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Abstract

In safety-critical systems, solutions that rely on redundancies at the hardware and software levels allow these
systems to operate in radiation-harsh environments. In the literature, software-based techniques for enhancing reliability
in critical systems are less developed when compared to hardware-based fault-tolerant techniques. In this context, we
implemented error correction and detection techniques through software, along with a custom RISC-V processor-core
implementation. RISC-V is an open instruction set architecture that is gaining popularity due to its modular design, as
well as the FreeRTOS kernel, which is a well-established Real-Time Operating System. Our implemented proposal has
shown to be able to reduce the number of execution failures by four times when compared to the standard version at the
cost of increased execution time and energy consumption. The experimental results may guide designers in choosing
the best trade-offs between reliability and resource constraints in complex contexts such as space applications.

Index Terms

Systems-on-Chip, Fault Tolerance, Software Reliability, RISC-V, FreeRTOS

I. INTRODUCTION

RISC-V is an open standard architecture based on the Reduced Instruction Set Computer (RISC) principles, initially
developed by Berkeley University but maintained by the RISC-V foundation. RISC-V provides a base instruction set
with several optional extensions, reducing software costs and enabling implementations of large- and small-scale
architectures [1]. Semico Research Corp. estimates that in 2025, the market will have around 62.4 billion RISC-V
cores worldwide [2].

RISC-V’s software support is increasing in multiple computing fields, such as Operating System (OS), on which
the Linux kernel [3] and Zephyr [4] already have support, as well as compilers and simulation software. In addition to
a general-purpose OS, systems with additional characteristics, such as real-time systems provided by FreeRTOS [5]
are also available. However, approaches focusing on delivering reliability are not near the same number in RISC-V.

An operating system may run in environments that demand reliability techniques. These systems can experience
external interference, impacting the system’s availability, security, integrity, or maintainability [6]. For these systems
to operate correctly in the presence of a fault, the system may provide reliability at the hardware or software levels.

Several works in the literature tackle reliability characteristics at the software level, such as the work [7], where
the authors inject single bit-flips to simulate faulty behavior in the RISC-V multiplier unit. The work [8] implements
reliability techniques for software by adding fault mitigations to instructions and/or data at the compiler level. The
work [9] proposes the simulation of errors in a set of RISC-V compiled C programs to evaluate the impact of software
execution when injecting permanent and transient faults. Moreover, the work [10] evaluates the impact of injecting
single bit-flips in the configuration memory in a Linux-based system. Finally, [11] analyses the pros and cons of
hardened-by-replication software applications running on soft-core microprocessors.

Solutions explore redundancy or rely on fault-tolerant hardware components to guarantee reliability for safety-
critical applications. Hardened hardware components are not always cost-effective, nor do they always provide the
specificity a system needs. Therefore, this work explores software-based reliability techniques and proposes applying
a technique at OS level on a RISC-V architecture. Furthermore, we propose a set of modifications of a RISC-V
processor to monitor and communicate the OS of a detected fault.

Given this context, we port FreeRTOS to a reliable RISC-V processor and implement the required exceptions and
interrupts for supporting the OS. We implement process-level Triple Module Redundancy (TMR), which blocks the
running tasks and waits until all task values have been compared. Further, we implement fault notification through a
custom RISC-V exception to allow the OS to log, reset and do any required post-processing when a fault is detected.

This work was supported in part by the Foundation for Support of Research and Innovation, Santa Catarina (FAPESC-2021TR001907), and
the Brazilian National Council for Scientific and Technological Development (CNPq - process 350794/2023-5), and the Region d’Occitanie and
the École Doctorale I2S from the University of Montpellier (contract 20007368/ALDOCT-000932).



II. BACKGROUND
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Fig. 1. HARV and FreeRTOS compilation and simulation process.

HArdened RISC-V (HARV) [12] is a low-cost fault-tolerant, single-cycle RISC-V processor based on the RV32I
instruction set of the non-privileged specification. The HARV processor is described in VHDL without any vendor-
specific Intellectual Property (IP) blocks. Furthermore, this processor has been thoroughly analyzed in irradiation
facilities and provides detailed information on radiation-induced errors [13]. Until now, HARV was only used in specific
and dedicated applications running in bare-metal.

