 1 (TRPA1) is another non-
selective cation channel, activated by chemical irritants, but also by
noxious thermal and mechanic stimuli (Kwan et al., 2006; Laursen et
al., 2014; Wang et al., 2019). In the sciatic nerve ligation (SNL) model
of neuropathic pain, higher expression of TRPA1 was observed (Katsura
et al., 2006), while various preclinical studies have shown that inhibi-
tion of TRPA1 by antisense oligodeoxynucleotide, antagonists (HC-
030031), or by TRPA1 knock out mice could alleviate neuropathic pain
symptoms, and in particular cold and mechanical hyperalgesia, without
altering normal sensitivity in models of chemotherapy-induced neuro-
pathic pain and SNL (Bautista et al., 2006; Kwan et al., 2006; Nassini et
al., 2011; Obata, 2005). A TRP1A antagonist (GRC 17356) also showed
promising results in a clinical trial (phase II) to treat diabetic peripheral
neuropathy (Koivisto et al., 2022).

Over the past decade, a large number of studies have shown the in-
volvement of purinergic receptors (P2XRs) in the development of neu-
ropathic pain, and therapeutic effect of purinergic receptor blockade.
P2XRs are Adenosine Trisphosphate (ATP)-dependent ion channel re-
ceptors expressed through the entire nervous system, in particular in
the spinal cord and in the peripheral neurons. Various studies have
demonstrated that activation of P2X2R, P2X3R and heteromeric P2X2/
3R mediating the ATP-response in the DRGs participates in neuropathic
pain mechanisms, especially by increasing intracellular Ca2+ (Chen et
al., 2005; Cockayne et al., 2000; Rae et al., 1998). CGRP release has
been shown to sensitize P2X3R in cultured sensory neurons, through in-
creased phosphorylation of cyclic Adenosine Monophosphate (cAMP)-
Response Element-Binding protein (CREB). This increase of CREB phos-
phorylation results in an increase in P2X3R transcription that could
participate in P2X3R-mediated nerve sensitization (Simonetti et al.,
2008). P2X4R and P2X7R, expressed in spinal cord microglial cells, are
also involved in neuropathic pain mechanisms by regulating microglia
activation, and Brain-Derived Neurotrophic Factor (BDNF) release in
the spinal cord. P2X3Rs and P2X4R antagonists showed antinociceptive
effects in different animal models of neuropathic pain (Hasegawa et al.,
2009; Jacobson et al., 2020; Sharp et al., 2006; Tsuda et al., 2003;
Ulmann et al., 2008). It has also recently been shown that antinocicep-
tive effect of dexmedetomidine, an adrenergic receptor agonist, in a rat
model of nerve constriction is mediated by the inhibition of P2X7 (Lin
et al., 2018). In addition to preclinical studies, diverse P2X receptor an-
tagonists have been or are being tested clinically against various neuro-
pathic pain conditions. For example, Gefapixant (AF-219), a P2X3 re-
ceptor antagonist, has currently been tested for endometriosis-related
pain, and P2X4 receptor antagonist such as NP-1815-PX or NC-2600
have been under clinical trials for neuropathic pain. Finally, like Nav
receptors, antibodies directed against P2X receptors, including
IgG#191-Bbbt0626 for P2X4 receptor that showed antinociceptive ef-
fects against mechanical hypersensitivity in a mouse model of nerve in-
jury are under clinical investigation (Williams et al., 2019).

2.4.1.2. Sodium potassium pump. The sodium potassium pump
(Na+/K+-ATPase) is involved in maintaining the resting membrane
potential through the exchange of 3 sodium ions outside the cell and
2 potassium ions inside the cells (Hamada et al., 2003). Reduced
Na+/K+-ATPase activity in small diameter sensory neurons has been
suggested to be involved in changes in neuronal excitability in pa-
tients with diabetic neuropathy (Krishnan & Kiernan, 2005), and ge-
netic deletion of a Na+/K+-ATPase activator, the Follistatin-like 1
(FSTL1), expressed in the DRGs of small diameter sensory neurons in
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mice, was sufficient to induce hypersensitivity (Li et al., 2011). Re-
cently, it has been shown that blocking Fxyd2, a Na+/K+-ATPase
modulator also expressed specifically in small diameter peripheral
sensory neurons, prevents the induction of neuropathic pain in rat
model of nerve injury, and a FXYD2 antisense oligonucleotide
(FXYD2-LASO-Gapmer) has been proposed as a potential therapeutic
for patients (Derre et al., 2023; Ventéo et al., 2016).

2.4.1.3. Receptors tyrosine kinase (RTKs). Initially known for their role
in cellular differentiation, proliferation, and migration, RTKs and their
ligands are also present in peripheral sensory neurons and spinal cord,
and play an important role in neuropathic pain. Depending on their
structures, ligands and functions, RTKs are divided in 20 classes. The
involvement of several RTKs has been demonstrated in neuropathic
pain, which make them promising preclinical and clinical targets
(Ségaliny et al., 2015).

