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Introduction

The purpose of this note is to formalise a strategy for computing solutions to the Kashiwara-Vergne (KV) equations one degree at a time. The original Kashiwara-Vergne problem was posed in the context of convolutions on Lie groups in 1978 [START_REF] Kashiwara | The Campbell-Hausdorff formula and invariant hyperfunctions[END_REF], and has wide implications from Lie theory to harmonic analysis. The first general solution was found in 2006, by Alekseev and Meinrenken [START_REF] Alekseev | On the Kashiwara-Vergne conjecture[END_REF]. Later, Alekseev-Torossian [START_REF] Alekseev | The Kashiwara-Vergne conjecture and Drinfeld's associators[END_REF], reformulated the original problem to show that a KV solution is an automorphism of the degree completed free Lie algebra on two generators, satisfying two equations (see Section 2.1).

In a series of papers [AET10, AT12], Alekseev, Enriquez, and Torossian showed that, in fact, the KV equations have deep connections to deformation quantization. In particular, the combination of [AT12, Thm. 9.6] and [START_REF] Alekseev | Drinfeld associators, Braid groups and explicit solutions of the Kashiwara-Vergne equations[END_REF]Thm. 4 & 5] demonstrates that solutions to the KV equations can be explicitly constructed from Drinfel'd associators. More recently, KV solutions were shown to be in bijection with certain invariants -formality isomorphisms or homomorphic expansions -in low-dimensional topology, unravelling unexpected connections with knot theory and string topology (cf. [START_REF] Alekseev | Higher genus Kashiwara-Vergne problems and the Goldman-Turaev Lie bialgebra[END_REF], [START_REF] Bar-Natan | Finite type invariants of w-knotted objects II: tangles, foams and the Kashiwara-Vergne conjecture[END_REF]).

Specifically, KV solutions are in bijection with homomorphic expansions for a class of knotted surfaces in R 4 [BND17, Thm. 4.9]. A less direct correspondence with homomorphic expansions of the Goldman-Turaev Lie bialgebra of curves on surfaces can be used to define higher genus Kashiwara-Vergne problems [START_REF] Alekseev | Higher genus Kashiwara-Vergne problems and the Goldman-Turaev Lie bialgebra[END_REF][START_REF]Goldman-Turaev formality implies Kashiwara-Vergne[END_REF].

This paper studies the set SolKV (n) of solutions which satisfy the KV equations up to degree n. These sets of "limited" KV solutions are equipped with natural truncation maps SolKV (n) → SolKV (n-1) . The main result of this note is the following theorem: Theorem (Theorem 3.4). The truncation maps SolKV (n) → SolKV (n-1) are surjections, and the set of KV solutions, SolKV, admits a tower decomposition A key idea to the proof is to study KV solutions via their symmetries, governed by the Kashiwara-Vergne group KV (on the left) and its graded version KRV (on the right). We define a tower decomposition

• • • → SolKV (n+1) → SolKV (n) → SolKV
• • • → KRV (n+1) → KRV (n) → KRV (n-1) → • • •
of KRV, and show that each map in the tower is a surjection (Lemmas 3.12 and 3.13). This follows the strategy of [Bar98, Thm. 5], which is set in the context of Drinfel'd associators and the graded Grothendieck-Teichmüller group GRT 1 . In fact, the proof is easier in the KV context. After passing to Lie algebras, the defining "semi-classical hexagon" equation for the graded Grothendieck-Teichmüller Lie algebra grt 1 in degree n depends on the degree (n -1) terms of the solution. This complexity is circumvented by showing that the semi-classical hexagon equation can be deduced from the other defining equations. Similar issues do not arise in the case of the defining equations of the graded KV Lie algebra krv.

Another important ingredient in our proof -which enables the reduction of the problem from groups to Lie algebras -is the fact that the group KRV can be identified with the automorphism group of the filtered, completed linear tensor category A of arrow diagrams [DHR23, Thm. 5.12]. This is part of a wider topological perspective where the Kashiwara-Vergne group KV is identified with the automorphism group of the filtered, completed tensor category of welded foams wF [DHR23, Sec. 5.2], and where KV solutions are identified with filtered, structure preserving isomorphisms wF → A [DHR23, Thm. 4.9]. Remarkably, the filtration considered in this paper coincides with the one induced by the Vassiliev filtration of welded foams, see Remark 4.8.

The bitorsor structure on KV solutions allows one to transfer the surjectivity result from the tower decomposition of KRV to the similar tower decomposition of the Kashiwara-Vergne group KV:

• • • → KV (n+1) → KV (n) → KV (n-1) → • • •
We show that this tower decomposition induces a descending filtration of the group KV which satisfies a commutator condition (Lemma 4.2); this, in turn, implies that the associated graded of KV admits a Lie bracket. In fact, the commutator condition holds at the level of tangential automorphisms, and provides an elementary proof of the following theorem:

Theorem (Corollary 4.7). The associated graded Lie algebra of KV is isomorphic to the underlying Lie algebra of KRV. This was briefly observed in [AET10, below Prop. 8], but we include a proof here because we feel it illuminates the origins of the filtration on KV.

