Douglas A Santos

Andr Pablo M Aviles
email: paviles@ing.uc3m.es.

M P Mattos

Mario García-Valderas

Luis Entrena
email: entrena@ing.uc3m.es.

Almudena Lindoso
email: alindoso@ing.uc3m.es.

Luigi Dilillo
email: luigi.dilillo@umontpellier.fr

A M P Mattos

Hybrid Hardening Approach for a Fault-Tolerant RISC-V System-on-Chip

Keywords: Checkpoint, Fault Tolerance, Neutron, Radiation, RISC-V, Rollback, Soft Error I

We propose fault tolerance strategies applied to a soft-core RISC-V-based System-on-Chip. Notably, we investigate the effectiveness of a multilayer hardening strategy, which combines software recoverability and hardware redundancy. As validation, a neutron irradiation campaign was performed

and roll-forward operations. In [START_REF] Marques | Lock-V: A heterogeneous fault tolerance architecture based on ARM and RISC-V[END_REF] the authors propose a heterogeneous fault-tolerant architecture based on Dual-Core Lockstep (DCLS) of different architectures. It combines two different processor architectures: a hardcore processor with ARM architecture and a softcore processor with RISC-V architecture. In both systems, the rollback mechanism is incorporated to deal with the occurrence of errors and mitigate failures by returning to an error-free state. Similarly, in [START_REF] Aviles | Radiation testing of a multiprocessor macrosynchronized lockstep architecture with FreeRTOS[END_REF], we presented another recovery technique aimed to be applied in SoCs, in which a high-end ARM multiprocessor hardened with a Macrosynchronized Lockstep (MSLS) was evaluated. The MSLS technique is based on detecting errors with a loosely-coupled lockstep architecture that triggers software rollbacks from execution context saved in safe memory.

In this work, we combined the recovery strategies explored in [START_REF] Aviles | Radiation testing of a multiprocessor macrosynchronized lockstep architecture with FreeRTOS[END_REF] with the SoC presented in [START_REF] Santos | Reliability analysis of a fault-tolerant risc-v system-on-chip[END_REF], [START_REF] Santos | Neutron irradiation testing and analysis of a fault-tolerant RISC-V system-on-chip[END_REF], as a joint effort to improve the SoC reliability. Therefore, we analyze the effectiveness of the key elements of the MSLS architecture implemented in a fault-tolerant RISC-V SoC. In order to best exploit the system characteristics, our main contribution in this work is to use the error reporting of the SoC to trigger the MSLS recovery operations. Since the SoC detects several types of radiation-induced events (e.g., upsets in registers, controlling logic errors) in its internal structures, the rollbacks can be triggered for these error events. Hence, an additional processing core for the lockstep approach is dismissed and the potential non-correctable errors detected by the SoC can be potentially recovered with the MSLS protection at the software level.

This paper is organized as follows. The recovery strategy used in the proposed approach is presented in Section II. Section III describes the implementation of the rollback operation in the fault-tolerant RISC-V processor. Section IV details the experiments that have been performed to validate this approach and presents the experimental results for the radiation test campaign. Finally, Section V summarizes the conclusions of this work.

II. RECOVERY STRATEGY

In this section, the most significant aspects related to the recovery strategy are presented. It is based on two distinct operations: checkpoint and rollback. They allow the processor to return to a previous state in the execution when an error is detected. Being able to restore the state implies the need of storing the current state, so that the system can access this information and use it when required in the restore process. This approach can lead to unsuccessful recoveries in some cases and must be combined with other strategies (e.g., software reset, watchdog timers), supporting harsh environment applications, in which abnormal behavior and hangs are frequently observed. In our scenario, the processor will be working in a harsh environment and exceptions can be triggered because of radiation-induced effects. Being able to correctly detect the exception by the system and to try to restore regular execution is mandatory.

To implement the proposed recovery strategy, we use context switching. Processor context can be defined as the relevant information that characterizes the processor state and it may include the content of the register file, control registers, cache memory, and others. Processors use the stack for context switching, so that they can easily switch to another context, and then return to the previous state by restoring the previously stored context. The stack is composed of several frames, and each application function has its unique frame to store its context. The start of the frame is pointed to by the Frame Pointer (FP) register, while the last element of the frame is pointed to by the Stack Pointer (SP) register.

A. Context Saving: Checkpoint

The checkpoint is the mechanism that performs the processor context saving in safe memory. The return of the processor to a previous point in the execution can be achieved successfully if at least the essential context information is stored. A better choice is to store in safe memory not only these values, but also local variables and some global variables defined as critical for the application execution. Since local variables are stored on the stack for context switching during function calls, as well as the register file, the stack can be used for checkpoint operation. The FP and SP special registers may be used as references for copying the program stack partially or totally. This allows getting a copy of all the local variables, or many of them belonging to specific program functions. On the other hand, for the storage of critical global variables, some additional strategies must be implemented. In general, we can decide how large is the data set we want to protect in our hardened system. It is important to consider that a large amount of data will increase recovery (checkpoint and rollback) and will decrease the whole system's performance. Only relevant data should be stored, and it is quite important to select the data we want to protect, which is application dependent.