In class III, all receptors are known for their role in different types of
chronic pain, and among them the Colony-Stimulating Factor 1 Recep-
tor (CSF1-R) and FMS-Like Receptor Tyrosine Kinase 3 (FLT3) have
been strongly associated with neuropathic pain. CSF1-R is expressed in
spinal microglia and participates in microglial activation through its
ligand CSF1, released by peripheral sensory neurons (Guan et al., 2016;
Lim et al., 2017; Okubo et al., 2016; Yang et al., 2018; Yu et al., 2021).
Inhibition of CSF1R by a specific antagonist had an antinociceptive ef-
fect against mechanical hypersensitivity in a rat model of nerve injury
when administrated only at the early stage of neuropathic pain, sug-
gesting an important role of CSF1R in the initiation of neuropathic pain
(Yu et al., 2020). FLT3 has also recently been shown to contribute to the
maintenance of neuropathic pain, and novel negative allosteric modu-
lator (BDT001) targeting FLT3 has antiallodynic effects in different
mice models of nerve injury such as spared nerve injury, the SNL, or
chronic constriction injury of the sciatic nerve (Rivat et al., 2018). In
order to develop new compounds with similar properties but better se-
lectivity than BDT001, screening studies are in progress (Hany et al.,
2022).

Class VII RTKs, composed of the Tropomyosin receptor kinase (Trk)
TrkA, TrkB and TrkC, and their respective ligands Nerve Growth Factor
(NGF), BDNF and Neurotrophin 3 (NT3) have been associated with neu-
ropathic pain. Indeed, TrkB and BDNF are well described for their in-
volvement in the mechanisms of spinal plasticity and pain sensitization
leading to neuropathic pain. Higher levels of BDNF have been detected
in the spinal cord, in a rat model of nerve injury (Miletic & Miletic,
2002) while BDNF heterozygous (+/−) knockout mice do not develop
neuropathic pain (Boakye et al., 2021; Yajima et al., 2005). Besides,
monoclonal antibodies such as the tanezumab targeting NGF are under
development, as blocking these ligands showed a beneficial effect
against neuropathic pain (Bannwarth & Kostine, 2017; Watson et al.,
2008).

Three tetracyclines (demeclocycline, chlortetracycline, and minocy-
cline) inhibiting the EphB1 receptor belonging to the class IX of RTKs in
the DRG, spinal cord and brain of mice have also been proposed as
treatment against neuropathic pain. However, further studies in
chronic neuropathic pain models are needed, as preclinical studies have
so far focused mainly on acute pain associated with nerve injuries
(Ahmed et al., 2021).

Finally, Ret receptor and its ligands, the Glial cell line-Derived Neu-
rotrophic Factor (GDNF) Family Ligands (GFLs) that compose the class
XIV of RTKs, could also be of interest. A preclinical study showed that
BT44, an agonist of Ret receptor, alleviates mechanical hypersensitivity
in a rat model of diabetic neuropathic pain, and could be a promising
therapeutic compound (Giraud et al., 2021; Mantyh et al., 2011;
Viisanen et al., 2020).

2.4.1.4. Glutamatergic receptors. N-Methyl-d-Aspartate Receptor (NM-
DAR), a member of glutamate receptor family, is an ion-channel recep-

tor, present at most excitatory synapses. The alterations of its activity
are strongly involved in the dysregulation of synaptic transmission and
maladaptive plasticity occurring in the spinal cord (Zhou et al., 2011).
Since its critical role in the pain sensitization is well known, different
antagonists targeting NMDAR such as ketamine, amantadine and me-
mantine have been clinically tested against neuropathic pain, and
promising effects have been reported in diabetic neuropathic pain and
nerve injuries, but not in postherpetic neuralgia (Huge et al., 2010;
Nelson et al., 1997; Zhou et al., 2011). It has also been suggested that
part of the efficacy of methadone compared with other opioids could
be explained by its inhibitory effect on NMDAR (Aiyer et al., 2018;
Schembri, 2019). A recent meta-analysis of randomized controlled tri-
als involving ketamine showed that intravenous injection induced a
significant reduction in pain intensity but also a significant increase in
discomfort, and psychedelic effects one week after the end of treatment
which persisted up to 30 days (Guimarães Pereira et al., 2022). How-
ever, there is no clinical evidence of its efficacy in any other mode of
administration. Preclinical studies dissecting the mechanism action of
ketamine in neuropathic pain revealed that a single dose induces a pro-
longed suppression of cortical hyperactivity associated with a reduc-
tion in aversive response to noxious stimuli in rodent models (Zhou et
al., 2018). Interestingly, it has been shown, using neuropathic rodent
models, that the antiallodynic effect of ketamine is transient while its
effect on the emotional component of pain persists up to 72 h (Humo et
al., 2020). Molecular studies deciphering its action demonstrated that
ketamine recruits Mitogen-Activated Protein Kinase/ Extracellular sig-
nal-Regulated Kinase (MAPK/ERK) pathway by altering levels of Mito-
gen-Activated Protein Kinase Phosphatase 1 (MKP-1), pERK, pCREB
and BDNF in the anterior cingulate cortex (Humo et al., 2020; Zhou et
al., 2018). While growing number of studies focus on the action of ket-
amine in neuropathic pain, only a few studies showed the efficacy of
methadone, amantadine and memantine in neuropathic pain.