FreeRTOS is a real-time OS for microcontrollers designed to execute user-defined tasks within a strict period.
FreeRTOS’s architecture is structured into three main layers: (i) the tasks layer, which deals with creating user-
defined tasks and scheduling maintenance, (ii) the communication layer, allowing tasks and interrupts to send data
to each other and signal resources, and (iii), the shim layer, which acts between the hardware-independent and
-dependent code [14].

Since HARV did not provide support to any OS, we ported FreeRTOS to increase its software support. We used
the existing FreeRTOS RISC-V port available in the main repository and modified the source code to adapt to HARV’s
current architecture. The RISC-V port facilitated the modification and validation of the necessary parts of the source
code while hiding details that were not the main focus of this work.

To simulate the compiled binary and validate our port, we ran a script against the binary file to convert it from a
binary to a text with the instruction format and data in hexadecimal format. The simulation then parses all lines of
the generated file and executes the instructions. This flow is illustrated in Fig. 1.

Furthermore, given that HARV implements the RV32I instruction set, this work used the open-source FreeRTOS
RISC-V implementation [15] as the baseline of the port to make the necessary modifications.

III. OPERATING SYSTEM HARDENING

To add support to FreeRTOS in the HARV architecture, modifications were made to support basic functionalities
of the FreeRTOS kernel, both in hardware (HARV) and in software (FreeRTOS). We identified three structures of
Amazon’s FreeRTOS port that required changes to adapt to the HARV processor:

1) The vPortSetupTimerInterrupt to set up the timer interrupt;
2) portcontextSAVE_INTERRUPT_CONTEXT to handle a context switch and save the current context;
3) The linker script provided by FreeRTOS source demo for the linking phase.
The FreeRTOS vPortSetupTimerInterrupt function required changes on the mtime register, given that in

RISC-V specification, it is memory-mapped and in HARV is an actual Control Status Register (CSR). A change
to portcontextSAVE_INTERRUPT_CONTEXT procedure was required to support the mstatus CSR, given that
mstatus was not recognized by the compiler during the compilation phase, which required us to change the CSR
register to its correct address in HARV. Finally, the linker script required CSR, and Read-Only Memory (ROM)
addresses modification to find the initial address of the program.

Our findings later showed that Amazon’s RISC-V version of FreeRTOS distribution was out of date along with
the FreeRTOS kernel repository. The changes were later implemented along with refactoring on trap handling and
context switching1. To overcome such problems, we copied the new refactor of the FreeRTOS Kernel source code
to the FreeRTOS distribution source. This source code replacement was enough to get HARV to execute the demo
software provided by FreeRTOS.

While the RISC-V specification defines a range of exception codes, HARV had no support for software traps and
timer interrupts. Four traps, shown in Table I, were identified to be relevant to HARV to support FreeRTOS.

To implement the trap support, a new set of CSRs is required, including (i) mie CSR for read/write of interrupt
enable bits, (ii) memory-mapped mtime real-time cycle counter, (iii) mcause for indicating the event that caused
a trap and (iv ) mtval for assisting software with exception-specific information. The implemented CSRs, and their
privilege level are shown in Table II.

The new trap encoder unit is connected to the Instruction Fetch (IF), Control, and ALU unit. The trap encoder
handles timer interrupt by comparing if the current timer (mtime) value is greater or equal to the value set in

1Pull Request can be found at https://github.com/FreeRTOS/FreeRTOS-Kernel/pull/444

https://github.com/FreeRTOS/FreeRTOS-Kernel/pull/444


TABLE I
EXCEPTIONS AND INTERRUPTS IMPLEMENTED.

Exception type Exception name

Synchronous Environment call from Machine-Mode
Synchronous Load access fault
Synchronous Store access fault
Asynchronous Machine timer interrupt

TABLE II
IMPLEMENTED CSRS IN HARV.

