
HAL Id: hal-04266874
https://hal.science/hal-04266874

Submitted on 31 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Treewidth-based algorithms for
the small parsimony problem on networks

Celine Scornavacca, Mathias Weller

To cite this version:
Celine Scornavacca, Mathias Weller. Treewidth-based algorithms for the small parsimony problem
on networks. Algorithms for Molecular Biology, 2022, 17 (1), pp.15. �10.1186/s13015-022-00216-w�.
�hal-04266874�

https://hal.science/hal-04266874
https://hal.archives-ouvertes.fr

Scornavacca and Weller ﻿
Algorithms for Molecular Biology (2022) 17:15
https://doi.org/10.1186/s13015-022-00216-w

RESEARCH

Treewidth‑based algorithms
for the small parsimony problem on networks
Celine Scornavacca1 and Mathias Weller2* 

Abstract 

Background:  Phylogenetic reconstruction is one of the paramount challenges of contemporary bioinformatics. A
subtask of existing tree reconstruction algorithms is modeled by the Small Parsimony problem: given a tree T and an
assignment of character-states to its leaves, assign states to the internal nodes of T such as to minimize the parsimony
score, that is, the number of edges of T connecting nodes with different states. While this problem is polynomial-time
solvable on trees, the matter is more complicated if T contains reticulate events such as hybridizations or recombina-
tions, i.e. when T is a network. Indeed, three different versions of the parsimony score on networks have been pro-
posed and each of them is NP-hard to decide. Existing parameterized algorithms focus on combining the number c of
possible character-states with the number of reticulate events (per biconnected component).

Results:  We consider the parameter treewidth t of the underlying undirected graph of the input network, presenting
dynamic programming algorithms for (slight generalizations of) all three versions of the parsimony problem on size-n
networks running in times ctnO(1) , (3c)tnO(1) , and 6tcnO(1) , respectively. Our algorithms use a formulation of the tree-
width that may facilitate formalizing treewidth-based dynamic programming algorithms on phylogenetic networks
for other problems.

Conclusions:  Our algorithms allow the computation of the three popular parsimony scores, modeling the evolution-
ary development of a (multistate) character on a given phylogenetic network of low treewidth. Our results subsume
and improve previously known algorithm for all three variants. While our results rely on being given a “good” tree-
decomposition of the input, encouraging theoretical results as well as practical implementations producing them are
publicly available. We present a reformulation of tree decompositions in terms of “agreeing trees” on the same set of
nodes. As this formulation may come more natural to researchers and engineers developing algorithms for phylo-
genetic networks, we hope to render exploiting the input network’s treewidth as parameter more accessible to this
audience.

Keywords:  Phylogenetics, Parsimony, Phylogenetic networks, Parameterized complexity, Dynamic programming,
Treewidth

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Molecular phylogenetic reconstruction consists in infer-
ring a well-founded evolutionary scenario of a set of
species from molecular data [1]. An evolutionary sce-
nario, also called a phylogeny, is usually represented

by a directed tree with a unique source called root. In a
phylogeny, the tips of the tree are associated to extant
species for which we have data, and each internal node
represents an extinct species giving rise to new species—
a speciation. Therefore, each internal node represents the
hypothetical ancestor of all species below it, and the root
models the lowest common ancestor of all the species at
the tips.

Open Access

Algorithms for
Molecular Biology

*Correspondence: mathias.weller@u-pem.fr

2 LIGM, Université Gustave Eiffel, CNRS, Paris, France
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-022-00216-w&domain=pdf

Page 2 of 31Scornavacca and Weller ﻿Algorithms for Molecular Biology (2022) 17:15

Parsimony on trees
In this paper, molecular data consists of a set of molec-
ular sequences (e.g. DNA or protein sequences) of the
same length (one sequence per species). This kind of data
can be seen as a matrix M of n sequences, each having
m characters (exhibiting one of c possible states) where
Mi,j corresponds to the state of the jth character exhib-
ited by the ith species. There are several methods to
reconstruct well-founded phylogenies from matrices of
characters [1]. They are all based on the idea of retrieving
similarities among species by comparing the states taken
by these species at the different characters of M. Here,
we will focus on parsimony methods. The main hypoth-
esis of these methods is that character changes are not
frequent. Thus, the phylogenies that best explain the data
are those requiring the fewest evolutionary changes, i.e.
the ones having the optimal parsimony score, formally
defined in “Parsimony”. The problem of finding the opti-
mal parsimony score for a given phylogeny T with respect
to an n×m matrix on a finite set of c character states is
called the Small Parsimony problem and can be solved
in O(n ·m · c) time [2] since each column in the matrix
can be analyzed independently in linear time. When T
is unknown, the problem of finding the phylogeny mini-
mizing the parsimony score is called the Big Parsimony
problem. This latter is known to be NP-hard and numer-
ous heuristic techniques for it are known [1].

Parsimony on networks
When the evolution of the species of interest include, in
addition to speciations, reticulate events such as hybridi-
zations or recombinations, a single species may inherit
from multiple direct ancestors. In this case, the phylog-
enies are no longer represented by rooted trees but by
rooted DAGs [3] called networks. When scoring a given
network, three very different definitions of the parsi-
mony score have been proposed: the hardwired [4], the
softwired [5, 6], and the parental parsimony score [7].
Roughly, the hardwired score takes into account all edges
of the given network (characters are inherited from all
parents), the softwired score takes only the edges of any
“switching” (each character is inherited from one parent),
and the parental score allows embedding lineages into
the network (each allele of a character is inherited from
one parent). See “Parsimony” for details and Fig. 1 for an
example. While these definitions coincide for trees, they
give rise to three different small parsimony problems for
networks.

When tracing mutually dependent characters (e.g. dif-
ferent genomic locations in a same non-recombinant
region) on networks, we also have to make sure that
dependent characters are inherited from the same par-
ent (some columns of the matrix have to use the same

“switching”/“embedding”). To avoid dealing with this
problem, the small parsimony problems on networks
have been studied predominantly under the assump-
tion of independent genomic locations. This boils down
to having m = 1 since each column of the matrix can be
analyzed independently (as is the case for the small par-
simony problem on trees). Another popular restriction is
to consider binary networks, in which the root has out-
degree 2, tips have indegree 1, and internal nodes have
either indegree 1 and outdegree 2 (speciations) or inde-
gree 2 and outdegree 1 (reticulations).

The hardwired small parsimony problem has been
proven NP-hard and APX-hard whenever the number
of states that a character can take, denoted c, is strictly
greater than 2, and polynomial-time solvable for binary
characters [8]. A polynomial-time 1.35-approxima-
tion for all c and a 12

11-approximation for c = 3 have
been proposed [8]. Additionally, the problem has been
shown fixed-parameter tractable (FPT) in the parsimony
score [8, 2p · O(min(q

2
3 ,
√
z) · q) time], and in c + r [9,

O(n · cr+2) time], where n, q, z are the number of leaves,
vertices and edges in the phylogenetic network and p and
r are the hardwired parsimony score and the number of
reticulate events in the network.

The softwired small parsimony problem is also NP-
hard and APX-hard [8, 10] for binary characters, and
not FPT in the parsimony score (it is NP-hard to decide
if the softwired parsimony score is 1). Also, it has been
shown that, for any constant ǫ > 0 , no n1−ǫ approxima-
tion can be computed in polynomial time, unless P = NP .
On the positive side, the problem is FPT in c + r [6, 8,
O(2r · n · c) time] and c + ℓ [8, 11, O(2ℓ · c2 · q · z) time],
where ℓ is the maximum number of reticulations over all
biconnected components of the network (also called the
level of the network).

Unsurprisingly, the parental small parsimony problem
has also been proven NP-hard, even for very restricted
classes of networks, but it is FPT both with respect

1100

1100

1100

1100

1100

Fig. 1  Example for parsimony scores of a network (in gray). Black
edges participate in the score (solid = score 0, dotted = score 1). For
the hardwired score (left), all edges of the network are considered.
For the softwired score (2 possible trees: middle), only edges of any
switching are considered. For the parental score (4 possible trees:
middle & right), a tree is inscribed in the network

Page 3 of 31Scornavacca and Weller ﻿Algorithms for Molecular Biology (2022) 17:15 	

to c + r and with respect to c + ℓ [12, O((2c)r+2 · q) and
O((2c)ℓ+3 · q) time].

In this paper, we consider the case of independent char-
acters, showing that the three variants of the small parsi-
mony problem on networks are fixed-parameter tractable
with respect to c + t (running in time O(T + ct+1 · z) ,
O(T + ct · (3t · c · q + z)) , and O(T + 6t·c · 4t·log(c) · z) ),
provided that a width-t tree-decomposition of the input
network N can be computed in T time (this is the case
for t equaling the treewidth of N and T ∈ 2O(k2) [13]).
Our proofs are constructive in the sense that a dynamic
programming algorithm is provided for each version of
the problem. The main strength of our algorithms lies in
their parameterization, since the treewidth can be arbi-
trarily small, even for growing values of ℓ . An implication
of parameterizing by the treewidth is that our algorithms
run in polynomial time even on classes of networks on
which previously known algorithms require exponential
time1 while our algorithms run in polynomial time on all
classes of networks that were previously known to allow
for polynomial-time algorithms. Hence, our algorithms
can potentially be orders of magnitude faster than the
state-of-the-art solutions. Moreover, our formulations
are not limited to binary networks and they can take into
account polymorphism as well as external information
controlling the states that ancestral species may take.