2.4.1.5. Opioid receptors. The Nociceptin Opioid Receptor (NOR), also
known as the Nociceptin/Orphanin FQ (N/OFQ) receptor, a member of
the opioid GPCR subfamily, is also a promising therapeutic target to
treat neuropathic pain. Indeed, its activation through intrathecal injec-
tion of its ligand N/OFQ or by agonists such as Ro64–6198, has an-
tinociceptive effects in rat models of nerve injury (Obara et al., 2005;
Yamamoto et al., 2000). In addition, its co-activation with MOR by
partial agonists such as BU08028 or SR16435 elicits better analgesic
effects with less side effects than MOR agonists alone in rodent models
of nerve injury (Chao et al., 2020; Kiguchi et al., 2022; Sukhtankar et
al., 2013). Clinical studies using Cebrenopadol, a mixed agonist of all
opioid receptors with the highest affinity for NOR and then MOR (and
lower affinity for DOR and KOR), seem to confirm this idea. Indeed,
clinical trials have demonstrated that Cebrenopadol had analgesic ef-
fects when administered at lower doses than morphine (200–1600 μg
once a day) against cancer-related neuropathic pain and diabetic neu-
ropathy, with very few reports of withdrawal symptoms at the end of
the treatment (Christoph et al., 2017; Eerdekens et al., 2019; Göhler et
al., 2019). These studies thus confirm what has been observed in pre-
clinical studies, in which intraperitoneal or intravenous administration
had analgesic effects in mouse model of diabetic neuropathy and rat
model of nerve injury, with less tolerance than morphine (Linz et al.,
2014).

2.4.1.6. Angiotensin II type 2 receptors. Angiotensin II Type 2 Receptors
(AT2Rs) are GPCRs coupled with Gi proteins that bind to the an-
giotensin II. Their activation leads to activation of the delayed rectifier
K+ channel involved in membrane repolarization after a depolariza-
tion and production of Nitric Oxide (NO) which blocks phosphoryla-
tion and activation of Erk1/2 (Kaschina et al., 2018; Pulakat &
Sumners, 2020). AT2Rs are expressed in small-diameter DRG neurons
and partially co-localized with TRPV1 and TRPA1 receptors that are
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important potential therapeutic target for neuropathic pain as men-
tioned before (Anand et al., 2013; Pulakat & Sumners, 2020). Pronoci-
ceptive actors such as the substance P, TNFα or Prostaglandin E2
(PGE2) have shown to activate AT2Rs, and increase the level of its lig-and, angiotensin II, in a rat model of nerve injury (Smith, Woodruff, et
al., 2013; Smith, Wyse, & Edwards, 2013). In addition, preclinical
studies have demonstrated the analgesic effects of AT2Rs antagonists
in mice and rat models of nerve injury, or rat models of HIV-induced
neuropathic pain (Balogh et al., 2021; Khan et al., 2017; Shepherd et
al., 2018; Shepherd & Mohapatra, 2019). This analgesic effect seems to
be mediated by the p38 MAPK and p44/p42 MAPK pathways. A clini-
cal study also supports these findings showing an analgesic effect of an
AT2R antagonist, EMA401, in postherpetic neuralgia (Rice et al.,
2014). However, other results from preclinical studies also showed
beneficial results of AT2Rs agonists. These conflicting results could be
explained by the different pathways regulated by AT2Rs, certain being
pronociceptive and others antinociceptive (Pulakat & Sumners, 2020).

2.4.2. Pharmacological alternatives
2.4.2.1. Dietary supplements. Dietary modifications have shown en-
couraging results in reducing neuropathic pain. Adhering recom-
mended daily intakes of fruits, vegetables, and fibers has shown to
have anti-neuroinflammatory, neuroprotective and antioxidant effects
that help to treat neuropathic pain symptoms. Mediterranean diets,
based on olive or seed oils and vegetables, can then be recommended
to the patient. As a complement, restriction of other types of food, such
as gluten- and sugar-based diet foods, also seems to help reduce neu-
roinflammation (Dragan et al., 2020; Kaushik et al., 2020).

The use of supplements of different fatty acids has also shown to be
effective in alleviating neuropathic pain symptoms. Preclinical studies
showed that α-Lipoic Acid (ALA, also called thioctic acid), an antioxi-
dant with neuroprotective effect, reduces symptoms in rodent models of
neuropathic pain by inhibiting TRPV1 receptors, apoptosis and oxida-
tive stress (Yazğan et al., 2023). Various clinical studies have also re-
ported a positive effect of ALA on diabetic polyneuropathy, and
chemotherapy-induced neuropathy. Γ-Linolenic Acid (GLA), found in
seed oils, also induced pain relief in diabetic neuropathy in a clinical
study. Supplementation with ω-3 fatty acids reduced the risk of devel-
oping chemotherapy-induced neuropathy by 70% in patients treated
with paclitaxel (Ghoreishi et al., 2012). The neuroprotective effect of ω-
3 fatty acids is due to anti-inflammatory properties of resolvins, lipid
mediators derived from ω-3 fatty acids supplementation. High levels of
resolvins, such as Neuroprotectin D1/Protectin D1 (NPD1/PD1), have
been demonstrated to prevent the sensitization of neuropathic pain in
rat or mice model of nerve injury (Park et al., 2011; Serhan et al., 2015;
Unda et al., 2020; Xu et al., 2013).