Computationally, our main result implies that degree by degree calculations of KV solutions always succeed (i.e. they never "get stuck"). Moreover, via the construction of [START_REF] Alekseev | Drinfeld associators, Braid groups and explicit solutions of the Kashiwara-Vergne equations[END_REF], one can study Drinfel'd associators using this tower decomposition of KV solutions. Indeed, it is known that Drinfel'd associators are extendable degree by degree ([Dri90, Prop. 5.8], [START_REF] Bar-Natan | On associators and the Grothendieck-Teichmuller group, I[END_REF]Thm. 4], [Fre17, Prop. 10.4.9]). However, the KV equations are stated in significantly smaller spaces than the pentagon and hexagon equations which define Drinfel'd associators, and hence degree by degree extension is less computationally demanding on the KV side than on the associator side. Thus, symmetric KV solutionsthose which arise from Drinfel'd associators via the Alekseev-Enriquez-Torossian construction [START_REF] Alekseev | Drinfeld associators, Braid groups and explicit solutions of the Kashiwara-Vergne equations[END_REF] -could be exploited to obtain explicit Drinfel'd associators to a high degree.

Alekseev and Torossian [AT12, after Prop. 4.10] conjecture that all KV solutions arise from associators. This conjecture was verified at least to degree 16, hence Theorem 3.4 has wide computational applicability.

Acknowledgements. We thank Dror Bar-Natan for asking the question that grew into this note. We are grateful to Christian Haesemeyer and Arun Ram for fruitful discussions.

Preliminaries: the Kashiwara-Vergne Theorem

Throughout the paper we write Lie(x, y) to denote the free Lie algebra on two generators over the complex numbers C, and Lie(x, y) n to denote its degree n part. Here, a Lie word is said to be of degree n if it consists of n letters, e.g. [[y, x], y] is a Lie word of degree three. We write

L := Π ∞ n=1 Lie(x, y) n = Π ∞ n=1
L n for the degree completion of Lie(x, y).

The universal enveloping algebra of L, can be identified -as a completed Hopf algebra -with the degree-completed free associative algebra generated by x and y, denoted A. In this way, elements u ∈ L can be viewed as elements of A, by expanding brackets as algebra commutators. As with L, the degree of a word in A is the number of letters in the word.

The completed graded vector space of cyclic words in x and y is the linear quotient

cyc := A/[A, A].
Here [A, A] denotes the subspace of A spanned by elements of the form ab -ba for a, b ∈ A.

There is a natural trace map tr : A → cyc.

A tangential derivation of L is a Lie derivation u : L → L for which u(x) = [x, u 1 ] and u(y) = [y, u 2 ] for some u 1 , u 2 ∈ L. The commutator of tangential derivations is always a tangential derivation. Under this operation, tangential derivations of L form a degreecompleted Lie algebra, which we denote by tder. There is a natural linear (not a Lie algebra) map L ⊕2 → tder, given by (u 1 , u 2 ) → u, with kernel Cx ⊕ Cy. As such, we write tangential derivations as pairs of Lie words, writing u = (u 1 , u 2 ). Homogeneous degree n elements of tder are of the form u = (u 1 , u 2 ), with u 1 and u 2 both of degree n. The set of tangential derivations of degree n is denoted tder n .

The action of tder on L extends via the product rule to a natural action • on A, which further descends to a natural action of tder on cyc. The exponentiation of the Lie algebra tder is identified with the group of tangential automorphisms of L, which we denote by TAut. These are Lie automorphisms F : L → L, for which F (x) = e -u 1 xe u 1 , and F (y) = e -u 2 ye u 2 , for some u 1 , u 2 ∈ tder. As with tder, we often write F = (e u 1 , e u 2 ). Note that as the linear map L ⊕2 → tder is not a Lie homomorphism, also for u = (u 1 , u 2 ), e u ̸ = (e u 1 , e u 2 ). The group law in TAut is defined via the bch product: for u, v ∈ tder, by definition e u e v := e bch (u,v) , where

bch(u, v) = log(e u e v ) = u + v + 1 2 [u, v] + • • • ∈ tder
is the Baker-Campbell-Hausdorff Lie series. The action of tder on A and cyc lifts via exponentiation to actions • of TAut on A and cyc.

Next, we need to recall the definitions of the divergence and Jacobian maps. Note that each element a ∈ A has a unique decomposition of the form a = a 0 + ∂ x (a)x + ∂ y (a)y for some a 0 ∈ C and ∂ x (a), ∂ y (a) ∈ A. In practice, ∂ x picks out the words of a sum which end in x and deletes their last letter x, and deletes all other words.

The non-commutative divergence map j : tder → cyc is the linear map defined by the following formula, for a tangential derivation u = (u 1 , u 2 ):

j(u) := tr(∂ x (u 1 )x + ∂ y (u 2 )y) .
The divergence map is a 1-cocycle of the Lie algebra tder with respect to the action of tder on cyc: for any u, v ∈ tder, we have j(

[u, v]) = u • j(v) -v • j(u) ([AT12, Prop. 3.20]).
Integrating the divergence cocycle produces the non-commutative Jacobian:

J : TAut → cyc, an additive group 1-cocycle [AT12, Eq. 16]. That is, for F, G ∈ TAut, we have J(F G) = J(F ) + F • J(G).
The Jacobian J is uniquely determined by the two conditions

J(1) = 0 and d dt t=0 J(e tu F ) = j(u) + u • J(F )
for any F ∈ TAut and u ∈ tder.

