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Abstract

Sampling-based algorithms are classical approaches to perform Bayesian inference in in-
verse problems. They provide estimators with the associated credibility intervals to quantify the
uncertainty on the estimators. Although these methods hardly scale to high dimensional prob-
lems, they have recently been paired with optimization techniques, such as proximal and split-
ting approaches, to address this issue. Such approaches pave the way to distributed samplers,
splitting computations to make inference more scalable and faster. We introduce a distributed
Split Gibbs sampler (SGS) to efficiently solve such problems involving distributions with multi-
ple smooth and non-smooth functions composed with linear operators. The proposed approach
leverages a recent approximate augmentation technique reminiscent of primal-dual optimiza-
tion methods. It is further combined with a block-coordinate approach to split the primal and
dual variables into blocks, leading to a distributed block-coordinate SGS. The resulting algo-
rithm exploits the hypergraph structure of the involved linear operators to efficiently distribute
the variables over multiple workers under controlled communication costs. It accommodates
several distributed architectures, such as the Single Program Multiple Data and client-server
architectures. Experiments on a large image deblurring problem show the performance of
the proposed approach to produce high quality estimates with credibility intervals in a small
amount of time. Supplementary material to reproduce the experiments is available online.
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1 Introduction

This work focuses on sampling from a generic distribution of the form

π (x) ∝ exp(−h(x)− f(x)− g(Dx)), (1.1)

where h : H →] − ∞,+∞] is a Lipschitz-differentiable function, f : H → ]−∞,+∞] and g : G →
]−∞,+∞] are possibly non-smooth functions, and D : H → G is a linear operator. Such a distribu-
tion typically arises as the posterior distribution involved in imaging inverse problems, from which
Bayesian estimators need to be formed [26]. In the remainder, we will consider that H = RN

and G = RM , where N and M are very large. Sampling from (1.1) is challenging due to (i) the
presence of the composite function g ◦ D and (ii) the large dimension of H and G. To address
these issues, this paper proposes a distributed MCMC algorithm which (i) leverages the approx-
imate augmentation AXDA [37] to decouple (split) functions involved in (1.1), and (ii) exploits
the structure of (1.1) to design a distributed sampler reminiscent of block-coordinate approaches
in optimization. We briefly discuss recent splitting-based distributed samplers in Section 1.1, and
highlight some of their limitations. Scalable splitting optimization approaches are reviewed in Sec-
tion 1.2 to motivate this paper. The proposed approach, which takes further inspiration from the
optimization literature, is outlined in Section 1.3.

1.1 Sampling methods: splitting and distributed techniques

Markov chain Monte Carlo (MCMC) algorithms are generic approaches providing estimates with
associated credibility intervals [29]. They aim to generate a Markov chain that yields samples
from the target distribution (1.1) in the stationary regime. Nevertheless, they are often considered
computationally too expensive to handle high dimensional problems, especially when composite
functions are involved. This is often the case with inverse problems in image processing. Over
the last decade, many authors have proposed more versatile and scalable optimization-inspired
MCMC algorithms [16, 25, 31]. These approaches exploit quantities repeatedly used in optimiza-
tion to efficiently explore high dimensional parameter spaces, most often gradients and proximal
operators1.

A splitting approach based on an asymptotically exact data augmentation (AXDA) has also re-
cently been proposed by [36, 37]. Inspired by splitting optimization approaches [20], AXDA intro-
duces auxiliary variables to split composite distributions. The density (1.1) is then approximated
by

π(α,β) (x, z,u) ∝ exp
(
− h(x)− f(x)− g(z)− ϕα(Dx, z − u)− ψβ(u)

)
, (1.2)

1The proximal operator of a proper, lower semi-continuous function f : RN →]−∞,+∞] is defined for any y ∈ RN

by [18]: proxf (y) = argmin
x∈RN

{
f(x) + ∥x− y∥22/2

}
.
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where ϕα : G × G →] − ∞,+∞], ψβ : G →] − ∞,+∞], α controls the discrepancy between Dx

and z − u, and β is an augmentation parameter. The variable z is to be interpreted as a splitting
variable, and u is an additional augmentation parameter. The role of ϕα is to strongly couple
Dx and z − u, while ψβ keeps u small enough. This latter parameter is not mandatory, but
improves the mixing properties of the sampler by a further decoupling between Dx and z [36].
For appropriate choices of ϕα and ψβ, the marginal distribution of x with respect to (1.2) converges
to the target distribution (1.1) as (α, β) → (0, 0). A Gibbs sampler is proposed in [36, 37] to draw
samples from (1.2), referred to as the split Gibbs sampler (SGS). The additional cost of adding
new variables is compensated by the benefit of this divide-to-conquer strategy. Further details
on this splitting technique are provided in Section 2.1. Designing efficient algorithms to handle
distributions of the form (1.1) becomes even more challenging when potentially many composite
functions are considered. An extension of SGS has been considered [36, 28] for distributions
involving C ∈ N∗ composite terms, with a density of the form

π(x) ∝ exp
(
− h(x)− f(x)−

C∑

c=1

gc(Dcx)
)
, (1.3)

where for every c ∈ {1, . . . , C}, Gc = RMc , M =
∑C

c=1M c, Dc : H → Gc and gc : Gc → ]−∞,+∞].
Applying AXDA to (1.3) leads to an approximation with density

π(α,β)

(
x, (zc,uc)1⩽c⩽C

)

∝ exp
(
− h(x)− f(x)−

C∑

c=1

(
gc(zc) + ϕc,αc(Dcx, zc − uc) + ψc,βc(uc)

))
, (1.4)

where (zc,uc)1⩽c⩽C are auxiliary variables and, for c ∈ {1, . . . , C}, ϕc,αc : Gc × Gc → ]−∞,+∞]

and ψc,βc : Gc → ]−∞,+∞]. The variables (zc,uc)1⩽c⩽C are conditionally independent, paving the
way to a distributed implementation on a client-server architecture.

Only a few distributed samplers have been proposed in the literature [28, 36, 37]. However,
these samplers only focus on distributing the splitting variables associated with the composite
functions gc ◦Dc from (1.3), without decomposing the global variable x into blocks. In particular,
[28] propose a consensus-based approximate posterior distribution, addressed with a distributed
Metropolis-within-Gibbs sampler relying on a client-server architecture. The sampler exploits the
conditional independence between the splitting variables to parallelize computations. This is es-
pecially relevant for data-distributed applications, in which a shared parameter value needs to be
inferred from a dataset distributed over multiple workers, e.g., for distributed logistic regression.
However, this setting has several drawbacks when turning to high dimensional problems. First,
the consensus constraint necessitates to duplicate the variables of interest on the different work-
ers. Second, the client-server architecture may induce communication bottlenecks, as all (clients)
workers need to communicate with the server. It also exhibits limitations in terms of distribution
flexibility, since it separates composite functions only, without splitting the high dimensional global
variable of interest x into blocks. In high dimensions, it may be of interest to split the variable x

itself, not only the data or the composite functions.
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To summarize, splitting techniques have been introduced in sampling methods. They have per-
mitted to handle multiple composite functions in parallel. Distributed versions have also been
proposed in the literature, but restricted to client-server approaches. The client-server architec-
ture can be critical in a high dimensional setting. In addition, none of these methods considered
splitting the high-dimensional variable of interest x into blocks. Block-coordinate approaches can
be necessary in practice to handle high-dimensional problems, e.g., when x is an image with more
than 106 unknown parameters. Since the distributed split Gibbs sampler proposed in this work are
essentially inspired by optimization approaches, the next paragraph reviews methods from the op-
timization literature that combine all at once composite-function splitting, variable splitting (i.e.,
block-coordinate approaches) and distributed techniques.

1.2 Splitting, distributed and block-coordinate methods in optimization

Optimization-based inference consists in estimating a mode of the distribution (1.1) (e.g., the
maximum a posteriori (MAP) estimator), defined as a solution to

minimize
x∈H

h(x) + f(x) + g(Dx). (1.5)

Optimization algorithms aim to build sequences that asymptotically converges to a solution to
problem (1.5). Problem (1.5) can be efficiently solved with proximal primal-dual methods [20,
13, 38], that can be seen as the optimization counterpart of the splitting approaches discussed in
Section 1.1. Similarly to AXDA, primal-dual methods rely on an auxiliary variable z ∈ G associated
with the composite function g ◦ D. The variable x ∈ H is referred to as the primal variable
while z is called the dual variable, since it is associated with the dual space G induced by the
operator D. It is worth noticing that the SGS approach developed by [36] was directly inspired
by such an optimization splitting technique. Splitting proximal algorithms benefit from many
acceleration techniques (e.g., inertia [2, 24], preconditioning [7, 12]), they are versatile, and
scalable. In particular, they are highly parallelizable, and can be efficiently distributed to split the
computational cost per iteration, under well-established theoretical guarantees [1, 10, 20].

Designing efficient algorithms to handle distributions of the form (1.3) becomes more challeng-
ing when multiple composite functions are involved, especially when the dimensions of x and y

increase. In this context, the counterpart of problem (1.3) is given by

minimize
x∈H

h(x) + f(x) +
C∑

c=1

gc(Dcx). (1.6)

Primal-dual proximal algorithms [13, 38, 20, 27, 9] permit to handle composite terms in (1.6) in
parallel in the dual domains induced by operators (Dc)1⩽c⩽C . This is possible since dual variables
can be distributed on multiple workers.

Further, to address problems with high dimensional variable x, a usual strategy in optimization
consists in splitting x into blocks (xk)1⩽k⩽K , and either alternate between the blocks [4, 8, 22, 34],
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Figure 1: Example of the block-sparse structure of the matrix D involved in (1.1). The columns of D are
split into K contiguous blocks (black dashed lines), with a small overlap compared to the size of the blocks.
The orange dashed rectangles highlight the subparts of D implemented on each worker k. These act on a
parameter block stored on worker k, and a few parameters stored on worker k + 1.

or distribute the blocks over multiple workers [11, 27]. In particular, [27] combine such block-
coordinate approaches with primal-dual splitting techniques to parallelize and distribute both the
primal and dual variables. Then, the associated minimization problem is of the form

minimize
x=(xk)1⩽k⩽K∈H

K∑

k=1

hk(xk) + fk(xk) +
C∑

c=1

gc(
K∑

k=1

Dc,kxk), (1.7)

where, for every k ∈ {1, . . . ,K}, hk and fk only act on the k-th block of the variable x ∈ H. Such
a formulation is of particular interest when considering block-sparse matrices Dc, as illustrated
in Figure 1. Finally, [27] also developed asynchronous distributed algorithms over hypergraphs2

structures by combining the resulting block-coordinate primal-dual algorithms with consensus con-
straints that impose all (xk)1⩽k⩽K to be equal. This strategy provides a high flexibility in the choice
of the distribution architecture. Section 3.2 will detail the interest of hypergraphs. Unfortunately,
these algorithms only provide a point estimate, without additional information. In absence of
ground truth, these approaches do not directly quantify the uncertainty over the estimate. The
proposed approach will focus on drawing samples from the distribution corresponding to (1.7)
using a distributed architecture.

1.3 Proposed distributed block-coordinate SGS

This work focuses on cases where x belongs to a high dimensional space, for instance for N larger
than 106. We introduce a distributed block-coordinate SGS to sample from (1.3) by splitting the
global variable of interest x into blocks (xk)1⩽k⩽K . This approach will also be able to handle mul-
tiple composite functions as in (1.7). To this aim, we pair SGS with optimization-inspired MCMC
transition kernels [16, 25, 31] to sample from conditional distributions that would otherwise be
either intractable or challenging to handle in a distributed setting.

2Hypergraphs generalize structures of graphs, where edges can connect multiple nodes (i.e., variables) together,
hence generalizing communications between variables.
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Some steps of the MCMC sampler will correspond to term-wise operations, which are easy to
distribute. Some others will involve the linear operator D and its adjoint D∗, calling for commu-
nications. This work is aimed at designing an efficient distributed version of the corresponding
serial sampler, in particular by dealing with terms that involve D or D∗.

The distributed structure associates each block xk with a worker k. Communications between
the workers are governed by the structure of the linear operators (Dc)1⩽c⩽C . Precisely, the notion
of hypergraph will be used to deal with this aspect. Section 4 is dedicated to technical details.
For the sake of clarity and simplicity of the presentation, the main part of the paper presents the
proposed distributed algorithm with C = 1 in (1.3), corresponding to the target distribution (1.1).
The appendix extends the proposed approach to distributions of the form (1.3) withC > 1. We also
focus on the case with augmentation variables as in (1.2) to ensure better mixing properties [36].
Note that our approach can be used without this optional variable.