Finally, vitamins also play an important role in neuropathic pain, as
deficiencies in thiamine (Vitamin B1), pyridoxine (Vitamin B6), folate
(Vitamin B9), cobalamin (Vitamin B12), or/and Vitamin D have been
observed in patients with neuropathic pain. Aforementioned vitamins
play important role in neuroprotection, metabolism and immunity
(Bilir et al., 2016; Depeint et al., 2006). More specifically, vitamin B1
(600mg/day) supplementation showed beneficial effects on diabetic
neuropathy, and possibly against alcoholic neuropathy while vitamin
B12 (500 mg 3 times a day) improved some of symptoms associated
with diabetic neuropathy, especially weakness, numbness and fatigue.
Preclinical data have also shown that folate supplementation increases
axonal repair and alleviates neuropathic pain, probably by reducing the
expression of Matrix Metalloprotease 2 (MMP2) which plays a role in
the induction of neuropathic pain, as demonstrated in a rat model of
spinal cord injury (Miranpuri et al., 2017). A cocktail of Vitamins B1,
B6 and B12 also reduced mechanical allodynia in a rat model of dia-
betic neuropathy (Jolivalt et al., 2009), while a combination of Vita-
mins B9 and B12 alleviated symptoms of peripheral neuropathy in a
clinical study (Negrão et al., 2014). Finally, vitamin D replenishment

was shown to be effective in treating diabetic neuropathy in a clinical
trial (Lee, 2008).

2.4.2.2. Medicinal plants. Patients suffering from neuropathic pain seek
for alternative treatment strategies such as medicinal plants due to their
limited side effects.

Extensive research is currently being conducted for the efficacy of
two of Cannabis Sativa's main constituents, A9-Tetrahydrocannabinol
(THC) and Cannabidiol (CBD), to treat neuropathic pain. They act on
the Cannabinoid Receptor type 1 (CB1R) and 2 (CB2R) expressed
mainly in neurons and immune cells, respectively. These GPCRs modu-
late the transmission of nociceptive information at peripheral, spinal,
and supraspinal levels by inhibiting transmitter release at presynaptic
terminals (Azad et al., 2008; Freund et al., 2003; Matsuda et al., 1990;
Romero-Sandoval et al., 2009). Conditional deletion of CB1Rs in the pe-
ripheral neurons or constitutive deletion of CB2R enhanced neuro-
pathic pain symptoms in mouse model of nerve injury-induced neuro-
pathic pain,while constitutive deletion of CB1 also aggravated anxiode-
pressive-like behavior, demonstrating their important role in the mech-
anisms of neuropathic pain (Agarwal et al., 2007; Racz et al., 2008;
Rácz et al., 2015).Mixed agonists of CB1R and CB2R have been studied
in animal models of diabetic neuropathy, neuropathic pain induced by
nerve injury, postherpetic neuralgia, cancer-induced neuropathy or
HIV-induced neuropathy. In virtually all these models, agonists reduced
at least mechanical sensitivity, as well as thermal hypersensitivity for
some of them (for review, see (Maldonado et al., 2016)). Even though
some countries have already approved their use as an effective treat-
ment, clinical trials are still ongoing, with contradictory results in neu-
ropathic pain (Fitzcharles & Eisenberg, 2018). Promising results have
been observed with THC/CBD oromucosal spray (nabiximols, also
called Sativex) against HIV-induced neuropathic pain, chemotherapy-
induced neuropathic pain, and diabetic neuropathy in recent studies,
with no sign of tolerance (Überall, 2020). Phase II clinical trials are on-
going in order to compare THC alone (Dronabinol), CBD alone (Epi-
dolex) or THC/CBD (nabiximols) against diabetic neuropathic pain.
However, other studies have reported that these beneficial effects are
only present in small percentage of patients, for a short period of time,
or that they have important side effects diminishing patient compli-
ance. Different formulations and doses are currently being tested clini-
cally, which will provide further information on the benefits of medical
cannabis to treat neuropathic pain.

Various studies showed the efficacy of curcumin, a spice derived
from turmeric root, in reducing neuropathic pain, probably through its
anti-inflammatory and antioxidant effects (Shishodia, 2005; Zhao et al.,
2012). In preclinical models of chemotherapy-induced, alcoholic or dia-
betic neuropathy, or nerve injuries, curcumin reduced mechanical and
thermal hypersensitivity, had neuroprotective effects (especially
against chemotherapy drugs induced neuronal degeneration), reduced
neuroinflammation, and/or improved nerve conduction velocity
(Zanjani et al., 2014). In clinical studies, supplementation with cur-
cumin-loaded nanocapsules (72% curcumin, 80 mg) improved symp-
toms of diabetic neuropathy (Basu et al., 2021). When co-administered
with Non-Steroidal Anti-Inflammatory Drugs (NSAID) to treat periph-
eral neuropathy, a lower dose of NSAID could be used to achieve the
same analgesic effect.

