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Abstract

With the successful impact of the NASA Double Asteroid Redirection Test (DART) spacecraft in the Didymos–
Dimorphos binary asteroid system, we provide an initial analysis of the post-impact perturbed binary asteroid
dynamics. To compare our simulation results with observations, we introduce a set of “observable elements”
calculated using only the physical separation of the binary asteroid, rather than traditional Keplerian elements.
Using numerical methods that treat the fully spin–orbit-coupled dynamics, we estimate the system’s mass and the
impact-induced changes in orbital velocity, semimajor axis, and eccentricity. We find that the changes to the
mutual orbit depend strongly on the separation distance between Didymos and Dimorphos at the time of impact. If
Dimorphos enters a tumbling state after the impact, this may be observable through changes in the system’s
eccentricity and orbit period. We also find that any DART-induced reshaping of Dimorphos would generally
reduce the required change in orbital velocity to achieve the measured post-impact orbit period, and will be
assessed by the ESA Hera mission in 2027.

Unified Astronomy Thesaurus concepts: Asteroid dynamics (2210); Asteroid satellites (2207); Near-Earth objects
(1092); Small Solar System bodies (1469); Gravitational interaction (669)

1. Introduction

In the first planetary defense test of a kinetic impactor, the
NASA Double Asteroid Redirection Test (DART) spacecraft
impacted Dimorphos, the secondary in the Didymos binary
asteroid system, on 2022 September 26 (Daly et al. 2023). The
impact altered the trajectory of Dimorphos around Didymos,
reducing the orbit period by around 33 minutes (Thomas et al.
2023). Initial analysis of observations of the system reveals a
reduction in the secondary’s tangential (along-track) comp-
onent of orbital velocity by about 2.7 mm s−1 (Cheng et al.
2023). This corresponds to a momentum enhancement factor in
the range of 2.2–4.9, depending on the unmeasured mass of
Dimorphos, indicating the ejecta launched by the impact had a
larger contribution to the change in momentum than the actual
DART impact itself (Cheng et al. 2023). The analysis by Cheng
et al. (2023) serves as a good first look into the post-impact
dynamics of Didymos, which will be measured accurately in
detail by the ESA Hera mission in 2027 (Michel et al. 2022).

However, Cheng et al. (2023) only provides a high-level
analysis of the impact-induced change in velocity and does not
document fully the post-impact orbit dynamics. In this work,
we expand on their analysis to characterize in detail the post-
impact orbit by calculating the resulting changes to the
system’s mutual semimajor axis and eccentricity. We also
explore how perturbations affect a binary asteroid orbit in
general.
Near-Earth binary asteroids usually experience significant

spin–orbit coupling due to the proximity and irregular shapes
of the two bodies, a configuration commonly referred to as the
full two-body problem (F2BP). Equilibrium states of the F2BP
have been studied extensively in the literature (Scheeres 2006;
Bellerose & Scheeres 2008; Jacobson & Scheeres 2011;
McMahon & Scheeres 2013; Moeckel 2018), but there are
few studies on the perturbed dynamics. Of the studies of
perturbed binary dynamics, many focus on the rotational
dynamics of the secondary: McMahon & Scheeres (2013),
Wang & Hou (2021), Naidu & Margot (2015), and Jafari-
Nadoushan (2023) in two dimensions and Agrusa et al. (2021),
Ćuk et al. (2021), Quillen et al. (2022), and Tan et al. (2023) in
three dimensions. However, studies on the mutual orbit
dynamics of perturbed systems are lacking. Fahnestock &
Scheeres (2008) simulated the near-Earth binary asteroid
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(66391) Moshup (formerly 1999 KW4) in a nonequilibrated,
nonplanar orbit. Ćuk & Nesvorny (2010) also investigated how
secondary libration affects the mutual orbit of a binary system.
Besides these, the majority of work on perturbed binary
asteroid orbit dynamics was done in preparation for the DART
impact (Meyer et al. 2021b; Richardson et al. 2022). What the
literature lacks is a comprehensive outline of the mutual orbit
dynamics of a system perturbed out of an equilibrium, which
we attempt to provide here.

Following previous analyses of the Didymos system and
DART impact, we model the fully coupled dynamics using the
General Use Binary Asteroid Simulator (GUBAS; Davis &
Scheeres 2020), which has been benchmarked against similar
F2BP solvers (Agrusa et al. 2020; Ho et al. 2023). GUBAS uses
inertia integrals in a recursive algorithm to efficiently calculate
the mutual potential and its derivatives between two arbitrary
rigid bodies (Hou et al. 2017). Recently, GUBAS was used to
estimate the DART impact’s momentum enhancement factor
(Cheng et al. 2023), and we will follow a similar approach as
that work. We will provide a thorough dynamical analysis of
the expected changes to the Didymos system’s mutual orbit as
a result of the DART impact.

The main contributions of this work are as follows. We
introduce a set of so-called “observable elements” to help
bridge the gap between observations of binary asteroids and
numerical models. We also provide a general discussion of
perturbed binary asteroid dynamics in which we define
analytical expressions for a perturbation sufficient enough to
push a binary asteroid out of its equilibrium configuration, and
discuss the applicability of the classical averaged Lagrange
planetary equations (LPEs) to both an equilibrated and
perturbed binary asteroid. Specifically to Didymos and the
DART impact, we expand upon the work by Daly et al. (2023)
and Cheng et al. (2023) in their calculation of the system’s
mass and the impact-induced change in orbital velocity,
respectively. We then calculate the resulting change in mutual
semimajor axis and eccentricity, which have not yet been
discussed in the literature. We also discuss how secondary
attitude instabilities, mass loss, and reshaping can affect the
mutual orbit dynamics of the post-impact Didymos system.

This paper first presents a general discussion of the F2BP
using both numerical and analytical techniques in Section 2. In
Section 3, we present our application to the DART impact and
show how the mutual orbit was changed as a result of the
impact. In Section 4, we discuss the implications of a tumbling

secondary on the orbit dynamics. We then discuss the
implications of Dimorphos mass loss and reshaping in
Section 5. We conclude in Section 6.

2. The Full Two-body Problem

2.1. Problem Setup

The latest system parameters for the pre- and post-impact
Didymos system, which we use in our numerical simulations, are
given in Table 1. The notation used for these parameters and
others throughout this work is summarized in Table 2 in the
Appendix. In calculating the axis ratios for Didymos and
Dimorphos, we use the shape extents defined in Daly et al.
(2023). For a conservative approach, we triple the uncertainties
in the extents to ensure we sample the full 3σ parameter space.
We limit a/b > 1.01 for both shapes to avoid cases where b> a,
which corresponds to an unstable pre-impact equilibrium
(Bellerose & Scheeres 2008), or a= b, in which the system
decouples and the spin–orbit equilibrium vanishes. Following
Cheng et al. (2023), we employ a suite of Monte Carlo
simulations that sample over the uncertainties in the pre- and
post-impact orbits as well as the uncertainties in the body shapes.
Note the considerable uncertainty on the pre-impact

semimajor axis, which is equal to the separation between
Didymos and Dimorphos at the impact time under the circular
orbit assumption. While DART imaged the system before the
impact, there are significant uncertainties in the positions of the
bodies’ centers of mass since the internal density distributions
are unknown, which manifests in a large uncertainty in the pre-
impact semimajor axis. Thus, the pre-impact separation is
instead measured with radar data in Thomas et al. (2023). This
is equal to the pre-impact semimajor axis in the circular pre-
impact orbit assumption.
In the simulations, we first numerically determine the

required density of the primary to achieve an equilibrated,
randomly selected pre-impact system in a manner similar to
previous work (Meyer et al. 2021b; Agrusa et al. 2021; Cheng
et al. 2023). We then iterate an instantaneous Δv on the
secondary’s orbital velocity until the system converges to the
post-impact orbit period. We include radial and out-of-plane
Δv components such that the full Δv vector is anywhere within
30° of the orbit tangent direction, consistent with the impact
and ejecta geometries discussed in Daly et al. (2023) and
Cheng et al. (2023), respectively. One difference between our
algorithm and that of Cheng et al. (2023) is how we sample the