The proposed algorithm accommodates several distributed architectures, and is particularly
suitable for a Single Program Multiple Data (SPMD) architecture [15]. In contrast with a client-
server configuration, all the workers involved in an SPMD architecture execute similar tasks on a
subpart of all the variables, with no central server. An SPMD architecture can drastically reduce
the communication costs compared to a client-server architecture when a small number of workers
is involved in each communication channel. This is especially the case when the structure of D
induces localized couplings between parameters. Figure 1 illustrates the particular case of a block-
sparse matrix D: localized interactions between parameters imply a block-sparse structure which
induces a hypergraph structure, see Section 4 for details. This case is often encountered in practice,
e.g., for inverse problems in imaging, with applications such as image deconvolution or inpainting,
or when considering models based on a TV norm regularization. When multiple composite terms
are considered as in (1.7), a parallel implementation based on a client-server architecture would
be possible by exploiting conditional independence between blocks of variables. However this
configuration may suffer from communication bottlenecks, with a number of workers limited by
the number of conditionally independent blocks of variables in the model. In contrast, the SPMD
approach permits to use a larger number of workers by exploiting the structure of the hypergraphs
induced by the structure of operators Dc involved.

The remainder of the paper is organized as follows. The AXDA approach and the SGS algo-
rithm [36, 37] are recalled in Section 2. An overview of the proposed distributed SGS is given
in Section 3. This section further outlines how limitations of the client-server architecture can
be addressed by a fully decentralized SPMD architecture. The advantages offered by the latter
are specifically emphasized for distributions defined on a high-dimensional space, e.g., in imaging
inverse problems. The proposed hypergraph model is introduced in Section 4, and the associated
distributed block-coordinate SGS is given in Section 5. Section 6 describes an SPMD implemen-
tation of the proposed method for a large scale image deconvolution problem. Conclusion and
perspectives are given in Section 7. Eventually, the proposed method is extended to the general
case of distributions involving multiple composite terms in Appendix A.
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2 AXDA approach and the split Gibbs samplers

In this section, we summarize the approximation results at the basis of the AXDA approach [36].
We also describe a Gibbs sampler to approximately draw samples from (1.1), referred to as the
Split Gibbs sampler (SGS) [37].

2.1 AXDA splitting approach

A Gibbs sampler can be used to draw samples from (1.2), approximating the target distribu-
tion (1.1). The sampler successively draws one sample from each conditional distribution

πα (x | z,u) ∝ exp
(
− h(x)− f(x)− ϕα(Dx, z − u)

)
, (2.1)

πα (z | v,u) ∝ exp
(
− g(z)− ϕα(v, z − u)

)
, (2.2)

π(α,β) (u | v, z) ∝ exp
(
− ϕα(v, z − u)− ψβ(u)

)
, (2.3)

where v = Dx. The SGS associated with (2.1)–(2.3) is reported in Algorithm 1.

Algorithm 1: Generic Split Gibbs Sampler (SGS) [36].

Input: z(0) ∈ G, u(0) ∈ G, (α, β) ∈]0,+∞[2

1 for t = 0 to T do
2 x(t) ∼ πα

(
x | z(t),u(t)

)
,

3 v(t) = Dx(t),
4 z(t+1) ∼ πα

(
z | v(t),u(t)

)
,

5 u(t+1) ∼ π(α,β)
(
u | v(t), z(t+1)

)

Output: (x(t))1⩽t⩽T , (z(t))1⩽t⩽T , (u(t))1⩽t⩽T

Under technical conditions on the functions ϕα and ψβ in (1.2), [36] showed that the marginal
distribution of x can be made arbitrarily close to the original distribution π (x) given in (1.1),
typically when (α, β) → (0, 0). This result is summarized in the following proposition.

Proposition 2.1 [36, Thm. 1 and 2] Let (α, β) ∈ ]0,+∞[2, ϕα : G× G →]−∞,+∞] and ψβ : G →
]−∞,+∞]. Assume that

(∀x ∈ H) lim
α→0

exp
(
− ϕα(Dx, z)

)
∫
G exp

(
− ϕα(Dx, z)

)
dz

= δx(z), (2.4)

and that, there exists ηα,β ∈ ]0,+∞[,

(∀(x, z) ∈ H× G)

∫

G
exp

(
− ϕα(Dx, z − u)− ψβ(u)

)
du ∝ exp

(
− ϕηα,β

(Dx, z)
)
. (2.5)

Let, for x ∈ H, πηα,β
(x) =

∫
G×G πα,β(x, z,u)dudz. Then, ∥π − πηα,β

∥TV → 0 when ηα,β → 0.
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Theorem 2.1 ensures that the marginal distribution of x with respect to π(α,β) converges to the
target distribution π given in (1.1), provided conditions (2.4) and (2.5) hold. In particular, in
[36], these conditions are shown to be satisfied for η2α,β = α2 + β2, with

{
ϕα(Dx, z − u) = 1

2α2 ∥Dx− (z − u)∥2,
ψβ(u) =

1
2β2 ∥u∥2.

(2.6)

In the particular case when f ≡ 0, stronger results can be found in [37, Theorem 2], including
theoretical guarantees on the convergence rate.

2.2 PSGLA within SGS

Drawing samples directly from the conditional distributions (2.1)–(2.3) can still be difficult. This
is the case for the application described in Section 6. To overcome this issue, samples can be drawn
using appropriate transition kernels.

To sample from (1.2), Metropolis-Hastings transition kernels are classical choices to draw sam-
ples from the conditional distributions πα (x | z,u), πα (z | x,u) and π(α,β) (u | x, z), leading to
a conditional Metropolis-Hastings sampler [19]. Appropriate proposals include Langevin-based
kernels, such as the Moreau-Yosida unadjusted Langevin algorithm (MYULA) [16] and the proxi-
mal stochastic gradient Langevin algorithm (PSGLA) [31]. These kernels can handle differentiable
and non-differentiable potential functions simultaneously, and have been shown suitable to ad-
dress high dimensional problems. To avoid the extra cost of the accept-reject step, approximate
sampling can be considered while maintaining a good approximation of the target distribution by
using unadjusted kernels, as in [16]. This approach is adopted in the following. Deriving non-
asymptotic convergence bounds and analyzing the bias between the target distribution and (1.2)
is however beyond the scope of this paper.

The choice of suitable transition kernels will be instrumental to design a distributed Gibbs
sampler when direct sampling from the conditional distributions is difficult. Technical assumptions
on the functions in (1.2) will ensure that the transition kernels are amenable to a distributed
implementation, see Section 4. This implementation will be adapted to the specific structure
of the distributions πα (x | z,u), πα (z | x,u) and πα,β (u | x, z). In particular, for the proposed
distributed SGS, we consider the case where any appropriate transition kernel can be used to
sample (z,u). The parameter x is approximately sampled using a PSGLA transition to avoid the
extra cost induced by a Metropolis correction step. To this aim, we assume that h is λh-Lipschitz-
differentiable. For simplicity, ϕα and ψβ are also taken as ℓ2 norms as in (2.6), so that (2.4) and
(2.5) are satisfied. Then u can be directly sampled from its Gaussian conditional distribution.
These blanket assumptions, summarized in Theorem 2.2, will be adopted in the following.

Assumption 2.2
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(i) ϕα and ψβ are given by

(∀(v,u) ∈ G2) ϕα(v,u) =
1

2α2
∥v − u∥2, (2.7)

ψβ(u) =
1

2β2
∥u∥2. (2.8)

(ii) h : H → R is λh-Lipschitz differentiable, with λh > 0.

Algorithm 2: Proposed sampler (PSGLA within SGS).

Input: x(0) ∈ H, (z(0),u(0)) ∈ G2, (α, β) ∈]0,+∞[2, γ ∈
]
0,
(
λh + ∥D∥2/α2

)−1[

1 v(0) = Dx(0);
2 for t = 0 to T do

// Draw x(t+1) with a PSGLA [31] kernel

3 x(t+1) = proxγf

(
x(t) − γ∇h(x(t))− γD∗

(
∇ϕα(·, z(t) − u(t))(v(t))

)
+

√
2γw(t)

)
;

4 v(t+1) = Dx(t+1);
// Draw z(t+1) and u(t+1) from their conditional distribution

5 z(t+1) ∼ πα
(
z | v(t+1),u(t)

)
;

6 u(t+1) ∼ N
(

β2

α2+β2 (z
(t+1) − v(t+1)), α

2+β2

α2β2 I
)

;

Output: (x(t))1⩽t⩽T , (z(t))1⩽t⩽T , (u(t))1⩽t⩽T

Theorem 2.2(i) ensures that Theorem 2.1 is valid, see (2.6). Theorem 2.2(ii) is necessary to
use the PSGLA transition kernel in the proposed SGS detailed in Algorithm 2, where D∗ denotes
the adjoint of D, and (w(t))1⩽t⩽T is a sequence of independent and identically distributed (i.i.d)
standard Gaussian random variables in H.

3 Proposed distributed SGS in a nutshell

For high-dimensional problems, every step of Algorithm 1 is computationally expensive, calling for
a distributed algorithm. Steps 5 and 6 are easy to distribute since they correspond to term-wise
operations. In contrast, steps 1, 3 and 4 require communications due to the presence of the linear
operator D and its adjoint D∗. This work is aimed at designing an efficient distributed version of
Algorithm 2 by exploiting the hypergraph structure that can emerge from the topology of D. This
section describes the proposed approach in a nutshell, reducing technicality. Section 4 introduces
the model to describe the hypergraph structure and the resulting distribution strategy. Section 5
details the distributed version of the proposed Algorithm 3.

In Section 3.1, we first explain the advantages offered by an SPMD distributed implementa-
tion over a client-server approach to address high dimensional problems. To enable this SPMD
implementation, we rely on hypergraph structures that facilitate flexible communications. These
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hypergraph structures are reminiscent of the topology of D, as described in Section 3.2. Practical
considerations for an efficient distributed implementation are given in Section 3.3. We refer the
reader to Section 4 and Section 5 for a rigorous description of the proposed distributed algorithm.
For an example application of the proposed approach to an imaging inverse problem, the reader
can jump to Section 6.

3.1 Splitting-based samplers

Splitting-based samplers from the literature [37, 28] can benefit from a distributed implementation
on a client-server architecture. These algorithms can accommodate densities of the form (1.4) with
C > 1 linear operators. After splitting, a collection of K − 1 ⩽ C workers (i.e., clients) handle
computations associated with groups of variables conditionally independent from one worker to
another. The server handles operations on the full variable x, possibly duplicated across all the
workers. This configuration can suffer from several drawbacks listed below.

(i) Shared variable and communication costs : The computation of (Dcx)1⩽c⩽C on the
server can be expensive. The shared parameter x needs to be broadcast to all the clients
at each iteration. Communications can significantly increase for applications defined on a
high dimensional parameter space, such as inverse problems in imaging applications.

(ii) Limited number of workers : The number of workers K is restricted by the number of
composite functions C since K − 1 ⩽ C, typically with 1 ⩽ C ⩽ 5 for most imaging inverse
problems. A client-server approach cannot be applied to distributions with C = 1 such
as (1.1).

(iii) Load balancing: Computing costs induced by the operators (Dc)1⩽c⩽C can be hard to
balance over the workers. Prohibitive idle time due to synchronization with stragglers may
thus drastically limit the parallel efficiency of the algorithm.

To address these issues, a possible approach consists in exploiting the hypergraph structure
of the operator D, as outlined in Section 3.2. Such an approach enables the use of an SPMD
architecture [15], so that all the workers can conduct locally the same tasks over a subpart of
the variables only. In this configuration, load balancing is in general easier to handle, with no
restriction on the number of workers K imposed by the model and lighter communications as
explained in Sections 3.2 and 3.3. Section 5.3 explains in more details how the SPMD architecture
takes advantage of the hypergraph structure of the algorithm detailed in Sections 4 and 5.

3.2 A hypergraph structure to better communicate

We consider a localized linear operator D in (1.1), such that couplings between latent parameters
are localized. This is for instance the case when D is block-sparse, see Figure 1. Such a structure
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is not strictly necessary to design the proposed distributed algorithm but will be instrumental in
practice to reduce the communications between workers for an efficient implementation of the
algorithm. Practical uses of interest for block-sparse structures include imaging inverse problems,
e.g., where D corresponds to a deconvolution or inpainting measurement operator. Block-sparse
operators also appear when considering models such as the TV norm.