Saffron, another spice, and its active constituent, crocin, showed
analgesic effects on mechanical and thermal hyperalgesia in preclinical
models of neuropathic pain (Forouzanfar & Hosseinzadeh, 2018).
Again, these effects seem to be due to anti-inflammatory effects, as a de-
crease in several pronociceptive cytokines was detected in the presence
of saffron in a model of nerve injury in rats (Safakhah et al., 2016). In a
clinical trial of chemotherapy-induced peripheral neuropathy, saffron
(30 mg/day, for 8 weeks) considerably decreased symptoms of neuro-
pathic pain,with low toxicity and no adverse side effects (Bozorgi et al.,
2021).
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Finally, several plants used in traditional Chinese, Indian, South-
America, or Middle-Eastern medicine for centuries have also shown
beneficial effects which are currently the subject of further studies. For
example, DA-9801, an extract of the Dioscorea species found in Asia,
had positive effects on models of diabetic neuropathy by improving
nerve conduction velocity and preventing nerve degeneration. Several
extracts from other plants such as Pterodon pubescens tree found in
Brazil, Ocimum Sanctum in India, or Elaeagnus angustifolia used in Iran-
ian medicine, have all showed anti-inflammatory and/or antioxidant
effects that reduced symptoms in preclinical models (Forouzanfar &
Hosseinzadeh, 2018). Several bioactive alkaloids of Chinese herbal
medicine have also been isolated and are promising for developing new
pharmacological drugs (Zhu et al., 2020). In preclinical models of dia-
betic peripheral neuropathy and different types of sciatic nerve injury,
these alkaloids (including bullatine A, lappaconidine, berberine,
koumine, and others) all induced a reduction in mechanical allodynia,
thermal hyperalgesia, and even anxiodepressive-like behavior for some
of them. These effects are suggested to be due to augmentation of
GABAergic receptors activity, anti-inflammatory and antioxidant prop-
erties, downregulation of NMDA receptors and increased dynorphin
production, especially in the DRG and spinal cord (Jiang et al., 2022).
Hypericum perforatum L., also known as St. John's wort, a plant native
from Asia, is also well known for its different properties, including anti-
depressant and anti-inflammatory effects (Barnes et al., 2001; Raso et
al., 2002; Sosa et al., 2007). Preclinical studies in mouse model of HIV-
induced neuropathy, and chemotherapy-induced neuropathy, or rat
model of neuropathic pain induced by nerve injury or chemotherapy-
induced neuropathy, reported antinociceptive effects of St. John's wort,
due to one of its main active component, the hypericin (Galeotti et al.,
2010; Sanna et al., 2016). The action of hypericin has been shown to be
due to an inhibition of the Protein Kinases C (PKC) -γ and -ε, known to
be involved in neuropathic pain mechanisms. Duhuo Jisheng decoction
(DHJSD), another formula widely used in traditional Chinese medicine,
also showed efficacy against neuropathic pain in a preclinical model of
sciatic nerve constriction (Gao et al., 2023). Among the 252 molecular
and cellular targets of DHJSD identified, neuroinflammatory markers in
particular seem to be modulated, including pro-inflammatory cytokines
such as IL-17, and microglia. These studies identifying new active com-
ponents with analgesic effects from traditional plant medicine could
lead to new effective treatments against neuropathic pain.

3. Non-pharmacological and new alternative treatments

Besides the development of new pharmacological targets and drugs,
non-pharmacological treatments have emerged since a few years to
treat neuropathic pain (Fig. 2).

3.1. Neuronal stimulation

Electrostimulations of the nervous system have been expanded to
treat neuropathic pain as alternative treatment approaches based on
different types of stimulation paradigms, such as Spinal Cord Stimula-
tions (SCS), transcranial Direct Current Stimulations (tDCS), repetitive
Transcranial Magnetic Stimulation (rTMS), and Transcutaneous Electri-
cal Nerve Stimulation (TENS). All these different types of neuronal
stimulation elicit promising results against neuropathic pain.

SCS consists of implanting electrodes bound to a pulse generator in
the epidural space of the spinal cord to stimulate neurons of the dorsal
horn (Knotkova et al., 2021). Different parameters have been used in
preclinical and clinical studies, such as conventional stimulations (with
a frequency of 30-80 Hz), low-frequency stimulations (5 Hz), or high-
frequency stimulations (500 Hz-10 kHz). All have shown positive re-
sults against either mechanical allodynia or thermal hyperalgesia
(Moisset et al., 2020). In clinical studies, conventional (85 Hz) or high-
frequency stimulations (10 kHz) for 6 or 12 months elicited significant

pain relief against different types of peripheral neuropathy, diabetic
neuropathy or postherpetic neuralgia. These analgesic effects seem to
be due to a restoration of the gate control with an activation of GABAer-
gic interneurons of the spinal cord, the endogenous opioid system and
the endocannabinoid system, as well as the release of acetylcholine,
and the inhibition of pronociceptive actors such as proinflammatory cy-
tokines, CGRP, substance P, and glutamate (Sato et al., 2013; Stiller et
al., 1995; Sun et al., 2021, 2017). Side effects of this technique include
risks of infection as it is an invasive technique, or a malfunction of the
device.