Table 1
Parameters for the Didymos Binary Asteroid System

Parameter Value Uncertainty/Note Source

Pre-impact orbit period (hr) 11.921 48 ±0.000044 Naidu et al. (2022)
Post-impact orbit period (hr) 11.372 ±0.0057 Thomas et al. (2023)
Pre-impact semimajor axis (m) 1206 ±35 Thomas et al. (2023)
Pre-impact eccentricity 0 Assumed Naidu et al. (2022)
Primary diameter (m) 761 ±26 Daly et al. (2023)
Secondary diameter (m) 151 ±5 Daly et al. (2023)
Primary a/b axis ratio 1.01–1.11 Uniform (3σ) Daly et al. (2023)
Primary b/c axis ratio 1.21–1.56 Uniform (3σ) Daly et al. (2023)
Secondary a/b axis ratio 1.01–1.13 Uniform (3σ) Daly et al. (2023)
Secondary b/c axis ratio 1.32–1.69 Uniform (3σ) Daly et al. (2023)
Secondary density (kg m−3) 1500–3300 Uniform (3σ) Daly et al. (2023)

Note. Uncertainties are reported as 1σ Gaussian unless noted as a uniform distribution. The secondary diameter and axis ratios are from the pre-impact body, and
truncated at a lower limit of a/b = 1.01.
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asteroid shapes. Rather than only using the shape extents
provided by Daly et al. (2023), we first sample the volume-
equivalent diameter, then determine the ellipsoidal shape by
sampling the axis ratios. While the axis ratios are calculated
from the shape extents in Daly et al. (2023), the volume of
Dimorphos is always self-consistent with the estimated
volumes.

We adopt many of the same assumptions as Cheng et al.
(2023). Namely, we assume uniform density distributions of
the asteroids and an equilibrated pre-impact orbit with zero
eccentricity and zero secondary libration. Richardson et al.
(2022) and Cheng et al. (2023) outline justifications for these
assumptions. In this work, we ignore any torque applied to
Dimorphos from the impact, as we are mainly concerned with
the orbital dynamics. However, future studies considering the
libration and stability of the secondary should include this
quantity. We also examine the effects of potential mass loss
and reshaping of Dimorphos, whereas Cheng et al. (2023)
assumed no mass loss or reshaping.

In our GUBAS simulations, both Didymos and Dimorphos
are modeled as triaxial ellipsoids with semiaxes a � b � c. We
use a second-degree and -order gravity expansion between
these bodies. Given the uncertainties in the body shapes and
their unknown internal mass distributions, there is no
advantage to using a higher-order gravity expansion.

2.2. Equilibrium Dynamics

The F2BP is driven by spin–orbit coupling, where the bodies’
spins and the orbit dynamics are inseparable (Duboshin 1958;
Maciejewski 1995). The equilibrium configurations of the F2BP
have been studied extensively (Scheeres 2006, 2009; McMahon
& Scheeres 2013; Moeckel 2018). In the minimum-energy stable
equilibrium configuration, the minor principal axes of both
bodies are aligned and the orbit rate is constant. For our
purposes, we are concerned with the singly synchronous
configuration, where the primary is rotating rapidly and the
secondary is tidally locked with a constant orbit rate, which is
common among near-Earth binary asteroids (Pravec et al. 2016).
While this is not the true, minimum-energy doubly-synchronous
equilibrium, the rapid rotation of the primary tends to decouple
its spin from the system and the singly synchronous state can be
considered an equilibrium state. This is equivalent to reducing
the problem to the case where the primary is axisymmetric. The
equilibrium orbit rate of such a system is (Scheeres 2009;
McMahon & Scheeres 2013)


r

I I I I I

r
1

3 2

2
1

A z A xy B x B y B z

3

, , , , ,

2
⎜ ⎟
⎛
⎝

⎞
⎠

( ¯ ¯ ¯ ¯ ¯ )
( )*q

m
= +

- - + +

for separation distance r, where the bar indicates the mass-
normalized principal moments of inertia, the subscript A refers to
the primary and B to the secondary, and x, y, and z refer to the
minimum, intermediate, and major principal axes, respectively.
For the axisymmetric primary in our analytic model, xy is used as
there is no difference between x and y. While the equilibrium is a
physically circular orbit (i.e., the separation distance r does not
change), the orbit rate is not equal to that of a circular Keplerian
orbit. Thus, in the equilibrium F2BP the secondary is trapped at
either periapsis or apoapsis while the Keplerian elliptical orbit
precesses at the equilibrium orbit rate (Scheeres 2009). Specifi-
cally, if I I I I I2A z B y B z A xy B x, , , , ,¯ ¯ ¯ ¯ ¯+ + > + , then  r3*q m> , the

secondary is trapped at periapsis, and the orbit precesses faster
than the Keplerian circular orbit rate. Alternatively, if IA z,¯ +
I I I I2B y B z A xy B x, , , ,¯ ¯ ¯ ¯+ < + , we have the opposite case: the
secondary is trapped at apoapsis and the orbit precesses slower
than the Keplerian circular orbit rate. In this work, we focus on
the former, where the secondary is trapped at periapsis, but in
either case the true anomaly is constant (equal to 0 or π) while the
argument of periapsis tracks the secondary. This implies the orbit
will have nonzero Keplerian eccentricity at equilibrium, despite
being physically circular. For a system trapped at periapsis, the
equilibrium Keplerian eccentricity is calculated from the orbit
angular momentum and energy as (Scheeres 2009; McMahon &
Scheeres 2013)

e
I I I I I
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3 2

2
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A z A xy B x B y B z
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while the equilibrium Keplerian semimajor axis is
(Scheeres 2009; McMahon & Scheeres 2013)
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This semimajor axis is larger than the separation distance in the
physically circular orbit owing to the spin–orbit coupling as
long as I I I I I2A z B y B z A xy B x, , , , ,¯ ¯ ¯ ¯ ¯+ + > + , i.e., the secondary is
trapped at periapsis.