Treewidth for phylogenetic networks
The treewidth of a graph can roughly be described as a
measure of “tree-likeness” and it ranks among the small-
est of such parameters [14] (in particular, the treewidth
can be seen to be smaller than the level ℓ on any net-
work). Together with the fact that it facilitates the design
of dynamic programming algorithms, this explains
the enormous popularity the treewidth received in the
parameterized complexity community [15, 16]. Start-
ing with the groundbreaking work of Bryant and Lager-
gren [17] (using the celebrated result of Courcelle [18]),
treewidth also gained traction with researchers studying
algorithms for phylogenetics-related problems (surveyed
in [19]). While this yielded some algorithms parameter-
ized by the treewidth of the display graph of multiple
trees (the result of “gluing” all trees at their leaves), we are
not aware of any algorithms parameterized by the tree-
width of the input network. In an attempt to facilitate the
use of this parameter in future work, we dedicate Sect.
“An alternative formulation of treewidth” to presenting
a “phylogenetics-friendly” formulation by representing

tree-decompositions of the input network as a rooted
tree Ŵ on the same vertex set as the network. In particu-
lar, this formulation generalizes our previously consid-
ered parameter “scanwidth” [20], which can be seen as a
variant of treewidth that takes directness into account.
While we expected scanwidth-based dynamic program-
ming formulations to be easier and more straight-for-
ward than their treewidth-counterparts, this comes at the
cost of the scanwidth being potentially arbitrarily larger
than the treewidth. Intuitively speaking, we expect scan-
width dynamic programming to be easier since phyloge-
netic networks exhibit a “natural flow of information”:
most often, we know everything about the leaves, but
the more we approach the root, the more information
has to be inferred from the lower parts. In contrast to the
scanwidth-layout, tree-decompositions disregard edge
directions and, thereby, this “natural flow”. Thus, while
using the scanwidth allows for more naïve and intuitive
dynamic programming formulations, using the treewidth
requires more care and ingenuity.

Since we will suppose that a (not necessarily optimal)
tree-decomposition of the input network is given in
the input, let us discuss the current state-of-the-art for
computing good decompositions. Optimal decomposi-
tions are indeed very hard to compute, with even the
best-known parameterized algorithm being considered
impractical (see survey [15]). This gloomy cloud has,
however, two silver linings: First, if we do not insist on
optimality, then we can use a recently published algo-
rithm to compute 2-approximated tree-decompositions
in 2O(k)nO(1) time [21]. We will state our results in a way
that allows plugging-in any algorithm that computes or
approximates tree decompositions. Second, with devel-
opment driven by recent instances of the PACE chal-
lenge [22], more practical exact algorithms to compute
tree decompositions are now available as well [23].
Herein, the running times of Tamaki’s implementa-
tion [23] are hard to predict and show erratic behavior
even for fixed graph size. As expected, however, exam-
ples for high running times occur only for instances with
high treewidth, that is, for “highly tangled” networks (see
Fig. 2 for two select examples). This hints towards some
hidden properties of the input networks that govern the
complexity of treewidth computations As we expect “nat-
ural networks” to be only moderately tangled, we think
that existing algorithms, exact and approximative, are
currently well-enough developed to deal with real world
phylogenetic networks in reasonable timeframes. Indeed,
we would welcome efforts similar to those made for the
treewidth to also be made for the previously discussed
scanwidth, which is also hard to compute [20].

For ease of presentation, the three main proofs (cor-
rectness of the dynamic programming formulations) are

1  For example, networks whose “worst” biconnected component is equal to
the result of glueing two copies of the same n-leaf tree at corresponding leaves
are known to have treewidth two, but level at least n− 1.

Page 4 of 31Scornavacca and Weller ﻿Algorithms for Molecular Biology (2022) 17:15

given as high-level sketches and their more detailed and
formal versions can be found in the appendix.

Preliminaries
Mappings
For any x and y, we define δ (x, y) to be 0 if x = y and 1,
otherwise, and we abbreviate 1− δ (x, y) =: δ (x, y) .
We further abbreviate δ (φ(x),φ(y)) as δ φ(x, y) for
any function φ . We may denote a pair (x, y) as x → y if
it is referring to an assignment of y to x by some func-
tion and as xy if it refers to an arc in a network. We
sometimes use the name of a function φ : X → Y to
refer to its set of pairs {x → y | φ(x) = y} and we let
φ |Z := {(x → y) ∈ φ | x ∈ Z} denote the restriction of φ
to Z. We say φ(x) = ⊥ to indicate that φ is not defined for
x. We denote the result of forcing φ(x) = y (whether or
not x is mapped by φ ) as

Finally, for sets Z, X and Y ⊆ X and functions φ and ψ ,
we write ψ � φ (and say that ψ is a subfunction of φ ) if (a)
φ : X → Z and ψ : Y → Z and ψ(x) ≤ φ(x) for all x ∈ Y  ,
or (b) φ : X → 2Z and ψ : Y → Z and ψ(x) ∈ φ(x)
for all x ∈ Y  , or (c) φ : X → 2Z and ψ : Y → 2Z and
ψ(x) ⊆ φ(x) for all x ∈ Y .

φ[x → y] :=
{

φ ∪ {x → y} ifφ(x) = ⊥
(φ \ {x → φ(x)})[x → y] otherwise

Graphs and phylogenetic networks
In this work, we consider directed acyclic graphs (DAGs)
N that may have a unique source ρN called root. If the
sinks (aka leaves) of N are labeled, we call N a phyloge-
netic network. We refer to the nodes and directed edges
(arcs) of N by V(N) and A(N), respectively. The under-
lying undirected graph of N is the undirected graph on
node-set V(N) that contains an edge {u, v} if and only if
N contains the arc (u, v). As we do not deal with mixed
graphs, we use the term uv to refer to the arc from u to
v or the undirected edge between u and v, depending on
the context. We refer to the edge-set of an undirected
graph G as E(G).

We denote the set of nodes of a DAG N with in-degree
at least two by R(N) and we call such nodes reticula-
tions. If R(N) = ∅ , then N is called a tree. The result of,
for each v ∈ R(N) removing all but one of its incom-
ing arcs is called a switching of N and S(N) denotes the
set of all switchings of N (observe that all switchings
are spanning trees). For each v ∈ V (N) , we denote the
successors (or “children”) of v in N by SuccN (v) and its
predecessors (or “parents”) by PredN (v) . If N contains
a directed u-w-path, then we say that w is a descendant
of u and u is an ancestor of w (denoted as w ≤N u and
w <N u if u = w ). A set Z ⊆ V (N) such that u �<N w and
w �<N u for all u,w ∈ Z is called an anti-chain in N. The
induced subgraph N[Z] of a set Z ⊆ V (N) is the result of

Fig. 2  Tamaki’s tree-decomposer [23] has a harder time with the right, more tangled instance (50 nodes, 175 edges, treewidth 25 computed in 79s)
than with the larger instance on the left (465 nodes, 1004 edges, treewidth 9 computed in 0.5s), illustrating that tangledness is a more important
factor than size. Indeed, both instances display a tangledness that already exceeds what we expect to see in real-world phylogenetic networks. The
instances are ex065 (right) and ex011 (left) of the PACE2017 challenge [22]

Page 5 of 31Scornavacca and Weller ﻿Algorithms for Molecular Biology (2022) 17:15 	

removing all nodes x ∈ V (N) \ Z from N (together with
their incident arcs) and, for any v ∈ V (N) , the network
Nv := N [{w | w ≤N v}] is called the subnetwork rooted
at v.

An alternative formulation of treewidth
In this section, we give an alternative definition of the
treewidth, which allows to tackle the small parsimony
problem for networks in a simpler and more intuitive
way. Note that this alternative definition is known in the
FPT community (Dendris et al. [24] call it the “support”
of a vertex with respect to an ordering while, when refer-
ring to Arnborg [25]) and Mescoff et al. [26], call it “tree
vertex separation”). However, since in these works its
connection to treewidth is mostly touched in passing, we
felt the need to prove it explicitly here.

Since tree decompositions are agnostic to edge direc-
tions, all results in this section are stated for undirected
graphs G instead of networks N,. Keeping in mind that
the framework is to be applied to phylogenetic networks,
all examples will be made with DAGs while, for the sake
of versatility, all results are stated for undirected graphs.
The reader may simply ignore the edge directions in the
examples as all undirected graphs will be underlying
undirected graphs of some DAGs.