The structure of the matrix D can be described with a binary matrix that can be interpreted as
the adjacency matrix of a hypergraph. A hypergraph is a generalization of a graph, in which an
edge can join any finite number of vertices. Formally, an undirected hypergraph H is a pair (x, e)
made of vertices x = (xn)1⩽n⩽N and hyperedges e = (em)1⩽m⩽M , where each hyperedge is a set
of connected vertices, that is a subset of the (xn)1⩽n⩽N . The main idea is to take benefit from this
structure to distribute the computation of various quantities in Algorithm 2 over K workers. It
appears that the product Dx is of special interest.

Figure 1 illustrates the proposed approach. The variable x is divided into K blocks (xk)1⩽k⩽K ,
with each block xk assigned to a single worker. The hyperedges will characterize the necessary
communications between the workers. A worker k ∈ {1, . . . ,K} stores xk but it may as well
need access to some coefficients of xk′ stored on another worker k′ ̸= k to carry out its com-
putations. Note that the operator D will be split once and for all in D = (Dm,n)1⩽m⩽M, 1⩽n⩽N

in an adequate manner over the K workers as well; this decomposition will not necessitate any
additional communication between the workers. The output quantity v = (vm)1⩽m⩽M = Dx com-
puted in Algorithm 2 will also be distributed among the K workers. To this aim, each hyperedge
m ∈ {1, . . . ,M} is associated to a worker denoted by km ∈ {1, . . . ,K}. Then, each subpart vm will
be computed and stored on worker km. In practice, only the vertices xn that correspond to non-
zero blocks Dm,n in D will be necessary to compute vm. Communications occur when the worker
k = km requires a subpart of xk′ stored on another worker k′ ̸= km to carry out the computation
of vm. A subset of each xk will never be involved in communications since it is used to compute
vm only, and will not be used to compute any other vm′ . Finally, the worker k = km, that is in
charge of the computation of vm, will also store xk to reduce communications. In the particular
case when D is block-sparse, the communication cost will remain small as long as the subpart of
xk′ required by worker km remains small.

3.3 Conditions for an efficient distributed implementation

Even though the proposed approach detailed in Sections 4 and 5 is very general, some particular
structures of matrix D can ensure limited communications, which are often the bottleneck of
distributed methods.

Complexity costs of algorithms can roughly be divided into three terms. First, a computation
term τflop reflects the time to perform a single floating point operation. Second, a communica-
tion term τbandwidth, defined as the inverse of the communication bandwidth, quantifies the time
necessary to send a single value. Third, a latency term τlatency represents the cost incurred by
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establishing a communication. In practice, τflop ≪ τbandwidth ≪ τlatency. This implies that the
number of communications and the size of the messages need to be sufficiently small to ensure the
overall communication time to be negligible compared to the computation time.

Consequently, to ensure a higher efficiency of the proposed distributed SGS, both in terms of
computations and communications, we can identify two conditions on the structure of D. These
conditions are typically satisfied when D is block-sparse, as the operators considered in Section 6.

The first condition consists in ensuring that, each worker only needs to communicate with a
small amount of other workers compared to the total number of workers K.

The second condition is that the number of variables that two communicating workers need to
exchange remains small compared to the variables already stored on each worker. In particular,
for two workers (k, k′) ∈ {1, . . . ,K}2, k ̸= k′, the subpart of xk that need to be sent from k to k′

needs to be small compared to xk and xk′ .

4 Model and hypergraph structure

This section provides the notation and a description of the hypergraph model used to define the
proposed distributed SGS. It gives a formal description of the proposed distributed computing
strategy, which exploits the structure of the linear operator D and a separability assumption on
the functions involved in (1.2). Notation is summarized in Tables 1 and 2, and illustrated on a
simple example in Figure 2.

4.1 Hypergraph structure of the model

Let H = RN be such that H = H1 × . . . × HN , where for every n ∈ {1, . . . , N}, Hn = RNn and
N =

∑N
n=1Nn. An element of H is denoted by x = (xn)1⩽n⩽N , where, for every n ∈ {1, . . . , N},

xn ∈ Hn. Similarly, let G = RM be such that G = G1 × . . .× GM , where for every m ∈ {1, . . . ,M},
Gm = RMm and M =

∑M
m=1Mm. Let v = (vm)1⩽m⩽M be an element of G such that, for every

m ∈ {1, . . . ,M}, vm ∈ Gm.

The distribution of the problem over the different workers will follow the topology of a hyper-
grah encoded by the structure of D. To this aim, we assume that D holds some block separability
structure, and consider the following hypergraph model.

Model 4.1 Let D : H → G be such that D = (Dm,n)1⩽m⩽M,1⩽n⩽N , with, for every (m,n) ∈
{1, . . . ,M} × {1, . . . , N}, Dm,n : Hn → Gm. Let H = (x, e) be the hypergraph associated with
D, with N vertices x, and M hyperedges denoted by e = (em)1⩽m⩽M , such that

(∀m ∈ {1, . . . ,M}) em =
{
n ∈ {1, . . . , N}

∣∣ Dm,n ̸= 0
}
, (4.1)
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Notation Definition
Given by

operator D user
n ∈ {1, . . . , N} Indices for vertices ✓
m ∈ {1, . . . ,M} Indices for hyperedges ✓
e = (em)1⩽m⩽M Hyperedges ✓
em ⊂ {1, . . . , N} Vertex indices in hyperedge m ✓
k ∈ {1, . . . ,K} Indices for workers ✓
Rk ⊂ {1, . . . ,K} \ {k} Indices of workers k′ ∈ {1, . . . ,K} \ {k} from which worker k

receives vertex values
✓

Sk ⊂ {1, . . . ,K} \ {k} Indices of workers k′ ∈ {1, . . . ,K} \ {k} to which worker k

sends vertex values
✓

Vk ⊂ {1, . . . , N} Indices of vertices stored on worker k, such that (Vk)1⩽k⩽K is
a partition of {1, . . . , N}

✓ ✓

km ∈ {1, . . . ,K} Worker associated with m-th hyperedge em (chosen by the
user). km must satisfy em ∩ Vkm ̸= ∅

✓

Wm ⊂ {1, . . . ,K} \ {km} Set of all workers but km, containing vertices from em ✓
Wm ⊂ {1, . . . ,K} Wm = km ∪Wm ✓
V(k,k′) ⊂ Vk′ Indices of vertices sent from worker k′ to worker k ✓ ✓
VWm ⊂ {1, . . . , N} \ Vkm VWm =

⋃
k′∈Wm

V(km,k′) the set of vertex indices that will be
communicated to worker km from all workers k′ ∈ Wm

✓ ✓

VWm
⊂ {1, . . . , N} VWm

= Vkm ∪ VWm the set of vertex indices necessary to
perform computations associated with km

✓ ✓

Ek ⊂ {1, . . . ,M} Indices of hyperedges only containing vertices stored on
worker k

✓ ✓

E(k,k′) ⊂ {1, . . . ,M} Indices of hyperedges containing vertices sent from worker k′

to worker k
✓ ✓

ERk ⊂ {1, . . . ,M} ERk = ∪k′∈Rk
E(k,k′) set of all hyperedges containing vertices

that will be communicated to worker k
✓ ✓

Ek ⊂ {1, . . . ,M} Ek = Ek ∪ ERk , such that (Ek)1⩽k⩽K is a partition of
{1, . . . ,M}

✓ ✓

Table 1: Sets used to define the hypergraph structure of the problem and the distributed algorithm.

where 0Gm×Hn is the null element from Gm to Hn

The hyperedges of H, i.e., the connections between vertices, are described by the topology of D.
Precisely, the M rows of D represent the M hyperedges of H, and the N columns represent the
N vertices of H. Hence, as described in Theorem 4.1, for each m ∈ {1, . . . ,M}, the hyperedge
em links nodes (xn) if Dm,n ̸= 0Gm×Hn . Hence, D can be seen as a weighted incidence matrix
associated with H. In this context, any variable in G can be seen as a hyperedge weight of the
hypergraph H.

According to Theorem 4.1, the computation of v = Dx in Algorithm 2 can be decomposed and
computed block-wise as

v = (vm)1⩽m⩽M with (∀m ∈ {1, . . . ,M}) vm =
∑

n∈em
Dm,nxn. (4.2)

In (4.2), for every m ∈ {1, . . . ,M}, only the non-zero blocks of D are taken into account, i.e.,
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Notation Definition
x = (xn)1⩽n⩽N ∈ H Vertex values
D : H → G D = (Dm,n)1⩽m⩽M,1⩽n⩽N linear operator defining the hypergraph structure
u, v ∈ G

Hyperedge weights
v = (vm)1⩽m⩽M ∈ G

vk ∈ Gk vk = (vm)m∈Ek
hyperedge weights stored on worker k

xk ∈ Hk xk = (xn)n∈Vk vertex values stored on worker k
Dm,k : Hk → Gm Dm,k = (Dm,n)n∈Vk , for m ∈ Ek, subpart of D stored on worker k, associated

with hyperedges containing vertices only on worker k
x(k,k′) ∈ ×

n∈V(k,k′)

Hn x(k,k′) = (xn)n∈V(k,k′) vertex values sent from worker k′ to worker k

Dm,(k,k′) : ×
n∈V(k,k′)

Hn → Gm Dm,(k,k′) = (Dm,n)n∈V(k,k′) , for m ∈ E(k,k′), subpart of D stored on worker k,
associated with hyperedges containing vertices overlapping workers k and k′

xWm
∈ ×

n∈VWm

Hn xWm
= (xn)n∈VWm

, concatenation of vertex values stored on worker km, and
those sent from all worker k′ ∈ Wm to worker km

Dm,Wm
: ×
n∈VWm

Hn → Gm Dm,Wm
= (Dm,n)n∈VWm

, for m ∈ ERk , subpart of (Dm,n)1⩽n⩽N corresponding
to vertices stored either on worker km or on a worker in Wm

Table 2: Notation used for the variables involved in the proposed distributed algorithm.

only using the vertices contained in the hyperedge em. In the particular case when all hyperedges
are disjoint (i.e., disconnected hypergraph), a very simple distributed algorithm would distribute
the computation of the quantities vm on independent workers. This is not the case in general,
and hyperedges em can share some vertices xn. A distributed algorithm will thus need to carry out
communications between some workers. The next section exploits the hypergraph model described
here to distribute the computation of Dx, while limiting the communication cost.

4.2 Distribution of the hypergraph nodes over the workers

Let K ∈ N∗, K ⩽ N , be the number of workers available to the user to parallelize the algorithm.
On each worker k ∈ {1, . . . ,K}, we store a subpart xk of the nodes x of the hypergraph H. The
pattern for the distribution of the nodes x over the K workers will be driven by the topology of
the matrix D, as explained in Section 4.1. This pattern needs to be fixed before designing the
algorithm. Note that the blocks (Dm,n)1⩽m⩽M,n∈em of D will be distributed over the workers as
well, but will not require to be communicated. In particular, we provide below the notation to split
the hypergraph (i.e., the operator D) over the K workers. The notation for the splitting of the
nodes and the hyperedge weights are illustrated in Figure 2 for a simple example of a block-sparse
matrix D.

4.2.1 Distributing the hypergraph over the workers

Let (Vk)1⩽k⩽K be the partition of the set of vertex indices {1, . . . , N} such that, for every k ∈
{1, . . . ,K}, Vk is the set of vertex indices handled on worker k, and for every x ∈ H, xk =
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(xn)n∈Vk
. Recall that km ∈ {1, . . . ,K} denotes the worker associated with the m-th hyperedge

em. The association of hyperedges to workers is a choice left to the user. Then, we must have
em ∩ Vkm ̸= ∅, i.e., worker km must contain at least one vertex belonging to hyperedge em.

The set of all the hyperedges associated with worker k is denoted by

Ek =
{
m ∈ {1, . . . ,M}

∣∣ km = k
}
. (4.3)

Note that
(
Ek

)
1⩽k⩽K

defines a partition of {1, . . . ,M} over the K workers. Optimizing the config-
uration for a specific operator D is, on its own, a resource allocation problem [21] that is out of
the scope of this work. Using notation (4.3), for any v ∈ G, we can denote by vk = (vm)m∈Ek

the
hyperegde weights stored on worker k.

