
HAL Id: hal-04266881
https://hal.science/hal-04266881

Submitted on 31 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Low-Cost Hardware Accelerator for CCSDS 123
Lossless Hyperspectral Image Compression

Wesley Grignani, Douglas Santos, Luigi Dilillo, Felipe Viel, Douglas Melo

To cite this version:
Wesley Grignani, Douglas Santos, Luigi Dilillo, Felipe Viel, Douglas Melo. A Low-Cost Hardware
Accelerator for CCSDS 123 Lossless Hyperspectral Image Compression. DFT 2023 - 36th IEEE
International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems, Oct
2023, Juan-les-Pins, France. pp.1-6, �10.1109/DFT59622.2023.10313567�. �hal-04266881�

https://hal.science/hal-04266881
https://hal.archives-ouvertes.fr


This is a self-archived version of an original article.
This reprint may differ from the original in pagination and typographic detail.

Title: A Low-Cost Hardware Accelerator for CCSDS 123 Lossless Hyperspectral Image Compression

Author(s): Wesley Grignani, Douglas A. Santos, Luigi Dilillo, Felipe Viel, and Douglas R. Melo

Document version: Post-print version (Final draft)

Please cite the original version:
W. Grignani et al., ”A Low-Cost Hardware Accelerator for CCSDS 123 Lossless Hyperspectral Image
Compression,” 2023 36th IEEE International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT), 2023.

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of
any of the repository collections is not permitted, except that material may be duplicated by you for your research
use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or
print copies may not be offered, whether for sale or otherwise to anyone who is not an authorized user.



A Low-Cost Hardware Accelerator for
CCSDS 123 Lossless Hyperspectral Image

Compression
Wesley Grignani∗, Douglas A. Santos†, Luigi Dilillo†, Felipe Viel∗‡, and Douglas R. Melo∗

∗LEDS, University of Vale do Itajaı́, Itajaı́, Brazil
†IES, University of Montpellier, CNRS, Montpellier, France

‡SpaceLab, Federal University of Santa Catarina, Florianópolis, Brazil
wesley.grignani@edu.univali.br, {douglas.santos, luigi.dilillo}@umontpellier.fr, {viel, drm}@univali.br

Abstract

Several remote sensing applications that collect specific data in the space environment use images capable of
providing a large volume of information, known as hyperspectral images. Given the amount of data, one of the most
critical issues in applications that use hyperspectral images is the demanded for compression, which also affects
restrictions on the storage capacity and processing in space applications. This work aimed to implement hyperspectral
image compressors, considering the standard by the CCSDS (Consultative Committee for Space Data Systems). The
solutions were implemented using a High-Level Synthesis tool (HLS) and a manual description in a Hardware Descrip-
tion Language (HDL). Results show that, compared to the software solution, the HLS and the HDL implementation
accelerated the application by 1.6× and 4×, respectively. For images up to 512 spectral bands, the HLS solution
presented a throughput of 9.11 MSa/s, while the HDL solution can process 21.47 MSa/s, which meets the real-time
requirements of the standard. The HDL solution uses about 3× fewer LUTs (Look-Up Tables) LUTs and 8× fewer
FFs (Flip-Flops) than the HLS implementation. Due to the low cost observed in the results, we intend to harden the
accelerator and integrate it into a future multi-core satellite system.

Index Terms

Systems-on-Chip, Hardware Accelerators, Image Processing, Hyperspectral Images, CCSDS 123.0-B-2.

I. INTRODUCTION

Space applications that collect data about the Earth use remote sensing techniques for this task. One technique
is the hyperspectral images (HSIs), which can be used for Earth image collection, climate analysis, and monitoring
forest environments [1]. HSIs are three-dimensional structures of pixels, where each pixel is represented in a (x, y, z)
coordinate system. Each z-axis layer represents a single image at a given electromagnetic spectrum. The dimensions
can sometimes be hundreds or thousands of bands [2].