For a linear ordering σ of the nodes of an undirected
graph G and any x ∈ V (G) , we write y ≤σ x for all nodes
y preceeding x in σ (including x itself) and let σ [1..x]
denote the restriction of σ to these nodes. We write
x
G,σ
� y if x and y are connected in G[σ [1..x]] (see Fig. 3 for

an example). Note that G,σ
� is a partial order on V(G). We

consider nodes outside σ [1..v] that have an edge to the

parts of σ [1..v] that are connected to v in G[σ [1..v]] . We
denote these nodes by ZWσ

v and their number by zwσ
v .

Definition 1  Let σ be a linear order of the nodes of an
undirected graph G and let v ∈ V (G) . Then,

We abbreviate zw(σ) := maxv zw
σ
v and zw(G) := minσ zw(σ)

and we refer to the transitive reduction of the directed
graph (V (G), {uv ∈ V (G)2 | uG,σ

� v}) as the canonical tree
Ŵσ of σ for G (we will see below that Ŵσ is a rooted tree;
see Fig. 3).

In the following, we say that a rooted tree Ŵ on V(G)
agrees with an undirected graph G if, for all uv ∈ E(G)
either u <Ŵ v or v <Ŵ u . We also extend the definition
of G,σ

� to such trees by writing uG,Ŵ
� v if u and v are con-

nected in G[Ŵu] . In analogy to Definition 1, G,Ŵ
� gives rise

to a set YWŴ
v containing the nodes “above” v in Ŵ that

have a edge in G to a node “below” v in Ŵ.

Definition 2  (see Fig. 3) Let G be an undirected graph
and let Ŵ agree with G. For each v ∈ V (G) , we define

Then, we abbreviate yw(Ŵ) := maxv yw
Ŵ
v and yw(G) :

= minŴ yw(Ŵ).

Note that the path P resulting from traversing σ from
right to left is a rooted tree agreeing with G. However,
yw(P) is expected to be large for this choice. Indeed, we

ZWσ
v : = {u >σ v | ∃w∈σ [1..v]uw ∈ E(G) ∧ v

G,σ
� w}

and zwσ
v := |ZWσ

v |.

YWŴ
v := {u >Ŵ v | ∃w≤Ŵvuw ∈ E(G)} and ywŴ

v
:= |YWŴ

v |.

Fig. 3  Example of a network N (left) with a linear order σ of its nodes (below) as well as their canonical tree Ŵσ (right) whose arcs are not drawn (the
arcs of N are drawn in their stead). Reticulations are black, leaves are boxes. For the first (wrt. σ ) reticulation x, the set V(Ŵσ

x) is marked (gray area) and
equals σ [1..x] in this example. Further, the arcs in Ax(N) are dotted and the nodes in YWŴ

x = ZWσ
x are gray pentagons. Note that x

N,σ
� ρN but neither

ρN
N,σ
� x (since x /∈ σ [1..ρN] ) nor z

N,σ
� x (since x is not weakly connected to z in N[σ [1..z]])

Page 6 of 31Scornavacca and Weller ﻿Algorithms for Molecular Biology (2022) 17:15

can show that the most “refined” trees Ŵ have the smallest
yw(Ŵ).

Lemma 1  Let Ŵ and Ŵ′ be rooted trees agreeing with
an undirected graph G and let ≤Ŵ′ be a subset of ≤Ŵ,
that is, x ≤Ŵ′ y ⇒ x ≤Ŵ y for all x, y ∈ V (G). Then,
yw(Ŵ′) ≤ yw(Ŵ).

Proof  Let x ∈ V (G) and let y ∈ YWŴ′
x , that is, y >Ŵ′ x

and there is some z ≤Ŵ′ x with yz ∈ E(G) . Since ≤Ŵ
is a superset of ≤Ŵ′ , we have y >Ŵ x ≥ z , implying
y ∈ YWŴ

x .� �

The following lemma proves a number of interesting
properties relating σ and Ŵσ such as Ŵσ being a rooted
tree whose descendant relation is a refinement of ≤σ , cul-
minating in the equality of ZWσ

x and YWŴσ
x for all x.

Lemma 2  Let σ be a linear order of the nodes of a con-
nected undirected graph G and let Ŵσ be its canonical
tree. Then,

(a)	 for each u and v with v ≤Ŵσ u , we have v ≤σ u,
(b)	 for each u, v ∈ V (G) , we have v ≤Ŵσ u if and only if

u
G,σ
� v,

(c)	 Ŵσ is connected,
(d)	 Ŵσ is rooted at the last vertex r of σ,
(e)	 Ŵσ is a tree,
(f)	 for all uv ∈ E(G) with v <σ u , we have v <Ŵσ u,
(g)	 Ŵσ agrees with G, and
(h)	 YWŴσ

x = ZWσ
x for all x ∈ V (G).

(i)	 For each arc xy ∈ A(Ŵσ) , Ŵσ
y contains a neighbor of

x in G.
(j)	 Each x ∈ V (G) has at most as many children in Ŵσ

as it has neighbors in G.

Proof  (a), (b): We show for all vertices w on a u-v-
path p in Ŵσ that w ≤σ u and uG,σ

� w . The base case w = u
holds trivially. For the induction step, let q preceed w in p.
Since Ŵσ contains the arc qw, Definition 1 implies q G,σ

� w
and, since q ≤σ u by induction hypothesis, w ≤σ q ≤σ u
and uG,σ

� w . For the reverse direction of (b), note that, by
Definition 1, uv is an arc of the DAG of which Ŵσ is the
transitive reduction.

(c),(d): Since G is connected, each x ∈ V (G) has an r-x-
path in G = G[σ [1..r]] , implying r G,σ

� x . Thus, (b) implies
that Ŵσ is connected and rooted at r.

(e): To prove that Ŵσ is a tree, assume there is a vertex
x ∈ V (G) with two distinct parents y and z in Ŵσ . With-
out loss of generality, let y <σ z . By (b), y G,σ

� x and z G,σ
� x ,

implying that σ [1..y] contains a y-x-path py in G and
σ [1..z] contains a z-x-path pz in G. Since σ [1..y] � σ [1..z]
the concatenation of pz with (the reverse) of py is a path

in G whose nodes are in σ [1..z] . Thus, z G,σ
� y , implying

y ≤Ŵσ z and, since zx ∈ A(Ŵσ) , this contradicts Ŵσ being
a transitive reduction.

(f): Note that uG,σ
� v , implying v ≤Ŵσ u by (b).

(g): For each uv ∈ E(G) , either u <σ v , implying
u ≤Ŵσ v , or v <σ u , implying v ≤Ŵσ u (both by (f)).

(h) “ ⊆ ”: Let x ∈ V (G) and let y ∈ YWŴσ
x  . By Definition

2, y >Ŵσ x (implying y >σ x by (a)) and there is some
z ≤Ŵσ x (implying z ≤σ x by (a)) with yz ∈ E(G) . Then,
by (b), x G,σ

� z . But then, y ∈ ZWσ
x by Definition 1.

(h) “ ⊇ ”: Let x ∈ V (G) and let y ∈ ZWŴσ
x  , that is, x <σ y

and there is some z ∈ σ [1..x] with x G,σ
� z and yz ∈ E(G) .

Then, z ≤σ x <σ y . By (b), z ≤Ŵσ x and, by (f), z ≤Ŵσ y .
Thus, as Ŵσ is a tree (by (e)), x and y are not unrelated
in Ŵσ . Moreover, y �σ x implies y �Ŵσ x by (b) and,
thus, x <Ŵσ y . Together with z ≤Ŵσ x and yz ∈ E(G) , this
implies y ∈ YWŴσ

x .
(i) By (b), G contains an x-y-path p whose vertices are

in σ [1..x] and, thus, x G,σ
� v for all vertices v on p. We show

u ≤Ŵσ y for all u on p except x, starting with the obvious
y ≤Ŵσ y . Then, this implies that the second vertex on p,
which is a neighbor of x in G, is in Ŵσ

y  . Let v ≤Ŵσ y be a
vertex on p and let u be the predecessor of v in p. If u = x
then we are done, so suppose u = x . Further, by (f), either
u <σ

Ŵ v ≤σ
Ŵ y , implying the claim directly, or v <σ

Ŵ u ,
implying that u is on an x-v-path in Ŵσ . By (e) there is
only one such path and it starts with (x, y, . . .) and, since
u = x , this implies u ≤σ

Ŵ y.
(j) is immediate from (i) combined with (e).� �

In order to show that zw(G) and yw(G) coincide, we
need to “normalize” some aspects of the structure of
agreeing trees. To this end, we use the following opera-
tion on rooted trees which can be interpreted as con-
tracting a set of unwanted nodes upwards. Formally, for a
rooted tree T and for X ⊂ V (T) that does not contain the
root r of T, we let T ↑ X denote the result of (1) replacing
each arc uv with uv ∩ X = {u} with the arc wv where w is
the lowest ancestor of u that is not in X, and (2) removing
all nodes in X from T. Note that T ↑ X may have strictly
larger out-degree than T, but does not create new ances-
tor-descendant relations.