We also define Ek, the set of hyperedge indices only containing vertices stored on worker k, as

Ek =
{
m ∈ {1, . . . ,M}

∣∣ n ∈ em ⇔ n ∈ Vk

}
. (4.4)

The sets (Ek)1⩽k⩽K identify the rows of D whose non-zero elements are multiplied with vertices
that are stored on a single worker, i.e., the rows that can be used with no communication be-
tween two different workers. In contrast, the computation of vm for m ∈ Ek \ Ek will call for
communications.

4.2.2 Hyperedges overlapping over workers ensuring communications

The hyperedges overlapping over multiple workers will require vertices stored on different work-
ers to be communicated between each other. They correspond to hyperedges em, with m ∈
{1, . . . ,M} \ (⋃K

k=1 Ek).

For a fixed hyperedge em, let Wm ⊂ {1, . . . ,K} \ {km} be the set of workers different from km
containing vertices xn belonging to the same hyperedge em, i.e.,

Wm =
{
k ∈ {1, . . . ,K} \ {km}

∣∣ ∃n ∈ em such that n ∈ Vk

}
.

Using this notation, we can give an equivalent definition of (4.4) as, for every k ∈ {1, . . . ,K}, Ek ={
m ∈ {1, . . . ,M}

∣∣ km = k and Wm = ∅
}

(i.e., no overlap, no communication). For completeness,
we also introduce the notation Wm = km ∪Wm.

For every m ∈ {1, . . . ,M} \ (
⋃K

k=1 Ek), workers k′ ∈ Wm will need to send some vertex
values from xk′ to the worker km so that it can compute vm, as described in (4.2). For every
k ∈ {1, . . . ,K}, we denote by Rk ⊂ {1, . . . ,K} \ {k} the set of workers k′ from which worker k
receives vertices. These workers store vertices belonging to a hyperedge of index m ∈ {1, . . . ,M}
such that km = k, but that are not stored on worker k. Similarly, we denote by Sk ⊂ {1, . . . ,K}\{k}
the set of workers k′ to which worker k is sending vertices, i.e., all the workers k′ such that k ∈ Rk′ .

15



Communications will occur through hyperedges connecting different workers. For every k′ ∈
Rk, let

E(k,k′) =
{
m ∈ {1, . . . ,M}

∣∣ km = k and k′ ∈ Wm

}
,

be the set of hyperedges containing the vertices from worker k′ required by worker k to compute
vm, so that Rk =

{
k′ ∈ {1, . . . ,K} \ {k}

∣∣ ∃m ∈ E(k,k′)

}
. Thus, the set of all the hyperedges that

will carry out some communication to worker k is

ERk
=

⋃

k′∈Rk

E(k,k′) =
{
m ∈ {1, . . . ,M}

∣∣ km = k and Wm ̸= ∅
}
.

As a result, Ek and ERk
form a partition of Ek, where Ek corresponds to the set of weights vm

that can be computed locally on worker k (i.e. hyperedges inducing no communication), and ERk

corresponds to the weights vm that necessitate vertices provided by other workers, and therefore
communications.

Each hyperedge em potentially sends vertices towards the corresponding worker km. To identify
vertices that are communicated between workers, let

V(k,k′) =
{
n ∈ Vk′

∣∣ ∃m ∈ E(k,k′) such that n ∈ em
}

be the indices of vertices that are received by worker k from k′. The set of vertices sent to worker
km by all workers in Wm is denoted by VWm =

⋃
k′∈Wm

V(km,k′). For completeness, we also
introduce VWm

= Vkm ∪ VWm , the set of all the vertex indices necessary to perform computations
associated with the m-th hyperedge.

For every x ∈ H, we denote by x(k,k′) = (xn)n∈V(k,k′) the vertices communicated from worker k′

to worker k through some hyperedge em such that km = k. For every m ∈ {1, . . . ,M} \ (⋃K
k=1 Ek),

let xWm
= (xn)n∈VWm

be the concatenation of vertices stored on worker km and vertices sent from
all workers k′ ∈ Wm to worker km (i.e., all the vertices such that Dm,n ̸= 0).

Remark 4.2 Let k ∈ {1, . . . ,K}. For every k′ ∈ Sk, since V(k,k′) denotes the set of vertices that
need to be communicated from worker k′ to worker k, the (reciprocal) set V(k′,k) ⊂ Vk corresponds
to the set of vertices that will be sent back from worker k to k′ in the distributed implementation
of the adjoint operator D∗. Similarly, with E(k,k′) the set of hyperedges containing vertices that
will be communicated from worker k′ to worker k, the set E(k′,k) ⊂ {1, . . . ,M} corresponds to the
hyperedge indices containing vertices that will be sent back from worker k to worker k′.

4.2.3 Splitting of D over the workers

Eventually, we will introduce some notation to split the matrix D over the workers. In prac-
tice, the input space G and the output space H are partitioned using the sets (Ek)k∈{1,...,K} and
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Figure 2: Distribution of vertices (horizontal lines) and hyperedges (vertical lines) of the hypergraph over
K = 3 workers, for a block-sparse matrix D corresponding to Theorem 4.3.

(Vk)k∈{1,...,K}, respectively. For every k ∈ {1, . . . ,K}, let Gk = ×m∈Ek
Gm and Hk = ×n∈Vk

Hn

such that G =×1⩽k⩽KGk and H =×1⩽k⩽KHk.

For every k ∈ {1, . . . ,K}, the subparts vk of Dx that belong to Gk are stored on worker k. The
subparts of D acting on Hk only are associated with vertices in Vk. For every m ∈ Ek, they will be
denoted by Dm,k = (Dm,n)n∈Vk

. These subparts of D are involved in purely local computations
only. Similarly, for every k′ ∈ Rk, for every m ∈ E(k,k′), the subparts of D acting on vertices V(k,k′)

will be denoted by Dm,(k,k′) = (Dm,n)n∈Vk∪V(k,k′) . In addition, for every m ∈ ERk
, we will denote

by Dm,Wm
= (Dm,n)n∈VWm

the subparts of D acting on vertices stored either on worker km or
sent to worker km by all other workers k′ ∈ Wm. Hence

vm =

{
Dm,kxk, if m ∈ Ek,

Dm,Wm
xWm

, otherwise.
(4.5)

As a result, the subparts of D which must be stored on worker k are the Dm,k, for every m ∈ Ek,
and the Dm,Wm

, for every m ∈ ERk
.

The notation given above is summarized in Table 1 and Table 2. A simple example for block-
sparse matrices is also provided below, and illustrated in Figure 2.

Example 4.3 To illustrate some of the notation introduced above, consider the block-sparse ma-
trix D shown in Figure 2, with K = 3 workers. For the vertices, V1 (resp. V2 and V3)
contains the vertices handled on worker k = 1 (resp. k = 2 and k = 3). In addition,
V(1,2) (resp. V(2,3)) identifies the vertices of x2 (resp. x3) that will need to be communi-
cated to worker k = 1 (resp. k = 2). For the hyperedges, E1 (resp. E2 and E3) identi-
fies the hyperedge weights stored on worker k = 1 (resp. k = 2 and k = 3). The set E1

(resp. E2 and E3) identifies the hyperedges fully contained in worker k = 1 (resp. k = 2

and k = 3). Hyperedges in E(1,2) (resp. E(2,3)) contain the vertices that will be communi-
cated from worker k = 2 to worker k = 1 (resp. k = 2 to k = 3). In this example, only the
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blocks
(
(Dm,k)m∈Ek

)
1⩽k⩽3

, (Dm,(1,2))m∈E(1,2)
and (Dm,(2,3))m∈E(2,3)

are non-zero (e.g., convolu-

tion operator). Blocks
(
(Dm,1)m∈E1 , (Dm,(1,2))m∈E(1,2)

)
(resp.

(
(Dm,2)m∈E2 , (Dm,(2,3))m∈E(2,3)

)

and (Dm,3)m∈E3) are stored on worker k = 1 (resp. k = 2 and k = 3). For worker k = 1

(resp. k = 2 and k = 3), workers sending vertex values to this worker is given by R1 = {2}
(resp. R2 = {3} and R3 = ∅). Similarly, workers receiving vertex values from this worker
is given by S1 = ∅ (resp. S2 = {1} and S3 = {2}). For every m ∈ E1 (resp. E2 and E3),
km = 1 (resp. km = 2 and km = 3). For every m ∈ E(1,2), Wm = R1 = S2 = {2}, and for
every m ∈ E(2,3), Wm = R2 = {3}. Finally, for every m ∈ ER1 = E(1,2) (resp. ER2 = E(2,3)),
Dm,Wm

= (Dm,n)n∈V1∪V(1,2)
(resp. Dm,Wm

= (Dm,n)n∈V2∪V(2,3)
). This last notation corresponds

to the orange rectangles in Figure 1. In this example, ER3 = ∅.

4.3 Separability assumptions

We can now give the assumptions that will be used to design an efficient distributed SGS algo-
rithm. Precisely, we will consider distribution (1.2), where the functions are assumed to satisfy the
following separability conditions.

Assumption 4.4

(i) h : H → R and f : H → ]−∞,+∞] are additively separable on the workers, i.e.

(∀x ∈ H) h(x) =
K∑

k=1

hk(xk), and f(x) =
K∑

k=1

fk(xk), (4.6)

where, for every k ∈ {1, . . . ,K}, hk : Hk → R and fk : Hk → ]−∞,+∞].

(ii) g : G → ]−∞,+∞] is additively separable, i.e.

(∀v ∈ G) g(v) =

M∑

m=1

gm(vm), (4.7)

with, for every m ∈ {1, . . . ,M}, gm : Gm → ]−∞,+∞].

Further note that (2.7) and (2.8) can be written

(∀(v,u) ∈ G2) ϕα(v,u) =
M∑

m=1

ϕm,α(vm, um) =
M∑

m=1

1

2α2
∥vm − um∥2, (4.8)

ψβ(u) =
M∑

m=1

ψm,β(um) =
M∑

m=1

1

2β2
∥um∥2. (4.9)
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The above assumptions can be rewritten to highlight the separability over the workers. Indeed,
there exists a permutation ϱ : G → G such that

(∀x ∈ H) Dx =
(
(Dm,n)1⩽n⩽N x

)
1⩽m⩽M

= ϱ







(Dm,k)m∈Ek
xk(

Dm,Wm
xWm

)
m∈ERk




1⩽k⩽K


 .

(4.10)

Reorganizing the vertex indices emphasizes the distinction between local computations and those
for which communications are required. For every (u,v) ∈ G2 and x ∈ H, (4.7), (4.8) and (4.9)
can thus be rewritten as

g(v) =
K∑

k=1

( ∑

m∈Ek

gm (vm)
)
, (4.11)

ϕα(Dx,u) =

K∑

k=1

( ∑

m∈Ek

ϕm,α ([Dx]m, um)
)
, (4.12)

=
K∑

k=1

( ∑

m∈Ek

ϕm,α (Dm,kxk, um) +
∑

m∈ERk

ϕm,α

(
Dm,Wm

xWm
, um

))
, (4.13)

ψβ(u) =
K∑

k=1

( ∑

m∈Ek

ψm,β (um)
)
, (4.14)

where [·]m denotes the m-th element of its argument.

5 Distributed Split Gibbs sampler

5.1 Proposed distributed algorithm

Using the model from the previous section, we are now able to introduce a distributed block-
coordinate version of Algorithm 2. The term block-coordinate is to be interpreted as in the opti-
mization literature, where the variables from (1.2) are divided into K blocks distributed over the
K workers, and updated in parallel. The proposed distributed algorithm is the following.

Proposition 5.1 Consider a distribution (1.2) satisfying Theorems 2.2 and 4.4. Assume that the oper-
ator D follows Theorem 4.1, and is split over workers {1, . . . ,K} such that, for every k ∈ {1, . . . ,K},
(Dm,k)m∈Ek

is stored on worker k. For every k ∈ {1, . . . ,K}, let x(0)
k ∈ Hk, z(0)

k ∈ Gk, and u
(0)
k ∈ Gk.

Let (x(t), z(t),u(t))1⩽t⩽T be samples generated by Algorithm 3, where γ ∈]0, (λh + ∥D∥2/α2)−1[ and,
for every k ∈ {1, . . . ,K}, (w(t)

k )1⩽t⩽T is a sequence of i.i.d. standard Gaussian random variables in
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Hk. In addition, the transition kernel Kzk,α has the following invariant distribution

πk,α (zk | vk,uk) ∝ exp

(
−
∑

m∈Ek

(gm(zm) + ϕm,α(vm, zm − um))

)
(5.1)

where, for every x ∈ H, vk = (vm)m∈Ek
= ϱ

(
(Dm,kxk)m∈Ek

(Dm,Wm
xWm

)m∈ERk

)
.