Another important aspect is the granularity of checkpoints. The decision of how frequently the checkpoint is made affects the overhead in execution time and memory size. When checkpoints are made frequently, it implies a higher overhead but the gap to a functioning saved state is smaller. Checkpoints can be application-dependent, done after user-structured blocks of code, or they can be done periodically via interrupts to be more transparent and simple to be used.

B. Context Restoration: Rollback

The rollback is the operation performed when an error is detected and requires recovery handling. It restores the processor context to a previous state, that is, data that has been stored in the safe memory is restored to continue the execution from the last checkpoint. If this checkpoint was successfully saved and contains a valid context, the system can return execution from this error-free state. The validity of a context can be checked using a checksum method. Several consecutive rollbacks can be performed: if a rollback process is not able to restore the system, another rollback is called pointing to an older checkpoint. Several consecutive rollbacks could have the potential to restore a higher number of errors. A maximum number of consecutive rollbacks (rollback depth) must be set, depending on the amount of checkpoints established and available in our hardened system. When the rollback depth is reached, more severe actions should be performed.

III. IMPLEMENTATION

In this section, we detail the decisions and characteristics of our implementation based on the concepts introduced in section II.

The checkpoint operation was implemented through a periodic interrupt. When the interrupt is triggered, the context of the SoC is transferred to a safe memory. The context includes all the registers in the register file and the local variables of the application. For that purpose, we used BRAM memory blocks with SECDED protection. In order to add robustness, during the writing process to the BRAM, a Cyclic Redundancy Check of 32-bit words (CRC32) is performed. Hence, while these values are extracted from the BRAM during the rollback operation, the CRC32 verification is performed again, and the value obtained is compared with the one previously calculated and stored during the checkpoint process. If the values match, we proceed to restore the processor context to the last stored checkpoint. However, if the CRC32 values do not match, restoration to checkpoint N-1 will be attempted.

The rollback operation, like the checkpoints, is also performed using an interrupt service routine. The SoC has built-in error detection, which is reported through exceptions. When any internal structure is affected, the SoC outputs the error information and informs the system ability to correct it. Thus, we defined that the rollback operations must be performed only when uncorrectable or external errors are detected. For example, this is the case for a double-bit upset in a register or a configuration memory corruption, respectively. It is worth mentioning that, this error classification is determined by the corrections enabled in the SoC, and despite that, reporting is always enabled.

Additional reset protection has been implemented. This allows restarting the system in case of critical errors. If the rollback depth is reached without any successful rollback, then a soft reset is performed, and the FPGA is reprogrammed. For our experiments, we have used a rollback depth equal to three, as determined experimentally in [START_REF] Aviles | Radiation testing of a multiprocessor macrosynchronized lockstep architecture with FreeRTOS[END_REF]. Since abnormal behaviors and hangs must also be managed, a system Watchdog Timer (WDT) is used. The WDT is refreshed inside the checkpoint and rollback operations. Its value has been set to allow proper operation with a margin to accommodate execution time variations, but the value is configurable and can be tuned according to the application requirements.

IV. RESULTS

To evaluate the proposed system for radiation environments, we proceeded with an experimental approach, conducting an irradiation campaign in ChipIR beamline, part of the ISIS Neutron and Muon Source, at the Rutherford Appleton Laboratory, UK. The facility has a neutron spectrum representative of the atmospheric environment, generating up to 5×10 6 cm -2 s -1 for energies with E n >10 MeV [START_REF] Cazzaniga | First tests of a new facility for device-level, board-level and system-level neutron irradiation of microelectronics[END_REF]. In this work, the irradiation on the device reached an accumulated total fluence of 5.83×10 10 n/cm 2 at the end of the test campaign.

A. Experimental Setup

The experimental setup consisted of a Zybo Z7 development board containing a Xilinx Zynq-7010 All Programmable System-On-Chip (APSoC) device, with a dual-core ARM Cortex-A9 microprocessor and an SRAM-based FPGA. To host our SoC, we used the SRAM-based FPGA contained into the Zynq 7010 device. The board is accessed through serial interface for reporting results. Differently from the experiments performed in [START_REF] Santos | Neutron irradiation testing and analysis of a fault-tolerant RISC-V system-on-chip[END_REF] with the SoC focusing on flashbased FPGAs, the usage of an SRAM-based FPGA imposes characteristics that are at the same time beneficial and concerning for the experiment, i.e., with higher device sensitivity, more events are generated, hence additional preparation is required for a proper test. Notably, the configuration memory required additional protection and a nonvolatile memory for bitstream retention. Using an external flash available on the board, we prepared a procedure for self-reconfiguration of the bitstream from the flash to the configuration memory after a power cycle, improving the test flow and mitigating the impact of error accumulation. Also, the configuration memory itself was protected, using the FPGA's partial reconfiguration and scrubbing capabilities. Although, it is important to mention that the authors did not use the Soft Error Mitigation (SEM) core provided by the vendor, but implemented a customized solution using the device's internal blocks. This strategy was adopted to allow better integration and correlation between the device and the SoC error reporting, in which the SoC is aware of device errors and can actually trigger rollbacks depending on the hardening options.