tDCS is a non-invasive technique consisting of applying at least two
electrodes (one being an anode or a cathode, the other one a reference
electrode) to the scalp, delivering constant low-voltage current to the
brain to modulate the excitability of cortical neurons (Mori et al.,
2010). Classical parameters of tDCS to treat neuropathic pain are an-
odal stimulation at the level of the primary motor cortex with intensity
of 1-2 mA and sessions lasting between 5 and 20 min according to the
study. Incremental pain relief through sessions has been observed in
some studies in patients with neuropathic pain due to spinal cord injury
or stroke (Moisset et al., 2020). However, large variability between the
results from different studies, showing no effect versus 50% efficacy, is
one of the drawbacks of this approach. Underlying mechanisms for the
analgesic effects of tDCS are still under investigation. It has been shown
so far that anodal stimulation activates neurons in the brain while
cathodal stimulation inhibits them,which in turn lead to depolarization
or hyperpolarization of neuronal functions, and facilitates Long-Term
Potentiation (LTP) or Long-Term Depression (LTD) respectively
(Lefaucheur, 2008;Monte-Silva et al., 2013; Souza et al., 2018).Mecha-
nisms of action might then include an interruption of nociceptive inte-
gration through the hyperpolarization of brain structures involved. It
has for example been shown that cathodal stimulation during tDCS is
capable of disrupting tactile sensation several minutes after the end of
the stimulation in healthy patients (Rogalewski et al., 2004). Preclinical
study using tDCS on a mice model of nerve injury demonstrated that
several neurotransmitter systems including the opioidergic, cannabi-
noid, adenosinergic, glutamatergic and GABAergic could be involved in
its analgesic effects (Souza et al., 2018). Another recent preclinical
study completed these studies by showing its reducing effect on neu-
roinflammation and oxidative stress (Akcay et al., 2023). Beside tran-
sient skin reactions such as itching and erythema, tDCS is shown to be
very safe.

rTMS, another non-invasive technique, involves a coil placed on the
skull triggering an electromagnetic field that modules the excitability of
the brain. Various parameters have been tried in diverse studies: (i) low
(<1 Hz) to high (>5 Hz) frequencies, (ii) different intensities (1500 to
3000 pulses at 80 or 90% of the Resting Motor Threshold (RMT)), (iii)
different duration and number of sessions (3 to 10 sessions of 6 to
40 min), (iv) different neuroanatomical locations (M1 cortex, sec-
ondary somatosensory cortex, insular cortex…) and (v) shapes of the
coil (figure-of-8 or H1) (Lefaucheur et al., 2020; Moisset et al., 2020).
Among all these different parameters, high frequency (10 Hz) rTMS at
the primary motor cortex showed the most promising effect for posther-
petic neuralgia, diabetic neuropathy or spinal cord injury, both after
single or multiple sessions of stimulations. On the contrary, it seems
that stimulations of the Dorsolateral Prefrontal Cortex (DLPFC) isn't ef-
ficient, as a clinical study comparing DLPFC and motor cortex stimula-
tions using neuronavigated rTMS to treat peripheral neuropathic pain
observed no difference between DLPFC stimulations and sham stimula-
tions while pain intensity significantly reduced after motor cortex stim-
ulations (Attal et al., 2021). As for almost all brain stimulation meth-
ods, its analgesic property is due to its effect on central modulatory sys-
tem, in particular on the activation of the pain inhibitory descending
pathway, but also through the activation of NMDAR inducing plasticity
in the brain, release of anti-inflammatory cytokines (IL-10) as well as
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dopamine and GABA release (Yang, Shan, et al., 2022; Yang, Zhang, et
al., 2022).

Finally, TENS, consisting of delivering electrical pulses to the sur-
face of the skin, by using electrodes placed near the painful area, is an-
other non-pharmacological approach frequently used in neuropathic
pain. Similar to previous stimulation techniques described here, differ-
ent stimulation parameters such as intensities and frequencies are used
in order to target different subpopulations of sensory neurons. It has
been shown that low intensity stimulations (which are not painful)with
high frequency (>10 Hz) target mechanoreceptive Aβ neurons, while
high intensity stimulations (reaching the pain threshold) with either
low (2-4 Hz) or high (10-200 Hz) frequency stimulate small diameter
nociceptive and thermal sensory neurons, in particular Aδ neurons
(Moisset et al., 2020). Even though some of the studies have been done
in a very small group of patients, different protocols alleviated diabetic
neuropathic pain, chemotherapy-induced neuropathy, postherpetic
neuralgia, and spinal cord injury. In the central nervous system, a re-
cruitment of the inhibitory descending pathway has also been observed,
with the release of endogenous opioids at the PAG and Rostral Ventral
Medulla (RVM), as well as in the spinal cord, as antagonists of the opi-
oid system inhibits TENS analgesia (Sluka et al., 1999, 2005). Other
neurotransmitters are also involved, as blocking the CB1R or the α-2
adrenergic receptor in the peripheral system (de Oliveira et al., 2020;
King et al., 2005; Nam et al., 2001) or GABA, serotoninergic and mus-
carinic receptors in the spinal cord (Maeda et al., 2007; Radhakrishnan
et al., 2003; Radhakrishnan & Sluka, 2003) prevents the analgesic effect
of TENS .