2.3. Observable Elements

Since the Keplerian semimajor axis and eccentricity are not
accurate descriptions of what an external observer would see, it
is convenient to define so-called “observable elements” that are
calculated using only the separation distance of the mutual orbit
over an averaging window (Meyer et al. 2021a). These
elements serve a similar purpose as geometric orbit elements
(Borderies-Rappaport & Longaretti 1994; Renner &
Sicardy 2006) but are distinct as they are intended to be
analogous to real-world observations. Furthermore, geometric
elements make no consideration for the nonspherical shape of
the secondary, which is important in binary asteroid dynamics.
The observable semimajor axis is defined as

a
R R

2
, 4

a t p t
obs

, , ( )=
+

where Ra,t is the maximum separation of the two asteroids over
a time period t, and similarly Rp,t is the minimum separation
over the same time. The observable eccentricity is defined in a
similar fashion:

e
R R

R R
. 5

a t p t

a t p t
obs

, ,

, ,
( )=

-

+

These observable elements are more indicative of the physical
behavior of the system, with the drawback of being more
similar to an averaged element than an osculating Keplerian
element, as multiple data points are required to calculate one
instance of the observed element. To calculate the observable
elements, we use a window approximately equal to the average
orbit period. Henceforth, we will refer to the observable
semimajor axis and eccentricity as a and e without subscripts,
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respectively. Keplerian elements will be referred to with the
subscript “Kep.”

To illustrate the utility of these observable elements, we
compare Keplerian, geometric, and observable elements for an
equilibrated binary asteroid. Figure 1 shows this comparison
for the semimajor axis and eccentricity. Note that the
equilibrium configuration has a constant separation distance
between the primary and secondary. Figure 1 shows how the
Keplerian elements give an eccentric orbit with a semimajor
axis larger than the separation distance. The geometric
elements are an improvement, as they take into account the
oblateness of the primary, but their lack of consideration of the
secondary’s shape also leads to some errors. The observable
elements show an observable semimajor axis equal to the
separation distance as the observable eccentricity is equal to 0.

The departure from Keplerian dynamics means Kepler’s
third law is no longer applicable and the definition of the orbit
period becomes ambiguous for close binary asteroids. Follow-
ing the theme of paralleling observations, we define the
“stroboscopic orbit period” as the time between successive
crossings of the secondary through an arbitrary inertial plane
with normal vector perpendicular to the system’s total angular
momentum (Meyer et al. 2021b). This mimics real-world light-
curve observations, which calculate the orbit period using
mutual event timings. In an equilibrium configuration, this
period is constant and can be calculated analytically using
Equation (1). However, when the system is perturbed, the
stroboscopic orbit period can fluctuate, driven by the preces-
sion of the orbit and the libration of the secondary (Meyer et al.
2021b).

We note that the estimated pre-impact semimajor axis and
eccentricity values reported in Table 1 correspond to the
observable semimajor axis and observable eccentricity. The
purpose of these observable elements is to facilitate the
conversion between observations—which can only deal with
the physical positions of the asteroids—and numerical
simulations.

2.4. Perturbed Dynamics

While the F2BP equilibrium has been studied extensively in
past work, we focus on perturbations to this equilibrium.
Specifically, there is a transition point where the true anomaly
switches from librating about zero to actually tracking the
secondary. At this point there is a sharp decrease in the rate of
precession of the argument of periapsis where it abruptly
changes from precessing at the orbit rate to precessing at a rate
dominated by the oblateness of the primary and elongation of
the secondary (Borderies & Yoder 1990; Fahnestock &
Scheeres 2008). Here we calculate the perturbation to the orbit
necessary to reach this transition point.
The equilibrium spin rate corresponds to an equilibrium

specific orbital angular momentum:

h r . 62 ( )* *q=

To calculate the perturbation needed to push the system out
of equilibrium and allow the true anomaly to track the
secondary, we can substitute the mean motion into a perturbed
form of Equation (6):

h h r 7
r

2
3 ( )* + D = m

and solve for the perturbation Δh:

h r h . 8
r

2
3 ( )*D = -m

We compare this analytical result to numerical GUBAS

simulations of an orbit perturbation to an equilibrated
Didymos. The numerical simulations begin with the nominal
Didymos system, ignoring any uncertainties in Table 1 for
now, then apply a tangential ΔvT to perturb the orbit. Over the
simulation time we record the maximum true anomaly value.
The results are shown in Figure 2, where the maximum true
anomaly f is plotted as a function of the perturbation Δh. As
the magnitude of Δh increases, the maximum allowable true
anomaly increases. Outside of a perfect equilibrium where
f= 0, the true anomaly oscillates around 0 until the critical
perturbation pushes the maximum true anomaly over 90°,
allowing it to circulate and track the secondary. At this point
there is a discontinuity where the maximum true anomaly is
180°. In Figure 2, the vertical dashed line corresponds to the

Figure 1. Comparison between Keplerian, geometric, and observable elements
for an equilibrated binary asteroid, showing the semimajor axis (top) and
eccentricity (bottom). The physical parameters are shown as a black dashed
line. While geometric elements are an improvement over Keplerian, the
observable elements do the best job of describing the physical system.

Figure 2. The maximum true anomaly as a function of the change in specific
orbital angular momentum for an orbit perturbation. There is a discontinuity
where the perturbation to the orbit changes the orbital angular momentum
enough to push the system out of an equilibrium and the true anomaly switches
from librating to circulating.
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analytic value calculated from Equation (8) using the nominal
Didymos system (ignoring uncertainties). We see excellent
agreement between this analytic value and the numerical
simulations, which are plotted as individual data points.

This perturbation corresponds to decreasing the orbit period,
but it is also possible to perturb the orbit out of an equilibrium
by increasing the orbit period. This approach requires more
consideration. Note that setting 

r3q = m is equivalent to

decreasing the semimajor axis from the equilibrium value aKep*
to the separation distance r, which is the equilibrium
observable semimajor axis. For the opposite perturbation, we
instead increase the observable semimajor axis to be equal to
the Keplerian semimajor axis. In other words, we set


r r a r

2 1

2
. 9

2
Kep

⎛

⎝
⎜

⎞

⎠
⎟ ( )

*
q

m
= -

-

This corresponds to a perturbation of

h r
r r a r

h
2 1

2
. 102

2
Kep

⎛

⎝
⎜

⎞

⎠
⎟ ( )

*
*

m
D = -

-
-

Figure 3 shows the full range of perturbations, both
increasing and decreasing the orbit period. Numerical simula-
tions calculated with GUBAS are plotted as data points along
with the analytical solutions from Equations (8) to (10) as
dashed lines. We see good agreement between these analytical
solutions and the numerical results. Thus, we have established
novel analytical equations to calculate the critical perturbation
to the orbit necessary to break out of an equilibrium
configuration and allow the true anomaly to track the secondary
rather than librate about 0°. This perturbation is equivalent to
changing the binary semimajor axis by a rKep( )* - , which is
illustrated in Figure 4.

