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This article serves as supplementary material to the conference paper entitled “Modeling of a Thick
Cylindrical Pneumatic Leg for a Soft Parallel Robot” submitted to 2024 IEEE International Conference
on Soft Robotics (RoboSoft). The equations and figures are numbered in accordance with the main
paper and the same symbols are used.

Using the Yeoh model to present the strain energy density function, the analytical solutions of
the pressure and the external axial force are presented in Section 1 and Section 2, respectively. The
sensitivity analysis of the pressure and the axial force models with respect to the Yeoh material
constants is given in Section 3. Finally, the experimental aspect is confronted in Section 4. Four
identical thick cylindrical actuators are fabricated and pressurized progressively to check the impact
of the used material on the performance of the actuator.
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1 Pressure Model Analytical Expression

Using the Yeoh material model [2], the strain energy density function, W , is expressed as follows

W =

N∑
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N is the polynomial order of the model, Ci is the material constant, and λr, λθ, and λz are the radial,
azimuth, and axial stretches respectively.
Given that λin is the radial stretch at the internal wall of the cylinder, λex is the radial stretch at the
external wall of the cylinder, and λz is the axial stretch, the pressure model reads

∆p = p̃(λin, λz)− p̃(λex, λz) (28)

where p̃(λθ, λz) is
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2 Force Model Analytical Expression

The external axial force model fex reads

fex = f̃(λin, λz)− f̃(λex, λz) (29)

where f̃(λθ, λz) is
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3 Pressure and Force Model Sensitivity to Material Constants

As mentioned in the main article, the sensitivity analysis of the pressure and the axial force models as
a function of the three Yeoh material constants (C1, C2, and C3) is studied. For this purpose, these
constants are varied by ± 30% with respect to the chosen reference model of Ecoflex™ 0050- Smooth-on
Inc., C1r = 15.8, C2r = 0.48, and C3r = 0.113 kPa [1]. The results are reported in Fig. 10. This study
yields the following findings: (1) The maximum variations in the pressure and force models εmax show
a linear correlation with the alterations in C1, C2, and C3. (2) Among the three material constants, C2

has a minimal impact, yet it equally affects ∆p and fex. A 30% change in C2 results in a 5% variation
in both models. (3) C1 exerts the most significant influence on ∆p for low ranges of deformation. A
30% change in C1 causes a 30% variation in ∆p and a 21.6% variation in fex. (4) Inversely, C3 has the
most influence on fex for high ranges of deformation. A 30% change in C3 causes about 24% variations
in both fex and ∆p. (5) Finally, εmax is always symmetric with respect to the y-axis. For example, a
-10% decrease and a +10% increase in any of the material constants yield the same εmax.
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Figure 10: (a) ∆p and (c) fex versus the external radial deformation λex and the corresponding
maximum variations εmax (b) and (d) repectively, when the three Yeoh material constants are altered
by ± 30% with respect to the reference values: C1r = 15.8, C2r = 0.48, and C3r = 0.113 kPa. εmax

is calculated with respect to a reference ∆p and fex corresponding to the reference material constants
C1r, C2r, and C3r.
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4 Experimental Results of Different Samples

The previous section demonstrates the importance of the material used and its characterization on the
pressure and force models. It is therefore pertinent to test how the impact of the material translates
in experiments.
For this purpose, four thick cylindrical actuators are fabricated using molding. Two different boxes
of Ecoflex™ 0050, Smooth-on Inc. from different sources are used and two samples are prepared from
each box. These boxes have been subjected to different storing conditions that we have no trace of.
Therefore, fabricating actuators from two different boxes serves an indicator of how variable external
factors, e.g. temperature, might influence the material and hence the performance of the cylindrical
actuator. Moreover, two actuators are fabricated from the same box to augment the dataset though
within the constraints of a limited sample size.
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Figure 11: ∆p versus (a) λex and (b) λz for four different samples of a thick cylindrical actuator.

The four actuators are progressively pressurized and the consequent ∆p versus the external radial
stretch λex and the axial stretch λz are plotted in Fig. 11. Roughly speaking, Fig. 11(b) shows that
the plots for ∆p of samples 1, 2, and 3 follow the same tendency. However, a considerable shift is
noticed between them. For example, knowing that the maximum recorded pressure for the second
sample (red curve) is 13 kPa, an almost constant difference of about 5 kPa with the first sample
(blue curve) can be seen over the range of deformation of the actuator. Moreover, the performance
of the second sample (red curve) and the third (green curve) is very similar with an average pressure
difference of 3 kPa for (λex ≤ 2.5, λz ≤ 2). Beyond this state of deformation, the average difference in
pressure between the two samples increases to 6 kPa and 4.7 kPa in the ∆p - λex and ∆p - λz planes
respectively. As for samples 3 (green curve) and 4 (black curve) both of which are fabricated from the
same box, considering the ∆p - λz plane, the percentage difference in ∆p is limited to 9% for λz ≤
2.4. It then increases to 11.7% for higher ranges of deformation. However in the ∆p - λex plane, the
two samples are significantly different with a difference of 40% for λex = 3 for example.
We therefore notice that the first two samples fabricated from the same box, have a similar behavior
despite an almost constant difference of 5 kPa for a given state of deformation (λex, λz). On the
other hand, the behavior of samples 3 and 4 are quite different especially in the ∆p - λex plane. The
number of samples does not allow a conclusive decision if whether or not sample four is an outlier and
hence considering that the other three actuators have a similar behavior with a constant difference
in the pressure value for a given state of deformation. In conclusion, given the high non-linearity of
the actuator and the several bifurcation phenomena associated to it [3, 4], it is challenging to narrow
the reasons for the variable performances reported in Fig. 11. However, using the same molds for
fabrication, it remains clear that the storing conditions are to be highly considered when preparing
the actuators and characterizing the material used.
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