Given the large volume of data in hyperspectral images, a reduction in their size becomes desirable, aiming to
minimize impacts on performance in transmission and processing techniques. A well-known compression algorithm
for this type of image is CCSDS 123, developed by the Consultative Committee for Spatial Data Systems [3]. Recently,
a new version of the standard entitled CCSDS 123.0-B-2 was released. This version introduces some modifications
compared to the previous version, such as changes in the predictor equations and changes in the header structure
in the encoder. In addition, this standard introduces a near-lossless compression mode for use with the new hybrid
entropy encoder.

The existence of many bands to compute HSIs turns it into a data-intensive processing structure for space systems.
It affects the ability to store, process, and even transmit this imagery to a ground station. For example, the HyspIRI
sensor developed by the National Aeronautics and Space Administration (NASA) can produce up to 5 Terabytes of
data per day [4].

Using reconfigurable architectures, such as FPGAs, has seen an increasing adoption for creating high-performance
systems for image processing applications. However, algorithm implementation for a hardware design is more
complex than software implementation. Therefore, adopting High-Level Synthesis (HLS) tools has begun, enabling
hardware development using programming languages [5].

High-level synthesis tools allow the creation of a hardware design from a high-level programming language. The
hardware creation process starts from the code specification, and the HLS tool is responsible for creating and

This work was supported in part by the Foundation for Support of Research and Innovation, Santa Catarina (FAPESC-2021TR001907), the
Brazilian National Council for Scientific and Technological Development (CNPq - processes 138179/2021-2, 140368/2021-3 and 350794/2023-5),
and the Region d’Occitanie and the École Doctorale I2S from the University of Montpellier (contract 20007368/ALDOCT-000932).



allocating resources and generating the hardware description representing the design at the Register-Transfer Level
(RTL) [6].

Some works have implemented hardware accelerators using HDL (Hardware Description Language) or HLS
techniques for HSI compression. The works [7], [8] and [9] implemented a hardware accelerator in the CCSDS
123.0-B-1 standard, however, [8] implemented only the prediction step. The work [10] presents a versatile solution
that implements both CCSDS 123.0-B-1 and CCSDS 121.0-B-2 standards. The works [11] and [12] implemented
the complete compressor of the CCSDS 123.0-B-2 standard, in which [11] implemented using VHDL and [12] using
an HLS tool.

In this work, we present the implementation of accelerators in HDL and HLS for the lossless compression of HSI
compatible with the CCSDS 123.0-B-2 standard. The accelerators were designed to reduce development complexity
and low resource utilization for applications in space systems, like the new nano/cube satellite segment that introduces
stringent constraints in terms of power and resources.

II. CCSDS 123 ACCELERATOR DESIGN

In this work, we extend a previous project [13] by implementing the accelerator in HDL and optimizing the HLS
version. We present a detailed characterization of the cost and performance and compare it with related works.
The compression standard is composed of the predictor and the encoder blocks. Each block has several calculation
steps, which can be seen as follows or in more detail in the specification [14]. Fig. 1 presents an overview of the
prediction design.

Local sum

Local difference

High resolution
predicted sample

lo
ca

l d
iff

er
en

ce
 v

ec
to

r

Weights vector

Predict
central

Rotation local
difference

Weights update

Double resolution
predicted sample

Predicted sample Quantizer index

Mapped quantizer
index

mapped residual

sample

neighbor

Fig. 1. Predictor component design.

A. Prediction

The prediction calculation that involves part of the lossless compression process is separated by sub-steps such
as local sum, local difference, weights and local difference vector, central prediction, and mapped quantizer index.

1) Local sum: The first step of the compressor consists of a local sum between samples from the same spectral
band. Each sample is represented by sz,y,x through the coordinate system or by the index t, defined as t = yNx+x.
There are three options for performing local sum, wide or narrow neighbor-oriented, and column-oriented.

2) Local difference: The local difference is performed considering the local sum calculated earlier. The local
difference considers the current pixel and performs the local directional differences in N , NW , and W coordinates.