3.2. Exercise

Exercise has proved to be effective to reduce symptoms of different
types of neuropathic pain, especially diabetic neuropathy, peripheral
neuropathy, and chemotherapy-induced neuropathy (Leitzelar &
Koltyn, 2021; Zhang et al., 2021). It has been demonstrated that it has
benefic effects on the peripheral nervous system by preventing neu-
ronal degeneration, increasing neurotrophic factors, and by its antioxi-
dant and anti-inflammatory effects (Luo et al., 2022). In the central ner-
vous system, exercise has also been shown to have anti-inflammatory
and antioxidant effects and to induce neurotransmitters and neuropep-
tides release in the spinal cord (especially β-endorphin, met-
enkephalin) and in the brainstem (serotonin) (Bobinski et al., 2015;
Stagg et al., 2011). However, benefits of exercise depend on different
factors such as sex, age, Body Mass Index (BMI), and fitness status (ac-
tive or sedentary). More precisely, exercise proved more effective for
younger, active, with lower BMI, and/or male patients. For chemother-
apy-induced neuropathy, the type of chemotherapy seems to also be im-
portant, as exercise was more beneficial in case of radiotherapy or
chemotherapy, as well as the type of cancer, being more beneficial for
patients with breast cancer (Brett Whalen et al., 2022).

3.3. Acupuncture

Acupuncture consists of inserting various needles into the body, and
is classically used in Chinese traditional medicine. If its legitimacy still
remains debated in the scientific community, different technics of
acupuncture showed positive results in clinical trials for neuropathic
pain. Among these technics, normal-, warm-, fire- or electrical-
needling, or moxibustion 2 to 7 times a week, showed higher analgesic
effects when compared in different clinical trials to classical pharmaco-
logical treatments such as anticonvulsants, and NSAIDs (though the lat-
ter aren't recommended against neuropathic pain) (Zhao et al., 2022).
Other studies have demonstrated at least 20% pain reduction with these
techniques that present the advantage of being cost-effective, and with
limited side effects. However, as for the majority of existing treatments,
variability exists between studies, some having found no beneficial ef-

fects of acupuncture. It has been suggested that acupuncture may mod-
ulate the activation and/or liberation of actors of the neuroinflamma-
tory system (including pronociceptive chemokines and cytokines, and
glial cells), as well as restore the inhibitory pathway of pain by activat-
ing serotonin, opioid, and noradrenaline release in the spinal cord and
the brain (Kim et al., 2005; Park et al., 2010; Sun et al., 2004; Zhang et
al., 2014). Recently, it has also been demonstrated in a preclinical
model of nerve injury that electroacupuncture can alleviate pain-
induced anxiety by activating the dopamine D1 receptor and inhibiting
the D2 receptor in the basolateral amygdala (Wu et al., 2022). Elec-
troacupuncture also appears to modulate the formation of abnormal
dendritic spines in the spinal cord, which may be involved in central
sensitization during neuropathic pain (Wu et al., 2023). It is currently
unknown if other types of acupuncture may have similar effects.

3.4. Other emerging therapeutics

New alternatives have been studied and used these last years to treat
neuropathic pain, including hypnosis and virtual reality. However, if
studies showed them effective against certain types of neuropathic
pain, biological mechanisms involved for their analgesic effects remain
predominantly unknown.

Hypnosis is defined by the Society of Psychological Hypnosis as
“one person guided by another to respond to suggestions for changes in
subjective experience, alterations in perception, sensation, emotion,
thought or behavior” (Green et al., 2005). Hypnosis has been used for
several years now to treat different types of pain, and recently, moder-
ate to strong effects have been demonstrated for the treatment of neuro-
pathic pain, and especially in case of spinal cord injury (Langlois et al.,
2022). Studies with more than 8 sessions of hypnosis in particular
showed interesting outcomes, accompanied or not with self-hypnosis
sessions, where the patient is trained and encouraged to practice alone
to enter a hypnotic-state (Jensen et al., 2009; Langlois et al., 2022). It is
generally recommended to be used in complement to pharmacological
treatments to increase the efficacy. However, more studies are required
to conclude on its effect in other type of neuropathic pain than spinal
cord injury, and to determine the mechanisms involved. For the latter,
we only know that hypnosis induces alterations in the neuronal activity
of the pain matrix including the ACC, the insular cortex, the somatosen-
sory cortex, and the thalamus, through unknown mechanisms
(Derbyshire et al., 2004; Dillworth et al., 2012; Faymonville et al.,
2003).