2.5. Lagrange Planetary Equations

In their analysis of the binary asteroid (66391) Moshup,
Fahnestock & Scheeres (2008) developed LPEs for a binary
system using a second-degree mutual potential. LPEs can

provide a simple alternative to the full GUBAS integration.
These equations have the advantage of an analytical method to
calculate quantities such as the orbit precession without relying
on more expensive numerical simulations. We do not
reproduce the full set of LPEs here, but refer the reader to
Equations (44)–(48) in Fahnestock & Scheeres (2008). Because
the Didymos mutual orbit is assumed planar (i.e., the orbit
angular momentum is aligned with the total angular momen-
tum), we use the longitude of periapsis rather than the argument
of periapsis and the longitude of the ascending node to avoid
the singularity in the longitude of the ascending node. The
longitude of periapsis is defined as the sum of these two
classical Keplerian angles (w̄ w= + W). For a planar system,
the relevant LPEs simplify to
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First, we apply the averaged LPEs to an equilibrated
Didymos system and compare to numerical simulations; see
Figure 5. While there is agreement for the Keplerian semimajor
axis and eccentricity, which remain constant, the LPEs do not
correctly capture the average behavior of the geometric angles.
Specifically, in the LPE solution the longitude of periapsis
precesses and the true anomaly circulates, while in reality the
true anomaly librates and the longitude of periapsis circulates.
Thus, the LPEs are a poor representation of the dynamics when
the true anomaly is librating.
Compare this to an excited system, where there is better

agreement between the LPEs and GUBAS solutions, as seen in
Figure 6. While the LPEs correctly compute the average values

Figure 3. The maximum true anomaly as a function of the change in specific
orbital angular momentum for an orbital perturbation. The discontinuities
correspond to perturbations sufficient to push the orbit out of equilibrium and
allow the true anomaly to track the secondary. The vertical dashed lines
correspond to the analytical solutions from Equation (8) (left, indicating a
decrease in the orbit period) and Equation (10) (right, indicating an increase in
the orbit period). Numerical simulations are plotted as individual points, and
show strong agreement with the analytical formulae.

Figure 4. The maximum true anomaly as a function of the change in both the
observable and Keplerian semimajor axis. This illustrates how pushing a
system out of equilibrium is equivalent to changing the semimajor axis by the
difference between the observable and Keplerian values.
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of semimajor axis and eccentricity, they do not capture the
fluctuations that these variables experience. In the perturbed
system, the LPEs correctly calculate the behavior of the
longitude of periapsis, where this angle precesses. For the true
anomaly, again the LPEs correctly show this angle circulating,
although with a period slightly different from the numerical
solution. Nonetheless, the LPEs are an effective approach for
quickly calculating the precession period without the need for
expensive simulations, as long as the system is not in an
equilibrium state. One shortfall of the LPEs is they ignore any
triaxiality of the secondary (Fahnestock & Scheeres 2008). For
an oblate spheroidal shape like Dimorphos, as derived from
DRACO images (Daly et al. 2023), this is a fine assumption,
but for more elongated secondaries experiencing libration, the
LPEs will incorrectly calculate the precession rate.

The cause of the LPEs’ shortfalls for the relaxed system
stems from their definition. The LPEs are calculated by
averaging over the mean anomaly. However, this is not
appropriate for a system in equilibrium, as the mean anomaly
remains equal to zero. Rather than using LPEs for a system in
equilibrium, one can instead simply use Equation (1) in place
of  .w̄ Once a system is perturbed out of the equilibrium and the
mean anomaly is allowed to circulate, the LPEs become more
accurate. However, for a significantly triaxial secondary
experiencing libration, a higher-fidelity model should be used,
for example the analytic correction defined in Borderies &
Yoder (1990) or the semi-analytic model in Ćuk & Nesvorny
(2010). Given the limited scope of applicability of the averaged
LPEs, we caution their use in the analysis of binary asteroid
dynamics.

3. Effects of the DART Impact

We now focus on the actual DART impact and how it
changed the Didymos system mutual orbit. We can calculate
the change in specific orbital angular momentum to predict if
the true anomaly should be librating or circulating. Assuming a
circular pre-impact orbit and a planar, head-on impact with the
secondary, the impulsive change in specific orbital angular
momentum is easily calculated:

h r v . 15T ( )D = D

For ΔvT = −2.7 mm s−1 (Cheng et al. 2023), the change in
specific orbit angular momentum is about −3.2 m2 s−1. While
the actual impact conditions are more complicated than this
simple analysis, this value is sufficiently beyond the circulation
threshold of roughly −2 m2 s−1 from Figure 2 and Equation (8)
that we can confidently predict that the DART impact changed
the system’s momentum sufficiently to push it out of an
equilibrium state. Furthermore, since the DART impact
provided a sufficient perturbation to break the equilibrium
configuration, the LPEs can provide an accurate way to
calculate the apsidal precession rate of the post-impact orbit.
Under a uniform density assumption, the apsidal precession
rate of the orbit varies roughly between 8° and 20° day−1

considering the system uncertainties, with a large dependence
on the J2 gravity coefficient of Didymos. With the range of
plausible Didymos shapes from Table 1, its J2 coefficient
ranges from about 0.07 to 0.11, again under a uniform mass
density assumption. Mass heterogeneities allow for a wider

Figure 5. The semimajor axis (top left), eccentricity (bottom left), longitude of periapsis (top right), and true anomaly (bottom right) of a numerical GUBAS simulation
compared to the analytical LPE solution for an equilibrated system. The LPE solution shows the true anomaly circulating, while in reality this angle should be zero and
the longitude of periapsis should be circulating.
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range of possible values for Didymos’s J2 and the mutual orbit
apsidal precession rate.

To estimate the changes in Dimorphos’s orbit, we use
GUBAS in Monte Carlo simulations to model the system
dynamics. We follow the approach from Cheng et al. (2023),
randomly drawing from the independent uncertainties in the
system parameters listed in Table 1. Each Monte Carlo
realization uses numerical routines to draw one set of possible
parameters from the distributions listed in Table 1, then uses
the randomly selected pre-impact orbit period to calculate the
system’s mass for an initially (physically) circular orbit. The
algorithm then iterates the change in velocity (Δv) to match the
randomly selected post-impact orbit period. We also apply a
random radial and out-of-plane component, equal to anywhere
between 0% and 50% of the in-plane ΔvT, to account for the
uncertainty in the full three-dimensional Δv caused by the
ejecta cone. This is equivalent to the full three-dimensional Δv
vector being anywhere within 30° of the orbit tangent direction,
consistent with estimates from Cheng et al. (2023).

For our numerical Monte Carlo analysis of the post-impact
dynamics, we first outline our approach to calculating the
system mass. We then calculate the change in velocity caused
by the DART impact. Next, we show the resulting change in
mutual orbit semimajor axis. Lastly, we discuss the change in
eccentricity.

3.1. Mass Calculation

An important advantage inherent to binary asteroids is the
observability of the system’s mass through measurements of
the mutual orbit period. Unfortunately, due to spin–orbit
coupling, the classical Keplerian approach is not applicable for

a close, irregularly shaped binary like the Didymos system.
Instead, we use a numerical secant-search algorithm similar to
that used in Agrusa et al. (2021). In the secant search, the
system bulk density at iteration n is

T
T T

, 16n n n
n n

n n
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1 2

1 2
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where the error function ΔT is simply the difference between
the measured orbit period and the average stroboscopic orbit
period from simulations. Starting from the Keplerian mass for
the initial guess, we iterate the solution until this error function
is smaller than the uncertainty of the orbit period. This is the
approach used in the Monte Carlo simulations for the mass
calculation considering the F2BP dynamics. The mass results
are plotted as a function of the pre-impact observable
semimajor axis in Figure 7. This is also compared to the mass
calculated using purely two-body Keplerian dynamics. The
Keplerian mass is systematically larger than the true F2BP
mass, primarily due to the oblateness of Didymos.
The error from using the Keplerian mass is shown in

Figure 8, which ranges from around 1% to 3% relative to the
“true” mass calculated from the F2BP dynamics. This
highlights the need to consider the aspherical shapes and
spin–orbit coupling in estimating the mass of close, irregular-
shaped binary asteroids. However, as a rough first-order
estimate for Didymos, the true system mass is around 98%
the calculated Keplerian mass.
As a convenient quantity for comparison with other asteroids,

we calculate the bulk density of the system. This is shown as a
function of the pre-impact observable semimajor axis in Figure 9.

