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Résumé – Estimer l’état du canal est un problème important dans les réseaux sans fil. À cette fin, il importe d’exploiter toutes les
informations disponibles pour améliorer autant que possible la précision de l’estimation de canal. Il s’avère que le problème de
l’exploitation de l’information associée au feedback de puissance reçu (par exemple, l’indicateur de force du signal reçu -RSSI-)
n’a pas été identifié et résolu ; dans cette configuration, on suppose que l’émetteur reçoit des commentaires de tous les récepteurs
présents. Pour résoudre ce problème, des outils d’estimation classiques peuvent être utilisés. L’utilisation du MMSE correspondant
est toujours bénéfique, tandis que la pertinence de l’utilisation de l’estimateur MAP dépendrait du rapport signal sur bruit (SNR) de
fonctionnement.

Abstract – Estimating the channel state is known to be an important problem in wireless networks. To this end, it matters to
exploit all the available information to improve channel estimation accuracy as much as possible. It turns out that the problem of
exploiting the information associated with the receive power feedback (e.g., the received signal strength indicator -RSSI-) has not
been identified and solved; in this setup, the transmitter is assumed to receive feedback from all the receivers in presence. As shown
in this paper, to solve this problem, classical estimation tools can be used. Using the corresponding MMSE is shown to be always
beneficial, whereas the relevance of using the MAP estimator would depend on the operating SNR.

1 Introduction
The acquisition of channel information is essential to opti-
mize the system performance in many wireless networks such
as orthogonal frequency-division multiplexing (OFDM) and
multiple input multiple output (MIMO) (see e.g., [1, 2, 3, 4]).
Generally the channel information is not perfectly known in
practical systems and needs to be estimated by sending pilot
sequences [5] or using blind channel estimation [6]. Improving
the quality of channel estimation is a well studied problem for
both academic researchers as well as engineers in the commu-
nication industry. Recent studies of channel estimation through
downlink training concentrated on massive MIMO systems.
The overhead of training sequence is huge in such systems
with a large number of antennas which makes the channel
estimation even more challenging. The behavior of MMSE es-
timator of low-rank channel covariance matrix is studied in [2].
It is shown that training overhead can be substantially reduced
by exploiting the low-rank property of the channel covariance
matrix in the asymptotic low-noise regime. In [3], an open
and closed-loop training framework using successive channel
prediction/estimation at the user for FDD massive MIMO sys-
tems is proposed. Similarly, a small amount of feedback is
required in low signal-to-noise ratio (SNR) regime with the
immense transmit antennas or with inaccurate prior channel
estimates setup for closed-loop systems. More interestingly, in
[4], downlink beamforming training, although increases pilot
overhead and introduces additional pilot contamination, im-
proves significantly the achievable downlink rate. Most of the
works aims at finding efficient training schemes to improve
the channel estimate, especially in low SNR regime. However,
apart from the training phase, the channel estimation can also
be enhanced during data transmission, which is the purpose of
this paper.

In this paper, by exploiting the receive power feedback [7],
also referred to as received signal strength indicator (RSSI),

we propose a novel technique to better estimate the channel in
MIMO systems. Since feedback resources are extremely limi-
ted in practical systems, it is important to efficiently use these
power domain feedback resources. For example, authors in
[8] consider a sub-optimal scheduling scheme for a multiuser
MIMO (MU-MIMO) to decrease the load on the feedback. Re-
ceived signal-to-noise-plus-interference-ratio (SINR) at each
user is quantized for both fixed thresholds and adaptable ones
both achieving a remarkable reduction of feedback bits. It is
worth mentioning that the usage of such information could
be highly case-depending. Authors in [9] show that the quan-
tization method for a single cell could highly degrade the
performance of coordinated multipoint (CoMP) system for
quantization error vector being no longer isotropic. To this end,
we propose to use receive power feedback at a much lower
rate compared to the classical channel state information (CSI)
feedback rate. We will focus on two specific estimators : mini-
mum mean square error (MMSE) and maximum a posteriori
(MAP) estimators. Both estimators have been widely used to
acquire CSI but only through pilot training, e.g., in [5][10].