Observation 1  Let T be a tree, let X ⊆ V (T) not contain
its root, and let u, v ∈ V (T ↑ X) with u ≤T↑X v . Then,
u ≤T v.

Lemma 3  Let Ŵ be a rooted tree agreeing with an undi-
rected graph G. Then, there is some rooted tree Ŵ∗ agreeing
with G such that yw(Ŵ∗) ≤ yw(Ŵ) and, for all u, v ∈ V (G)
with v ≤Ŵ∗ u, we have uG,Ŵ∗

� v.

Page 7 of 31Scornavacca and Weller ﻿Algorithms for Molecular Biology (2022) 17:15 	

Proof  Let u ∈ V (G) such that .
We will modify Ŵ into Ŵ′ with yw(Ŵ′) ≤ yw(Ŵ) such that
Ŵ′ agrees with G and the relation ≤Ŵ′ is a strict subset of
≤Ŵ. To this end, note that u has a parent w in Ŵ as, other-
wise, G[Ŵu] = G , implying X = ∅ . Then, Ŵ′ results from
Ŵ by (see Fig. 4)

1.	 replacing Ŵ by Ŵ ↑ (Ŵu \ X) and
2.	 dangling Ŵu ↑ X from w.

First, we show that Ŵ′ agrees with G. To this end, let
xy ∈ E(G) and let x and y be unrelated in Ŵ′ . If neither
x nor y are in Ŵu then, by construction of Ŵ′ , they are
also unrelated in Ŵ , contradicting that Ŵ agrees with G.
So, without loss of generality, suppose x ≤Ŵ u . Since
xy ∈ E(G) and Ŵ is a tree agreeing with G, we thus know
that u and y are not unrelated in Ŵ . If u <Ŵ y , then w ≤Ŵ y
and, thus, x ≤Ŵ′ y . Thus, suppose y ≤Ŵ u . Clearly, if
x, y ∈ X or x, y /∈ X , then x and y are also unrelated in Ŵ ,
contradicting its agreement with G. Thus, without loss of
generality, suppose x ∈ X and y /∈ X , that is, and
u
G,Ŵ
� y , contradicting xy ∈ E(G).
Second, we show that ≤Ŵ′ is a strict subset of ≤Ŵ . To

this end, let xy ∈ A(Ŵ′) and assume towards a contra-
diction that y �<Ŵ x . Clearly, if x �Ŵ′ w , then xy ∈ A(Ŵ)
contradicting y �<Ŵ x . Further, if x = w , then either
y ∈ X or y is a child of w in Ŵ , all of which imply y <Ŵ x .
Thus, x <Ŵ′ w . Since xy ∩ X = {x} or xy ∩ X = {y} con-
tradicts xy ∈ A(Ŵ′) , we have x, y ∈ X or x, y /∈ X . But
then, y <Ŵ x by Observation 1. Thus, ≤Ŵ′ is a subset of
≤Ŵ and it is strict since we have v ≤Ŵ u and v �Ŵ′ u for
all v ∈ X �= ∅.

Third, yw(Ŵ′) ≤ yw(Ŵ) follows by Lemma 1.� �

Lemma 4  Let Ŵ be a tree agreeing with a graph G and
let p be a non-empty path in G. Then, p contains a unique
maximum u with respect to Ŵ, that is, v ≤Ŵ u for all verti-
ces v of p.

Proof  Let x on p be maximal with respect to Ŵ (that
is, for all z on p, we have x �<Ŵ z ) and assume towards a
contradiction that there is another vertex y = x on p that
is maximal w.r.t. Ŵ . Without loss of generality, let x pre-
cede y in p and let pxy denote the unique x-y-subpath of
p. Since y �Ŵ x , there is an edge st ∈ E(G) on pxy with
s ≤Ŵ x and t �Ŵ x . Hence, t �Ŵ s . Further, s �Ŵ t since,
otherwise, the unique t-s-path in Ŵ contains x, contra-
dicting its maximality. But then Ŵ does not agree with G.
� �

Lemma 5  Let G be a graph. Then, zw(G) = yw(G).

Proof  “≥ ”: Let σ be an ordering of V(G) such that
zw(σ) = zw(G) . By Lemma 2(h), we have zw(σ) =

yw(Ŵσ) for the canonical extension tree Ŵσ of σ . Thus,
zw(G) = zw(σ) = yw(Ŵσ) ≥ yw(G).

“≤ ”: Let Ŵ be some rooted tree agreeing with G such that
yw(Ŵ) = yw(G) . By Lemma 3, we may assume

Let σ be any ordering of V(G) obtained by repeatedly
picking and removing any leaf of Ŵ.� �

Claim 1  For each u, v ∈ V (G) , we have u ≤Ŵ v if and
only if v G,σ

� u.

(1)∀u,v∈V (G)u ≤Ŵ v ⇒ v
G,Ŵ
� u.

Fig. 4  Example for the construction of Ŵ′ (middle) from Ŵ (left) in Lemma 3. Repeated application yields Ŵ∗ (right), for which v ≤Ŵ∗ u ⇒ u
G,Ŵ∗
� v .

The rooted trees Ŵ , Ŵ′ , and Ŵ∗ are drawn with thick, gray lines. Thin, black lines are edges of G. For the indicated node u, the black nodes are in X, that
is, they are below u in Ŵ but not connected to u in G[Ŵu]

Page 8 of 31Scornavacca and Weller ﻿Algorithms for Molecular Biology (2022) 17:15

Proof  First, note that all nodes below v in Ŵ are chosen
before v, so Ŵv ⊆ σ [1..v].

“⇒ ”: Let u ≤Ŵ v , that is, u ∈ Ŵv , implying u ≤σ v . By (1),
v is connected to u in G[Ŵv] and, as Ŵv ⊆ σ [1..v] , also in
G[σ [1..v]].
“⇐ ”: Let p be a v-u-path in G[σ [1..v]] . By Lemma 4, p
has a unique maximum w in Ŵ . Hence, v ≤Ŵ w and, by
“ ⇒ ”, we have v ≤σ w . Since p lives entirely in G[σ [1..v]] ,
that is, V (p) ⊆ σ [1..v] , we also have w ≤σ v . Thus, v = w
and, since u ∈ V (p) , we have u ≤Ŵ w = v by maximality
of w.� �

To prove the lemma, we show YWŴ
x ⊇ ZWσ

x for each
x ∈ V (G) . Let y ∈ ZWσ

x , that is y >σ x and there is
some z ∈ σ [1..x] with yz ∈ E(G) and x G,σ

� z . By Claim 1,
z ≤Ŵ x . Further, as yz ∈ E(G) and Ŵ agrees with G, y and z
are not unrelated in Ŵ and, since z ≤Ŵ x , neither are x and
y. Since y <Ŵ x implies y <σ x by Claim 1, contradicting
y >σ x , we conclude x <Ŵ y . Together with z ≤Ŵ x and
yz ∈ E(G) , this implies y ∈ YWŴ

x .
Having shown that the notion of zw(G) and yw(G) are

equivalent, we can now turn our attention to the tree-
width. In particular, we introduce (nice) tree-decomposi-
tions and use their properties to show that the treewidth
of any undirected graph G equals yw(G).

Definition 3  (see Fig. 5) Let G be an undirected graph
and let T be a rooted tree whose vertices are associated to
subsets of V(G) by a function B : V (T) → 2V (G) such that

(a)	 for each uv ∈ E(G) , there is some x ∈ V (T) with
u, v ∈ B(x) and

(b)	 for each v ∈ V (G) , the nodes x ∈ V (T) with
v ∈ B(x) are weakly connected in T.

We call (T, B) a tree decomposition of G and its width is
tw(T ,B) := maxx∈V (T) twx(T ,B) with twx(T ,B) := |B(x)| − 1 .
We call tw(G) := minT ,B tw(T ,B) the treewidth of G.
We call (T, B) nice if T is binary and all x ∈ V (T) fall into
one of the following categories

“leaf”: x is a leaf of T and B(x) = ∅,
“root”: x is the root of T and B(x) = ∅,
“introduce v”: x has a single child y in T and B(y) =
B(x)− v,
“forget v”: x has a single child y in T and B(x) =
B(y)− v,
“join”: x has two children y and z and B(x) =
B(y) = B(z).

As stated at the beginning of the section, recall that,
while tree decompositions are defined for undirected

graphs, we may talk about tree decompositions of DAGs,
meaning tree decompositions of their underlying undi-
rected graphs. Note that all graphs G have a nice tree
decomposition with |V (T)| ∈ O(tw(G) · |G|) and width
tw(G) [27]. Further, since all bags of (T, B) containing a
vertex v of G are connected, we can observe the following.