Remark 2.1. Our notation (j, J) matches that of [START_REF] Alekseev | Drinfeld associators, Braid groups and explicit solutions of the Kashiwara-Vergne equations[END_REF][START_REF]A topological characterisation of the Kashiwara-Vergne groups[END_REF], and corresponds to (div, j) in [START_REF] Alekseev | The Kashiwara-Vergne conjecture and Drinfeld's associators[END_REF] and [START_REF] Bar-Natan | Finite type invariants of w-knotted objects II: tangles, foams and the Kashiwara-Vergne conjecture[END_REF].

2.1. Kashiwara-Vergne solutions. A Kashiwara-Vergne solution, or KV solution for short, is a pair

(F, r) ∈ TAut ×z 2 C[[z]
] satisfying the two equations F (e x e y ) = e x+y (SolKV1)

J(F ) = tr(r(x + y) -r(x) -r(y)). (SolKV2)
We denote the set of KV solutions by SolKV. In any pair (F, r), the tangential automorphism F uniquely determines the power series r, and the assignment F → r is called the Duflo map (see [START_REF] Alekseev | Drinfeld associators, Braid groups and explicit solutions of the Kashiwara-Vergne equations[END_REF], before Prop. 6). Hence, we often refer to a KV solution by the tangential automorphism F only.

Remark 2.2. This format of the KV equations matches the notation in [START_REF] Alekseev | Drinfeld associators, Braid groups and explicit solutions of the Kashiwara-Vergne equations[END_REF][START_REF]A topological characterisation of the Kashiwara-Vergne groups[END_REF]. However, KV solutions in [AT12, BND17] consist of the inverses of this version of SolKV.

2.2. The Kashiwara-Vergne symmetry groups. The set SolKV is a bi-torsor under the respective left/right free and transitive actions of the Kashiwara-Vergne symmetry groups, KV and KRV.

The graded Kashiwara-Vergne group, KRV := exp(krv), as a set, consists of pairs

(F, r) ∈ TAut ×z 2 C[[z]] satisfying the equations F (e x+y ) = e x+y ; (KRV1) J(F ) = tr(r(x + y) -r(x) -r(y)) . (KRV2)
Once again, F uniquely determines r, hence KRV is viewed as a subgroup of TAut. The group KRV acts freely and transitively on the right of SolKV by left multiplication by the inverse [AT12, Thm. 5.7]: for G ∈ KRV and

F ∈ SolKV, F • G := G -1 F .
The linearisation of KRV is the Lie subalgebra krv of tder, called the graded Kashiwara-Vergne Lie algebra, which consists of pairs (u, r)

∈ tder × C[[z]] satisfying the equations u(x + y) = 0 (krv1) j(u) = tr(r(x + y) -r(x) -r(y)) . (krv2)
This is viewed as a Lie subalgebra of tder, as u uniquely determines r [AT12, Prop. 4.5]. The Lie algebra krv is infinite dimensional ([AT12, Thm. 4.6]), but positively graded with finite dimensional graded components, and exp(krv) = KRV.

Similarly, the left symmetry group of SolKV is the Kashiwara-Vergne group, denoted KV. As a set, KV consists of the pairs

(F, r) ∈ TAut ×z 2 C[[z]]
satisfying the equations F (e x e y ) = e x e y (KV1)

J(F ) = tr(r(bch(x, y)) -r(x) -r(y)) , (KV2)
where bch(x, y) denotes the Baker-Campbell-Hausdorff series. As with KRV, the group KV is a subgroup of TAut [AET10, Prop. 8], as F uniquely determines r. The group KV acts freely and transitively on the left of SolKV by right composition with the inverse in TAut, i.e. for G ∈ KV and F ∈ SolKV, we have G • F := F G -1 . In summary:

Theorem 2.3 ([AT12, Thm. 5.7], [AET10, Prop. 8]).
The groups KV and KRV act freely and transitively on the set SolKV of KV solutions, on the left and right, respectively, and these actions commute.

Kashiwara-Vergne solutions degree by degree

For each n ≥ 1, we denote by L ≤n := L/L ≥n+1 the quotient of the Lie algebra L by the ideal of elements of degree greater than n. Similarly, we define the degree n quotients of the graded algebra A and graded vector space cyc, namely, A ≤n := A/A ≥n+1 , and cyc ≤n := cyc/cyc ≥n+1 .

We define the degree n quotient of the Lie algebra tder by setting tder ≤n := tder(L ≤n ).

Elements of tder ≤n are Lie derivations u : L ≤n → L ≤n which act on basis vectors by

u(x) = [x, u 1 ] and u(y) = [y, u 2 ],
where u 1 and u 2 are Lie words in L ≤n . The commutator uv -vu defines a Lie bracket on tder ≤n . Tangential derivations on L descend naturally to tangential derivations of L ≤n , this induces a natural surjective map of Lie algebras π n : tder → tder ≤n , hence the name "quotient". Note that, for u = (u 1 , u 2 ) ∈ tder, π n (u) = 0 if and only if either u = 0 in tder, or the lowest degree terms of both u i , i = 1, 2, are in degree n + 1 or above. As before, the action of tder ≤n on L ≤n extends to A ≤n and cyc ≤n . The degree n quotient of the group TAut is defined to be TAut ≤n := TAut(L ≤n ).