2 Problem statement
We consider a MIMO broadcast channel consisting of a base
station (BS) equipped with N transmit antennas and K user
equipments (UEs) with single antenna. The channel model can
be described by

yj = hH
j x + zj (1)

where yj represents the received signal at UE j, hj =
(h1j , . . . , hNj)

T ∈ CN is the vector of channel coefficients
from BS to UE j, x = (x1, . . . , xN )T is the vector of in-
dependent transmitted symbols at BS and zj is the received
Gaussian noise at UE j following zj ∼ CN (0, N0). The chan-
nel matrix, H = [h1, . . . ,hK ], is assumed to follow a block
fading model, that is, H remains constant by block and more
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precisely over each transmitted frame. Indeed, like modern cel-
lular networks standards, we assume that the transmission take
places in the form of frames, each frame being itself divided
into M time-slots, and each time slot comprises T symbols.
In frequency division duplex (FDD) wireless systems, one
can assume that each UE j ∈ {1, . . . ,K} estimates hj from
downlink training symbols and feeds the estimated channel
information back to the BS. This is the setting we assume
here. The conventional approach to estimate the channel is
to use pilot signals and training in the signal domain only.
Assume orthogonal pilot signals with power P . If β symbols
are used for training, the observation at Receiver j that is,
sj = (s1j , . . . , sNj)

T is given by

sj =
√
βPhj + zj (2)

where the estimation noise zj = (z1j , z2j , . . . , zNj)
T ∼

CN (0, N0IN ). The signal-to-noise ratio (SNR) in the training
phase is defined as SNR = βP

N0
. The observations sj can be

used to estimate hj . The approach retained in this paper is to
de-noise the above estimates not only by using the channel
statistics (as done in previous works such as [11]) but also
by using some information that can be acquired in the power
domain, namely the receive power feedback samples sent by
the UEs to the BS. Indeed, in wireless systems such as 3G
and 5G systems, for each transmitted time slot m′, the BS
receives a feedback sample of the power received by UE j.
This feedback is used e.g., for power control or scheduling at
the BS. Our key observation is that this information can also
be used to improve channel estimation, and more precisely
the modulus information accuracy. Suppose the transmitted
symbols at BS are not correlated, i.e. E[xi(m

′)xj(m
′)H] = 0

for i 6= j, the average receive power at UE j for time slot m′

can be written as

Rj,m′ =

N∑
i=1

gijPi(m
′) +N0 (3)

where gij = |hij |2 represents the channel gain and Pi(t) =
E[|xi(m′)|2] represents the transmit power of the i-th an-
tenna at time-slot m′. Our goal is to find new estimates
hX:m
j by exploiting this power domain information, where

X ∈ {MMSE,MAP} indicates the type of considered esti-
mation criterion, and m the number of time slots exploited.
Without loss of generality, we assume that hj ∼ CN (0,Dj)
where Dj = diag{σ2

1j , . . . , σ
2
Nj}.

3 Novel estimates with receive power
feedback

In this section, we explain our technique for the single band
scenario. The extension to the multi-band case is straightfor-
ward since the estimation over each band can be processed
independently. Apart from the observation sj during the down-
link training phase, we use receive power feedback introduced
by (3) as an additional information to improve the estimation
quality.

3.1 MMSE estimator
Denote by R

(m)
j = (Rj,1, . . . , Rj,m) the vector of random

RSSI observed at j over m time slots. Correspondingly,

r
(m)
j = (rj,1, . . . , rj,m) denotes a vector of RSSI realizations.

The optimal MMSE estimator knowing r
(m)
j can be written as

hMMSE:m
j = AOPT:m

j sj (4)

where AOPT:m
j is obtained from :

AOPT:m
j ∈ arg min

Aj

E
hj ,zj |R(m)

j =r
(m)
j

[|Ajsj − hj |2] (5)

The corresponding optimal solution AOPT:m
j expressed as :

AOPT:m
j = E

hj ,zj |R(m)
j =r

(m)
j

[hjs
H
j ]E

hj ,zj |R(m)
j =r

(m)
j

[sjs
H
j ]−1

(6)
With our model, this could be rewritten as :

AOPT:m
j =

√
βPE

hj |R(m)
j =r

(m)
j

[hjh
H
j ]W−1 (7)

where W = βPE
hj |R(m)

j =r
(m)
j

[hjh
H
j ] +N0IK .

The E
hj |R(m)

j =r
(m)
j

[hjh
H
j ] term in (7) is not always to ex-

press. Therefore, we also provide details on how such an esti-
mator can be designed in practice. First, it can be verified that
the non-diagonal elements of E

hj |R(m)
j =r

(m)
j

[hjh
H
j ] equal to

zero, i.e.

E
hj |R(m)

j =r
(m)
j

[hijh
∗
kj ] = 0 (k 6= i) (8)

From (8), it can be seen that AOPT:m
j is a diagonal matrix.