Observation 2  Let (T, B) be a nice tree decomposition
for an undirected graph G and let v ∈ V (G) . Then, T con-
tains a single “forget v”-node x and y <T x for all y with
v ∈ B(y).

Proposition 1  Let G be an undirected graph. Then,
yw(G) = tw(G). Further, given a tree decomposition (T, B)
for G, we can compute a tree Ŵ agreeing with G such that
yw(Ŵ) = tw(T ,B) in linear time.

Proof  “≤ ”: Let (T, B) be a nice tree decomposition
for G of width tw(G) and let F ⊂ V (T) denote the set
of all “forget”-nodes in T (noting that F contains the
root of T). We define Ŵ as the transitive reduction of
(F ,>T ∩(F × F)).2 Note that u ≤Ŵ v ⇐⇒ u ≤T v for all
u, v ∈ F and, by Observation 2, V (Ŵ) = F = V (G).

First, we show that Ŵ agrees with G. To this end,
let uv ∈ E(G) and let fu, fv ∈ F denote the unique
“forget u” and “forget v”-nodes in T, which are dis-
tinct since T is nice. By Definition 3(a), there is a
node q ∈ V (T) with u, v ∈ B(q) and, by Observation 2,

Fig. 5  The tree decomposition (Ŵ, B) for the network N given in
Fig. 3 constructed in the “ ≥”-part of Lemma 1. Leaves are represented
by boxes instead of their names. Note that (Ŵ, B) is not a nice tree
decomposition

2  Intuitively, Ŵ can be obtained from T by contracting all nodes in V(T) \ F
onto their respective parents and identifying all nodes x ∈ F with the ver-
tex v ∈ V(G) \ B(x) of G that is forgotten in x.

Page 9 of 31Scornavacca and Weller ﻿Algorithms for Molecular Biology (2022) 17:15 	

q <T fu, fv . Thus, fu and fv are not unrelated in T and,
thus, neither in Ŵ.

Second, we show for all v ∈ Ŵ and the unique “for-
get v”-node fv in T that YWŴ

v ⊆ B(fv) . Let u ∈ YWŴ
v  , that

is, u >Ŵ v and there is some w ≤Ŵ v such that uw ∈ E(G)
(note that w = u but w = v is possible). Let fu and fw
be the unique “forget u” and “forget w”-nodes in T,
which are distinct since T is nice. Then, w ≤Ŵ v <Ŵ u
and, since fu, fw ∈ F  , we also have fw ≤T fv <T fu .
Since uw ∈ E(G) , Definition 3(a) implies that there is
a node q of T with u,w ∈ B(q) and, by Observation 2,
q <T fu, fw . Then, by Definition 3(b), u ∈ B(x) for all x
with q ≤T x <T fu and, since q <T fw ≤T fv <T fu , we
have u ∈ B(fv) . As u was chosen arbitrary, we conclude
YWŴ

v ⊆ B(fv) . Hence, yw(G) ≤ |YWŴ
v | ≤ |B(fv)| and,

since fv has a child x with B(x) = B(fv) ∪ {v} , we know
|B(fv)| = |B(x)| − 1 ≤ tw(T ,B) = tw(G).

“≥ ”: Let Ŵ be a tree with yw(Ŵ) = yw(G) that agrees
with G. For all u ∈ V (G) , we define B(u) := YWŴ

u ∪ {u}
and show that (Ŵ,B) is a tree-decomposition for G noting
that its width is yw(Ŵ) = yw(G) (see example in Fig. 5).

First, to prove Definition 3(a), let uv ∈ E(G) . Since Ŵ
agrees with G, either u <Ŵ v or v <Ŵ u . Without loss of
generality, suppose the latter. Then, u ∈ YWŴ

v by Defini-
tion 2 (using w = v ), implying that uv ∈ B(v).

Second, let u, v ∈ V (G) be distinct such that u ∈ B(v) =
YW

Ŵ
v ∪ {v} , implying u ∈ YWŴ

v since u = v . By Defini-
tion 2, there is some w ≤Ŵ v such that uw ∈ E(G) and
v <Ŵ u , implying that Ŵ contains a unique u-v-path p. To
show Definition 3(b), it suffices to prove u ∈ B(x) for all
x ∈ V (p) (since v has been chosen arbitrarily, a path with
these properties exists for all v′ with u ∈ B(v′) , so they all
contain the node u and are, thus, connected). For x = u

this follows by definition of B(u). Otherwise, x <Ŵ u since
x ∈ V (p) . But then, w ≤Ŵ v ≤Ŵ x <Ŵ u and uw ∈ E(G) ,
implying u ∈ YWŴ

x ⊆ B(x).� �

Parsimony
Notation Large parts of this work are in context of a rooted
tree Ŵ on the node set V(N) of a given phylogenetic net-
work N (see Fig. 6). Specifically for the tree Ŵ , we permit
ourselves to abbreviate V (Ŵx) to Ŵx to increase readability.
In such context, we additionally define the following sets
for any nodes y, z ∈ V (N) : Pred↑yN (z) := PredN (z) ∩ Ŵy
and Pred

↓y
N (z) := PredN (z) \ Ŵy denote the respec-

tive predecessors of z in N that are or are not
in Ŵy . Likewise, Succ

↑y
N (z) := SuccN (z) ∩ Ŵy and

Succ
↑y
N (z) := SuccN (z) \ Ŵy denote the respective suc-

cessors of z in N that are or are not in Ŵy – note that the
arrow in the notation indicates the direction of the
arc between z and the members of the set when draw-
ing Ŵ top-down. If z = y , we drop y and simply write
Pred

↓
N (z) , Pred

↑
N (z) , Succ

↑
N (z) , and Succ

↑
N (z) . We

also abbreviate Pred
↓
N (z) ∩ R(G) =: PredR↓N (z) and

Succ
↑
N (z) ∩ R(G) =: SuccR↑N (z) as well as Pred↓

N
(z) \ R(G) =:

Pred
T↓
N

(z) and Succ
↑
N (z) \ R(G) =: SuccT↑

N (z) . All
these functions generalize to sets Z ⊆ V (N) (for exam-
ple, PredN (Z) :=

⋃

z∈Z PredN (z) \ Z ). Further, for
any X ⊆ V (N) , we define the sets of arcs of N

(a)	 from a node u ∈ X to any ancestor of u in Ŵ as
A
↑
X (N) := {uw ∈ A(N) | u ∈ X ∧ u <Ŵ w} and

(b)	 to a node u ∈ X from any ancestor of u in Ŵ as
A
↓
X (N) := {uw ∈ A(N) | w ∈ X ∧ w <Ŵ u}.

Fig. 6  A tree Ŵ is depicted in gray and some arcs of N are depicted in black. Recall that t is the number of children of x and Zi :=
⋃

1≤j≤i Ŵvj .
Note that x ∈ Succ

↑
N(Z2) \ Succ

↑
N(Ŵx) since x is an ancestor of a node of Ŵv2 in N. Note that x is a reticulation of N with parents y (drawn) and z

(not drawn) with y <Ŵ v2 <Ŵ x <Ŵ z . Thus, z ∈ Pred
↓
N(x) but y ∈ Pred

↑v2
N (x) ⊆ Pred

↑
N(x) . Finally, note that YWŴ

x = Pred
↓
N(Ŵx) ∪ Succ

↑
N(Ŵx) and

⋃

i≤t YW
Ŵ
vi
⊆ YWŴ

x ⊎ {x}

Page 10 of 31Scornavacca and Weller ﻿Algorithms for Molecular Biology (2022) 17:15

For brevity, we abbreviate AX (N) := A
↑
X (N) ∪ A

↓
X (N) ,

A
↑
v (N) := A

↑
Ŵv
(N) , A↓

v (N) := A
↓
Ŵv
(N) , and Av(N) := AŴv

(N).
Introduction to Parsimony Given states of a character,

observed in extant species, as well as a species phylogeny,
the small parsimony problem asks to infer states of the
same character for all ancestral species such as to mini-
mize the “parsimony score” of this assignment. This prob-
lem comes in three flavors called “hardwired”, “softwired”,
and “parental” parsimony. Throughout this section, let
C be a fixed finite set (a “character”). For convenient use
of the �-relation, let C be an anti-chain (that is, for each
x, y ∈ C , we have x ≤ y only if x = y ). Formally, for a phy-
logeny N and a function φ : V (N) → 2C , we define the
hardwired and softwired parsimony score as

The “parental parsimony” is defined using “parental
trees” but, in this work, we use the equivalent formula-
tion using lineage functions [12].

Definition 4  A lineage function for a phylog-
eny N is any function f : V (N) → 2C . The cost of f is
cost(f) :=

∑

v∈V (N) costf (v) where

Given N and a function φ : V (N) → 2C , we denote the
set of all lineage functions f on N with f � φ as LFN ,φ .
Finally, the parental parsimony score is

For each of the presented variants, we give a dynamic
programming formulation using a given tree Ŵ that
agrees with the undirected graph G underlying the input
network and corresponds to Lemma 3, that is, each non-
leaf x of Ŵ has a child v with x ∈ YWŴ

v  . The running time
of the resulting algorithm will depend on the width yw(Ŵ)
of Ŵ (recalling that yw(Ŵ) coincides with the treewidth of
G for optimal Ŵ).