Elements of TAut ≤n are Lie automorphisms, F : L ≤n → L ≤n , which act on basis elements via

F (x) = e -f 1 xe f 1 and F (y) = e -f 2 ye f 2
for some (e f 1 , e f 2 ) ∈ exp(L) ⊕2 ≤n . As for tder, there is a natural surjective group homomorphism π n : TAut → TAut ≤n .

The divergence map j : tder → cyc is homogeneous, hence it passes to the degree n quotients of tder and cyc. In other words, there is a linear divergence map j : tder ≤n → cyc ≤n so that the following diagram commutes:

tder cyc tder ≤n cyc ≤n πn j πn j
The original 1-cocycle property of j implies that the same is true on the finite degree level:

for any u, v ∈ tder ≤n , j([u, v]) = u•j(v)-v •j(u).
Similarly, the non-commutative Jacobian induces a map J : TAut ≤n → cyc ≤n , with the 1-cocycle property

J(F G) = J(F )+F •J(G), for any F, G ∈ TAut ≤n .
Using the fact that SolKV and KRV are subsets of TAut, we define degree n quotients of SolKV and KRV as follows.

Definition 3.1. The restrictions of the projection maps π n : TAut → TAut ≤n to SolKV, respectively KRV, define the degree n quotients SolKV ≤n := π n (SolKV) and KRV ≤n := π n (KRV).

3.1. Kashiwara-Vergne solutions to finite degree. We now define the key object of study for this paper: KV solutions up to degree n. Definition 3.2. We say that F ∈ TAut ≤n satisfies the first KV equation (SolKV1) up to degree n if it satisfies (SolKV1) in L ≤n , that is:

F (e x e y ) = e x+y in L ≤n .

Similarly, F satisfies the second KV equation up to degree n if there exists a polynomial r ∈ z 2 C[[z]]/z n+1 so that J(F ) satisfies the equation (SolKV2) in cyc ≤n , that is:

J(F ) = tr(r(x + y) -r(x) -r(y)) in cyc ≤n .
We denote the set of KV solutions (of both equations) up to degree n by SolKV (n) .

Remark 3.3. The projection maps π n : TAut → TAut ≤n descend naturally to projections π n : TAut ≤n+1 → TAut ≤n This leads to a tower decomposition of TAut, that is, TAut is the inverse limit of the system

• • • → TAut ≤n+1 π n+1 -→ TAut ≤n πn -→ TAut ≤n-1 → • • • .
Given a KV solution F ∈ SolKV, the degree n truncation π n (F ) ∈ TAut ≤n automatically satisfies the KV equations up to degree n. This is also true for truncating KV solutions from degree (n + 1) to degree n: given F ∈ SolKV (n+1) , the image π n (F ) is in SolKV (n) . In other words, π n restricts to a map π n : SolKV (n+1) → SolKV (n) . Thus, SolKV also admits a tower decomposition

• • • → SolKV (n+1) → SolKV (n) → SolKV (n-1) → • • • .
3.2. Main theorem and proof. We are now ready to state the main theorem of this paper: namely, the maps in this tower are surjective, and as a result, given any F ∈ TAut ≤n which satisfies the KV equations up to degree n, F is necessarily the image of some F ∈ SolKV under the projection π n : TAut → TAut ≤n . The rest of this section is devoted to proving this result: Theorem 3.4. For any n ≥ 1, the natural map π n : SolKV (n+1) → SolKV (n) is surjective. That is, any solution up to degree n can be extended to a KV solution up to degree (n + 1).

To prove the main theorem, we use the free and transitive action of the group KRV. As the Kashiwara-Vergne Lie algebra krv and the group KRV are defined by equations taking place in graded vector spaces, we can also define up to degree n variants of these objects, which are only required to satisfy the relevant equations up to degree n. The key idea to the proof of Theorem 3.4 is that given the existence of some KV solution F , we can use some element from the group KRV (n) to "move" the first n degrees of F to coincide with any given up-to-degree n KV solution. This reduces the problem of extending a degree n KV solution to degree (n + 1) to instead extending an element of the group KRV (n) to KRV (n+1) . We will observe that the group KRV is isomorphic to the inverse limit of a tower of subgroups

• • • → KRV (n+1) → KRV (n) → KRV (n-1) → • • •
satisfying the defining equations of KRV up to degree n. We prove that the groups KRV (n) are unipotent, and hence KRV is pro-unipotent. This enables us to reduce the problem to the similar but more straightforward surjectivity question about the Lie algebra krv. To execute this plan, we start by defining the up-to-degree n versions of krv and KRV. Definition 3.5. Let krv (n) denote the set of u ∈ tder ≤n for which there exists some r ∈ C[[z]]/z n+1 satisfying u(x + y) = 0 in L ≤n and j(u) = tr(r(x + y) -r(x) -r(y)) in cyc ≤n .

It is a straightforward calculation to check that krv (n) is closed under the bracket inherited from tder ≤n , and hence it is a Lie subalgebra of tder ≤n .

