
HAL Id: hal-04266984
https://hal.science/hal-04266984

Submitted on 1 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reducing the Gas Usage of Ethereum Smart Contracts
without a Sidechain

Soroush Farokhnia, Amir Kafshdar Goharshady

To cite this version:
Soroush Farokhnia, Amir Kafshdar Goharshady. Reducing the Gas Usage of Ethereum Smart Con-
tracts without a Sidechain. 2023 IEEE International Conference on Blockchain and Cryptocurrency
(ICBC), May 2023, Dubai, United Arab Emirates. pp.1-3, �10.1109/ICBC56567.2023.10174876�. �hal-
04266984�

https://hal.science/hal-04266984
https://hal.archives-ouvertes.fr


Reducing the Gas Usage of Ethereum Smart
Contracts without a Sidechain

Soroush Farokhnia
Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong
sfarokhnia@connect.ust.hk

Amir Kafshdar Goharshady
Departments of Computer Science and Mathematics

Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong

goharshady@cse.ust.hk

Abstract—To prevent DoS attacks, Ethereum assigns a fixed
gas cost to every atomic operation in the EVM and the party
who creates a transaction has to pay for its overall gas usage.
While the gas model is successful in preventing DoS attacks, it
causes significant costs in transaction fees. For example, in June-
September 2022, the average daily gas usage of Ethereum was
almost four million dollars. We propose a solution to minimize
these fees by moving most of the execution of a contract off-chain
and storing only the bare minimum on-chain. We then trigger an
on-chain execution only if there is a disagreement between the
parties to the contract, which is in turn only possible if at least
one party is acting dishonestly. In such cases, our approach can
identify and penalize the dishonest party by making them pay not
only for the gas usage of their own function calls, but also calls
made by other parties. Thus, it is game-theoretically irrational to
behave dishonestly in this protocol. If all parties are rational, the
total gas usage goes down significantly. Notably, our approach
does not require a sidechain and works directly on the main
Ethereum blockchain. We also provide extensive experiments
over real-world Ethereum smart contracts, demonstrating that
our protocol reduces their gas usage by 40.09%.

Index Terms—Ethereum, Gas Optimization, Blockchain, Mech-
anism Design

I. INTRODUCTION

GAS [1]–[3]. Since all function calls in a smart contract have to
be executed by every node on the blockchain network, the system
is vulnerable to DoS attacks by malicious actors who initiate the
execution of a time-consuming or non-terminating function. To
avoid this, each basic atomic operation is assigned a specific
amount of gas, roughly proportionate to its real-world cost of
execution for the nodes, and the caller of each function has to
pay a transaction fee covering its total gas usage. This has the
unfortunate unintended consequence of costing the blockchain
users a huge amount of money in transaction fees [4]. For
example, Ethereum users pay an average of 2,706.8 ETH or
3,938,749 USD per day in gas fees [5]. Thus, under-optimized
smart contracts are a major source of unintended costs and many
approaches are developed to reduce, optimize or bound the gas
usage, either for particular contracts or in general [6]–[34].
OUR CONTRIBUTION. We present a secure and trustless solution
that moves most of the computations in a smart contract off-
chain and ensures constant gas usage for every function call. Our
method has the following advantages:

• Our experiments demonstrate that our approach reduces the gas
usage of real-world smart contracts on the Ethereum blockchain
by a huge margin of more than forty percent.

• The parties to the contract are guaranteed to reach a consensus

about the state of the contract at the end of its implicit off-
chain execution. If no party is dishonest, then the protocol
succeeds in avoiding unnecessary on-chain execution and gas
costs. Otherwise, the dishonest party is identified and has to
solely pay for the entire gas of the on-chain execution.

• Our protocol is entirely trustless. We do not assume that any
party can be trusted to act honestly, even though dishonest
actions are penalized. It is also decentralized and all users
have the same privileges, putting no one at an advantage in
comparison with others.

II. OUR PROTOCOL

Given a contract C in Solidity [35], [36], our protocol produces
a “wrapper” contract W, also written in Solidity, which includes
a slightly modified version of the code of C, as well as additional
functionality. The developer should deploy W to the blockchain.
The contract W has the same state variables as in C, several
new state variables for the new functionality, and for every
function C.f there is a corresponding function W.f with minor
changes. Additionally, W allows the developer to set values for
the following state variables:

• A positive integer d which is supposed to be the deposit paid
by each party;

• A time limit t whose use-case will become apparent in the
following steps when we present the concept of challenges; and

• A limit on the amount of gas that each user might consume in
calling functions of C.

Using the values chosen by the developer, W provides the
following functionality:
(1) Joining. Before interacting with C’s functionality in W ,

a party PAUL ∈ P has to explicitly join W by calling
W.join() and providing a deposit of d ether.