Then, Algorithm 3 is equivalent to Algorithm 2.

All the computations described in Algorithm 3 are conducted simultaneously on each worker,
after the necessary communication phases.

Before giving the proof of this result, we want to emphasize that communications to apply the
operator D and its adjoint D∗ are symmetric: the same workers are involved in communications,
but the direction of the communications (send/receive) is reversed; the indices of the subparts that
are communicated are not the same. Communications necessary to computations involving D are
received by worker k from those of Rk; communications necessary to computations involving D∗

are received by worker k from those of Sk (see Section 5.2).

Proof. Theorem 2.2 ensures that Theorem 2.1 is verified (see (2.6)), and that the SGS algorithm
can be instantiated as Algorithm 2.

Using notation from Section 4, (4.7)–(4.9) in Theorem 4.4 can be directly re-written as
in (4.11)–(4.14). Then, fixing v = Dx, the conditional distributions (2.2)-(2.3) can be rewrit-
ten as

πα (z | v,u) =
K∏

k=1

πk,α (zk | vk,uk) , (5.2)

π(α,β) (u | v, z) =
K∏

k=1

πk,(α,β) (uk | vk, zk) , (5.3)

respectively, where, for every k ∈ {1, . . . ,K},

πk,α (zk | vk,uk) ∝ exp


−

∑

m∈Ek

(gm(zm) + ϕm,α(vm, zm − um))


 , (5.4)

πk,(α,β) (uk | vk, zk) ∝ exp


−

∑

m∈Ek

(ϕm,α(vm, zm − um)− ψm,β(um))


 , (5.5)

= N
(

β2

α2 + β2
(zk − vk),

α2 + β2

α2β2
I

)
,

for vk = (vm)m∈Ek
= ([Dx]m)m∈Ek

. Hence, for every iteration t ∈ {0, . . . , T} of the Algorithm 1,

and for every worker k ∈ {1, . . . ,K}, the sampling of z
(t+1)
k and u

(t+1)
k only requires partial
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Algorithm 3: Proposed distributed SGS (distributed version of Algorithm 2).

1 for k = 1 to K do
2 for k′ ∈ Sk do
3 Send (x

(0)
n )n∈V(k′,k)

to worker k′;

4 for k′ ∈ Rk do
5 Receive (x

(0)
n )n∈V(k,k′) from worker k′;

6 v
(0)
k = ϱ

(
(Dm,kx

(0)
k )m∈Ek

(Dm,Wm
x
(0)

Wm
)m∈ERk

)
;

7 for t = 0 to T do
8 for k = 1 to K do

9 (d
(t)
m )m∈Ek

=
(
ϕ′m,α(·, z(t)m − u

(t)
m )(v

(t)
m )
)
m∈Ek

;

10 for k′ ∈ Rk do

11 d̃
(t)

(k′,k) =
∑

m∈E(k′,k)

D∗
m,k′d(t)m ;

12 Send d̃
(t)

(k′,k) to worker k′;

13 for k′ ∈ Sk do

14 Receive d̃
(t)

(k,k′) from worker k′;

15 δ
(t)
k =

∑

m∈Ek

D∗
m,kd

(t)
m +

∑

k′∈Sk

d̃
(t)

(k,k′);

16 x
(t+1)
k = proxγfk

(
x
(t)
k − γ∇hk(x(t)

k )− γδ
(t)
k +

√
2γw

(t)
k

)
;

17 for k′ ∈ Sk do
18 Send (x

(t+1)
n )n∈V(k′,k)

to worker k′;

19 for k′ ∈ Rk do
20 Receive (x

(t+1)
n )n∈V(k,k′) from worker k′;

21 v
(t+1)
k = ϱ

(
(Dm,kx

(t+1)
k )m∈Ek

(Dm,Wm
x
(t+1)

Wm
)m∈ERk

)
;

22 z
(t+1)
k ∼ πk,α

(
zk | v(t+1)

k ,u
(t)
k

)
;

23 u
(t+1)
k ∼ N

(
β2

α2+β2 (z
(t+1)
k − v

(t+1)
k ), α

2+β2

α2β2 I
)

;
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information from
(
v
(t+1)
k ,u

(t)
k

)
and

(
v
(t+1)
k , z

(t+1)
k

)
, respectively. Algorithm 2 is thus equivalent

to

for t = 0, 1, . . . , T

x(t+1) = proxγf
(
x(t) − γ∇h(x(t))− γD∗

(
∇ϕα(·, z(t) − u(t))((v

(t)
m )m∈Ek

)
)

+
√
2γw(t)

)

for k = 1, . . . ,K

v
(t+1)
k = ([Dx(t+1)]m)m∈Ek

,

z
(t+1)
k ∼ πk,α

(
zk | v(t+1)

k ,u
(t)
k

)
,

u
(t+1)
k ∼ N

(
β2

α2+β2 (z
(t+1)
k − v

(t+1)
k ), α

2+β2

α2β2 I

)
.

(5.6)

It remains to show that, for every t ∈ {0, . . . , T}, the computation of x(t+1) can be parallelized
over k ∈ {1, . . . ,K}. Since (Vk)1⩽k⩽K is a partition of {1, . . . , N}, then, for every k ∈ {1, . . . ,K},
x
(t+1)
k will be given by the k-th vertex values of the random variable generated from the PSGLA

transition kernel.

The gradient of (4.13) with respect to x is required to compute (x
(t+1)
k )1⩽k⩽K . Using the chain

rule on x ∈ H 7→ (ϕα(·, z − u) ◦D)(x), for (z,u) ∈ G2 fixed, we obtain, for every x ∈ H,

∇xϕα(Dx, z − u) = ∇x(ϕα(·, z − u) ◦D)(x) = D∗∇ϕα(·, z − u)(Dx). (5.7)

According to (4.13), for every (v, z) ∈ G2, we have

∇vϕα(v, z) = ϱ







(
ϕ′m,α(vm, zm)

)
m∈Ek(

ϕ′m,α(vm, zm)
)
m∈ERk




1⩽k⩽K


 , (5.8)

where ϱ is the permutation operator defined in (4.10). For every k ∈ {1, . . . ,K}, every x ∈ H and
(z,u) ∈ G2, let (dm)m∈Ek

be defined as

dm := ϕ′m,α(·, zm − um)(vm) =

{
ϕ′m,α(·, zm − um)(Dm,kxk), if m ∈ Ek,

ϕ′m,α(·, zm − um)(Dm,Wm
xWm

), if m ∈ ERk
.

(5.9)

Finally,

∇xϕα(Dx, z − u) = D∗ϱ

((
(dm)m∈Ek

)
1⩽k⩽K

)
. (5.10)

To extract the k-th block from this gradient, (5.10) can be decomposed as follows:

δk := [∇xϕα(Dx, z − u)]k

=
∑

m∈Ek

D∗
m,kdm +

∑

k′∈Sk

∑

m∈E(k,k′)

D∗
m,kdm. (5.11)
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Figure 4 illustrates this for the simple example described in Figure 2.

The second term in (5.11) gathers information received from the set of neighbours Sk of worker
k that is necessary to computations involving D∗. Then, using the notation

(∀k′ ∈ Sk) d̃(k,k′) =
∑

m∈E(k,k′)

D∗
m,kdm, (5.12)

we obtain

δk =
∑

m∈Ek

D∗
m,kdm +

∑

k′∈Sk

d̃(k,k′), (5.13)

where, for every k′ ∈ Sk, d̃(k,k′) is computed on worker k′ and communicated to worker k to
form δk. Therefore the computations performed on a given worker k ∈ {1, . . . ,K} include the
computation of local gradients (D∗

m,kdm)m∈Ek
as well as the gradients to be sent to neighbours,

i.e., (d̃(k′,k))k′∈Rk
. Note that the role of the sets Rk and Sk is exchanged when the adjoint operator

D∗ is considered.

Using the above notation, and using [1, Prop. 24.11] on the additively separable functions h
and f , leads to the conclusion that Algorithm 3 is equivalent to (5.6), and therefore to Algorithm 2.

5.2 Illustration of operator computation

In this section, we give an example to explain the communications involved in Algorithm 3. Fig-
ure 3 describes one iteration of Algorithm 3. Figure 4 describes the application of the forward D

and backward D∗ operators.

Figure 3 (a) illustrates one iteration of the proposed distributed sampling Algorithm 3 imple-
mented on an SPMD architecture, with local computations conducted on a worker k ∈ {1, . . . ,K}.
Theorem 4.4 ensures that most of the related operations can be conducted independently on each
worker. Applying the forward operator D and its adjoint D∗ requires communications illustrated
in Figure 3 (b).

Figure 4(a) illustrates the computation of Dx, for x ∈ H with the block-sparse matrix D of
Example 4.3, see also Figure 1. Figure 4(b) illustrates the computation of D∗d, for d ∈ G with
some adjoint symmetry.
Subparts V(1,2) of x2 and V(2,3) of x3 need to be communicated to workers 1 and 2, respectively, to
compute Dx. In Figure 4(a), for worker k = 1, the quantity (Dm,Wm

xWm
)m∈ER1

can be computed
by multiplying the subpart of D corresponding to (Dm,Wm

)m∈ER1
(see Figure 4 (a), horizontal

rectangle in continuous yellow lines) with (xWm
)m∈ER1

= (x1,x(1,2)) (vertical rectangle in con-
tinuous yellow lines). This quantity is computed on worker 1, once worker 2 has communicated
x(1,2) to worker k = 1. Similarly, for worker k = 2, the quantity (Dm,Wm

xWm
)m∈ER2

can be
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(a) Iteration k of the proposed sampler

Worker 1

(Dm,1)m∈E1 , (Dm,1)m∈E1,2 , (D
∗
m,1)m∈E1

x1 = (xn)n∈V1

(dm)m∈E1

Worker 2

(Dm,2)m∈E2
, (Dm,2)m∈E2,3

, (D∗
m,2)m∈E2

x2 = (xn)n∈V2

(dm)m∈E2

Worker 3

(Dm,3)m∈E3
, (D∗

m,3)m∈E3

x3 = (xn)n∈V3

(dm)m∈E3

x(1,2)

(dm)m∈E(1,2)

x(2,3)

(dm)m∈E(2,3)

(b) Communications between workers

Figure 3: (a) Operations required by one iteration k ∈ N∗ of Algorithm 3, a distributed version of Algo-
rithm 2 using an SPMD architecture. Shaded rectangles correspond to operations for which communications
are required. (b) Communications required by the distributed implementation of Algorithm 3, associated
with the operator D illustrated in Figure 4. Local variables are displayed in the boxes, and variables ex-
changed between workers are represented with colored arrows.

computed by multiplying the subpart of D corresponding to (Dm,Wm
)m∈ER2

(horizontal rectangle
in continuous green lines) with (xWm

)m∈ER2
= (x2,x(2,3)) (vertical rectangle in continuous green

lines). This quantity is computed on worker 2, once worker 3 has communicated x(2,3) to worker
k = 2.
To compute D∗d, communications are performed after computing subparts of D∗d. In Figure 4(b),
for worker k = 1, the quantity [D∗d]1 can be computed by multiplying the subpart of D∗ corre-
sponding to (D∗

m,1)m∈E1
(continuous-line yellow rectangle, top left) with (dm)m∈E1

. For the com-
putation of [D∗d]1, no communication with other workers is needed in this example. For worker
k = 2, [D∗d]2 needs to be decomposed between parts of D∗ stored on worker k = 2, and parts
of D that are stored on other workers, i.e., k = 1 for this example. For the parts of D∗ stored
on worker k = 2, the subpart of D∗ corresponding to (D∗

m,2)m∈E2
(continuous-line green rect-

angle) needs to be multiplied with (dm)m∈E2
. For the parts of D∗ stored on k = 1, the subpart

of D∗ corresponding to (D∗
m,2)m∈E(1,2)

) (dotted-line green rectangle) needs to be multiplied with
(dm)m∈E(1,2)

(dotted-line green rectangle on vector d). This second part is computed on worker
k = 1 (using only the yellow part of the dotted-line green rectangle), and then communicated and
aggregated on worker k = 2. For worker k = 3, the decomposition of the quantity [D∗d]3 is similar
to the one taken for worker k = 2.