Definition 3.6. The up-to-degree n graded Kashiwara-Vergne group, KRV (n) , is the subset of elements F ∈ TAut ≤n for which there exists some r ∈ z 2 C[[z]]/z n+1 satisfying F (e x+y ) = e x+y in L ≤n and J(F ) = tr(r(x + y) -r(x) -r(y)) in cyc ≤n .

Proposition 3.7. The elements of KRV (n) form a subgroup of TAut ≤n . Moreover, there exists a free and transitive right action of KRV (n) on SolKV (n) via left product with the inverse.

Proof. Since KRV (n) is by definition a subset of TAut ≤n , we only need to check that it is closed under composition and inverses. With respect to the first equation of Definition 3.6 this is clear: if two automorphisms both fix e x+y , then so does the composition, and so do the inverses.

For the second equation, assume that F, G ∈ KRV (n) and consequently, π n (J(F )) = π n (tr(r(x + y) -r(x) -r(y))) and π n (J(G)) = π n (tr(s(x + y) -s(x) -s(y))). Since

J(F G) = J(F ) + F • J(G) in cyc ≤n , it follows that π n (F • J(G)) = π n (F • (tr(s(x + y) -s(x) -s(y)))) = π n (J(G)),
due to (KV1) and the fact that conjugation cancels under the trace. Closure under inverses is similar.

For the free and transitive action, we can use an "up to degree n" version of Theorem 2.3 (see [AT12, Sec. 5.1 & Thm. 5.7]), and the [AT12] proof works verbatim. In brief, given F ∈ SolKV (n) and G ∈ KRV (n) , it is a short direct check to see that G -1 F satisfies (SolKV1) and (SolKV2) up to degree n. On the other hand, if F and G are KV solutions up to degree n, then again by direct calculation F -1 G ∈ KRV (n) . □ Remark 3.8. One can define analogously KV (n) for the Kashiwara-Vergne group KV, which also forms a subgroup of TAut ≤n that acts freely and transitively on the left of SolKV (n) via right product with the inverse.

Lemma 3.9. The Lie algebra krv (n) is finite dimensional, and exp(krv

(n) ) = KRV (n) .
Proof. This is the analogue of the fact that exp(krv) = KRV, essentially verbatim. Any u ∈ krv (n) is an element of tder ≤n and therefore exp(u) ∈ TAut ≤n . The result now follows because the defining equations of KRV (n) are, by design, the exponentiation of the defining equations of krv (n) . □

In [START_REF]A topological characterisation of the Kashiwara-Vergne groups[END_REF], the authors proved that the group KRV is isomorphic to a group of automorphisms of a certain tensor category. Explicitly, there is an isomorphism of groups KRV ∼ = Aut v (A), where Aut v (A) denotes the skeleton-and expansion-preserving filtered circuit algebra automorphisms of the linear circuit algebra of arrow diagrams, A ([DHR23, Thm. 5.12]). For the purposes of this paper, it is sufficient to know that a linear circuit algebra is a linear tensor category, that is, a linear wheeled prop or a rigid symmetric tensor category freely generated by a single object, and expansion preserving refers to post-composition. See [START_REF] Dancso | Circuit algebras are wheeled props[END_REF] for details.

In more detail, the proof of [DHR23, Thm. 5.12] constructs an injective group homomorphism Θ : Aut v (A) → TAut, and shows that the image of this homomorphism is KRV, and there is an inverse Θ -1 : KRV → Aut v (A).

For F ∈ KRV, the automorphism Θ -1 (F ) : A → A is uniquely determined by its value on the generators of the tensor algebra A denoted by I and Z. Thus, the construction of Θ -1 relies on identifying parts of A where these values live: Θ -1 (F )(I) ∈ A(↑ 2 ), which is a Hopf algebra on a subset of morphisms in the tensor category A, and Θ -1 (F )(Z) ∈ A(Z), which is a vector space on a different subset of morphisms.

The identification with KRV depends on isomorphisms Υ : A(↑ 2 ) → Û(cyc ⋊ (tder ⊕ a)) and κ : A(Z) → cyc/cyc 1 . Here the Lie algebra a is the two-dimensional abelian Lie algebra, and cyc 1 is the degree one part of cyc. For F = (e f 1 , e f 2 ), the value of Θ -1 (F ) on the crucial generator I ∈ A is assembled from Υ -1 ((f 1 , 0)) and Υ -1 ((0, f 2 )). The isomorphism κ is used to determine the value of the generator Z under Θ -1 (F ).

Since F is an exponential of some element of tder, these values are also exponentials, and in particular given as sums of the identity and higher degree terms [DHR23, Def. 5.4 & Thm. 5.12]. It follows that for any homogeneous D ∈ A, we have Θ -1 (F )(D) = D + {higher degree terms}.

In [START_REF]A topological characterisation of the Kashiwara-Vergne groups[END_REF] this is done over Q, but it remains true over any C-algebra R. We denote by A(R) arrow diagrams with coefficients in R, and KRV(R) the Kashiwara-Vergne group over R. This categorical interpretation of KRV allows us to prove the following important lemma, crucial for the reduction from groups to Lie algebras.

Lemma 3.10. The group KRV (n) is a unipotent affine algebraic group.