Figure 6. The semimajor axis (top left), eccentricity (bottom left), longitude of periapsis (top right), and true anomaly (bottom right) of a numerical GUBAS simulation
compared to the analytical LPE solution for a perturbed system. Because the system is perturbed, both GUBAS and the LPE correctly show the true anomaly circulating
and the longitude of periapsis precessing.
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Note this is the density the system would have if the primary and
secondary had equal, homogeneous densities. The bulk density is
about 2.4± 0.3 g cm−3 (1σ), which matches results from Daly
et al. (2023), but we highlight the dependency on the pre-impact
observable semimajor axis. Based on the Keplerian relationship,
we fit the bulk density as a cubic function of the semimajor axis:

2.44 0.04 g cma

1206 m

3 30( )r » - - , where a0 is the pre-impact
observable semimajor axis in meters. However, there is
considerable uncertainty around this line, largely due to the
bodies’ volume uncertainties, and this model should only be used
as a rough approximation. Furthermore, the fit only applies to
ranges of pre-impact observable semimajor axis used here and
should not be extrapolated.

3.2. Change in Velocity

Next, we calculate the along-track ΔvT necessary to achieve
the observed post-impact orbit period. While we include three-

dimensional components in our analysis, we find essentially
only the along-track change in velocity has an effect on the
orbit period. As a function of the pre-impact observable
semimajor axis, the along-track ΔvT is plotted in Figure 10.
Based on the Keplerian relationship, we fit ΔvT as a function of
the square root of the pre-impact semimajor axis:

v 5.86 3.19 mm sT
a

1206 m
10D » - + - , where again a0 is the

pre-impact observable semimajor axis in meters. Again, this
numerical fit only applies to the range of data shown in
Figure 10 and should not be extrapolated out of this domain.
Our results agree with those presented in Cheng et al. (2023),
with a ΔvT = −2.7± 0.1 mm s−1; however, here we highlight
the dependence on the pre-impact observable semimajor axis.
This also demonstrates that any component of the full Δv
vector not aligned with the orbit tangent direction does not
affect the post-impact orbit period and is thus unobservable
from the ground.
Besides the dependence ofΔvT on the pre-impact observable

semimajor axis, we also find a smaller dependence on

Figure 7. System mass calculated using a numerical routine considering F2BP
dynamics, along with the system mass calculated using Keplerian dynamics, as
functions of the pre-impact observable semimajor axis. Ignoring the F2BP
coupling and Didymos oblateness results in a consistently larger mass estimate.

Figure 8. Percent error in the calculated mass when ignoring the aspherical
shapes and F2BP dynamics, as a function of pre-impact observable semimajor
axis. Using Keplerian dynamics results in approximately a 1%–3% error in
mass estimate.

Figure 9. System bulk density as a function of the possible pre-impact
observable semimajor axis, calculated using a numerical routine considering
F2BP dynamics. Accounting for the system uncertainties, including the
volumes, the bulk density is 2.4 ± 0.3 g cm−3 (1σ), with a dependence on the
pre-impact separation.

Figure 10. Change in along-track velocity as a function of the possible pre-
impact observable semimajor axis. There is a strong relationship between ΔvT
and pre-impact observable semimajor axis.
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Didymos’s oblateness, or its J2 gravity term. This is shown in
Figure 11, where as Didymos becomes more oblate (larger J2
values), the magnitude of ΔvT needed to achieve the post-
impact orbit period decreases. While the dependence of ΔvT on
the pre-impact semimajor axis dominates, it is also important to
estimate Didymos’s J2 coefficient to fully understand the
effects of the DART impact.

3.3. Change in Semimajor Axis

While Cheng et al. (2023) calculated the change in velocity
caused by the impact, they do not discuss the resultant changes to
the orbit. Here we calculate the change in the observable
semimajor axis. From the Monte Carlo simulations we calculate
the post-impact observable semimajor axis and solve for the
change in the observable semimajor axis. Figure 12 plots the
change in observable semimajor axis as a function of the pre-
impact observable semimajor axis. We find Δa = −37± 1 m
(1σ), but the change in semimajor axis depends on the pre-impact
observable semimajor axis. Again, using a simple linear fit, we

find a 37.64 0.91 ma

1206 m
0( )D » - + . From the Monte Carlo

simulations, the post-impact observable semimajor axis is also
directly calculated, equal to 1170± 34m (1σ).
Thanks to the linear relationship between the pre- and post-

impact observable semimajor axis, it is simple for measure-
ments of the post-impact semimajor axis to add additional
constraints to the pre-impact value. This is important, as we
have already seen the importance of tightening the constraints
on the pre-impact observable semimajor axis, as ΔvT strongly
depends on this quantity. Thus, a major advantage and
contribution of ESA’s Hera mission, planned to return to
Didymos to study the post-impact system in early 2027, is the
ability to precisely measure the current semimajor axis (Michel
et al. 2022).
This linear relationship is expected from basic Keplerian

dynamics. From Kepler’s third law, we know the following
relationship between orbital period and semimajor axis for a
common barycenter:
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Even though the F2BP dynamics are non-Keplerian in reality,
applying Kepler’s third law provides a relatively accurate
estimate for the relationship between the pre- and post-impact
semimajor axis. Furthermore, this illustrates the linear relation-
ship. Thus, precise measurements from Hera of the post-impact
semimajor axis also provide estimates for the pre-impact
semimajor axis. This in turn leads to a more accurate estimate
for the system’s mass and the ΔvT of the DART impact,
provided the orbit has only experienced minimal secular
evolution since the impact.

3.4. Change in Eccentricity

Next, we discuss the post-impact eccentricity, which has also
not yet been included in the literature. The change in
observable eccentricity is plotted in Figure 13 as a function
of the pre-impact observable semimajor axis. Notably, while
previous quantities have depended strongly on the pre-impact
observable semimajor axis, the eccentricity is largely indepen-
dent of this quantity. From an initial orbit with zero observable
eccentricity, the post-impact eccentricity is 0.031± 0.002.
It is worth discussing the skewed distribution in Figure 13, in

which the change in observable eccentricity is occasionally
much smaller than the representative value of 0.031. Each data
point in Figure 13 is the average post-impact observable
eccentricity over the full simulation time of 100 days. The
lower averages correspond to simulations in which the
secondary enters a state of non-principal axis (NPA) rotation.
Approximately 18% of our simulation runs result in this
attitude instability. This is an interesting dynamical state with
major implications for observations of Didymos, and is the
subject of Section 4.
Next, we relax the initially circular orbit assumption. Using

only the nominal system (i.e., the parameters from Table 1
without the uncertainties), we vary the pre-impact observable

Figure 11. Change in along-track velocity as a function of Didymos’s possible
J2 gravity coefficient. The magnitude of ΔvT decreases slightly as Didymos’s
J2 increases.