3) Weights and local difference vectors: The local difference vector is used to store Pz user-defined local differ-
ences, which are later used to calculate the predicted value of the sample. On the other hand, the weight vector
stores the Pz values that will be used in the prediction by multiplying them by the vector of local differences. The Pz

represents the number of preceding bands that predict a sample.
4) Predict: For the prediction calculation, the local difference prediction is performed first, being the multiplication

between the weight vector and the local difference vector. Then, the high-resolution predicted sample, the double-
resolution predicted sample, and the predicted sample are calculated. These calculations are necessary to obtain
the mapped quantizer index, which represents the output of the predictor.

5) Mapped quantized index: After the previous steps, the output value of the predictor is obtained, called the
mapped quantized index. For this, a quantizer index is used, calculated by considering the difference between the
value of the current sample and the value of the predicted sample, called the prediction residual.



GPO2 Word

Accumulator and
counter update

mapped residuals
 binary codeword GPO2

1100..

Header generator

Packer

image information

image compressed

 zeros  1 least signi�cant bits of

 zeros binary representation of

Compressed image structure
previous mapped

residual

Fig. 2. Encoder component design.

B. Encoding

The design of the encoder (Fig. 2) follows the sample adaptive encoding model and receives the residual prediction
from the previous component as the input value. The output form of the variable length words can change according
to the calculations performed by the compressor.

The encoder is responsible for receiving the samples from the predictor component and encoding them using one
of the methods presented in the specification. The encoder should generate a file with a header and body structure
of variable sizes specified by the user.

The header contains information about the specification of the method used to perform the prediction and encoding,
as well as information about the image that is being compressed. The body of the compressed image should contain
the data generated by the entropy encoder used for the implementation.

This work implemented the sample-adaptive entropy encoder because it shows better compression results in the
reduced and lossless prediction mode. Each mapped quantized index must be encoded using a variable-length
binary codeword. The encoder has an accumulator and counter vector that stores information from each spectral
band of the image.

III. HARDWARE IMPLEMENTATION

The lossless compressor implementation in this work is compatible with the new standard CCSDS 123.0-B-2. This
CCSDS standard retains all features available in the previous B-1 standard, and the compressed image header of
the recommended standard has been designed to be backward compatible with the old version. Thus compressed
images produced by a compressor compliant with B-1 will also be compliant with the B-2 [15].

A. Design and Implementation Choices

We made some design choices to reduce the complexity of the implementation and have the lowest use of logic
resources. Table I presents the design choices made between the allowed modes of implementation in the standard.

TABLE I
COMPRESSOR DESIGN AND IMPLEMENTATION CHOICES.

Parameter Specification Implementation
Compression mode Lossless, Near-lossless Lossless

Prediction mode Full, Reduced Reduced
Local sum mode Wide, Narrow, Column Column
Processing order BSQ, BIL, BIP BIP
Entropy encoder Block, Sample, Hybrid Sample-Adaptative

As can be seen in Table I, several implementation options are allowed in the standard. All these options have an
impact on the image compression ratio but also have a significant impact on implementation complexity and resource
utilization.

1) Compression mode: The near-lossless model requires the additional implementation of the sample represen-
tatives s′′z,y,x component and the fidelity control method mz(t), not needed for the lossless model. Setting mz(t) = 0
we reduce the complexity because the quantization calculation is removed, which eliminates the integer division
operations in quantization and mapped steps. In addition, we also reduce the hardware complexity by eliminating
the sample representative calculation by setting the parameters to 0 for all bands.



2) Prediction mode: The reduced prediction mode does not require additional calculations of the directional local
differences present in the full mode. Moreover, the storage of these values in the weights and local difference
vectors increases in the full mode because of these directional differences. The reduced mode was selected for our
implementation.

3) Local sum mode: The local sum considers neighboring pixels for the calculation. According to the order of
processing, Band Sequential (BSQ), Band Interleaved by Line (BIL), or Band Interleaved by Pixel (BIP) implies the
size of the buffers needed to store the samples to calculate the local sum. The column-oriented local sum presents
the least dependence on neighboring pixels for the calculation compared to the other options. In this work, the
compressor does not buffer the samples to do the local sum but receives the sample and neighbor as input.