Number Privilege Name Description

0x304 Machine R/W mie Interrupt Enable
0x342 Machine R/W mcause Trap Cause
0x343 Machine R/W mtval Trap Value
Memory-mapped Machine R/W mtime and

mtimecmp
Timer

mtimecmp. Furthermore, the trap encoder writes any pending interrupts before encoding the trap matching any
exception shown in Table I and writing the mcause if applicable. The CSR components were extended to support
trap-related CSR. Fig. 2 illustrate the HARV organization after the inclusion of the trap encoder.

Instruction
Memory Data MemoryInstruction Fetch

Control

Register File ALU

Trap Encoder

CSR

Fig. 2. HARV organization with trap support.

A. Fault trap support

Given the HARV processor has support for fault detection and correction through means of TMR and Hamming,
notifying the OS of a fault enables handling fault mitigation at the software level or running any post-processing
mechanism. Post-processing mechanisms can include logging fault information, fault correction, or running safety
checks to decide whether the system should halt or continue running.

To support fault mitigation in HARV at the software level, we add support to a new RISC-V custom asynchronous
exception. We use the exception code 18 because it is designated for platform use. We modify HARV’s Hamming
and TMR component to raise an asynchronous exception and set mcause to value 18 to notify the OS of a hardware-
detected fault. Since not all designs require trapping on every fault, we can enable or disable this feature during
compilation by defining the FAULT_TRAP_HANDLER flag with the function’s name.

B. Software-based fault tolerance

To further harden the system, we applied TMR to correct errors based on different task output results. In our
proposal, if the process has no redundancy mechanism, we run the process and continue without any modification.



Otherwise, our task-based TMR runs a copy of three processes with independent memory space and then compares
the output of all three tasks byte-by-byte. We run an optionally provided post-processing mechanism if a fault is
detected during the voting procedure.

To synchronize the output of the tasks, a private queue is used to store the computed values. Each task replica
is responsible for inserting the shared value into the queue and blocking it until all other tasks have inserted their
value. When all processes have synchronized, we compare the values inserted in the queue byte-by-byte and trigger
an optional exception handler if two values do not match. Further, our solution ensures that the value address is
within the memory range if a fault changes the address value to an out-of-range address.

Fig. 3 shows a flowchart of the task’s synchronization and voting procedures, including inserting a value into the
queue, blocking, and context switching to another task. Finally, when the queue is full, we compare the results and
trigger a fault trap if enabled by the user and unblock any blocked tasks waiting for the result.

TABLE III
IMPLEMENTED FREERTOS API.

Interface Description

vTmrInit(void (*)(void *), ...) Registers and enable tasks for TMR.

int iTmrInsertValue(void (*)(void *), void *addr,
int size)

Insert value in the queue for TMR comparison. Receives the task
pointer, value address, and value size.

int iTmrPullData() Check if queue is full. Returns 0 if queue is empty, 1 otherwise.

void ft_exception_handler(void *arg)
Optional interface for implementing a custom exception handler in
case an error if detected during the voting process.

void vPrintTask() Print list of current registered tasks.

void vTmrWaitForData() Force blocking the current task until all TMR tasks have ran.

void fault_trap_handler( unsigned long, unsigned
long, int, int)

Required interface for enabling fault trap notification. It receives
mcause, mepc, event_id and mem_event_id as argument.

Register TMR task

Insert result to
queue

Run tasks

No YesIs queue full?Block task

Block process

Vote on queue
items

No

Yes

Bytes match?Call exception
handler if available

Unblock all tasks
and returning

result

Fig. 3. Task-level TMR flow.

The TMR functionality further provides N-version support by enabling the programmer to specify different versions
of the function for redundant execution. With support for N-version functions, one can benefit from TMR by running the



function three times while having three different versions of the implementation. The implementation provides a public
Application Programming Interface (API), shown in Table III, with functions and constants for users to synchronize
tasks and check for faults affecting data.