5.3 Distributed SPMD architecture

The distributed block-coordinate sampler described in the previous section can benefit from an
implementation on a Single Program Multiple Data (SPMD) architecture. In contrast with a client-
server configuration, all the workers execute the same task on a subset of each block of parameters
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(a) Computation of Dx (b) Computation of D∗d

Figure 4: Illustration of the computation of (a) Dx for x ∈ H, and (b) D∗d for d ∈ G. D corresponds to
the block-sparse matrix from Figure 2, and D∗ to its adjoint. The yellow, green and blue colours identify
how D, D∗, x and d are distributed over the workers k = 1, k = 2, and k = 3, respectively. Communications
are illustrated by coloured arrows over subparts of x and d, respectively. Continuous coloured lines on x

and d identify vertices and hyperedge weights required to perform local computations. The corresponding
blocks in D and D∗ are emphasized accordingly. Vertices and hyperedge weights to be sent from a worker
to another are delineated in dashed lines, with the corresponding blocks within D and D∗ highlighted
accordingly. (a) Vertices are on columns, and hyperedges on rows. (b) Vertices are on rows, and hyperedges
on columns. The “plus” symbol emphasizes that hyperedge weights are aggregated upon reception.

and observations [15]. This enables the hypergraph structure of D to be exploited to reduce the
number and volume of the communications.

In practice, Theorem 4.1 and Theorem 4.4 ensure that most of the operations of Algorithm 2 are
compatible with an SPMD architecture. The separability Assumptions 4.4-(i) and (ii) ensure that
K conditionally independent blocks can be formed for variables v ∈ G in the dual domain. The
separability of g further implies that the evaluation of its proximity operator is easy to parallelize.
Combining the definition of ϕα and ψβ (Theorem 2.2-(i)) with the structure of D finally enables
Algorithm 2 to be reformulated using blocks of parameters, each stored on (only) one of the K
workers. Using an SPMD architecture for Algorithm 3 offers several advantages listed below.

(i) Load balancing: computation costs can be equally shared among the workers, as they all
operate similar tasks on a subset of (overlapping) parameters.

(ii) Parallelization flexibility: an SPMD architecture can be readily used to address (1.1) under
Theorem 4.4, whereas a client-server architecture cannot (no conditionally independent
blocks of variables as in [28])

(iii) Memory and computing costs per worker: each worker can be assigned a block of pa-
rameters. This opportunity can significantly reduce the computing and memory costs per
worker.
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(iv) Communications and data locality: most of the parameters required to perform operations
on a worker can be directly stored on the same worker, and do not require to be commu-
nicated (data locality). The conditions given in Section 3.3 guarantee that communication
costs are limited: only a few elements need to be retrieved by each worker from a small
number of connected workers.

Appendix A addresses the multi-term extension of (1.1). Note that a client-server architecture
can also be used to address this case. However, it cannot take advantage of the structure of the hy-
pergraphs underlying the linear operators (Di)1⩽i⩽I . The number of workers it can accommodate
is also restricted to the number of conditionally independent blocks of variables, as in [37, 28]
(see Section 3.1).

6 Application to supervised image deconvolution

To show the performance of the proposed distributed SGS, we use it to solve an image deconvo-
lution problem. Image deconvolution is an inverse problem that consists in inferring an unknown
variable x from observations y. Observations and parameters are typically related by a model of
the form

y = D(Ax), (6.1)

where the linear operator A models the acquisition process, and D models random perturbations
– referred to as noise – damaging the clean data Ax. Bayesian inference relies on the posterior
distribution of the random variable x to estimate the true value x. The posterior distribution,
often of the form (1.1), combines information from the likelihood – related to the observations y

– and the prior. For instance, in image processing, a usual choice consists in promoting sparsity
in a selected basis, e.g., a gradient basis leading to the total variation (TV) regularization [30],
or a wavelet basis [23]. Prior information can also encompass constraints based on the physics
of the data acquisition process, such as nonnegativity for intensity images [5, 32], or polarization
constraints [3].

We consider a supervised image deconvolution problem corrupted by Poisson noise. The in-
duced hypergraph structures are used to adopt an SPMD strategy. Note that another application
of the proposed sampler has also been studied in [33] for an inpainting problem (i.e., with A a
selection matrix) corrupted by additive white Gaussian noise under a TV prior.

The application example presented in this section is associated with a distribution involving C =

2 composite terms. The notation used below corresponds to the one introduced in Appendix Afor
distributions with multiple composite terms.
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6.1 Problem statement

Supervised Poisson deconvolution aims at inferring an unknown image x ∈ RN from observations
y = (ym)1⩽m⩽M ∈ RM such that

(∀m ∈ {1, . . . ,M}) ym ∼ P([D1x]m), (6.2)

where D1 ∈ RM×N is a convolution operator derived from a kernel of size L = L1 ×L2 ≪ N , and
P(µ) is a Poisson distribution with mean µ. In this context, N = N and, for every n ∈ {1, . . . , N},
Hn = R. Similarly, M =M and, for every m ∈ {1, . . . ,M}, Gm = R.

We propose to solve this problem with a hybrid prior combining a non-negativity constraint and
a TV regularization [30]. Such prior has for instance been considered in [17, 35]. The resulting
posterior distribution is given by

π (x) ∝ exp (−f(x)− g1(D1x)− g2(D2x)) , (6.3)

where g1 : RM →]−∞,+∞] : (zm)1⩽m⩽M 7→∑M
m=1 g1,m(zm) is the data-fidelity term, with

(∀m ∈ {1, . . . ,M}) g1,m(zm) = −ym log(zm) + zm, (6.4)

due to the Poisson distribution, f = ι[0,+∞[N : RN →] − ∞,+∞] is the indicator function of the
positive orthant, and g2 ◦D2 models the discrete isotropic TV [30]. Precisely, D2 : RN → R2×N is
the concatenation of the vertical and horizontal discrete gradients, and g2 : R2×N →]−∞,+∞] is
the ℓ2,1-norm

(∀z = (zn)1⩽n⩽N ∈ R2×N ) g2(z) =
N∑

n=1

g2,n(zn),

(∀n ∈ {1, . . . , N})(∀zn ∈ R2) g2,n(zn) = κ∥zn∥2, where κ > 0.

(6.5)

As a first step towards a distributed implementation, the AXDA approach (see Appendix Afor
details) is used to approximate π (x) by

πα,β (x, (zc,uc)1⩽c⩽2)∝exp

(
− f(x)−

2∑

c=1

(
gc(zc) + ϕc,αc(Dcx, zc − uc) + ψc,βc(uc)

))
,

(6.6)

where (α1, α2, β1, β2) ∈]0,+∞[4, and the functions (ϕc,αc , ψc,βc)1⩽c⩽2 are defined in (2.6).

The directed acyclic graph reported in Figure 5 summarizes the structure of the approximate
posterior distribution (6.6), highlighting dependencies between the variables. Note that (z1,u1)

and (z2,u2) are the only conditionally independent blocks of variables.
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Figure 5: Directed acyclic graph describing the factorization of the approximate posterior distribution (6.6).
Circled variables correspond to random variables. Other variables are fixed a priori.

6.2 Proposed SPMD implementation

The proposed approach is applicable when a single operator is involved in the model (as in Sec-
tion 5), but also when multiple operators are involved (see Appendix A), as in the present example.
Note that a client-server architecture could also be considered. However, it would drastically in-
crease the communication costs, as full-size variables would need to be duplicated on all workers or
exchanged (see Section 5.3). Note that (6.2) indicates that the variables (ym)1⩽m⩽M are assumed
independent. This implies that the observations can be partitioned into K statistically indepen-
dent blocks y = (yk)1⩽k⩽K , with yk ∈ Gk a block of observations to be stored on the worker k.
In this case, each worker can be assigned a block of observations yk and a corresponding block of
parameters xk. Thus, no observation needs to be exchanged between the workers.

We propose to use the proposed distributed SGS Algorithm 5with C = 2 linear operators.
In addition, for every t ∈ {0, . . . , T} and k ∈ {1, . . . ,K}, we use PSGLA transitions to compute
(z

(t+1)
1,k , z

(t+1)
2,k ), while (u

(t+1)
1,k ,u

(t+1)
2,k ) are drawn from their conditional distribution. More precisely,

we have, for c ∈ {1, 2},

z
(t+1)
c,k = proxηc,gc,k

(
z
(t)
c,k − ηcα

−2
c

(
z
(t)
c,k − v

(t+1)
c,k + u

(t)
c,k

)
+
√
2ηcξ

(t)
c,k

)
, (6.7)

where gc,k =
∑

m∈Ec,k
gc,m, ηc ∈]0, α−2

c [, and ξ
(t)
c,k ∼ N (0, I ). The proximity operators involved

in the resulting algorithm can be found, e.g., in [17, 20]. The distributed implementation of
(Dc)1⩽c⩽2 and (D∗

c)1⩽c⩽2 is detailed below, using a 2D Cartesian grid of K workers.

Distributed implementation of D1 Figure 6 illustrates the preliminary communications re-
quired by the distributed implementation of D1. Each worker k ∈ {1, . . . ,K} needs to collect
(x1,(k,k′))k′∈Rk

, as illustrated in Figure 6(a). A first communication step occurs along the horizon-
tal axis. Each worker k sends vertices from its left-hand-side border (of width L2, the horizontal
width of the blur kernel) to its neighbour on the left (Figure 6(a), dark blue areas), and receives
vertices from the neighbour on its right (Figure 6(a), light blue areas). Once the first step is
complete, a second communication step occurs along the vertical axis with the top and bottom
neighbours of the worker k (Figure 6(a), dark and light red areas, of width L1). The local opera-
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(a) Distributed implementation of D1 (b) Distributed implementation of D∗
1

Figure 6: Communication patterns involved in the distributed implementation of (a) D1 and (b) D∗
1. Each

worker k is required to communicate with two contiguous workers along each direction successively. Col-
ored arrows indicate whether vertices (a) or hyperedge weights (b) are received from or sent to a nearby
worker. Vertices (a) and hyperedge weights (b) sent and received along the horizontal and vertical com-
munication steps are highlighted in blue and red, respectively. (b) The circled “plus” symbols represent
contributions aggregated with the corresponding hyperedge weights of the reception worker. These opera-
tions correspond to the second term in (5.13).
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tor (D1,m,W1,m
)m∈E1,Rk

is equivalent to considering a convolution matrix and a selection operator.
The latter ensures that the correct boundaries are considered (only the convolution outputs which
have not interacted with the boundaries of (xW1,m

)m∈ERk
are valid).

Distributed implementation of D∗
1 The distributed implementation of D∗

1 is similar to that of
D1. A first communication step occurs along the horizontal axis. Each worker k sends hyperedge
weights from its right-hand-side border (of width L2) to its neighbour on the right (Figure 6(b),
dark blue areas), and aggregates weights from the neighbour on its left (Figure 6(b), light blue
areas). Similar communications occurs along the vertical axis with the bottom and top neighbours
of the worker k (Figure 6(b), dark and light red areas, of width L1). A convolution is then applied
on each worker to all the weights locally available, followed by a selection operator to ensure
correct boundaries are used.

Distributed implementation of D2 The distributed implementation of D2 requires the same
communication pattern as D1, successively exchanging messages with width 1 along the hori-
zontal and vertical directions. The operator (D2,m,W2,m

)m∈E2,Rk
corresponds to a local discrete

gradient operator, using the boundaries retrieved during the communication step. Note that, for
k ∈ {1, . . . ,K} and k′ ∈ Rk, the set of vertices V2,(k,k′) to be communicated by the worker k′ to k is
such that V2,(k,k′) ⊂ V1,(k,k′). The total number of elements to be communicated in the algorithm
is thus reduced, as vertices required by the distributed implementation of D2 already need to be
communicated for D1.

Distributed implementation of D∗
2 The distributed implementation of D∗

2 requires the same
communication pattern as D∗

1, successively exchanging messages with width 1 along the horizontal
and vertical directions. A local adjoint discrete gradient operator is then applied on each worker k
to all the hyperedge weights available locally.

6.3 Experiments

The proposed approach is evaluated in terms of estimation quality and scalability on the decon-
volution problem of Section 6.1. Results are compared with those of the reference serial SGS
algorithm from [35].

6.3.1 Simulation setting

All the experiments have been conducted on a single computer equipped with two 2.1 GHz, 18-
core, Intel Xeon E5-2695 v4 series processors (36 CPU cores in total). In this setting, a worker
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corresponds to a process running on one CPU core. The proposed distributed sampler has been
implemented in Python using the mpi4py library [14]. Codes to reproduce the experiments will be
available at https://gitlab.cristal.univ-lille.fr/pthouven/dsgs upon acceptance of the
paper.