4) Processing order: The processing order directly affects the size of the local differences to be stored. The
prediction in the spectral band z depends specifically on the local differences, computed in bands z−1, z−2, .., z−Pz

and stored in the local differences vector. In the BIP method, the size of the local difference vector is only based
on the number of previous bands considered for prediction, since this method goes through all the bands of a (x, y)
position at a time. Fig. 3 illustrates the BIP storage process for Pz = 3 previous local differences.

Fig. 3. Processing order and local difference vector storage process.

Running through the BSQ or BIL, the vector would need to store all the differences calculated in that band, so
when it moves to the next spectral band, the local difference values in the previous bands for each pixel would be
stored for the prediction. Thus, the size of the vector in BIP mode is implemented based only on the previous Pz

bands and does not need to consider the Nx and Ny dimensions of the image, which are needed in BSQ or BIL
methods [15].

These design choices made in the local sum step and processing order make the resource utilization of the
compressor change only based on the Nz bands of the input image, and not on the Nx and Ny spatial resolution.

B. High-Level Synthesis

In the HLS implementation, each compression step was implemented in a function using the C-based HLS
language. The HLS tool has optimization directives that can be used to inform the synthesis tool on generating
the hardware in that specific part. The tool also has libraries for manipulating variables with a fixed bit size, which
is crucial for optimized resource usage. The main directives that are widely used are:

• Pipeline: allows the hardware creation in parallel and with specific pipeline levels so that the startup interval of
a new calculation is reduced, increasing the throughput.

• Unroll: enables the operations in a repetition loop to be executed in a single clock cycle, usually using more
logic resources.

• Array Partition: forces the compiler to partition the memory vectors into smaller blocks and allocate them in
registers, allowing simultaneous access to the data.

The HLS tool automatically uses the described directives to generate hardware with better performance. On the
other hand, these directives can significantly increase resource usage. Each C-based function that implements a
compression step is called sequentially. No optimization directive was manually added at first to check the behavior
of the HLS tool in generating the hardware since it automatically applies the optimization directives previously
mentioned. The implementation uses the ap fixed library from the HLS tool, which allows us to specify the size
of a variable in bits according to the standard specification. To reduce the complexity, calculations with powers of
base 2 were done using shifters, avoiding the use of mathematical library functions.

C. Hardware Description Language

In the HDL solution, each compression step was implemented using VHDL. The prediction and encoding compo-
nents were designed to work in parallel to obtain higher throughput. In addition, some steps have been parallelized
to reduce the number of cycles to process a sample. It was observed that some steps did not have data dependency
on previous steps or presented simple calculations that could be executed in parallel using a more sophisticated
controller.



The local sum and local difference were allocated to execute in the same cycle. The predicted sample and the
quantizer index were also organized to run in the same cycle after the double resolution. Besides that, we observed
that the new local difference in the vector could be stored in any step after the central prediction, and it was allocated
to run together with the weight update in the last cycle.

In addition, the local difference and weights vectors were created using registers to store the values. This way, all
values can be read in a single cycle instead of reading all values from RAM sequentially. In the encoder block, there
is no need to access all the accumulator and counter values simultaneously, enabling block RAMs to implement
these vectors, which tends to reduce logical resource usage.

D. SoC Design

We used a Zedboard Zynq-7000 with an ARM Cortex-A9 to prototype the developed compressor. Fig. 4 illustrates
the system integrated with the compressor via an AXI4-Lite communication interface. In addition, the compressor
has an interrupt signal connected to the global interrupt controller of the processor to inform when a sample has
been compressed.

AMBA AXI
Interconnect

ARM Cortex-A9

interrupt signal

Processing System Programmable Logic

Predictor

Encoder

Compressor IP

External Memory

Hyperspectral Image

Fig. 4. SoC design overview.