Figure 12. The change in observable semimajor axis as a function of the
possible pre-impact observable semimajor axis. There is a strong linear
relationship between the post- and pre-impact semimajor axes.
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eccentricity. Figure 14 shows the post-impact observable
eccentricity as a function of the pre-impact observable
eccentricity. In these simulations, we only apply a tangential
ΔvT, and the perturbation occurs when the secondary is either
at apoapsis or periapsis of the now-eccentric pre-impact orbit.
This means the two curves in Figure 14 define an envelope of
permissible eccentricity values. Depending on where in the
orbit the secondary is at the time of the impact, the resulting
eccentricity can lie anywhere in the area bounded by the two
curves. Thus, measuring the post-impact eccentricity can give
constraints to the pre-impact eccentricity. However, if the pre-
impact orbit was eccentric, it is unknown where in its orbit
Dimorphos was at the time of the impact, so a precise
relationship between pre- and post-impact eccentricity is
impossible.

To illustrate the change in Dimorphos’s orbit, we plot the
system with the nominal pre- and post-impact orbits ignoring
the uncertainties in Table 1 in Figure 15. This shows the

differences in the mutual orbit caused by the DART impact.
For illustration purposes, we use the radar shape model from
Naidu et al. (2020) scaled to the size calculated by Daly et al.
(2023) for Didymos, and the DRACO shape model of
Dimorphos from Daly et al. (2023). The outer orbit is the
pre-impact, and the inner orbit is the post-impact. Only the first
full orbit after the impact is plotted, and over time this orbit will
precess around Didymos.

4. Onset of Tumbling

In a perturbed orbit, it is possible for the secondary to begin
tumbling due to resonances among the system’s natural
frequencies (Agrusa et al. 2021). When this happens, the
rotational angular momentum of the secondary will decrease on
average as its spin axis moves away from its major principal
inertia axis. As a result, the orbital angular momentum will on
average increase to compensate, which reduces the orbit’s
eccentricity. If the increase in orbital angular momentum, and
corresponding decrease in eccentricity, is sufficient, it can
cause the orbit to move back to an equilibrium configuration
where the true anomaly begins librating again and the argument
of periapsis tracks the secondary. Thus, unstable secondary
rotation actually leads the orbit closer to a stable equilibrium.
The nearest equilibrium orbit to the perturbed orbit is at the
same value of observable semimajor axis but at the equilibrium
eccentricity. Thus, we can simply apply Equation (7) calculated
at the new observable semimajor axis.
To illustrate this point, we use an example of an unstable

system calculated in Section 3. The relative 1-2-3 Euler angles,
corresponding to the roll-pitch-yaw of the secondary, are
shown in Figure 16. This system demonstrates an attitude
instability as the secondary has significant NPA rotation
beginning around 40 days into the simulation. The Euler
angles also reveal that, even while the secondary is tumbling, it
still remains either generally aligned or anti-aligned with
Didymos. It occasionally switches between states where its
long axis is on average pointing toward Didymos (θ1 and θ3
oscillating around 0°) to pointing away from Didymos (θ1 and
θ3 oscillating around 180°).
The specific orbital and secondary angular momenta of this

system are plotted in Figure 17. As the secondary enters a state
of tumbling, the orbital angular momentum increases on
average. The dashed black line in Figure 17 corresponds to the

Figure 13. Change in observable eccentricity as a function of the possible pre-
impact observable semimajor axis. The change in eccentricity is largely
independent of the pre-impact semimajor axis. The pre-impact orbit is assumed
physically circular. The simulation runs with a skewed smaller eccentricity
change are the result of tumbling in the secondary.

Figure 14. The post-impact observable eccentricity as a function of the pre-
impact observable eccentricity. The two curves define an envelope in which the
post-impact observable eccentricity may exist, depending on where in its orbit
the secondary was at the time of the perturbation.

Figure 15. The pre- and post-impact orbits for the nominal system plotted to
scale. For illustration purposes, the scaled radar shape model is used to show
Didymos (Naidu et al. 2020) and the Daly et al. (2023) shape model is used to
show Dimorphos.
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calculated angular momentum of the nearest equilibrium orbit
from Equation (7) using the post-impact observable semimajor
axis. The orange line is a 1 day average of the angular
momentum to aid in interpretation. As the secondary tumbles,
there is an exchange of angular momentum between the
secondary and the primary.

As the secondary begins tumbling, the specific orbit angular
momentum increases to its equilibrium value. At the same time,
the Keplerian eccentricity decreases to its equilibrium value, as
shown in Figure 18, where the dashed black line is the
calculated equilibrium eccentricity from Equation (2). The time
period when the specific orbital angular momentum is equal to
its equilibrium value is roughly the same time period when the
Keplerian eccentricity is equal to its equilibrium value. This is
also roughly the same time period when the true anomaly,
shown in Figure 19, returns to a state of libration, before once
again circulating when the orbital angular momentum again
decreases and the osculating eccentricity increases.

Thus, we have demonstrated how the onset of tumbling in
the secondary can have significant effects on the orbit
dynamics, a general result beyond the application to Didymos
and DART. We note this decrease in eccentricity is not caused
by enhanced dissipation (e.g., Quillen et al. 2020), which is not
modeled here, but by the commensurability between the
secondary and orbit angular momenta. The angular momentum
lost by the secondary is sufficient to directly decrease the
orbit’s eccentricity. As the secondary begins tumbling, the
decrease in eccentricity is substantial and rapid as the orbit
becomes more circular and settles into the nearest equilibrium
orbit. Thus, the onset of tumbling in the secondary may be
observable from the ground in light-curve data. As the system
continues to evolve, this exchange in angular momentum can
continue, causing the eccentricity to fluctuate. Furthermore, the
true anomaly can then switch between epochs of circulating
and librating, depending on the orbit’s angular momentum.

4.1. Orbit Period

As discussed in Meyer et al. (2021b), variations in the
stroboscopic orbit period can also provide clues to the
secondary’s spin state. While the secondary is in stable
libration, the orbit period fluctuates with the same period as
the orbit’s apsidal precession. There are also smaller fluctua-
tions, which appear to be driven by the short-period apsidal
precession and libration periods, and may be influenced by
other frequencies as well. For the preliminary Dimorphos

Figure 17. The specific orbital angular momentum (top) and secondary angular
momentum (bottom) of a system that begins tumbling. As the secondary enters
a tumbling state, the orbital angular momentum increases on average. The
dashed line corresponds to the nearest equilibrium orbit, and the orange line is a
1 day moving average of the angular momentum. We see an exchange of
angular momentum between the orbit and the secondary when the secondary is
tumbling.

Figure 18. The Keplerian and observable eccentricity of a system that begins
tumbling. As the secondary enters a tumbling state, the eccentricity decreases
as the orbital angular momentum decreases. The dashed line corresponds to the
equilibrium Keplerian value.

Figure 16. The relative 1-2-3 Euler angles (roll-pitch-yaw) of the secondary of
an unstable system that begins tumbling. Significant NPA rotation begins at
around 40 days into the simulation.