Virtual reality consists of a computer-generated partial or total im-
mersion in 3D images, with which one can interact. Due to its non-
invasive properties with its lack of important side effects (that include
motion sickness and physical fatigue) and adaptability to patient need,
the use of virtual reality in clinic has started to increase recently. For
neuropathic pain, it has been used especially for patients with spinal
cord injury to help patients regaining mobility in the lower body with
less pain. But clinical trials are in progress to test its efficacy for other
types of neuropathic pain like neuralgia (Chi et al., 2019). The most
used method is somatic virtual reality where the affecting limbs are rep-
resented virtually while stretching and doing mobility exercises, which
could help dissociating the pain with the movement of the limb
(Moseley, 2007; Soler et al., 2010). Using different methods of virtual
training, a reduction of 15 to 80% of pain has been observed. Similar to
hypnosis the underlying mechanisms involved in virtual reality therapy
remain unclear. It has been suggested that it could be responsible for a
readjustment of maladaptive reorganization of cortical areas such as
the somatosensory and motor cortex, and/or to be due to a training of
mirror neurons that would start being activated by virtual reality, with-
out activating pain pathways (Chi et al., 2019; Eick & Richardson,
2015; Ramachandran & Altschuler, 2009).
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3.5. Co-use of pharmacological and non-pharmacological treatments

In general, non-pharmacological treatments are only used when pa-
tients are resistant or intolerant to pharmacological strategies. While
they offer promising analgesic effects with few side-effects, their long-
term efficacy remains debated and inconsistent from study to study.
However, a growing body of evidence suggests that combining non-
pharmacological treatments with conventional drugs may potentiate
their respective effects, thus allowing longer efficacy of treatments,
with lower doses of drugs required. For instance, clinical studies have
shown that combining DBS with conventional pharmacological treat-
ments had better effects on pain relief and improving patients' quality
of life than pharmacological treatments alone (Kumar et al., 2018;
Shinu et al., 2022). Interestingly, 3 months of co-treatment was able to
decrease the dose of medication (Goudman et al., 2023). Combining
TENS with carbamazepine also showed better results in a clinical trial
to treat refractory patients for trigeminal neuralgia, compared with car-
bamazepine alone (Millan-Guerrero et al., 2019; Motwani et al., 2023).
A case report very recently suggested the potential use of pregabalin
with TENS to treat neuropathic pain (Xia et al., 2021). Preliminary re-
sults also suggest improved efficacy of antidepressants when used with
rTMS, to treat patients with neuropathic pain refractory to conven-
tional treatments (Holm et al., 2023). Recently, a pre-clinical study
showed a potentiated effect of TENS and CBD when combined in a
mouse model of nerve constriction, with specific activation of the anti-
inflammatory cytokine IL-10 only when administrated together (Malta,
Netto, dos Santos, Veras, & Galdino, 2023). Finally, electroacupuncture
combined with low-dose gabapentin also showed strong analgesic ef-
fects in a mouse model of chemotherapy-induced neuropathic pain
(Kim et al., 2017). All these data suggest synergic effects of non-
pharmacological and pharmacological treatments when administrated
together. However, large-scale studies are now needed to confirm these
results.

4. Conclusion

Treating neuropathic pain remains a challenge, and there is an un-
met need to find new therapeutic approaches due to the lack of efficacy
or side effects affecting patient compliance. Indeed, currently recom-
mended treatments have significant adverse effects, ranging from dizzi-
ness, somnolence or nausea to substance abuse, overdose or respiratory
depression. Another drawbacks of these treatments base on the fact that
the efficacy varies according to the different types of neuropathic pain
suggesting the involvement of different cellular and molecular mecha-
nisms depending on the origin of the neuropathic pain, and underlining
the need for personalized medicine.

Recent advances in our understanding of the peripheral and central
mechanisms involved in different types of neuropathic pain have paved
the way for discovery of several new preclinical and clinical targets
such, as RTKs, TRPM8, sodium ion channels, CBRs or P2XRs. These new
targets are of particular interest either due to their ability to better
modulate afferent neurons involved in the transmission of the nocicep-
tive information without affecting supraspinal regions, or because of
their increased affinity for specific pharmacological targets, which can
lead to increased potency and lower effective doses with a longer dura-
tion of action which can improve significantly efficacy but also the side
effect profile of treatments. Examples include mirogabalin, which has
greater affinity for α2δ-1 and α2δ-2 subunits than previous gabapenti-
noids, monoclonal antibodies specifically targeting P2XRs, or negative
allosteric modulators targeting FLT3.

In addition to the development of more potent and selective drugs,
new non-pharmacological treatment strategies such as noninvasive
brain stimulations, including rTMS and tDCS, are also showing promis-
ing results in neuropathic pain. In addition, multimodal approaches
combining therapeutic drugs with alternatives, which include changes

of lifestyle (better diet, dietary supplements, and more exercise), neural
stimulation, acupuncture, hypnosis and/or virtual reality may enable
better management of neuropathic pain. Large scale multicenter studies
are now needed to further validate the use of new pharmacological and
non-pharmacological treatment strategies.
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