The ARM processor reads the image in BIP mode from an SD card and buffers the input samples to correctly send
the sample and neighbor values according to the column-oriented local sum mode. This buffering is done according
to the size of the image and is not implemented internally in hardware. As the accelerator processes each image
sample, the interrupt signal is active, telling the ARM processor that the compressed sample can be read and stored
back in memory.

IV. RESULTS

A pattern test image from AVIRIS sensor, provided by CCSDS, was used for the compressor validation. The final
compression result was compared with the reference implementation of the Empordà software, developed by [16].
The synthesis and performance results were collected using the Xilinx Vivado 2022.2 for the HDL solution and Xilinx
Vitis HLS 2022.2 for the HLS solution.

Results for both solutions in terms of resource utilization, maximum frequency, and dissipated power were obtained
for different values of bands for a hyperspectral image, considering the range for sensors up to 512 spectral bands,
covering hyperspectral sensors like AVIRIS-NG (480 bands).

A. HLS Results

Table II presents the results obtained from the HLS solution for different Nz bands. The HLS tool generated
a hardware solution that takes 11 cycles to process a sample. Thus, the throughput for different band values is
approximately 9 MSa/s and varies a little due to the fact that the frequency also changes. The use of LUTs (Look-Up
Tables) and FFs (Flip-Flops) has increased as the number of bands has also increased, but no Block Randomic
Access Memorys (BRAMs) were allocated. This happened because the tool automatically inferred registers instead
of BRAMs. In the prediction block, the use of local difference vectors and weights was synthesized as registers to
have access to all its values in a single clock cycle. On the other hand, in the encoding block, only one value of the
vector is accessed at a time, justifying the increase in resource utilization as the number of bands increases.

To get around this, the bind storage directive can force the tool to allocate these vectors to use BRAMs since
only one value of each vector is accessed at a time. The results in Table III show that by applying the directive we



TABLE II
HLS RESOURCE UTILIZATION.

Nz LUTs FFs DSPs BRAMs Fmax
(MHz)

Power
(mW)

Troughtput
(MSa/s)

25 4,139 3,832 4 0 101.01 159 9.18
26 5,813 5,058 4 0 101.73 164 9.25
27 9,842 6,825 4 0 103.23 170 9.38
28 16,123 12,780 4 0 101.78 200 9.25
29 30,272 22,843 4 0 101.75 262 9.25

can keep the same throughput achieved previously and make use of the BRAMs. When comparing the solutions for
Nz = 29 bands, we observe a reduction of 8× in the use of LUTs and 7× in the use of FFs, besides a reduction
in the power dissipated from 262 mW to 149 mW, making the solution more energy efficient. We can highlight that
the force use of BRAMs instead of registers does not bring differences in terms of reliability, since they have similar
sensitiveness to single events. On the other hand, the results have substantial outcomes in terms of resources and
power overhead.

TABLE III
HLS RESOURCE UTILIZATION USING bind storage DIRECTIVE

Nz LUTs FFs DSPs BRAMs Fmax
(MHz)

Power
(mW)

Troughtput
(MSa/s)

25 2,887 2,604 4 1 101.36 144 9.21
26 3,038 2,702 4 1 107.52 141 9.77
27 3,140 2,832 4 2 104.64 141 9.51
28 3,373 3,089 4 2 103.10 143 9.37
29 3,819 3,091 4 4 100.20 149 9.11

However, aiming to have a solution using fewer resources, we forced the tool not to apply the unroll and pipeline
directives that are being applied. Table IV presents the results for Nz = 29 for the standard configuration in comparison
with the previous optimized solution in Table III.

TABLE IV
HLS SOLUTIONS COMPARISON.

Solution LUTs FFs DSPs BRAMs Fmax
(MHz)

Power
(mW)

Troughtput
(MSa/s)

HLS opt. 3,819 3,091 4 4 100.20 149 9.11
HLS std. 2,577 2,428 15 4 121.34 145 3.37

When forcing the tool to not apply directives in the solution, we observe that there is a reduction in the use of
resources in terms of LUTs and FFs. However, there is an increase in the number of DSPs used, and the solution
has a throughput about 3× lower because the HLS standard solution takes 36 cycles to process a sample.