As stated in the introduction, in this paper we focus on
the case of analyzing a specific position in the genome.
Since the function φ can associate several states to a same
leaf, our definition permits to describe polymorphism
in a population. While in our current formulation the

par HN (φ) := min
ψ :V (N)→C , ψ�φ

∑

uv∈A(N)

δ ψ(u, v)

par S
N
(φ) := min

ψ : V (N) → C , ψ � φ

T ∈ S(N)

∑

uv∈A(T)

δ ψ(u, v).

costf (v) : = |f (v) \
�

u∈Pred(v)

f (u)|

+







−1 if v = ρN and |f (v)| = 1

0 if v �= ρN and |f (v)| ≤
�

u∈Pred(v) |f (u)|
∞ otherwise

(2)par PN (φ) := min
f ∈LFN ,φ

cost(f)

algorithms “choose” an optimal state to associate to each
leaf, the parental parsimony can be easily modified to
explain all states of each leaf at the end of the run. This
allows keeping the information on polymorphism in all
steps of the algorithm (see “Parental parsimony”). Note
also that φ can associate information to internal nodes,
thus permitting the user to impose restrictions on the
states associated to ancestral species.

In the presentation of the dynamic programming,
a table entry Qy

x[z] means that x and y are consid-
ered fix for this table and z is a variable index. Further,
tables Qy1

x1 and Qy2
x2 are independent of one another,

allowing an implementation to forget Qy1
x1 if it is no

longer needed, even if Qy2
x2 still is. In the following,

for an anti-chain Y in Ŵ and a class G of subnetworks
of N, a Y-substitution system of G is a series of sub-
networks (Ny)y∈Y of N such that, for all N ′ ∈ G , the
digraph (V (N), (A(N ′) \

⋃

y∈Y Ay(N
′)) ∪

⋃

y∈Y Ay(N
y))

is also in G . Roughly, we can “swap out” the arcs in Ay(N
′)

for Ay(N
y) for each y ∈ Y without loosing membership in

G . Note that the Ny are not necessarily distinct, so a triv-
ial Y-substitution system for {N ′} would be (N ′)y∈Y  . The
formulations are based on the following lemma about
independent sub-solutions, showing that an optimal
solution (S,ψ) for a sub-network (of G) “below” an anti-
chain Z in Ŵ is also optimal on any sub-network “below”
an anti-chain Y in Ŵ that is itself “below” Z (among all
solutions with ψ ’s behavior on

⋃

y∈Y YWŴ
y).

Lemma 6  (see Fig. 7) Let Y ,Z ⊆ V (N) be anti-chains
in Ŵ such that Y ⊆

⋃

z∈Z Ŵz. Let G be a class of subnet-
works of N and let S ∈ G and ψ : V (N) → C such that
(a)

∑

z∈Z
∑

uw∈Az(S)
δ ψ(u,w) is minimum among all such

S and ψ. Let (Sy)y∈Y be a Y-substitution system for G and
let ψy : V (N) → C for each y ∈ Y such that (b) ψy and ψ
coincide on YWŴ

y . Then,

Proof  Towards a contradiction, assume that the lemma
is false. We construct ψ∗ : V (N) → C with

Note that ψ∗ and ψ coincide with ψy on YWŴ
y for all

y ∈ Y  . Thus, δ ψ∗(u,w) = δ ψy(u,w) if uw ∈ Ay(S
∗)

for any y ∈ Y and δ ψ∗(u,w) = δ ψ(u,w) , otherwise.
Further, we construct a digraph S∗ := (V (N), (A(S)\
⋃

y∈Y Ay(S)) ∪
⋃

y∈Y Ay(S
y)) which is in G since (Sy)y∈Y

is a Y-substitution system for G . Since all Sy are subnet-
works of N, we know that Ŵ agrees with S∗ . Furthermore,

∑

y∈Y

∑

uw∈Ay(Sy)

δ ψy(u,w) ≥
∑

y∈Y

∑

uw∈Ay(S)

δ ψ(u,w).

ψ∗(u) =
{

ψy(u) ifu ∈ Ŵy for any y ∈ Y
ψ(u) otherwise

Page 11 of 31Scornavacca and Weller ﻿Algorithms for Molecular Biology (2022) 17:15 	

since Y ⊆
⋃

z∈Z Ŵz , we know that each y ∈ Y has a z ∈ Z
with y ≤Ŵ z . Thus,

contradicting optimality of S and ψ (that is, Lemma 6(a))
since S∗ ∈ G.� �

Hardwired parsimony
To compute the hardwired parsimony score at a node
v of N, we require knowledge of the character assigned
to v and its neighbors. For all u ∈ YWŴ

v  , we thus
“guess” the character ψ(u) assigned to u by an optimal
assignment. In our dynamic programming, we scan Ŵ

∑

z∈Z

∑

uw∈Az(S∗)

δ ψ∗(u,w) =
∑

z∈Z

∑

v∈Ŵz

∑

uw∈A{v}(S∗)

δ ψ∗(u,w)

=
∑

z∈Z

∑

v ∈ Ŵz

v /∈
⋃

y∈Y Ŵy

∑

uw∈A{v}(S∗)
δ ψ∗(u,w)+

∑

y∈Y

∑

uw∈A{v}(S∗)
δ ψ∗(u,w)

=
∑

z∈Z

∑

v ∈ Ŵz

v /∈
⋃

y∈Y Ŵy

∑

uw∈Ay(S)

δ ψ(u,w)+
∑

y∈Y

∑

uw∈Ay(Sy)

δ ψy(u,w)

assumption
<

∑

z∈Z

∑

v ∈ Ŵz

v /∈
⋃

y∈Y Ŵy

∑

uw∈A{v}(S)

δ ψ(u,w)+
∑

y∈Y

∑

uw∈Ay(S)

δ ψ(u,w)

=
∑

z∈Z

∑

uw∈Az(S)

δ ψ(u,w)

bottom-up, computing a table entry THW [x,ψ] for each
x ∈ V (Ŵ) = V (N) and each ψ : YWŴ

x → C , containing
the parsimony cost incurred by all arcs in Ax(N) , assum-

ing that all nodes in YWŴ
x receive their characters accord-

ing to ψ . Note that Ax(N) =
⋃

i Avi(N) ∪ A{x}(N) , where
the vi are the children of x in Ŵ . Thus, THW [x,ψ] can be
calculated as follows.

Definition 5  Let Ŵ be a tree that agrees with N, let
x ∈ V (N) and let ψx : YWŴ

x → C with ψx � φ . Let
v1, v2, . . . , vt denote the children of x in Ŵ ( t = 0 if x is a
leaf). Then, we define a table entry

Fig. 7  Lemma 6 proves that any solution (S,ψ) that is optimal on sub-trees rooted at Z in Ŵ must also be optimal (among all solutions with ψ ’s
behavior on

⋃

y∈Y YW
Ŵ
y (gray box on top)) on all sub-trees of Ŵ that are rooted below Z (at Y). That is, no solution (Sy ,ψy) can be better than (S,ψ) on

the sub-network induced by Ŵy for any y ∈ Y . To prove this, a new solution (S∗ ,ψ∗) is constructed by replacing the sub-solution of (S,ψ) below Y by
the sub-solutions (Sy ,ψy) below Y 

Page 12 of 31Scornavacca and Weller ﻿Algorithms for Molecular Biology (2022) 17:15

Lemma 7  Let x ∈ V (N) and let ψx : YWŴ
x → C with

ψx � φ. Let ψ : V (N) → C with ψx � ψ � φ such that ψ
minimizes

∑

uw∈Ax(N) δ ψ(u,w). Then,

Proof Sketch. For “ ≥ ”, we construct a mapping ψ ′ from
mappings ψi that are optimal on Avi(N) among all map-
pings with ψi(x) := cx . This is possible
since all such ψi coincide with ψ ′ and ψx on YWŴ

x  . By
induction hypothesis, the cost of ψ ′ on Ax(N) is
∑

1≤i≤t T
HW [vi,ψ ′ |YWŴ

vi

] +
∑

uw∈A{x}(N) δ ψ ′(u,w) . �

Then, “ ≥ ” follows from optimality of ψ on Ax(N).
For “ ≤ ”, it suffices to show that the cost of ψ on Ax(N) is

equal to the result of setting cx := ψ(x) in the right hand
side of (3) (which is a valid choice for the minimum since
ψ(x) ∈ φ(x) ). First, the cost of ψ on Avi(N) is
THW [vi,ψ |YWŴ

vi

] by independence of sub-solutions and

the induction hypothesis. Second, the cost of ψ on
A
↓
{x}(N) is

∑

z∈Pred↓
N (x)

δ (cx,ψx(z)) and the cost of ψ on

A
↑
{x}(N) is

∑

z∈Succ↑N (x)
δ (cx,ψx(z)) since ψ and ψx coin-

cide on YWŴ
x .� �

In order to solve the hardwired parsimony problem
given N, φ and Ŵ , all we have to do is compute THW [x,ψx]
for each x bottom-up in Ŵ and each of the (at most)
|C||YW

Ŵ
x | many choices of ψx : YWŴ

x → C with ψx � φ .
Then, by Lemma 7, the hardwired parsimony score of N
with respect to φ can be read from THW [ρŴ ,∅] . To com-
pute THW , the sum over the children of x for all x ∈ V (N)
in (3) can be computed in amortized O(|A(N)|) time and,
with a bit of bookkeeping, it is possible to maintain the
value of the second sum in (3) in O(|A(N)|) amortized
time per choice of ψ . Then the following holds:

Theorem 1  Given a network N, some φ : V (N) → 2C
and a tree Ŵ agreeing with N, the hardwired parsimony score
of (N ,φ) can be computed in O(|C|yw(Ŵ)+1 · |A(N)|) time.