IV. RESULTS

This section presents the results related to hardware and software cost, performance, and dependability obtained
through the fault injection campaign.

A. Cost

We used Xilinx Vivado 2021.1 to synthesize the HARV processor targeting the Xilinx 7000 FPGA. Table IV presents
the cost in terms of hardware resources for the synthesis of the HARV before and after the addition of the trap encoder.
The hardware upgrade increased 56.31% in the number of FFs and led to an increase of 46.03% in LUTs compared
to the baseline, which ended up degrading the operational frequency in 0.8%.

TABLE IV
HARV SYNTHESIS RESULTS.

HARV LUTs FFs Fmax (MHz) Ptotal (mW)

Standard 3117 1893 51.59 222
With trap support 4552 2959 51.18 237

To analyze software resources, we used FreeRTOS standard toolchain (GNU GCC) to compile and evaluate binary
segment size. Table V presents the cost of binary size (in bytes) for the standard and hardened FreeRTOS versions.
We had an increase of 3.78% in terms of code (section .text) and an increase of 18.87% in read-only data
(.rodata). Considering the total size of the binary, the hardened version of the FreeRTOS presents an increase of
1.90% in the segment with respect to the standard version.

TABLE V
BINARY SIZE OF FREERTOS STANDARD AND HARDENED.

Segment (in bytes) FreeRTOS standard FreeRTOS hardened

.text 69880 72524

.rodata 1992 2368

.data 28 28

.bss 73188 73188

.stack 12284 12284

Total 158164 161184

B. Performance

We used Xilinx Vivado’s simulator to evaluate the modified HARV in terms of performance for standard and
hardened versions of FreeRTOS. The simulation gave as result the total number of cycles for each execution. Taking
into account the frequency at which HARV operates (detailed in Table IV), the performance results in Table VI show
that the total execution time for the hardened increases approximately two times compared to the standard FreeRTOS
version. A similar analysis can be made for energy consumption, considering the total power presented in Table IV.

TABLE VI
PERFORMANCE RESULTS.

FreeRTOS Cycles Execution time (s) Energy (mJ)

Standard 8.54× 107 1.61 380.95
Hardened 1.73× 108 3.27 771.24

Table VII presents the performance overhead of cycles introduced by each TMR function to provide fault tolerance.
For this measurement, the cycle count is fetched before and after entering the function call.



TABLE VII
CYCLE COUNT PER API FUNCTION WITH TMR ENABLED.

Function Cycle start Cycle end Total

vTmrInit 1,583,504 1,854,083 270,579
iTmrInsertValue 6,478,322 11,992,678 5,514,356
vTmrCompare 7,072,730 11,783,849 4,711,119

The standard version does not execute vTmrInit and vTmrCompare functions, as it does not initialize any TMR
tasks, and neither calls the TMR compare to check all task values. The call to iTmrInsertValue has the highest
number of cycles, given it blocks the process until all values are fed to the queue and compared, thus blocking each
process at each call in case the queue is not filled. Further, the vTmrCompare function is dependent on the size of
the value that is being compared, while iTmrInsertValue is dependent on the number of cycles vTmrCompare
requires.

C. Experimental Setup

To simulate the fault occurrence for evaluating the effectiveness of our software-based hardening proposal, we
made a fault injection campaign that inserts Single-Event Upset (SEU) faults in random flip-flops at random times.
We used Intel ModelSim SE 2019.01 to simulate faults through a TCL script. To run the simulations, we used a
server running CentOS, with 512 gigabytes RAM and a 96-core Intel (Haswell) CPU, with a 64-bit architecture.

The first step of the simulation is the execution of a golden run, which executes once the entire application
without fault injections. This run provides baseline indicators for the comparison with the subsequent simulations,
i.e., execution time, system flip-flops, and UART output. These indicators are also used as parameters for the fault
injections.