Proof. Let R be any C-algebra, and let L(R) be the free Lie algebra over R generated by x and y. The group KRV (n) (R) is defined in the same way as KRV (n) = KRV (n) (C), but with the coefficients understood in the algebra R instead of C. Any morphism of C-algebras f : R → R ′ induces a morphism of groups KRV (n) (R) → KRV (n) (R ′ ). Thus, KRV (n) can be regarded as a functor from C-algebras to groups, and is therefore an affine group scheme [Wat79, Sec. 1.2]. Similar reasoning shows that the natural truncation maps π n : KRV (n+1) → KRV (n) , obtained by restricting the natural projections π n : TAut ≤n+1 → TAut ≤n , are morphisms of affine group schemes.

The realisation of KRV(R) as a group of automorphisms of a linear circuit algebra [DHR23, Theorem 5.12] can be adapted in a straightforward way to realise KRV (n) (R) as a group Aut v (A(R) ≤n ) of filtered automorphisms of the linear circuit algebra of arrow diagrams over R of degree up to n. Therefore, KRV (n) can be regarded as an algebraic matrix group.

Both Υ and κ are degree preserving (at the level of the Lie algebras), and thus they descend to isomorphisms on the degree n quotients Υ : A(↑ 2 ) ≤n → Û(cyc⋊(tder⊕a)) ≤n and κ : A(Z 2 ) ≤n → (cyc/cyc 1 ) ≤n . This allows for the construction of a faithful representation of KRV (n) as automorphisms of arrow diagrams

(Θ -1 ) (n) : KRV (n) → Aut v (A ≤n ),
defined by the same formulas as Θ -1 . Since each generator is mapped to itself plus higher degree terms (an exponential), all elements of KRV (n) are unipotent, which implies that KRV (n) is a unipotent group (see the Theorem in [Wat79, Sec. 8.3]). □

The following corollary is common knowledge and stated, for example, in [START_REF] Alekseev | Drinfeld associators, Braid groups and explicit solutions of the Kashiwara-Vergne equations[END_REF], but we didn't find a detailed proof in the literature.

Corollary 3.11. The group KRV is a pro-unipotent group.

Proof. Restricting the tower maps from the decomposition of TAut (Remark 3.3), one obtains a tower decomposition of the group KRV:

• • • → KRV (n+1) → KRV (n) → KRV (n-1) → • • • .
Lemma 3.10 then implies that KRV is a pro-unipotent group. □

The following two lemmas are key ingredients in the proof of the main theorem: they establish that the truncation maps in the KRV tower are surjective.

Lemma 3.12. The natural truncation map π n : krv (n+1) → krv (n) is a surjective Lie algebra homomorphism.

Proof. Consider an element u ∈ krv (n) , that is, an element of tder ≤n , such that the equations (krv1) and (krv2) are satisfied up to degree n. Since in degree n the equations only depend on the degree n terms of u(x) and u(y), we can extend u(x) and u(y) by 0 in degree n + 1 to obtain ũ ∈ tder ≤n+1 , and ũ satisfies the equations (krv1) and (krv2) up to degree n + 1. This completes the proof. □ Lemma 3.13. The natural truncation map π n : KRV (n+1) → KRV (n) is a surjective group homomorphism.

Proof. By Lemma 3.10, KRV (n) is a unipotent algebraic group. Any unipotent algebraic group over a characteristic 0 field is connected (see the Corollary in [Wat79, Sec. 8.5]), and moreover its exponential mapping is an isomorphism of algebraic varieties. Thus, by Lemma 3.9, the surjectivity result of Lemma 3.12 implies surjectivity at the group level, as desired. □

The last remaining step before we prove Theorem 3.4, is to note that, because KRV (n) acts freely and transitively on SolKV (n) (see Proposition 3.7), we can use the tower decomposition of KRV to deduce information about the natural tower decomposition of SolKV.

We are now ready to prove the main theorem:

Proof of Theorem 3.4. We need to prove that the natural truncation map

π n : SolKV (n+1) → SolKV (n) is surjective. Let F (n) ∈ SolKV (n)
be a KV solution up to degree n; we will find an

F (n+1) ∈ SolKV (n+1) such that π n (F (n+1) ) = F (n) .
Choose an arbitrary solution G in SolKV, whose existence is guaranteed by [AM06] or [START_REF] Alekseev | The Kashiwara-Vergne conjecture and Drinfeld's associators[END_REF]. Its degree n truncation G (n) := π n (G) is in SolKV ≤n and thus in SolKV (n) . Moreover, G (n) extends to a degree (n + 1) solution G (n+1) ∈ SolKV (n+1) , namely, the degree (n + 1) truncation of G.

By Proposition 3.7, the group KRV (n) acts transitively on the set SolKV (n) . Choose

H (n) ∈ KRV (n) such that G (n) • H (n) = F (n) . Since by Lemma 3.13 the truncation KRV (n+1) → KRV (n) is surjective, it is possible to extend H (n) up one degree to H (n+1) ∈ KRV (n+1) . Writing F (n+1) := G (n+1) • H (n+1) , we get, π n F (n+1) = π n G (n+1) • H (n+1) = π n H (n+1) -1 G (n+1) = H (n) -1 G (n) = F (n) ,
as required. □ Remark 3.14. If F (n) ∈ SolKV (n) is a KV solution up to degree n, then according to Theorem 3.4, F (n) can be extended to n+1) . The equations that f n+1 needs to satisfy in order for F (n+1) to be a KV solution up to degree (n + 1) are linear with constant term determined algebraically from F (n) . Thus, if F (n) = (e u 1 , e u 2 ) has rational coefficients-or, in fact, coefficients in a characteristic zero field-then so does F (n+1) .