The proposed approach is compared with the SGS algorithm proposed in [35]. The latter relies
on a different splitting strategy compared to Section 6.1, using C = 3 operators (see [35] for
further details). In practice, MYULA transition kernels are leveraged to sample from conditional
distributions involving non-smooth potential functions. This choice of transition kernel and split-
ting strategy requires the proximity operator of the TV norm to be evaluated at each iteration of
the sampler, using a primal-dual algorithm [6].

Performance is assessed in terms of average runtime per iteration (with associated standard
deviation) and quality of both the minimum mean square error (MMSE) and maximum a posteriori
(MAP) estimators. The estimators are denoted xMMSE and xMAP, respectively. Reconstruction
quality is quantified with the structural similarity index (SSIM) [39] and the signal-to-noise ratio
(SNR) expressed in dB. Associated 95% credibility intervals (CIs) are also reported.

The sampler from [35] has been applied with κ = 1 and ((α2
c , β

2
c )1⩽c⩽3) = 16, where 1Q ∈ RQ

is a vector with entries all equal to 1. The proposed approach uses κ = 1 and ((α2
c , β

2
c )1⩽c⩽2) = 14.

For both algorithms, NMC = 5 × 103 samples have been generated to form xMMSE, xMAP and the
95% CIs, discarding Nbi = 2× 103 burn-in samples.

6.3.2 Experiment results

Estimation quality Using K = 1 worker, the proposed approach is compared with [35]. Ground
truth images with different maximum intensity levels xmax = max1⩽n⩽N xn have been considered.
The values xmax ∈ {20, 30} have been adopted for the following datasets:

(i) house image (N = 2562) with a normalized Gaussian kernel of size L ∈ {32, 72};

(ii) peppers image (N = 5122) with a normalized Gaussian kernel of size L ∈ {72, 152}.

The results reported in Table 3 show that the estimators formed with the proposed approach
have higher quality metrics compared to the method proposed in [35]. In addition, the computing
time required by the proposed sampler is between 1.5 and 2 times smaller than [35]. This dis-
crepancy comes from the difference in the splitting strategies considered by the two methods. In
particular, the splitting approach proposed in [35] requires the evaluation of the proximal operator
of the TV norm, obtained as the output of an iterative optimization algorithm. The difference in
splitting can also affect the quality of the resulting AXDA approximation, as can be seen in the
difference in quality of the estimators. The MMSE estimator reported in Figure 7 for [35] ap-
pears much smoother compared to the proposed algorithm for the same regularization parameter
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κ. Note that the uncertainty level of the proposed approach is slightly lower and appears more
diffuse than [35].

Dataset Algo. SNR(xMMSE) SNR(xMAP) SSIM(xMMSE) SSIM(xMAP) Time per iter. Runtime
(×10−2 s) (×102 s)

x
m
a
x
=

20

House [35] 18.37 15.08 0.60 0.20 5.59 (0.12) 1.68
(L = 32) Proposed 20.21 16.18 0.60 0.26 2.49 (0.09) 0.75

House [35] 18.00 14.92 0.60 0.20 8.52 (0.22) 2.56
(L = 72) Proposed 19.86 15.98 0.59 0.24 4.88 (0.13) 1.47

Peppers [35] 18.98 15.08 0.66 0.25 16.71 (0.38) 5.01
(L = 72) Proposed 20.52 16.07 0.67 0.30 7.73 (0.33) 2.32

Peppers [35] 18.90 15.07 0.66 0.25 36.68 (0.33) 11.01
(L = 152) Proposed 20.52 16.04 0.66 0.30 23.32 (0.40) 7.00

x
m
a
x
=

30

House [35] 18.23 16.46 0.64 0.29 4.71 (0.10) 1.41
(L = 32) Proposed 20.18 17.84 0.66 0.34 2.03 (0.05) 0.61

House [35] 17.89 16.25 0.64 0.28 7.01 (0.10) 2.10
(L = 72) Proposed 19.80 17.55 0.65 0.33 3.93 (0.10) 1.18

Peppers [35] 19.03 16.77 0.69 0.35 17.04 (0.45) 5.11
(L = 72) Proposed 20.71 17.96 0.71 0.40 10.26 (1.22) 3.08

Peppers [35] 19.00 16.72 0.69 0.35 36.81 (0.44) 11.04
(L = 152) Proposed 20.74 17.98 0.71 0.41 23.22 (0.34) 6.97

Table 3: Comparison between [35] and the proposed approach with K = 1. Datasets have been generated
from ground truth images with different maximum intensity xmax ∈ {20, 30} and convolution kernel sizes
L ∈ {3, 7, 15}. Results are reported in terms of estimation quality, average runtime per iteration (with
standard deviation) and total runtime.

Strong scaling experiment For this experiment, the behaviour of the proposed method is in-
vestigated with a varying number of workers K ∈ {1, 2, 4, 8, 16, 32}, using the maximum intensity
level xmax = 30 for the peppers dataset (N = 5122).

Tables 4 and 5 show the speedup for the proposed approach when L = 72 and L = 152,
respectively. In Table 5, a close to ideal speedup (i.e., close to the number of workersK) is observed
as L = 152. Note that speedup factors larger than the number of cores may occur, depending on
the cache state of the machine at the time the experiments have been run. In comparison, the ideal
runtime per iteration (i.e., neglecting communication time) for [35] for a client-server architecture
with K = 4 cores is 1.48×10−1 s when L = 72 (1.04×10−1 s for TV-related terms), and 3.41×10−1

s when L = 152 (1.02 × 10−1 s for TV-related terms). In both cases, the time required to update
the other splitting variables is almost 10 times lower. For this experiment, a client server approach
thus leads to a limited runtime performance, given the heterogeneity in the complexity of the
tasks assigned to workers. All these results illustrate the ability of the proposed sampler to provide
estimators at a fraction of the runtime of the serial implementation by using an increasing number
of cores K.
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Figure 7: Estimators and 95% credibility intervals for peppers, with xmax = 30 and L = 152.

Weak scaling experiment The behaviour of the proposed method is investigated when both
the size of the problem and the number of workers considered simultaneously increase. A fixed
problem size per worker is considered, using K ∈ {1, 4, 16}. Datasets derived from upsampled
versions of the house image are considered, with a maximum intensity level xmax = 30, using
(N,L) ∈ {(2562, 32), (5122, 72), (10222, 112)}. These numbers ensure that both the problem size M
and the associated number of workers K evolve in the same proportions over the configurations
tested.

Table 6 shows scaled speedup factors (that is, normalized by the factor of increase for K and
M) close to the number of cores used. Differences from a linear scaling may result from fixed
communication costs, representing a larger cost per iteration as L increases. Overall, the results
illustrate the runtime stability of the approach for a fixed problem size per worker. This experiment
efficiently processes a 1 million pixel image in about 2 minutes to obtain an estimator with the
associated credibility intervals.

7 Conclusion

In this paper, a distributed block-coordinate SGS has been introduced to efficiently solve large
scale imaging inverse problems. The approach leverages the approximate data augmentation
scheme AXDA [37, 28] to efficiently handle composite functions involving linear operators. A
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K SNR(xMMSE) SNR(xMAP) SSIM(xMMSE) SSIM(xMAP) Time per iter. Speedup Runtime
(×10−2 s) (×102 s)

1 20.71 17.96 0.71 0.40 10.26 (1.22) 1.00 3.08
2 20.70 17.94 0.71 0.40 5.33 (0.10) 1.93 1.60
4 20.72 17.93 0.71 0.40 4.35 (0.12) 2.36 1.30
8 20.72 17.95 0.71 0.40 2.51 (0.20) 4.08 0.75

16 20.73 17.97 0.71 0.41 1.23 (0.03) 8.32 0.37
32 20.71 17.91 0.71 0.40 0.60 (0.06) 17.04 0.18

Table 4: Results of the strong scaling experiment using a dataset with xmax = 30 and kernel size L = 72.
Performance is reported in terms of estimation quality, time per iteration and speedup.

K SNR(xMMSE) SNR(xMAP) SSIM(xMMSE) SSIM(xMAP) Time per iter. Speedup Runtime
(×10−2 s) (×102 s)

1 20.74 17.98 0.71 0.41 23.22 (0.34) 1.00 6.97
2 20.72 17.94 0.71 0.40 12.42 (0.11) 1.87 3.73
4 20.74 17.98 0.71 0.41 3.22 (0.10) 7.22 0.97
8 20.74 17.97 0.71 0.41 1.91 (0.06) 12.17 0.57

16 20.72 17.95 0.71 0.40 1.31 (0.11) 17.73 0.39
32 20.73 17.97 0.71 0.40 0.70 (0.07) 33.35 0.21

Table 5: Results of the strong scaling experiment using a dataset with xmax = 30 and kernel size L = 152.
Performance is reported in terms of estimation quality, time per iteration and speedup.

block-coordinate approach is adopted to split and distribute all the variables over multiple work-
ers. The proposed method exploits the hypergraph structure of the linear operators to design a
versatile distributed block-coordinate split Gibbs sampler.

Experiments on a supervised image deblurring problem show that the proposed approach forms
reliable estimates with quantified uncertainty in a significantly reduced amount of time, compared
to a state-of-the-art non-distributed version of the sampler from [35]. In particular, the proposed
sampler is shown to provide estimators at a fraction of the runtime of the serial implementation
by using an increasing number of workers K. Processing a 1 million pixel image using our current
Python implementation takes less than 2 minutes to obtain a good restoration with associated

(N,L,K) SNR(xMMSE) SNR(xMAP) SSIM(xMMSE) SSIM(xMAP) Time per iter. Scaled Runtime
(×10−2 s) speedup (×102 s)

(2562, 32,1) 20.18 17.84 0.66 0.34 2.03 (0.05) 1.00 0.61
(5122, 72,4) 23.86 19.56 0.74 0.34 2.13 (0.08) 3.81 0.64

(10222, 112,16) 27.55 20.65 0.81 0.33 3.56 (0.18) 9.13 1.07

Table 6: Results of the weak scaling experiment using a dataset with xmax = 30. The reconstruction quality
is reported with the time per iteration, the scaled speedup and the runtime.
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credibility intervals.

Note that the proposed distributed block-coordinate SGS is directly applicable to a much wider
class of applications than the restoration problems addressed in this work, such as image inpaint-
ing, super-resolution or reconstruction. Future works include the development of an asynchronous
version of the proposed approach to further speed up the inference process, while maintaining the
convergence of the Markov chain.

A SGS for multiple composite terms

A.1 AXDA for multiple composite terms

Following [37], AXDA can be generalized to address distributions of the form (1.3), which involve
multiple composite terms. We will use similar ideas to generalize the proposed approach, lever-
aging the approximation (1.4) associated with distribution (1.3). In [37], the authors show that
Proposition 2.1 holds in this context, under the same conditions on ϕc,αc and ψc,βc as (2.4)-(2.5).

Using an approach similar to the one described in Section 2.2, we can design a PSGLA
within Gibbs sampler to approximately draw samples from (1.4), generalizing Algorithm 2. The
resulting algorithm is reported in Algorithm 4, where (w(t))0⩽t⩽T is a sequence of indepen-
dent and identically distributed (i.i.d) standard Gaussian random variables in H, γ ∈]0, λ−1[,
λ = λh + ∥∑C

c=1Dc/αc∥2, and, for every c ∈ {1, . . . , C},

(∀c ∈ {1, . . . , C}) πc,αc(zc | vc,uc) ∝ exp (−gc(zc)− ϕc,αc(vc, zc − uc)) , (A.1)

with vc = Dcx.

Algorithm 4: Proposed multi-term SGS (with C ⩾ 1 composite terms).