Figure 19. The true anomaly of a system that begins tumbling. At some
threshold, the true anomaly switches from clocking to librating, then back to
clocking as angular momentum is exchanged between the orbit and secondary.
Comparing to Figure 17, this threshold is near when the orbital angular
momentum crosses its nearest equilibrium value, or equivalently when the
osculating eccentricity decreases to its equilibrium value, as seen in Figure 18.
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shape, which is nearly axisymmetric (Daly et al. 2023), there is
not a clear dominant frequency in the short-period fluctuations,
unlike the more elongated shapes investigated in Meyer et al.
(2021b). Unfortunately, these smaller fluctuations are likely not
observable in light-curve data (Meyer et al. 2021b), but may be
observable by Hera.

The stroboscopic orbit period for the tumbling case study is
plotted in Figure 20 over time. We see the expected orbit period
variations dominated by the orbit’s precession prior to
tumbling, but as the secondary enters NPA rotation the
amplitude of orbit period variations increases significantly
and the periodicity is lost. This implies that, along with a
decrease in observed eccentricity, large deviations from
expected mutual event timings in light curves can also indicate
tumbling. Thus, we have established two independent indica-
tions of tumbling that are observable in light-curve observa-
tions: a rapid decrease in the observable eccentricity followed
by fluctuations and large, aperiodic variations in the strobo-
scopic orbit period. So even if the spin state of the secondary is
not directly observable from the ground, it is still possible to
predict if it is tumbling or not from other features in the light
curves. However, given observational errors and noise, it may
be difficult to detect these characteristics in ground-based light
curves.

5. Dimorphos Mass Loss and Reshaping

We now relax our assumption of no mass loss or reshaping
of Dimorphos from the DART impact. This is an important
consideration, as Nakano et al. (2022) showed that reshaping of
Dimorphos can contribute to the momentum enhancement
factor estimate. To achieve this, we modify our algorithm so
that after the system’s mass is calculated to match the pre-
impact orbit period, we resample the secondary size and shape,
keeping its density the same. DART impacted roughly along
the intermediate axis of Dimorphos (Daly et al. 2023), so any
reshaping will decrease the ellipsoid’s b axis to first order. This
is equivalent to increasing the a/b ratio and decreasing the b/c
ratio. In reality, reshaping may result in an asymmetric
secondary (Raducan & Jutzi 2022). However, while our
secondary is still an ellipsoid shape, we are in effect changing
its moments of inertia, which are the dominant quantities in
calculating the mutual potential.

We resample a/b and b/c for Dimorphos, raising the upper
limit of a/b to 1.3 and decreasing the lower limit of b/c to 1.1.
To reflect the reality of decreasing the b axis, in resampling the
axis ratios we adjust the uniform distribution so that the lower
limit of a/b is equal to its pre-impact value (so it always
increases) and the upper limit of b/c is equal to its pre-impact
value (so it always decreases). The new limits on post-impact
a/b and b/c are somewhat arbitrary but allow for relatively
large changes in the secondary shape.
To account for mass loss, we also resample the volume-

equivalent radius of Dimorphos. We center our sampling on the
pre-impact value and draw from a half-normal distribution with
a standard deviation of 0.1 m, ensuring we do not increase the
radius. The standard deviation of the post-impact radius was
chosen to approximately match the initial mass-loss estimate of
Graykowski et al. (2023), around 0.3%–0.5% of the assumed
Dimorphos pre-impact mass.
Accounting for mass loss and reshaping slightly reduces the

magnitude of ΔvT needed to achieve the post-impact orbit
period. Our new estimate is ΔvT≈−2.6± 0.1 mm s−1. This
effect was not considered in Cheng et al. (2023), and thus they
may have overapproximated the impact-induced ΔvT if
secondary reshaping is significant. To explore this shift, we
plot ΔvT as a function of the mass loss in Figure 21 and as a
function of reshaping a/b in Figure 22. We find ΔvT has a
negligible dependence on the mass loss, likely given the
minimal percent change of the mass. However, the magnitude
of ΔvT slightly decreases with larger changes to a/b, consistent
with results from Nakano et al. (2022), who showed reshaping
of the secondary changes the mutual potential between the
bodies, which contributes to changes in the orbit period. We
find no trend with ΔvT and the b/c ratio.
We also find a relationship between reshaping of a/b and the

post-impact observable eccentricity. For larger changes in a/b,
the change in observable eccentricity slightly decreases on
average. This is another important consideration to make when
interpreting the system’s current eccentricity. Figure 23 shows
this relationship.
While accounting for mass loss and reshaping slightly

reduces the ΔvT and Δe estimate, there is no statistical
difference in the post-impact observable semimajor axis. This
is expected, as this quantity is driven by the estimated pre-

Figure 20. Stroboscopic orbit period over time for the tumbling case study in
the previous section. Prior to the onset of tumbling, the orbit period experiences
small, periodic variations. As the secondary begins to tumble, the amplitude of
orbit period variations increases and the periodicity is absent.

Figure 21. Calculated ΔvT as a function of Dimorphos’s mass loss. Within
reasonable values for mass loss, there is no strong trend in ΔvT.
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impact observable semimajor axis and the orbit period change,
which have been directly estimated. Reshaping also increases
the chances of the secondary entering a state of NPA rotation,
with roughly 40% of our simulations experiencing tumbling
when reshaping is considered, compared to about 18% when
reshaping is ignored. Allowing for reshaping also reduces the
lower limit of the expected post-impact precession rate, so that
the precession rate now lies in the range 4°–20° day−1. Thus,
elongation of the secondary reduces the precession rate of the
orbit, as described in Ćuk & Nesvorny (2010). This is
especially interesting, since analytical expressions (e.g.,
Equation (13)) predict that a more elongated secondary
increases the orbit’s precession rate. Thus, the secondary’s
libration is a key component to accurately calculating the
precession rate of a binary asteroid. This is illustrated in
Figure 24, where the precession rate of the nominal system is
calculated using the F2BP dynamics in GUBAS and compared
to the analytic calculation using the LPEs. A detailed analysis
of the role of secondary shape and libration on the system’s
precession rate is left as a future investigation.

As pointed out by Nakano et al. (2022), the adjustment to
ΔvT caused by reshaping could affect the estimate of the
momentum enhancement factor calculated by Cheng et al.
(2023). However, given the current uncertainties in the ejecta
momentum direction, this small adjustment to ΔvTwill not
have a noticeable effect on their results.

6. Discussion and Conclusion

Due to spin–orbit coupling, the dynamics of close,
irregularly shaped near-Earth binary asteroids, such as
Didymos, are non-Keplerian. This makes describing the orbit
difficult when such differences are of consequence, as
traditional Keplerian elements are misleading, particularly
when the true anomaly is in a state of libration. To handle
this difficulty, we introduce a set of observable elements to
describe the semimajor axis and eccentricity that an external
observer would see. This allows us to match dynamical
simulations to real-world observations. The stroboscopic orbit
period is also useful for this, as it parallels mutual event timings
used in light-curve measurements to calculate the mutual orbit
period.
In this work, we developed novel analytical expressions to

determine when a perturbation to a binary asteroid’s orbit is
sufficient to break the equilibrium configuration and allow the
true anomaly to circulate rather than librate. This threshold
occurs when the semimajor axis is either increased or decreased
by the difference between the Keplerian and observable
semimajor axes of an equilibrated system. This is directly
applicable to the DART impact, for which our calculation
exceeded this criterion by roughly 50%, leading to circulation
of the true anomaly in the post-impact Didymos orbit. This
means analytical averaged LPEs can be used to reliably
estimate the system’s precession rate, provided the secondary
has only minimal elongation.
In studying the post-impact Didymos mutual orbit, we used a

similar algorithm as that used by Cheng et al. (2023) to
calculate the system mass and the tangential ΔvT imparted by
the impact. We show that using Keplerian dynamics over-
estimates the mass by around 1%–3%. However, the
uncertainty in the pre-impact semimajor axis is much larger
than this error. Indeed, the current system is dominated by
uncertainties in the pre-impact semimajor axis.