F (n+1) = F (n) + f n+1 ∈ SolKV (

The Lie algebra of the Kashiwara-Vergne group

While the Kashiwara-Vergne group, KV, is not a priori the exponentiation of a Lie algebra, we recall that for any filtered group G, there is an associated graded Lie algebra, as follows. Given a filtration

G = F 1 (G) ⊃ F 2 (G) ⊃ • • • ⊃ F n (G) ⊃ • • • ,
there is an associated graded vector space defined as

gr(G) = n≥1 gr n (G) := n≥1 F n (G)/F n+1 (G) .
Writing (a, b) = a -1 b -1 ab for the group commutator of a, b ∈ G, recall that if the filtration satisfies (F m (G), F n (G)) ⊂ F m+n (G), then gr(G) admits a Lie algebra structure with bracket [ū, v] := (u, v) for ū ∈ F n (G)/F n+1 (G), v ∈ F m (G)/F m+1 (G), and (u, v) ∈ F n+m (G)/F n+m+1 (G). We call such a Lie algebra the associated graded Lie algebra of the group G.

In this brief section we construct a filtration of the Kashiwara-Vergne group KV and show that the associated graded Lie algebra is canonically isomorphic to krv. Explicitly, F n (TAut) consists of tangential automorphisms F = (e f 1 , e f 2 ) such that for i = 1, 2, the Lie series f i ∈ L begins in degree n or higher. The degree filtration is a nested sequence of normal subgroups:

TAut = F 0 (TAut) ⊇ F 1 (TAut) ⊇ F 2 (TAut) ⊇ • • • ⊇ F n (TAut) ⊇ • • • Lemma 4.2.
For any m, n ≥ 1, we have that

(F m (TAut), F n (TAut)) ⊆ F m+n (TAut) .
Proof. This is a tedious, but elementary, calculation. Let F, G ∈ TAut be given by F = (e f 1 , e f 2 ) and G = (e g 1 , e g 2 ), for f 1 , f 2 ∈ L starting in degree ≥ n and g 1 , g 2 ∈ L starting in degree ≥ m. We write "hdt" for "higher degree terms". We aim to compute the lowest degree terms of (

F -1 •G -1 •F •G)(x) and (F -1 •G -1 •F •G)(y).
We begin by establishing some basic formulas. First, we note that

F (x) = x + [x, f 1 ] + 1 2 [[x, f 1 ], f 1 ] + hdt,
and that composition of tangential automorphisms gives

(F • G)(x) = e -F (g 1 ) e -f 1 xe f 1 e F (g 1 ) .
Similar formulas hold for y. It follows that if F = (e f 1 , e f 2 ) and F -1 = (e f ′ 1 , e f ′ 2 ), then

F -1 (f 1 ) = -f ′ 1 and F -1 (f 2 ) = -f ′ 2 .
For a Lie word w, let us denote by F (w) Note that for F chosen as above, if w is of degree k then F (w) 2 is of degree ≥ (k + n). Using these formulas, one calculates directly that

(F -1 • G -1 • F • G)(x) = x + x, [f 1 , g 1 ] + G -1 (f 1 ) 2 + F (g 1 ) 2 + hdt. Therefore, writing F -1 • G -1 • F • G = (e a 1 , e a 2 ), we have that (4.2) a 1 = [f 1 , g 1 ] + G -1 (f 1 ) 2 + F (g 1 ) 2 + hdt.
It is manifest from the formula (4.2) and the discussion of formula (4.1) that a 1 begins in degree ≥ (n + m). The same reasoning shows that the same is true for a 2 , completing the proof. □ Definition 4.3. The degree filtration on TAut induces degree filtrations on the groups KV and KRV: for n ≥ 0 define

F n (KV) := KV ∩ F n (TAut) and F n (KRV) := KRV ∩ F n (TAut).
It follows from the definitions that F n (KRV) = ker KRV → KRV (n-1) , for any n ≥ 1.

Further, Lemma 3.13 shows that the group homomorphism KRV → KRV (n) is surjective, and thus that we have KRV (n) ∼ = KRV/F n+1 (KRV).

Theorem 4.4. There is an isomorphism of Lie algebras gr(KRV) ∼ = krv between the associated graded Lie algebra of the group KRV, and the Kashiwara-Vergne Lie algebra krv.

Proof. For any n ≥ 1, the degree n component of gr(KRV) is the vector space gr n (KRV) = F n (KRV)/F n+1 (KRV). This is canonically isomorphic to the vector space of homogeneous degree n tangential automorphisms F = (e f 1 , e f 2 ), where f 1 , f 2 ∈ tder n and where F satisfies the defining equations of KRV.