The fault injection is based on a neutron-characterized flip-flop FITNYC (Failure In Time for a billion hours in the
New York City’s neutron flux at sea level) of 248 and a neutron flux of 5× 1010n/cm2/s. The computation of the fault
injections is presented in Fig. 4, in which the script steps over the execution time in random increments calculating
a fluence estimation for each time delta. We use the total fluence to calculate the error rate for each flip-flop during
this period, which uses uniform randomization to decide whether the fault should be injected.

Regarding workload, we implemented three FreeRTOS tasks that iterate until a given number and multiply the
number by 2 through adder, multiplier, and bit-shifting. Since the tasks that we implemented are simple operations,
instead of keeping the result of the multiplication stored in a variable, we iterated through an array of 512 positions
and store the generated value in all array positions, to simulate an intensive computational operation and increase
the chances of getting an error propagation.

D. Fault injection campaign

We ran each simulation with a set of 1000 executions. Each execution creates a uart.log log file with all the
output and the simulation time that were next used to analyze the simulation results. At the end of all 1000 executions,
we ran a Python script for all the log files to analyze the results obtained for each simulation. The Python script
verifies which execution finished correctly and which did not and how many faults were detected and corrected by
the software.
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Fig. 4. Fault injection flow.

A full simulation (1000 executions) took 120-150 hours to complete. In total, the simulations took around 600 hours
(25 days). The results of all simulations are shown in Table VIII.

TABLE VIII
FAULT INJECTION CAMPAIGN RESULTS.

Classification FreeRTOS Standard FreeRTOS Hardened

Number of executions 1000 1000
Executions with error 694 933
Executions with errors detected N/A 765
Executions with errors corrected N/A 22
Executions with failure 694 168

Of the 1000 executions for each simulation, we observed the standard version had 694 executions with errors,
while the hardened version had 933 executions with errors and an increase of 34.43%. This is because the hardened



version takes approximately two times more for its execution in comparison to the standard version, exposing the
system to more errors compared to the standard version in the simulation. Considering the detected errors, the
hardened FreeRTOS detected 765 errors from 933 executions with errors. Among the 765 executions with errors,
22 errors were not only detected but also corrected.

Considering the reliability analysis, the standard version had 694 executions with errors propagated into failure
because of the absence of detection and detection mechanisms. The hardened FreeRTOS presented only 16.8%
of executions with failure, in which the system was not able to neither detect nor correct the error. Despite the
execution taking twice as long exposing the system to twice the number of injected errors, the experiments show
that the hardened version of FreeRTOS was able to reduce the number of execution failures by 4 times, since it was
able to detect the error before it would provoke a failure.

E. Discussion

To achieve the goals of this work, modifications to the processor and OS were necessary. These modifications
had a significant increase in the logical resources and a small increase in terms of binary size when compiling the
OS with hardened features.

Concerning performance, we noticed the execution time for the hardened version doubled. We also observed
that the execution time increase is mainly due to the TMR usage, which blocks all tasks until it finishes executing.
Moreover, the input size that will be compared by the TMR module will impact the execution time since the module
will compare byte-by-byte of each input.

Concerning reliability, we made a fault injection campaign that randomly inserted SEUs. We ran 1000 executions
for each simulation, in which we observed that the hardened version presented more executions with errors due to
the increase in execution time. Besides this drawback, the hardened FreeRTOS presented a reduction of the number
of executions failure by four times. In applications where the main requirement is reliability, this hardened version
presents a good trade-off between execution time and fault tolerance.

V. CONCLUSION

This work aimed to provide a software-level hardening solution using FreeRTOS in a RISC-V architecture. For
this purpose, we modified the HARV processor core to provide trap handling and fault notification through a custom
exception. Further, we added TMR support for FreeRTOS tasks, including registering a fault trap handler in case the
HARV detected a fault.



The experiments showed the hardened FreeRTOS capability to reduce executions failure four times lower than
the standard one. This performance was obtained at the price of increased energy consumption and execution time.
This trade-off can be considered suitable for applications where reliability has a higher priority than other metrics.

In future work, we intend to submit the proposed implementation to a fault injection campaign in particle accelerators
and compare fault-tolerant techniques at the hardware level and techniques implemented at the software level.
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