With these results, we can point out that even using unroll and pipeline directives, which tend to increase resource
utilization, may not increase the entire resource utilization of the solution as seen in Table IV. We could observe an
increase in LUTs and FFs but a reduction in the use of DSPs, besides getting a higher throughput, 9.11 against 3.37
MSa/s. This way, the application of optimization directives are good alternatives to be explored aiming at a trade-off
between performance and resources.

B. HDL Results

Table V presents the resource utilization obtained from the HDL solution for different spectral band values. The
HDL solution uses almost the same DSPs and BRAMs as the HLS. However, the use of LUTs and FFs does not
increase so much as the number of bands also increases, in contrast to the HLS implementation. Moreover, the HDL
solution considering the higher number of bands Nz = 29, has a throughput of 21.47 versus 9.11 MSa/s and uses
about 3× fewer LUTs and 8× fewer FFs than the HLS solution.



TABLE V
HDL UTILIZATION RESOURCES FOR DIFFERENT NUMBER OF BANDS.

Nz LUTs FFs DSPs BRAMs Fmax
(MHz)

Power
(mW)

Troughtput
(MSa/s)

25 1,314 378 4 1 107.15 119 21.43
26 1,320 382 4 1.5 107.52 120 21.50
27 1,322 384 4 2 107.32 120 21.46
28 1,320 384 4 2.5 107.12 119 21.42
29 1,321 386 4 4 107.34 120 21.47

This reduction of resources, especially regarding FFs, represents a good result regarding reliability facing Single
Event Upsets (SEUs) since FFs are one of the most sensitive parts of circuits in the space environment. Moreover,
unlike Single Event Transients (SETs), in FFs, the bit-flips remain stored and potentially create problems up to the
FF update [17].

The achieved throughput of 21.47 MSa/s was possible because the solution takes 5 cycles to process a sample.
This is due to the HDL architecture design considering the parallelization of some steps that did not have a
dependency and a control unit that made the predictor and encoder blocks run simultaneously.

C. SoC Results

The compressor was also tested on the Zynq-7000 SoC to measure the acceleration of the compression appli-
cation, as shown in Fig. 4. The system was initially configured to perform image compression only by the ARM
Cortex-A9 processor in a software solution. Then, the ARM processor is used only to send the samples to the
accelerator, which controls the entire compression step.

The results in Table VI highlight that the compressor in HLS and HDL accelerated the HSI compression application
by 1.6× and 4× compared to the ARM processor running at 667 MHz. The solution accelerates the application by
moving the routines from software to dedicated hardware even when using the AXI4-Lite communication interface,
which requires the processor to send and receive samples directly to the compressor over a single channel, which
slows the communication.

TABLE VI
EXECUTION TIME TO COMPRESS AN AVIRIS-NG (30X50X7) IMAGE.

Implementation Execution time (ms) Acceleration
Software (ARM) 56.38 -

Hardware (HLS opt.) 34.86 1.62
Hardware (HDL) 13.86 4.06

Furthermore, while an HDL implementation performs better than an HLS implementation, the design time also
differs. The HDL implementation took approximately 5× longer than the HLS implementation for this project, which
could favor projects looking for fast verification and design iteration instead of optimal performance.

D. Comparison with Related Works

Table VII presents the results of the HLS and HDL implementations with the related works, where the implemen-
tations of this work considered those obtained with the higher number of spectral bands Nz = 29.

The HDL implementation has the lowest resource utilization of any other related works, even versions that imple-
ment lossless or near-lossless compression. The HDL solution of this work uses about 12× fewer LUTs and 40×
fewer FFs than [11], and 13× fewer LUTs and 30× fewer FFs than [12]. On the other hand, these works have a
higher throughput than this work and implement the near-lossless version of the standard.