Thus the MMSE estimator expresses :

hMMSE:m
ij =

√
βPE

hj |R(m)
j =r

(m)
j

[|hij |2]

βPE
hj |R(m)

j =r
(m)
j

[|hij |2] +N0
sij (9)

The classical MMSE estimator can be obtained as a special
case

hMMSE:0
ij =

√
βPσ2

ij

βPσ2
ij +N0

sij . (10)

Knowing the optimal estimator, we can calculate the conditio-
nal MSE (conditioned to R

(m)
j = r

(m)
j ) as a result of using

the MMSE given by (7). This conditional MSE is denoted by
Dj(r

(m)
j ) whenm RSSI observations are available, and can be

evaluated as Dj(r
(m)
j ) = E|R(m)

j =r
(m)
j

[|Ajsj − hj |2]. Finally,
the real MSE of the estimator with m RSSI measurements can
be expressed as ∆j;m = E

r
(m)
j

[Dj(r
(m)
j )]. We use D∗j and

∆∗j;m to denote the conditional and real MSEs when using the
optimal estimator given in (7). This yields :

D∗j (r
(m)
j ) =

N∑
i=1

N0E|R(m)
j =r

(m)
j

[|hij |2]

βPE|R(m)
j =r

(m)
j

[|hij |2] +N0
(11)

∆∗j;m =E∗
r
(m)
j

[D∗j (r
(m)
j )] (12)

Next, we prove that the performance in terms of the real
MSE given in (12) is at least as good as the classical estimator
for the proposed estimator. We also prove that lesser MSE can
be achieved if we use more feedback samples. We formalize
this result with the following proposition.
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Proposition 3.1. The MSE resulting from the proposed esti-
mator in (7) is a decreasing function of the number of RSSI
feedbacks available at any receiver j, i.e., ∆∗j;m ≥ ∆∗j;m+1.
Additionally, the MSE is lower bounded by a constant

∆∗j;m ≥
N∑
i=1

Ehij

[
N0|hij |2

βP |hij |2 +N0

]
(13)

3.2 MAP estimator
As with the MMSE estimator, we can use the information
provided by RSSI measurements to propose a novel MAP
estimator which reduces the MSE. Denoting m RSSI measure-
ments available at the j-th receiver by r

(m)
j , the MAP estimate

can be given by

ĥMAP :m
ij ∈ argmax

hij

fh|s,r(hij |sij , r
(m)
j )

∈ argmax
hij

fs|h,r(sij |hij , r
(m)
j )fr|h(r

(m)
j |hij)fh(r

(m)
j |hij)

∈ argmax
hij

fr|h(r
(m)
j |hij) exp(

|sij −
√
βPhij |2

N0
) exp(

|hij |2

σ2
ij

)

(14)

When no RSSI measurements are available i.e., m = 0, this
reduces to the classical MAP as follows

ĥMAP:0
ij =

√
βPσ2

ij

N0 + βPσ2
ij

sij , (15)

which also coincides with the classical MMSE. However, when
the RSSI estimates are known, fr|h(r

(m)
j |hij) becomes a Di-

rac function. Therfore, the optimization must be performed
under the constraints that R(1)

j = r
(1)
j , . . . , R

(m)
j = r

(m)
j . The

optimization problem can be rewritten as :

min
hj

(sj −
√
βPhj)

H(sj −
√
βPhj)

N0
+ hHj D−1j hj

s.t. hH
j P(n)hj +N0 = r

(n)
j , ∀ n ∈ {1, 2, . . . ,m}

(16)

where P(n) = diag(P1(n), . . . , PN (n)). This problem can be
solved by using the Lagrange multiplier method. The optimal
solution ĥMAP :m

ij can be written as

ĥMAP :m
ij =

√
βP

N0( 1
σ2
ij

+ βP
N0

+
∑m
n=1 λnPi(n))

sij (17)

where λn can be obtained from the constraint
λn(hj

HP(n)hj − r(n)j +N0) = 0 for all n ∈ {1, 2, . . . ,m}.
If the number of timeslots m is less than the number of an-
tennas, then there are possibly infinite solutions for the above
system of equations. To circumvent this problem, we assume
that we can perfectly know |hij |2 or gij for i ∈ S by exploi-
ting m RSSI measurements where S is defined as follows :
S = {i ∈ {1, . . . , N}| |hij |2 can be obtained from RSSI}.
Based on this relaxation, the RSSI measurements are treated
as the measurements of channel gains/magnitude |hij |2, and
the optimization problem defined by (16) can be simplified
as :

min
hj

(sj −
√
βPhj)