(3)THW [x,ψx] := min
cx∈φ(x)







�

1≤i≤t

THW [vi,ψx[x → cx] |YWŴ
vi

] +
�

z∈Pred↓
N (x)∪Succ↑N (x)

δ (cx,ψx(z))







THW [x,ψx] =
∑

uw∈Ax(N)

δ ψ(u,w)

Proposition 1 lets us turn tree decompositions of
N into trees Ŵ agreeing with N, allowing us to replace
yw(Ŵ) by tw(N) , incurring an additional running time of
|N | · 2O(tw(N)3) [13].

Corollary 1  Let (N ,φ) be an instance of Hardwired
Parsimony. Let t ≥ tw(N) and let T be the time in which
a width-t tree decomposition of N can be computed. Then,
the hardwired parsimony score of (N ,φ) can be computed
in O(T + |C|t+1 · |A(N)|) time.

Softwired parsimony
In contrast to the hardwired parsimony score, where the
computation of the cost of the incident edges of a node x
only required knowledge of the characters assigned to
neighbors of x, computing the softwired score additionally
requires knowledge of which parent of x remains a parent
in the sought switching. A table entry TSW [x, . . .] con-
tains the smallest combined cost of all arcs in Ax(S) for a
switching S of N minimizing this cost. To be able to com-
pute an entry for x ∈ V (N) , we not only need to “guess”
ψx but, additionally, some representation of the switch-
ing S. In particular, in S, no child of x may have another
parent than x. However, since children of x in N may be
above x in Ŵ , we have to “guess” which children of x in N
are still children of x in S. Such a guess manifests itself as
an additional index Rx of the dynamic programming table
(note that we clearly only have to store this information
for children of x that are reticulations). Indeed, this infor-
mation has to be stored for all nodes considered below
x who still have children in YWŴ

x  . Thus, we index our
DP-table also by a subset Rx ⊆ YWŴ

x ∩ R(N) containing
a reticulation r ∈ R(N) if and only if Ŵx contains a par-
ent v of r and vr is an arc of an optimal switching S for
N [Ŵx ∪ YWŴ

x].

Definition 6  Let Ŵ be a tree that agrees with N, let
x ∈ V (N) , let ψx : YWŴ

x → C with ψx � φ , and let
Rx ⊆ Succ

R↑
N (Ŵx) . Let v1, v2, . . . , vt denote the children of

x in Ŵ ( t = 0 if x is a leaf in Ŵ ). Then, set

Page 13 of 31Scornavacca and Weller ﻿Algorithms for Molecular Biology (2022) 17:15 	

where

where ψi := ψx[x → cx] |YWŴ
vi

 for all i ≤ t . (Note how

Q
ψx
x,cx [i,R′] is used to assign the nodes in Rx to the vi (with

v0 = x ) such that every node in Rx has a parent in some
Ŵvi).

In the following, for any anti-chain X in Ŵ and all
Z ⊆

⋃

x∈X YWŴ
x  , let SX→Z(N) denote the set of all

switchings S of N with SuccR↑S (X) = Z.

Lemma 8  Let Ŵ be a tree that agrees with N,
let x ∈ V (N), let ψx : YWŴ

x → C with ψx � φ,
and let Rx ⊆ Succ

R↑
N (Ŵx). If SŴx→Rx (N) = ∅, then

TSW [x,ψx,R
x = ∞]. Otherwise, let S ∈ SŴx→Rx (N)

and ψ : V (N) → C such that (a) ψx � ψ � φ and (b)
∑

uw∈Ax(S)
δ ψ(u,w) is minimum among all such S and ψ.

Then,

Proof Sketch. Let us abbreviate Zi :=
⋃

j≤i V (Ŵvj) . We
first show that the table Q does what we expect it to do.

Claim 2  Q
ψx
x,cx [i,R′] =

∑

j≤i

∑

uw∈Avj
(Si)

δ ψi(u,w) for
optimal Si ∈ SZi→R′ and ψi coincides with ψx[x → cx] on
⋃

j≤i YW
Ŵ
vj

.

Proof Sketch. For “ ≥ ”, let R∗ ⊆ R′ ∩ Succ
R↑
N (Ŵvi) such that

equality holds in (5). We consider a switching S′ ∈ SZi→R′
constructed from switchings Si−1 ∈ SZi−1→R′\R∗ and
S∗ ∈ S

Ŵvi
→R∗ as well as a mapping ψ ′ coinciding with

ψx[x → cx] on
⋃

j<i YW
Ŵ
vj

 constructed from mappings
ψi−1 and ψ∗ such that (a) ψi−1 coincides with ψx[x → cx]
on

⋃

j<i YW
Ŵ
vj

 , (b) ψ∗ coincides with ψx[x → cx] on YWŴ
vi

 ,
(c) the cost of ψi−1 is optimal on AZi−1(Si−1) and (d) the
cost of ψ∗ is optimal on Avi(S

∗) . By induction

(4)

TSW [x,ψx,R
x] := min

cx∈φ(x)
min

R∗⊆Rx∩SuccR↑N (x)

�

r∈R∗∪SuccT↑
N (x)

δ (cx,ψx(r))

+min







Q
ψx
x,cx [t,Rx \ R∗] + min

y∈Pred↓
N (x)

δ (cx,ψx(y)) if Pred
↓
N (x) �= ∅

Q
ψx
x,cx [t, (Rx \ R∗) ∪ ({x} ∩ R(N))] if Pred

↑
N (x) �= ∅

(5)Qψx
x,cx

[i,R′] :=















min
R∗⊆R′∩SuccR↑N (Ŵvi

)

Q
ψx
x,cx [i − 1,R′ \ R∗] + TSW [vi,ψi,R

∗] if i �= 0

0 if i = 0 and R′ = ∅
∞ otherwise

(6)TSW [x,ψx,R
x] =

∑

uw∈Ax(S)

δ ψ(u,w).

hypotheses, these costs are Q
ψx
x,cx [i − 1,R′ \ R∗] and

TSW [vi,ψx[x → cx],R
∗] , respectively. Then, “ ≥ ” follows

by optimality of Si and φi.
For “ ≤ ”, we let R∗ := Succ

R↑
Si
(Ŵvi) and use independ-

ence of sub-solutions and the induction hypotheses to
show that the cost of φi on AZi−1(Si) is Qψx

x,cx [i − 1,R′ \ R∗]
and the cost of φi on Avi(Si) is TSW [vi,φi,R∗] . Then, “ ≤ ”
follows from the fact that R∗ is only one of the possible
choices for the minimum in (5).� �

For “ ≥ ”, let cx ∈ φ(x) and R∗ ⊆ Rx ∩ Succ
R↑
N (x) be such

that equality holds in (4). We consider a switch-
ing S′ ∈ SŴx→Rx constructed from switchings St and S∗
with St ∈ SZt→Rx\R∗ (if Pred

↓
N (x) �= ∅ ) or

St ∈ SZt→(Rx\R∗)∪{x} (if x ∈ R(N) and Pred↑N (x) �= ∅ ), and
S∗ ∈ S{x}→R∗ , as well as a mapping ψ ′ coinciding with ψx
on YWŴ

x constructed from mappings ψt and ψ∗ such that
(a) ψt coincides with ψx[x → cx] on

⋃

i≤t YW
Ŵ
vi

 , (b) ψ∗
coincides with ψx on YWŴ

x  , (c) ψ∗(x) = cx , (d) the cost of
ψt is optimal on AZt (St) and (e) the cost of ψ∗ is optimal on
A{x}(S∗) . Then, the cost of ψ∗ on A

↑
{x}(S

∗) is
∑

r∈R∗∪SuccT↑
N (x)