Note that for f = (f 1 , f 2 ) ∈ tder n , we have e f = (e f 1 , e f 2 ) up to F n+1 (TAut). Furthermore, f satisfies the defining equations of krv, and thus there is a canonical isomorphism of vector spaces gr n (KRV) ∼ = krv n , where krv n denotes the homogeneous degree n component of the Lie algebra krv.

Lemma 4.2 implies that gr(KRV) inherits a Lie algebra structure from the associated graded Lie algebra structure on TAut. Direct comparison shows that the bracket on the associated graded Lie algebra associated to TAut agrees with the bracket on tder. It follows by restriction that the bracket on gr(KRV) agrees with the bracket on krv. □ 4.2. Kashiwara-Vergne towers. In [START_REF] Alekseev | Drinfeld associators, Braid groups and explicit solutions of the Kashiwara-Vergne equations[END_REF], just after Proposition 8, the authors observe that since SolKV is a bi-torsor under the free and transitive commuting actions of KV and KRV, every KV solution F ∈ SolKV induces an isomorphism,

KRV Ψ F ∼ = KV.
Alternatively, one can deduce this from the identification of KV solutions with isomorphisms of completed circuit algebras in [DHR23, Thms. 4.9 & 5.16] and [BND17, Thm. 4.9].

The following theorem shows that the same remains true for up-to-degree n KV solutions.

Theorem 4.5. Any F (n) ∈ SolKV (n) induces an isomorphism

Ψ F (n) : KV (n) ∼ = → KRV (n) .
As a consequence, the vertical arrows in the following commutative diagram are all surjective.

KV SolKV KRV . . . . . . . . .

KV (n+1) SolKV (n+1) KRV (n+1)
KV (n) SolKV (n) KRV (n) . . . . . . . . . Proof. In Proposition 3.7, we show that KRV (n) acts freely and transitively on SolKV (n) on the right. A similar argument shows that KV (n) acts freely and transitively on SolKV (n) on the left, and it is straightforward to check that these actions commute. The first statement is a general consequence of this bi-torsor structure of SolKV (n) . The vertical arrows in the diagram are the maps induced by the truncation maps TAut ≤n+1 → TAut ≤n . Lemmas 3.12 and 3.13 established that the maps KRV (n+1) → KRV (n) are surjective group homomorphisms. Given a choice of F ∈ SolKV, and F (n) := π n (F ), there is a commutative diagram with horizontal isomorphisms

KV (n+1) KRV (n+1) KV (n) KRV (n) Ψ F (n+1) Ψ F (n)
from which we deduce that the group homomorphisms KV (n+1) → KV (n) are also surjective. The surjectivity of the maps SolKV (n+1) → SolKV (n) is the main theorem from the previous Section (Theorem 3.4). □

Corollary 4.6. The group KV is a pro-unipotent group.

Proof. According to Theorem 4.5 above, the choice of a degree n KV solution F (n) ∈ SolKV (n) induces an isomorphism Ψ F (n) : KRV (n) → KV (n) . Composing the inverse of this isomorphism with the faithful representations Θ -1 (n) : KRV (n) → Aut v (A ≤n ) from Lemma 3.10 (based on [DHR23, Thm. 5.12]) one obtains a faithful representation KV (n) → Aut v (A ≤n ). The argument that KV (n) is unipotent now follows exactly as in Lemma 3.10. By Theorem 4.5, we have KV = lim ←n KV (n) , and thus KV is pro-unipotent. □

The following Corollary expands on the comment below [AET10, Prop. 8].

Corollary 4.7. There is a Lie algebra isomorphism gr(KV) ∼ = krv between the associated graded Lie algebra of the Kashiwara-Vergne group KV, and the Kashiwara-Vergne Lie algebra krv.

Proof. Theorem 4.5 shows that the graded pieces of KRV and KV are isomorphic. Thus, we have gr(KV) ∼ = krv as vector spaces. Since the bracket on gr(KV) is induced by the one on TAut, it follows as in Theorem 4.4 that the isomorphism above is in fact a Lie algebra isomorphism. □ Remark 4.8. While outside the scope of this paper, we note that the identification of KV with automorphisms of the completed tensor category of w-foams in [START_REF]A topological characterisation of the Kashiwara-Vergne groups[END_REF] aligns the degree filtration of KV with the Vassiliev filtration of a class of 4-dimensional knotted objects. Namely, KV is shown to be isomorphic to the group of skeleton-and expansionpreserving automorphisms of the completed circuit algebra of w-foams wF , which locally represent "ribbon embeddings" of tubes in R 4 with singular vertices. The Vassiliev filtration of these knotted objects coincides with the filtration of the circuit algebra by powers of the augmentation ideal. The descending filtration of KV is compatible via the isomorphism KV ∼ = Aut v ( wF ) with the filtration presented in [DHR23, Def. 2.25].
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 1 A filtration on tangential automorphisms. The group TAut admits a natural descending filtration by degree. Definition 4.1. The degree filtration on TAut is given by F n (TAut) := ker (TAut → TAut ≤n-1 )

2

  the sum over the occurrences of x and y in w, of copies of w where x is replaced by [x, f 1 ] and y by [y,f 2 ]. For example, F ([x, y]) 2 = [[x, f 1 ], y] + [x, [y, f 2 ]]. Withthis notation, we have (4.1) F (w) = w + F (w) 2 + hdt.