(2) Virtual Banking. Given that W avoids running calls to C’s
functions on-chain and only keeps a record of the call requests
in its ledger, any transfer of money caused by C’s functions
is also not executed on-chain. To enable the flow of currency
between C and its parties, W takes on the role of a bank and
lets every joined user deposit and later withdraw ether in W.
The balances used in C’s functions will then refer to the users’
account balances in W’s internal bank, rather than their ether
balance in the underlying blockchain. To avoid excessive gas
usage, these W-balances are not stored on-chain. Instead,
each party in P keeps track of them on their own machine.
So, every party to C knows about the W-balances but other
nodes of the network, who do not particularly care about C



or W, are not constantly keeping track of these values.
(3) Ledger. W keeps track of an on-chain internal ledger as a

state variable. On this ledger, it stores a history of all actions
on C, i.e. the ledger is a sequence of deposits and withdrawals
by the users as well as a history of the function call requests.

(4) Depositing Ether. Any party is able to deposit ether to W at
any time. This adds an entry to W’s ledger containing the
amount that was deposited. Of course, this entry is added on-
chain. As soon as this entry is added on the blockchain, all
other participants in P update their off-chain version of the
depositor’s W-balance.

(5) Function Call Request. W has a special function which is
named requestCall and can be invoked by any party who
wants to call any function in C. To call C.f, the caller creates
a transaction that calls W.requestCall and includes the
following information:

• The name f of the function in C whose execution is being
requested,

• A list of parameters that should be passed to f,
• The amount of money that should be paid from the caller’s
W-balance to C’s W-balance.

• An upper-bound on the amount of gas that is allocated to be
used by f ,

Upon receiving the items above, instead of running C.f or
W.f on-chain, requestCall adds an entry to the internal
ledger. This entry includes all the parameters above, as well
as a record of the values of all global variables [37] such as
block.number. When a call request record is added to the
ledger in W , every party in P performs that function call
off-chain on their own machine.

(6) Withdrawing Ether. The parties can decide to withdraw ether
from their W-balance to use elsewhere on the blockchain. We
adopt a two-step process:

• Step 1: The party ALICE ∈ P calls
W.requestWithdraw(x). Here, x is the amount
of the withdrawal. W adds a record of this request to its
ledger on-chain.

• Step 2: If no other party challenges the withdrawal until
more than t blocks after Step 1, then ALICE can receive her
money from W .

(7) Challenging. Suppose a party ALICE ∈ P requests a
withdrawal of x ether from her W-balance. The W-balances
are not explicitly stored in W on-chain and are instead
implicit and depend on the whole sequence of operations
that are recorded on the W-ledger. These operations are
all simulated by every other party BOB ∈ P off-chain on
his own machine. Thus, BOB knows whether ALICE has
a W-balance of at least x. If BOB believes that ALICE’s
withdrawal exceeds her W-balance, then he should challenge
the withdrawal by calling W.challenge(i) and providing
the index i of ALICE’s request in the W-ledger.
At this point, either ALICE was dishonestly withdrawing more
than her balance or BOB is maliciously trying to stop her
from accessing her own money. To find out which case we
are in, W starts an on-chain execution of all the function
calls recorded on its ledger, which will inevitably identify the
dishonest party, whose deposit is then used to pay for the gas
usage of the entire process.

(8) On-chain Evaluation. On-chain evaluation is triggered only
when there is a disagreement about the state of C and a

withdrawal is challenged. Then, W first holds an auction to
find a user who is willing to trigger the on-chain executions
with the smallest gas price. This executioner then calls
dedicated functions of W that simulate every entry in the
W-ledger and also keep track of the gas usage. Note that this
simulation is performed in the environment that was present at
the time of the requestCall. All the required parameters
and global variables are already stored in the W-ledger. In
the end, the dishonest party is identified and their deposit is
used to reimburse the executioner for gas fees.

III. EXPERIMENTAL RESULTS

IMPLEMENTATION. We implemented our approach in Python 3
and used Slither [38], Web3Py [39] and Hardhat [40] for parsing
smart contracts written in Solidity and simulating the gas usage
on our machine.
BENCHMARKS AND EXPERIMENTAL SETTING. As benchmarks,
we took all verified real-world smart contracts available in the
Etherscan database [41] that were deployed between June 1, 2022,
00:00 UTC and October 1, 2022, 00:00 UTC. We then limited our
analysis to 4,355 contracts. These were all the available contracts
to which our parser and simulator were applicable. Of these,
1,025 benchmarks were extremely simple contracts, i.e. basic
ERC 20 with no further functionality, for which our approach is
not beneficial as they already have very low gas usage. Thus, we
report results over the remaining 3,330 real-world contracts.