In order to improve workload homogeneity, we used EEMBC's CoreMark™ [START_REF] Gal-On | Exploring CoreMark a benchmark maximizing simplicity and efficacy, Embedded Microprocessor Benchmark Consortium[END_REF] as the main stimuli for the processor execution. Designed for measuring the processors' performance in embedded applications, the benchmark is composed of four algorithms: list processing, matrix manipulation, state machines, and Cyclic Redundancy Check (CRC). The latest is used as a workload and provides a self-checking mechanism for the inner steps of the benchmark execution. CoreMark is split into several iterations and outputs a final summarizing score. The benchmark was executed throughout the experiment. A fully hardened design was used, in which all errors correctable by the SoC are handled and only the remaining errors trigger rollbacks, as a second layer of protection since it disturbs the execution flow.

B. Experimental Results

The irradiation campaign was very effective to stress the system and generate several radiation-induced faults. In total, the system was able to perform 162 runs, which are defined as the execution between external power cycles (independently of its case), i.e., from power on to power off. Each run may be composed of several inner executions split per watchdog or software resets, as part of the recovery strategies, whereas the external power cycles are triggered only when the system stops responding. For the recovery strategies, the systems performed 217 rollback attempts.

In order to evaluate the system's endurance, we performed a Mean Fluence To Failure (MFTF) analysis. This result allows seeing the endurance of the system under neutron irradiation with a very high fluence, in which we can extrapolate the result to the targeted environments. For that, we created three error categories: 1. CoreMark error, when the benchmark result has errors, but the system continues operational; 2. hangs, when the SoC stops responding (e.g., the processor in execution loop, serial interface issues); 3. FPGA failures, when a double bit upset in configuration memory is encountered or if a CRC error has been encountered, which had a higher potential to affect the execution. Subsequently, the failure category Processor Failure represents the joined results for Hang and Coremark Error, which are failures within the SoC; and All, combining the failures from the SoC and FPGA. Even though FPGA failures are not part of the SoC reliability, we included them to show their impact on the SoC. Table I presents the MFTF results. Also, we defined two applications to provide specific estimations for Mean Time To Failure (MTTF) based on their target environments considering all failure types: terrestrial, with reference to New York sea level, and avionics, at a typical cruising altitude of 10 Km. For the first environment, the expected MTTF is about 7335 years. For the second, it is estimated in 24 years. These results give a good margin for the operation of most commercial systems.

Regarding the implemented recovery strategies, in Table II, we focus on the rollbacks and their effectiveness. The rollback types were defined as follows: 1. effective, when the system resumes normal execution with subsequent checkpoints, and could be at first attempt or after two or three (which is the rollback depth) consecutive rollbacks; 2. failed, when the rollback did not have an effect. The failed attempt category includes the rollbacks failed at first, second and third attempt, as well as executions terminated before a single checkpoint was set and, consequently, a software reset was performed.

The results demonstrate the positive impact of the rollback operation in the hardening approach. The rollback was effective in 45.09 % of cases considering all the cases when a rollback was needed, and the 44.51 % was achieved in the first attempt. The rollback failed in 54.91 % of the cases, which implies that a software reset was needed. If the error occurs before having a checkpoint available, it is also inevitable to perform a software reset. Only in 9.25 % of the cases this was necessary. We should highlight that, although performing a software reset is a severe action, it is an effective method to recover the system. With these results, we could also corroborate the assumption that having multiple rollback levels could enhance recoverability, but more than the defined rollback depth, no significant improvements are obtained.

V. CONCLUSION

In this work, we proposed and evaluated a hybrid approach for the radiation hardening of a RISC-V SoC by combining software and hardware strategies. A recovery strategy based on checkpoint and rollback operations was implemented. The results show the effectiveness of the proposed approach, achieving a 45.09 % of effective rollbacks. Also, using a custom configuration memory protection strategy, the authors improved fault awareness at SoC level, reduced FPGA resource utilization, and avoided the use of additional communication interfaces for reporting. In future work, we envision extending the recovery coverage by efficiently saving other aspects of the execution context and exploiting opportunities in other software domains, such as operating systems.

Failure Reason MFTF [n/cm²] Cross-section [cm²/device]

		TABLE I	
	MFTF SUMMARY BY FAILURE TYPE
	Hang	1.01E+09	5.49E-10
	Coremark Error	1.46E+08	1.37E-10
	FPGA failure	2.04E+08	2.09E-09
	Processor failure	8.35E+08	6.86E-10
	All	3.60E+08	2.78E-09

This study has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 101008126.

The author would like to acknowledge the support from the irradiation facility personnel, notably Carlo Cazzaniga and Maria Kastriotou. Also,