Figure 23. Calculated observable Δe as a function of Dimorphos’s reshaping
of its a/b ratio. For impacts that cause more reshaping, the change in
eccentricity is on average reduced.

Figure 24. The precession rate as a function of the secondary’s elongation a/b,
calculated using the F2BP dynamics (GUBAS) and the analytical LPEs with the
nominal primary J2. Including secondary libration in the dynamics results in a
decrease in the apsidal precession rate, whereas ignoring it results in an
increase. The effect of a resonance is visible near a/b = 1.1, discussed in detail
in Agrusa et al. (2021).

Figure 22. Calculated ΔvT as a function of Dimorphos’s reshaping of its a/b
ratio. For impacts that cause more reshaping, the required ΔvT magnitude to
achieve the post-impact orbit period is smaller on average.
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Owing to the large uncertainties in the system, particularly on
the semimajor axis, our estimate of the system’s bulk density of
2.4± 0.3 g cm−3 (1σ) matches the estimate in Daly et al. (2023)
despite the errors in a Keplerian approach. This is because the
mass uncertainty is dominated by the unknown semimajor axis.
However, as a function of the semimajor axis, our mass estimate
is systematically different from the Keplerian approach, as
shown in Figure 7. In calculating ΔvT for the impact, we obtain
an estimate of −2.7± 0.1 mm s−1 (1σ), matching the results
from Cheng et al. (2023). However, for both these quantities we
find a strong dependence on the pre-impact observable
semimajor axis. Using numerical fits based on Keplerian

relationships, we find 2.44 0.04 g cma

1206 m

3 30( )r » - - and

v 5.86 3.19 mm sT
a

1206 m
10D » - + - , where a0 is the pre-

impact observable semimajor axis in meters. We also find any
component of Δv misaligned with the orbit tangent direction
does not have a noticeable effect on the post-impact orbit period.

In this work, we also calculate the change in observable
semimajor axis and eccentricity caused by the impact, which was
not included in previous analyses of the DART impact. We find
Δa=−37± 1 m (1σ), with a linear dependence on the pre-impact
observable semimajor axis of a 37.64 0.91 ma

1206 m
0( )D » - +

for a0 in meters. This provides an estimate of the post-impact
observable semimajor axis of 1170± 34m (1σ). For the
observable eccentricity, we estimate 0.031± 0.002. However,
the presence of pre-impact eccentricity can appreciably increase or
decrease the post-impact eccentricity, depending on where in the
secondary’s orbit the perturbation occurs. Reshaping of Dimorphos
by the DART impact may also reduce the observable eccentricity.

As we point out in this work, the strong dependence of the
density, velocity change, and post-impact semimajor axis on
the pre-impact observable semimajor axis suggests this is a
quantity of particular interest for the ESA Hera mission to
Didymos (Michel et al. 2022). By measuring the post-impact
observable semimajor axis, the pre-impact observable semi-
major axis can be inferred, leading to a much narrower estimate
of ΔvT. However, this may become more complicated if
secular effects have noticeably evolved the semimajor axis in
the time between the impact and Hera’s arrival (Meyer et al.
2023). No close encounters that could perturb the Didymos
mutual orbit further are expected with any of the terrestrial
planets for thousands of years, using the semi-analytical
propagation of the heliocentric orbit from Fuentes-Muñoz
et al. (2022).

The observable eccentricity offers an interesting method of
predicting the secondary’s attitude stability. As demonstrated
in this work, the onset of tumbling in the secondary can
rapidly decrease the orbit’s eccentricity. Thus, an evolving
eccentricity is indicative of a tumbling secondary, whereas a
constant eccentricity suggests stable libration. Consistent with

Meyer et al. (2021b), it is possible to see evidence of tumbling
in variations in the stroboscopic orbit period. The secondary
entering a state of tumbling can cause the orbit to return to an
equilibrium state where the true anomaly librates and the
longitude of periapsis tracks the secondary. However, as the
secondary’s spin state evolves, the orbit can leave this state
again, allowing the true anomaly to return to circulation. This
illustrates the angular momentum exchange between the
secondary and the orbit in a perturbed binary asteroid.
However, given observational errors and noise, the absence
of these signals in light curves does not rule out the possibility
of tumbling. Nevertheless, this analysis can provide context for
future observations to aid in interpreting the data and has
general applicability beyond just the Didymos system.
Lastly, we discuss the implications of allowing for mass loss

and reshaping of Dimorphos caused by the DART impact. The
observable semimajor axis is unaffected by either mass loss or
reshaping, but the presence of reshaping can reduce the
estimates of ΔvT and Δe. Specifically, increasing a/b of
Dimorphos leads to a smaller magnitude of velocity change
required to achieve the measured post-impact orbit period,
consistent with findings from Nakano et al. (2022). Increasing
a/b also decreases the post-impact observable eccentricity and
precession rate, the latter of which points to a trade-off between
primary oblateness and secondary elongation in the mutual
orbit precession. Thus, the current post-impact shape of
Dimorphos that the Hera mission will measure will allow for
the most accurate calculation of ΔvT and Δe.
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Appendix
Notation Appendix

Table 2 details the notation used for all parameters
throughout this work.
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Table 2
Notation and Definitions for the Variables Used in This Paper

Notation Definition

Δv Change in velocity vector of the secondary
ΔvT Change in tangential velocity of the secondary
a, b, c Semiaxes of triaxial ellipsoid shapes
μ Standard gravitational parameter of binary system
r Separation distance of primary and secondary
IĀ Mass-normalized principal inertia of primary
IB̄ Mass-normalized principal inertia of secondary
h
*

Equilibrium specific orbital angular momentum
hB Specific angular momentum of secondary
horb Specific orbit angular momentum
Δh Perturbation to specific orbit angular momentum
q Orbit rate of secondary
*q Equilibrium orbit rate of secondary
ekep Keplerian eccentricity
akep Keplerian semimajor axis
ekep* Equilibrium Keplerian eccentricity

akep* Equilibrium Keplerian semimajor axis

a Observable semimajor axis
e Observable eccenticity
f True anomaly of secondary
M Mean anomaly of secondary
w̄ Longitude of periapsis of secondary
ω Argument of periapsis of secondary
Ω Longitude of the ascending node of secondary
ρ Bulk density
ΔT Error between measured and simulated orbit period
P1 Pre-impact measured orbit period of secondary
a1 Pre-impact observable semimajor axis of secondary
P2 Post-impact measured orbit period of secondary
a2 Post-impact observable semimajor axis of secondary
θ1,θ2,θ3 1-2-3 (roll-pitch-yaw) Euler angles of the secondary
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