When compared with [8] and [9], which also implement the same lossless version, we observe that the HDL solution
has a resource utilization about 2× lower and higher throughput than [8], which implements only the prediction step
of the compressor. Compared to [9], the HDL solution uses 11× fewer LUTs and 33× fewer FFs, but has a much
lower throughput since [9] focuses on a highly parallelized implementation to obtain higher throughput.

Works [7] and [10] achieved a throughput about 10× and 7× higher than our HDL solution, since these works
have a high data rate bus interface and an internal buffering architecture capable of processing one sample per
cycle.

The implementations in this work show the use of resources lower than the related works but also a lower
throughput. However, it is important to highlight that even though the related works have a better energy efficiency



TABLE VII
SYNTHESIS AND PERFORMANCE RESULTS IN COMPARISON WITH RELATED WORKS.

Work Implementation CCSDS FPGA LUTs FFs DSPs BRAMs Fmax
(MHz)

Power
(mW)

Troughtput
(MSa/s)

Energy∗
(mJ)

[7] VHDL lossless Virtex-5 FX130T 9,462 9,990 6 83 213 - 213.00 -
[8] VHDL lossless Zynq-7000 2,244 630 3 - 142 106 20.40 5.22
[9] VHDL lossless Zynq-7035 14,709 12,830 - 37 150 515 750.00 0.68

[10] VHDL lossless Zynq-7035 4,619 2,765 8 74 151 - 151.00 -
[11] VHDL near-lossless Virtex-7 VC709 16,458 15,707 30 187 250 732 250.00 2.93
[12] HLS near-lossless Kintex XCKU40 17,185 11,915 63 85 125 500 12.50 40.00

HLS std. HLS lossless Zynq-7000 2,577 2,428 15 4 121 145 3.37 43.15
HLS opt. HLS lossless Zynq-7000 3,819 3,091 4 4 100 149 9.11 16.39

HDL VHDL lossless Zynq-7000 1,321 386 4 4 107 120 21.47 5.56
∗ Maximum estimated energy consumed to process 1MSa.

due to their high throughput, the total dissipated power of the implementation is about 5 to 7 times higher than this
work, which may not meet requirements for low power applications.

V. CONCLUSION

This paper presents lossless HSI compressors compatible with the CCSDS 123.0-B-2 standard described using
HLS and manually in VHDL. The implementations were designed to reduce development complexity and low resource
utilization for applications in space systems.

We compared the achieved performance with works developed in HDL and HLS. The HDL implementation pre-
sented a higher performance and lower resource utilization than the HLS solution. Directives applied to the HLS
solution showed good results regarding resources and power overhead. The HDL solution shows good reliability when
facing SEUs due to the low utilization of resources compared to the HLS solution and related works. In addition,
both solutions accelerated the compression application, enabling the use of accelerators.

For future work, we plan to use an AXI4-Stream interface with a DMA system to speed up the compression
application and integrate the compressor into a multi-core system. We also plan to apply fault tolerance techniques
to the implemented compressor for further fault injection campaign evaluation.

REFERENCES

[1] L. Zhu, J. Suomalainen, J. Liu, J. Hyyppä, H. Kaartinen, H. Haggren et al., “A review: Remote sensing sensors,” Multi-purposeful application
of geospatial data, pp. 19–42, 2018.

[2] G. Lopez, E. Napoli, and A. G. Strollo, “FPGA implementation of the ccsds-123.0-b-1 lossless hyperspectral image compression algorithm
prediction stage,” in 2015 IEEE 6th Latin American Symposium on Circuits & Systems (LASCAS). IEEE, 2015, pp. 1–4.