H(sj −
√
βPhj)

N0
+ hHj D−1j hj

s.t. |hij |2 = gij , ∀ i ∈ S
(18)

The solution of the simplified problem can be found by solving
the following equations :

ĥMAP :m
ij =

√
βP

N0( 1
σ2
ij

+ βP
N0

+ qi)
sij (19)

βP |sij |2

[(N0

σ2
ij

+ βP ) +N0λi]2
= gij , ∀ i ∈ S (20)

where qi = λi when i ∈ S and qi = 0 otherwise. With (20),
for i ∈ S, we have :

λi =

±

√
βP |sij |2
gij

− (
N0

σ2
ij

+ βP )

N0
. (21)

Therefore, the MAP estimator can be simplified and rewritten
as :

ĥMAP :m
ij =


√
gij

sij
|sij | i ∈ S

ĥMAP:0
ij otherwise

(22)

The proposed MAP will ensure the maximum a posteriori pro-
bability. However the minimization of the MSE is not always
guaranteed. Indeed, it can be seen from the following proposi-
tion that the proposed MAP brings more MSE in the low SNR
regime.

Proposition 3.2. Assuming all the channel gains can be ob-
tained from the RSSI measurements, i.e., S = {1, . . . , N}, the
following equalities can be derived

lim
SNR→0

Ehij ,zij [|ĥ
MAP :m
ij − hij |2] = 2 lim

SNR→0
Ehij ,zij [|ĥ

MAP
ij − hij |2]

(23)

lim
SNR→∞

Ehij ,zij [|ĥ
MAP :m
ij −hij |2] =

1

2
lim

SNR→∞
Ehij ,zij [|ĥ

MAP
ij −hij |2]

(24)

4 Numerical results
In the simulations, we fix number of transmit antennas asN =
4, number of users as K = 4 and observe the distortion per-
formance at different SNR. For ease of exposition, we assume
Dj is an identity matrix in the simulations. i.e. Dj = IN . As
seen from (10) and (15), the classical MMSE coincides with
the classical MAP in our model. We define the relative MSE
reduction as

∆∗j;0 −∆X∗
j;m

∆∗j;0
× 100% (25)

with X ∈ {MMSE,MAP}. We assume that from each feed-
back, we can perfectly reconstruct one channel gain, i.e., with
m feedbacks, Receiver j can acquire g1j , . . . , gmj .

First, we study the influence of the prior information on the
MMSE estimator. We compare the reduced MSE in terms of
number of feedback samples for different SNR. Fig. 1 shows
that the MSE can be mitigated by using the RSSI measure-
ments and the MSE decreases with more measurements avai-
lable. In the low SNR regime, the MMSE estimator does not
perform well since sj is multiplied by a constant matrix Aj .
Hence, even if we can improve the selection of Aj by knowing
the RSSI, the MSE can not be reduced much due to the high
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noise level. On the other hand, in the high SNR regime, the
classical MMSE estimator is already accurate. This results in
limited gains for the high SNR regime too. Our technique can
bring more improvements in the mid-SNR range.

We conduct a similar analysis for the new MAP estimator.
The results are shown in Fig. 2. From Fig. 2, we see that
unlike in the MMSE case, the MSE does not necessarily reduce
with higher number of RSSI feedback samples. Indeed, as
proved in Prop. III.2, the MSE for the new MAP might actually
increase in the low SNR regime. It has been checked that
the degradation in estimation is close to 100% when SNR is
less than -40 dB. However, when SNR increases, the RSSI
measurements can lead to a significant reduction in MSE and
it can even outperform the new MMSE.
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FIGURE 1 : The MMSE estimator brings a significant impro-
vements in the range [-10dB,+10dB]
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FIGURE 2 : The MAP estimator performs very well for suffi-
ciently high SNRs

5 Conclusion and future works
Under some classical assumptions on the residual noise produ-
ced by least-squares estimates, it is known that the de-noising
matrices obtained by using MMSE and MAP de-noising coin-
cide [11]. In the presence of additional prior coming from the
power domain, this result is no longer true, which explains
that MMSE and MAP performance do not perform similarly
here. In terms of MSE performance, it is recommended to use
the proposed MMSE in the moderate SNR regime and the
proposed MAP in the high SNR regime. By doing so, RSSI
feedback can be used not only for resource allocation purposes
(as currently done) but also for improving channel estimation.
In future works, we intend to extend this framework to goal-
oriented communication systems, where estimation quality is
not only to recover the signal itself but also to serve the system
to better accomplish the goal [12][13][14].
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