For each contract C in this list, we downloaded all the function
calls to C that were registered on the Ethereum blockchain from
the time it was deployed to October 1, 2022, 00:00 UTC. This led
to a total of 327,132 transactions. We then applied our protocol
and performed the exact same function call requests in the exact
same order, environment, and gas price for all of our benchmarks.
Finally, we compared the total gas usage incurred by our method
with the actual total that was paid on the Ethereum blockchain.
OVERALL SAVINGS IN GAS USAGE. The total sum of the
gas usage was initially 51,845,786,705 gas units ≈ 727.09
ETH ≈ 1,261,801 USD. This was reduced by our approach to
31,058,348,542 gas units ≈ 469.86 ETH ≈ 819,149 USD. So, we
provide a reduction of 40.09 percent, which amounts to 442,651
USD in just 121 days. This is a testament to the real-world utility
and applicability of our method.

0 20 40 60 80 1000

20

40

60

80

N
um

be
ro

fC
on

tr
ac

ts

Percentage of Improvement in Gas Usage

Fig. 1. Improvements obtained by our approach for each benchmark contract.



REFERENCES

[1] M. Dameron, “Beigepaper: an Ethereum technical specification,”
Ethereum Project Beige Paper, 2018.

[2] G. Wood et al., “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum Project Yellow Paper, pp. 1–32, 2014.

[3] Ethereum Foundation, “Gas and fees,” 2022. [Online]. Available:
https://ethereum.org/en/developers/docs/gas/

[4] T. Chen, X. Li, X. Luo, and X. Zhang, “Under-optimized smart contracts
devour your money,” in SANER, 2017, pp. 442–446.

[5] CoinMarketCap, “Cryptocurrency prices, charts and market
capitalizations,” 2022. [Online]. Available: https://coinmarketcap.com/

[6] K. Chatterjee, A. K. Goharshady, and Y. Velner, “Quantitative analysis
of smart contracts,” in ESOP, 2018, pp. 739–767.

[7] T. Chen et al., “Gaschecker: Scalable analysis for discovering gas-
inefficient smart contracts,” Trans. Emerg. Top. Comput., vol. 9, no. 3,
pp. 1433–1448, 2021.

[8] E. Albert, P. Gordillo, A. Rubio, and M. A. Schett, “Synthesis of super-
optimized smart contracts using max-smt,” in CAV, 2020, pp. 177–200.

[9] Q. Kong, Z. Wang, Y. Huang, X. Chen, X. Zhou, Z. Zheng, and G. Huang,
“Characterizing and detecting gas-inefficient patterns in smart contracts,”
J. Comput. Sci. Technol., vol. 37, no. 1, pp. 67–82, 2022.

[10] K. Chatterjee, A. K. Goharshady, and A. Pourdamghani, “Hybrid mining:
exploiting blockchain’s computational power for distributed problem
solving,” in SAC, 2019, pp. 374–381.

[11] K. Nelaturu, S. M. Beillahi, F. Long, and A. G. Veneris, “Smart contracts
refinement for gas optimization,” in BRAINS, 2021, pp. 229–236.

[12] E. Albert, J. Correas, P. Gordillo, G. Román-Dı́ez, and A. Rubio,
“GASOL: gas analysis and optimization for ethereum smart contracts,”
in TACAS, 2020, pp. 118–125.

[13] Q. Nguyen, B. S. Do, T. T. Nguyen, and B. Do, “Gassaver: A tool for
solidity smart contract optimization,” in BSCI, 2022, pp. 125–134.

[14] B. Nassirzadeh, H. Sun, S. Banescu, and V. Ganesh, “Gas gauge:
A security analysis tool for smart contract out-of-gas vulnerabilities,”
CoRR, vol. abs/2112.14771, 2021.

[15] K. Chatterjee, A. K. Goharshady, R. Ibsen-Jensen, and Y. Velner,
“Ergodic mean-payoff games for the analysis of attacks in crypto-
currencies,” in CONCUR, vol. 118, 2018, pp. 11:1–11:17.

[16] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “Omniledger: A secure, scale-out, decentralized ledger via
sharding,” in S&P, 2018, pp. 583–598.

[17] I. Ashraf, X. Ma, B. Jiang, and W. K. Chan, “Gasfuzzer: Fuzzing
Ethereum smart contract binaries to expose gas-oriented exception
security vulnerabilities,” IEEE Access, vol. 8, pp. 99 552–99 564, 2020.

[18] L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry, and A. Gervais,
“Sok: Layer-two blockchain protocols,” in FC, 2020, pp. 201–226.