[3] CCSDS, “The consultative committee for space data systems,” Available at: https://public.ccsds.org. Accessed: November 25, 2021, 2021.
[4] S. J. Hook, K. Turpie, S. Veraverbeke, R. Wright, M. Anderson, A. Prakash, J. Mars, D. Quattrochi et al., “Nasa 2014 the hyperspectral

infrared imager (hyspiri),” Pasadena, CA: Jet Propulsion Laboratory, National Aeronautics and Space, Tech. Rep., 2014.
[5] J. de Fine Licht, M. Besta, S. Meierhans, and T. Hoefler, “Transformations of high-level synthesis codes for high-performance computing,”

IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 5, pp. 1014–1029, 2020.
[6] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, “An introduction to high-level synthesis,” IEEE Design & Test of Computers, vol. 26,

no. 4, pp. 8–17, 2009.
[7] A. Tsigkanos, N. Kranitis, G. Theodorou, and A. Paschalis, “A 3.3 Gbps ccsds 123.0-b-1 multispectral & hyperspectral image compression

hardware accelerator on a space-grade SRAM FPGA,” IEEE Transactions on Emerging Topics in Computing, vol. 9, no. 1, pp. 90–103, 2018.
[8] L. M. Pereira, D. A. Santos, C. A. Zeferino, and D. R. Melo, “A low-cost hardware accelerator for ccsds 123 predictor in FPGA,” in 2019

IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2019, pp. 1–5.
[9] M. Orlandić, J. Fjeldtvedt, and T. A. Johansen, “A parallel FPGA implementation of the ccsds-123 compression algorithm,” Remote Sensing,

vol. 11, no. 6, p. 673, 2019.
[10] Y. Barrios, A. J. Sánchez, L. Santos, and R. Sarmiento, “Shyloc 2.0: A versatile hardware solution for on-board data and hyperspectral image

compression on future space missions,” Ieee Access, vol. 8, pp. 54 269–54 287, 2020.
[11] D. Báscones, C. Gonzalez, and D. Mozos, “A real-time FPGA implementation of the ccsds 123.0-b-2 standard,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 60, pp. 1–13, 2022.
[12] Y. Barrios, A. Sánchez, R. Guerra, and R. Sarmiento, “Hardware implementation of the ccsds 123.0-b-2 near-lossless compression standard

following an hls design methodology,” Remote Sensing, vol. 13, no. 21, p. 4388, 2021.
[13] W. Grignani, G. Wisbecki, F. Viel, and D. R. Melo, “A high-level synthesis compressor of hyperspectral images based on ccsds 123.0-b-2,”

in 2022 LACW - 5th IAA Latin American CubeSat Workshop. IAA, 2022, pp. 1–10.
[14] CCSDS, “Low-complexity lossless and near-lossless multispectral and hyperspectral image compression,” Available at: https://public.ccsds.

org/Pubs/123x0b2c3.pdf. Accessed: November 25, 2021, p. 102, 2019.
[15] ——, “Lossless multispectral and hyperspectral image compression informational report,” Available at: https://public.ccsds.org/Pubs/120x2g2.

pdf. Accessed: April 19, 2023, p. 147, 2022.
[16] GICi, “Gici emporda ccsds 123.0-b-1,” Available at: http://gici.uab.cat/GiciApps/EmpordaManual.pdf. Accessed: August 19, 2022, p. 15, 2011.
[17] D. J. Sorin, Fault Tolerant Computer Architecture. Morgan and Claypool Publishers, 2009.

https://public.ccsds.org
https://public.ccsds.org/Pubs/123x0b2c3.pdf
https://public.ccsds.org/Pubs/123x0b2c3.pdf
https://public.ccsds.org/Pubs/120x2g2.pdf
https://public.ccsds.org/Pubs/120x2g2.pdf
http://gici.uab.cat/GiciApps/EmpordaManual.pdf

	Introduction
	CCSDS 123 Accelerator Design
	Prediction
	Local sum
	Local difference
	Weights and local difference vectors
	Predict
	Mapped quantized index

	Encoding

	Hardware Implementation
	Design and Implementation Choices
	Compression mode
	Prediction mode
	Local sum mode
	Processing order

	High-Level Synthesis
	Hardware Description Language
	SoC Design

	Results
	HLS Results
	HDL Results
	SoC Results
	Comparison with Related Works

	Conclusion
	References