Input: x(0) ∈ H, (z(0)
c ,u

(0)
c ) ∈ G2

c and (αc, βc) ∈]0,+∞[2 for c ∈ {1, . . . , C},
γ ∈

]
0,
(
λh + ∥∑C

c=1 Dc/αc∥2
)−1[

1 for t = 0 to T do

2 x(t+1) = proxγf

(
x(t) − γ∇h(x(t))− γ

C∑

c=1

D∗
c∇ϕc,αc

(·, z(t)
c − u(t)

c )(v(t)
c ) +

√
2γw(t)

)
;

3 for i = 1 to C do
4 v(t+1)

c = Dcx
(t+1),

5 z(t+1)
c ∼ πc,αc

(
zc | v(t+1)

c ,u(t)
c

)
;

6 u(t+1)
c ∼ N

( β2
c

α2
c + β2

c

(z(t+1)
c − v(t+1)

c ),
α2
c + β2

c

α2
cβ

2
c

I
)

;

Output: (x(t))1⩽t⩽T , (z(t)
c ,u

(t)
c )1⩽t⩽T,1⩽i⩽C
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Notation Definition
Given by

operator Dc user
ec = (ec,m)1⩽m⩽Mc Hyperedges of Hc ✓
ec,m ⊂ {1, . . . , N} Vertex indices in hyperedge m of Hc ✓
kc,m ∈ {1, . . . ,K} Worker associated with m-th hyperedge ec,m (chosen

by the user). kc,m must satisfy ec,m ∩ Vkc,m ̸= ∅
✓

Wc,m ⊂ {1, . . . ,K} \ {kc,m} Set of all workers but kc,m, containing vertices from
ec,m

✓

Wc,m ⊂ {1, . . . ,K} Wc,m = kc,m ∪Wc,m ✓
Vc,(k,k′) ⊂ Vk′ Indices of vertices sent from worker k′ to worker k ✓ ✓
VWc,m ⊂ {1, . . . , N} \ Vkc,m VWc,m =

⋃
k′∈Wc,m

V(kc,m,k′) the set of vertex indices
that will be communicated to worker kc,m from all
workers k′ ∈ Vc,m

✓ ✓

VWc,m
⊂ {1, . . . , N} VWc,m

= Vkc,m ∪ VWc,m the set of vertex indices nec-
essary to perform computations associated with kc,m

✓ ✓

Ec,k ⊂ {1, . . . ,Mc} Indices of hyperedges only containing vertices stored
on worker k

✓ ✓

Ec,(k,k′) ⊂ {1, . . . ,Mc} Indices of hyperedges containing vertices sent from
worker k′ to worker k

✓ ✓

Ec,Rk ⊂ {1, . . . ,Mc} Ec,Rk = ∪k′∈Rk
Ec,(k,k′) set of all hyperedges contain-

ing vertices communicated to worker k
✓ ✓

Ec,k ⊂ {1, . . . ,Mc} Ec,k = Ec,k ∪ Ec,Rk , such that (Ec,k)1⩽k⩽K is a parti-
tion of {1, . . . ,Mc}

✓ ✓

Table 7: Summary of the set notation used to define the hypergraph structure associated with the operators
Dc, for c ∈ {1, . . . , C}. This notation generalizes the one from Table 1.

A.2 Distributed multi-term SGS

This section introduces a distributed version of Algorithm 4, using the same approach as in Sec-
tions 4 and 5. We consider the distribution (1.3), with its AXDA approximation (1.4).

For every c ∈ {1, . . . , C}, let Gc = RMc such that Gc = Gc,1 × . . . × Gc,Mc , where for every
m ∈ {1, . . . ,Mc}, Gc,m = RMc,m , with M c =

∑Mc
m=1Mc,m. An element of Gc is denoted by uc =

(uc,m)1⩽m⩽Mc , where, for every m ∈ {1, . . . ,Mc}, uc,m ∈ Gc,m.

For every c ∈ {1, . . . , C}, the linear operator Dc = (Dc,m,n)1⩽m⩽Mc,1⩽n⩽N defines a hypergraph
structure Hc as described in Section 4. We thus consider C hypergraphs, distributed over the
same K workers. As in Section 4, the choice of the distribution is made by the user, depending
on the shape of the hypergraphs. The associated notation given in Tables 7 and 8 generalize
those introduced in Section 4. For every k ∈ {1, . . . ,K}, let Gc,k = ×m∈Ec,k

Gc,m such that Gc =

×1⩽k⩽KGc,k.

We assume that, for every c ∈ {1, . . . , C}, the functions gc, ϕc,αc and ψc,βc satisfy the same
assumptions as the functions g, ϕα, ψβ given in Theorems 2.2 and 4.4. Then, for every c ∈
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Notation Definition
Dc : H → Gc Dc = (Dc,m,n)1⩽m⩽Mc,1⩽n⩽N linear operator defining the ith hypergraph
uc,vc ∈ Gc Hyperedge weights
vc = (vc,m)1⩽m⩽Mc ∈ Gc

vc,k ∈ Gc,k vc,k = (vc,m)m∈Ec,k
hyperedge weights stored on worker k

Dc,m,k : Hc,k → Gc,m Dc,m,k = (Dc,m,n)n∈Vc,k , for m ∈ Ec,k, subpart of Dc stored on worker k,
associated with hyperedges containing vertices only on worker k

xc,(k,k′) ∈ ×
n∈Vc,(k,k′)

Hn xc,(k,k′) = (xn)n∈Vc,(k,k′) vertex values sent from worker k′ to k

Dc,m,(k,k′) : ×
n∈Vc,(k,k′)

Hn → Gc,m Dc,m,(k,k′) = (Dc,m,n)n∈Vc,(k,k′) , for m ∈ Ec,(k,k′), part of Dc stored on
worker k, related to hyperedges containing vertices overlapping k and k′

xWc,m
∈ ×

n∈VWc,m

Hn xWc,m
= (xn)n∈VWc,m

, concatenation of vertex values stored on worker

kc,m, and those sent from all workers k′ ∈ Wc,m to kc,m

Dc,m,Wc,m
: ×
n∈VWc,m

Hn → Gc,m Dc,m,Wc,m
= (Dc,m,n)n∈VWc,m

, for m ∈ Ec,Rk , subpart of (Dc,m,n)1⩽n⩽N

corresponding to vertices stored on worker kc,m and vertices overlapping
worker kc,m and other workers of Wc,m

Table 8: Notation used for the variables associated with the hypergraph induced by the operators Dc, for
c ∈ {1, . . . , C}. This notation generalizes the one provided in Table 2.

{1, . . . , C}, there exists a permutation ϱc : Gc → Gc such that, for every x ∈ H,

Dcx =
(
(Dc,m,n)1⩽n⩽N x

)
1⩽m⩽Mc

= ϱc







(Dc,m,k)m∈Ec,k
xk(

Dc,Wc,m
xWc,m

)
m∈Ec,Rk




1⩽k⩽K


 , (A.2)

and, for every uc ∈ Gc, we have

gc(uc) =

K∑

k=1

( ∑

m∈Ec,k

gc,m(uc,m)
)
,

ϕc,αc(Dcx,uc) =

K∑

k=1

( ∑

m∈Ec,k

ϕc,m,αc (Dc,m,kxc,k, uc,m) +
∑

m∈Ec,Rk

ϕc,m,αc

(
DVc,mxVc,m , uc,m

) )
,

ψc,βc(u) =

K∑

k=1

( ∑

m∈Ec,k

ψc,m,βc (uc,m)
)
.

Using this notation, Theorem 5.1 can be generalized to a multi-term setting as follows.

Proposition A.1 Assume that, for every c ∈ {1, . . . , C}, each operator Dc is split over workers
{1, . . . ,K} such that, for every k ∈ {1, . . . ,K}, (Dc,m,k)m∈Ec,k

is stored on worker k. Let, for every

k ∈ {1, . . . ,K}, x(0)
k ∈ Hk, z(0)

c,k ∈ Gc,k, and u
(0)
c,k ∈ Gc,k. Let (x(t))1⩽t⩽T and (z

(t)
c ,u

(t)
c )1⩽c⩽C,1⩽t⩽T

be samples generated by Algorithm 5, where γ ∈
]
0,
(
λh +

∑C
c=1(∥Dc∥2/α2

c)
)−1[, for every k ∈

{1, . . . ,K}, (w(t)
k )1⩽t⩽T is a sequence of i.i.d. standard Gaussian random variables in Hk. In addi-
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tion, for every c ∈ {1, . . . , C},

πc,k,αc (zc,k | vc,k,uc,k) ∝ exp

(
−

∑

m∈Ec,k

(gc,m(zc,m) + ϕc,m,αc(Dc,m,kxk, zc,m − uc,m))

−
∑

m∈Ec,Rk

(
gc,m(zc,m) + ϕc,m,αc(Dc,m,Wc,m

xWc,m
, zc,m − uc,m)

))
,

where, for every x ∈ H, vc,k = (vc,m)m∈Ec,k
= ϱc

(
(Dc,m,kxk)m∈Ec,k

(Dc,m,Wc,m
xWc,m

)m∈Ec,Rk

)
.

Then Algorithm 5 is equivalent to Algorithm 4.

Proof. The proof of Proposition A.1 is similar to the one of Proposition 5.1.

References

[1] H. H. BAUSCHKE AND P. L. COMBETTES, Convex analysis and monotone operator theory in
Hilbert spaces, Springer, New York, NY, 2017.

[2] A. BECK AND M. TEBOULLE, A fast iterative shrinkage-thresholding algorithm for linear inverse
problems, SIAM J. Imaging Sci., 2 (2009), pp. 183–202.

[3] J. BIRDI, A. REPETTI, AND Y. WIAUX., Sparse interferometric Stokes imaging under polarization
constraint (Polarized SARA), 478 (2018), pp. 4442–4463.

[4] J. BOLTE, S. SABACH, AND M. TEBOULLE, Proximal alternating linearized minimization for
nonconvex and nonsmooth problems, Math. Program., 1-2 (2014), pp. 459–494.

[5] X. CAI, M. PEREYRA, AND J. D. MCEWEN, Uncertainty quantification for radio interferometric
imaging – I. Proximal MCMC methods, 480 (2018), pp. 4154–4169.

[6] A. CHAMBOLLE AND T. POCK, A First-Order Primal-Dual Algorithm for Convex Problems with
Applications to Imaging, J. Math. Imaging Vision, 40 (2011), pp. 120–145.

[7] E. CHOUZENOUX, J.-C. PESQUET, AND A. REPETTI, Variable metric forward–backward algo-
rithm for minimizing the sum of a differentiable function and a convex function, J. Optim.
Theory Appl., 162 (2014), pp. 107–132.

[8] E. CHOUZENOUX, J.-C. PESQUET, AND A. REPETTI, A block coordinate variable metric forward-
backward algorithm, 66 (2016), pp. 457–485.

[9] P. L. COMBETTES AND J. ECKSTEIN, Asynchronous block-iterative primal-dual decomposition
methods for monotone inclusions, Math. Program., 168 (2018), pp. 645–672.

38



Algorithm 5: Proposed distributed SGS with multiple composite terms C > 1.

1 for k = 1 to K do
2 for k′ ∈ Sk do
3 Send (x

(0)
n )n∈∪C

c=1Vc,(k′,k)
to worker k′;

4 for k′ ∈ Rk do
5 Receive (x

(0)
n )n∈∪C

c=1Vc,(k,k′)
from worker k′;

6 for c = 1 to C do

7 v
(0)
c,k = ϱc

(
(Dc,m,kx

(0)
k )m∈Ec,k

(Dc,m,Wc,m
x
(0)

Wc,m
)m∈Ec,Rk

)
;

8 for t = 0 to T do
9 for k = 1 to K do

10 for c = 1 to C do

11 (d
(t)
c,m)m∈Ec,k
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(
ϕ′c,m,αi

(·, z(t)c,m − u
(t)
c,m)(v

(t)
c,m)

)
m∈Ec,k

;

12 for k′ ∈ Rk do

13 d̃
(t)

(k′,k) =

C∑
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∑

m∈Ec,(k′,k)

D∗
c,m,k′d(t)c,m;

14 Send d̃
(t)
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15 for k′ ∈ Sk do

16 Receive d̃
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(t)
k =
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m∈Ec,k
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∑

k′∈Sk
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(t)
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(t+1)
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(
x
(t)
k − γ∇hk(x(t)

k )− γδ
(t)
k +

√
2γw

(t)
k

)
;

19 for k′ ∈ Sk do
20 Send (x

(t+1)
n )n∈∪C

c=1Vc,(k′,k)
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21 for k′ ∈ Rk do
22 Receive (x

(t+1)
n )n∈∪C

c=1Vc,(k,k′)
from worker k′;

23 for c = 1 to C do

24 v
(t+1)
c,k = ϱc

(
(Dc,m,kx

(t+1)
k )m∈Ec,k

(Dc,m,Wc,m
x
(t+1)

Wc,m
)m∈Ec,Rk

)
;

25 z
(t+1)
c,k ∼ πc,αc,k

(
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(t)
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;
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(
β2
i

α2
i+β2

i
(z

(t+1)
c,k − v

(t+1)
c,k ),

α2
i+β2

i

α2
iβ

2
i
I
)

;
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