[19] A. K. Goharshady, A. Behrouz, and K. Chatterjee, “Secure credit
reporting on the blockchain,” in iThings/GreenCom/CPSCom/SmartData,
2018, pp. 1343–1348.

[20] A. Gangwal, H. R. Gangavalli, and A. Thirupathi, “A survey of layer-two
blockchain protocols,” CoRR, vol. abs/2204.08032, 2022.

[21] A. Singh, K. Click, R. M. Parizi, Q. Zhang, A. Dehghantanha, and K. R.
Choo, “Sidechain technologies in blockchain networks: An examination
and state-of-the-art review,” J. Netw. Comput. Appl., vol. 149, 2020.

[22] T. Chen, Z. Li, H. Zhou, J. Chen, X. Luo, X. Li, and X. Zhang, “Towards
saving money in using smart contracts,” in ICSE NIER, 2018, pp. 81–84.

[23] B. Jiang, Y. Liu, and W. K. Chan, “Contractfuzzer: fuzzing smart
contracts for vulnerability detection,” in ASE, 2018, pp. 259–269.

[24] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smarag-
dakis, “Madmax: surviving out-of-gas conditions in ethereum smart
contracts,” Proc. ACM Program. Lang., vol. 2, no. OOPSLA, pp. 116:1–
116:27, 2018.

[25] C. Li, “Gas estimation and optimization for smart contracts on ethereum,”
in ASE, 2021, pp. 1082–1086.

[26] S. Dziembowski, S. Faust, and K. Hostáková, “General state channel
networks,” in CCS, 2018, pp. 949–966.

[27] Raiden Network Developers, “Raiden network documentation,” 2022.
[Online]. Available: https://raiden-network.readthedocs.io/en/stable/

[28] S. Dziembowski, L. Eckey, S. Faust, J. Hesse, and K. Hostáková, “Multi-
party virtual state channels,” in EUROCRYPT, 2019, pp. 625–656.

[29] H. A. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg, and E. W. Felten,
“Arbitrum: Scalable, private smart contracts,” in USENIX Security, 2018,
pp. 1353–1370.

[30] L. Marchesi, M. Marchesi, G. Destefanis, G. Barabino, and D. Tigano,
“Design patterns for gas optimization in ethereum,” in 2020 IEEE

International Workshop on Blockchain Oriented Software Engineering
(IWBOSE), 2020, pp. 9–15.

[31] A. D. Sorbo, S. Laudanna, A. Vacca, C. A. Visaggio, and G. Canfora,
“Profiling gas consumption in solidity smart contracts,” J. Syst. Softw.,
vol. 186, p. 111193, 2022.

[32] M. A. Meybodi, A. K. Goharshady, M. R. Hooshmandasl, and A. Shak-
iba, “Optimal mining: Maximizing bitcoin miners’ revenues from
transaction fees,” in IEEE Blockchain, 2022, pp. 266–273.

[33] K. Chatterjee, A. K. Goharshady, and A. Pourdamghani, “Probabilistic
smart contracts: Secure randomness on the blockchain,” in IEEE ICBC,
2019, pp. 403–412.

[34] P. Wang, H. Fu, A. K. Goharshady, K. Chatterjee, X. Qin, and W. Shi,
“Cost analysis of nondeterministic probabilistic programs,” in PLDI,
2019, pp. 204–220.

[35] Ethereum Foundation, “Solidity language documentation,” 2022.
[Online]. Available: https://docs.soliditylang.org

[36] ——, “Smart contract languages,” 2022. [Online]. Available:
https://ethereum.org/en/developers/docs/smart-contracts/languages/

[37] ——, “Units and globally available variables,” 2022. [Online]. Available:
https://docs.soliditylang.org/en/v0.8.15/units-and-global-variables.html

[38] J. Feist, G. Grieco, and A. Groce, “Slither: a static analysis framework
for smart contracts,” in WETSEB@ICSE. IEEE / ACM, 2019, pp. 8–15.

[39] Python library for interacting with Ethereum, “Python library
for interacting with ethereum,” 2022. [Online]. Available:
https://web3py.readthedocs.io/

[40] Ethereum development environment for professionals, “Ethereum
development environment for professionals,” 2022. [Online]. Available:
https://hardhat.org/

[41] Etherscan, “Ethereum blockchain explorer,” 2022. [Online]. Available:
https://etherscan.io/

[42] S. Farokhnia and A. K. Goharshady, “Alleviating high gas costs by secure
and trustless off-chain execution of smart contracts,” in SAC, 2023.

The research was partially supported by the Hong Kong Research Grants
Council ECS Project Number 26208122 and the HKUST Startup Grant R9272.
A preliminary report of this project appeared as an extended abstract in [42].