δ (cx,ψx(r)) , the cost of ψ∗ on A↓
{x}(S

∗) is

min
y∈Pred↓

N (x)
δ (cx,ψx(y)) if the parent of x in St is above

x in Ŵ (that is, x /∈ Succ
R↑
St
(Zt) ) and, by the claim above, the

cost of ψt on AZt (St) is Qψx
x,cx [t, Succ

R↑
St
(Zt)] . Then, as

S′ ∈ SŴx→Rx , “ ≥ ” follows by optimality of S and φ.
For “ ≤ ”, let cx := φ(x) and let R∗ := Succ

R↑
S (Ŵx) . We use

independence of sub-solutions and the induction hypoth-
esis to show that the cost of φ on AZt (S) is Qψx

x,cx [t,R′ \ R∗]
(if x /∈ R(N) or the parent of x in S is above x in Ŵ ) or
Q
ψx
x,cx [t, (R′ \ R∗) ∪ {x}] (if x ∈ R(N) and the parent of x in

S is in Ŵx ). Further, the cost of ψ on A
↑
{x}(S) is

∑

r∈R∗∪SuccT↑
N (x)

δ (cx,ψx(r)) , the cost of ψ on A↓
{x}(S) is

min
y∈Pred↓

N (x)
δ (cx,ψx(y)) if the parent of x in S is above

x in Ŵ . Then, “ ≤ ” follows from the fact that our choices of

Page 14 of 31Scornavacca and Weller ﻿Algorithms for Molecular Biology (2022) 17:15

cx and R∗ are only one of the possible choices for the min-
imum in (4).� �

In order to solve the softwired parsimony problem
given N, φ and Ŵ , all we have to do is compute
TSW [x,ψx,R

x] for each x bottom-up in Ŵ , each of the (at
most) |C||YW

Ŵ
x | many choices of ψx : YWŴ

x → C with
ψx � φ , and each Rx ⊆ Succ

R↑
N (x) ⊆ YWŴ

x ∩ R(N) . To
this end, Qψx

x,cx [i,Rx \ R∗] and Qψx
x,cx [i, (Rx \ R∗) ∪ {x}] have

to be computed for each child vi of x in Ŵ and each
R∗ ⊆ Rx ∩ Succ

R↑
N (x) . Then, by Lemma 8, the softwired

parsimony score of N with respect to φ can be read from
TSW [ρŴ ,∅,∅] . In the following, let ψx be fix. Then, for
fix cx , we can compute Qψx

x,cx [i,R′] for all choices of x, i
and R′ in O(2|R

′∩SuccR↑N (vi)| +
∑

x∈Ŵ |SuccŴ(x)|)
⊆ O(2|YW

Ŵ
x |+1 + |Ŵ|) time total. Further, the values of

min
y∈Pred↓

N (x)
δ (cx,φx(y)) can be pre-computed for all

x ∈ Ŵ in O(|A(N)|) time total. Then, to compute
TSW [x,ψx,R

x] for all x and Rx , we have to check |V(N)|
choices for x, as well as |φ(x)| ≤ |C| choices for cx and
3|Succ

R↑
N (x)| choices for Rx and R∗ ⊆ Rx combined. Alto-

gether, the table TSW can be computed in
O(|C||YW

Ŵ
x | · (3|YW

Ŵ
x | · |C| · |V (N)| + |A(N)|)) time. The

computation of Qψx
x,cx in O(2|YW

Ŵ
x | + |A(N)|) time is

absorbed by this. For practical purposes, note that esti-
mating |SuccR↑N (x)| ≤ |YWŴ

x | is quite crude and equality
will almost never be attained. Then, the following result
holds:

Theorem 2  Given a network N, φ : V (N) → 2C
and a tree Ŵ agreeing with N, the softwired par-
simony score of (N ,φ) can be computed in
O(|C|yw(Ŵ) · (3yw(Ŵ) · |C| · |V (N)| + |A(N)|)) time.

Again, we can replace yw(Ŵ) by tw(N) using Proposi-
tion 1.

Corollary 2  Let (N ,φ) be an instance of Softwired
Parsimony. Let t ≥ tw(N) and let T be the time in which
a width-t tree decomposition of N can be computed. Then,
the softwired parsimony score of (N ,φ) can be computed
in O(T + |C|t · (3t · |C| · |V (N)| + |A(N)|)) time.

Parental parsimony
For ease of presentation, we introduce some addi-
tional notation. First, for any a and b, we abbrevi-
ate max{a− b, 0} =: a

.
−b . Let ψ and ψ ′ be functions.

If ψ maps all items to ∅ or to 0, then we say that ψ is a
zero-function and we write ψ = −→

0  . We use ψ − ψ ′
to denote the function defined on the domain of

ψ for which (ψ − ψ ′)(x) = ψ(x) if ψ ′(x) = ⊥ and
(ψ − ψ ′)(x) = ψ(x)− ψ ′(x) , otherwise. This definition
extends to functions mapping to sets in a natural way.

Each finite-cost lineage function f corresponds to a phy-
logenetic tree “embedded” in N whose branches are called
lineages (see Fig. 1(right)). For each x ∈ V (N) , f(x) repre-
sents the set of such lineages passing through x. Each such
lineage may “choose” a parent among the parents of x in N.
This models the biological circumstance that a character
trait may be inherited from any parent. We compute (the
cost of) an optimal lineage function on N using a tree Ŵ
that agrees with N. To compute costf (x) , we require
knowledge of

∑

y∈Pred(x) |f (y)| as well as
⋃

y∈Pred(x) f (y)
(see Definition 4). We partition the predecessors of x over
which the formula iterates into those above x in Ŵ and
those below (since Ŵ agrees with N, all predecessors of x in
N are comparable to y in Ŵ ). For all y ∈ YWŴ

x  , we thus store

1.	 the set �(y) := f (y) of lineages in y,
2.	 the subset ψ(y) of lineages of y that also occur in

parents (in N) of y that are below x in Ŵ , that is, in
Pred

↑x
N (y) (such lineages are inherited by y at no

cost),
3.	 the total number η(y) of lineages of y that can be

inherited from parents (in N) of y that are below x in
Ŵ , that is, from Pred↑xN (y) (cost 0 or 1).

Then, in order to compute an entry TPT [x, �x,ψx, ηx] , we
“guess” the set U ⊆ φ(x) of lineages passing through x in
an optimal solution, as well as the set D ⊆ U of lineages
inherited from nodes in Pred↑N (x) . This allows us to infer
η(x) = |�(x)|

.
−
∑

r∈Pred↓
N (x)

|�(r)| and ψ(x) := D . Then,
by Definition 4, the cost incurred by f on x can be com-
puted from

∑

y∈PredN (x) |f (y)| = η(x)+
∑

y∈Pred↓
N (x)

|�(y)|
and

⋃

y∈PredN (x) f (y) = ψ(x) ∪
⋃

y∈Pred↓
N (x)

�(y).
We will compute table entries for x using the already

computed table entries for the children vi of x in Ŵ . In
these lookups, we have x ∈ YWŴ

vi
 so, to be consistent

with the semantics, we have to make sure that
�(x) = U  , ψ(x) = D , and that all lineages of x that are
not inherited from Pred↓N (x) can be inherited from
Pred

↑
N (x) , that is, η(x) = |�(x)|

.
−
∑

r∈Pred↓
N (x)

|�(r)| .
Further, each child y of x in N may inherit a lineage
from x and, if y is above x in Ŵ , this has to be regis-
tered by removing the lineages of U from ψ(y) and
subtracting |U| from η(y) . Finally, the lineages repre-
sented by ψ and η are distributed among the children
of x in Ŵ using the table Q. In the following, in order to
avoid treating the case that x = ρN separately, we
define ρ(x) := 1− δ (x, ρN) , that is, ρ(x) = 1 if and
only if x = ρN .

Page 15 of 31Scornavacca and Weller ﻿Algorithms for Molecular Biology (2022) 17:15 	

Definition 7  Let Ŵ be a tree that agrees with N, let
x ∈ V (N) , let �x : YWŴ

x → 2C with �x � φ and let
ψx � �x . Let {v1, v2, . . . , vt} = SuccŴ(x) ( t = 0 if x is a leaf
in Ŵ ). Then, set TPT [x, �x,ψx, ηx] to

where Q�
x[i,ψ , η] equals

Note how the table Q�
x distributes the lineage branches

of x whose parents are in Ŵx among the children of x in Ŵ .
We show that both TPT and Q�

x are monotone in ψ and η
(wrt. �).

Lemma 9  Let x ∈ V (N), let i ∈ N, let � : YWŴ
x → 2C,

let η, η′ : YWŴ
x → N, and let ψ ,ψ ′ : YWŴ

x → 2C such that
ψ ′ � ψ � � and

−→
0 [x → ρ(x)] � η′ � η. Then,

Proof Sketch. The lemma can be proved by induction on
the height of x in Ŵ and the value of i. If x is a leaf, then
Q�
x[0,ψ , η] is finite only if ψ = −→

0 and η = −→
0 [x → ρ(x)] ,

implying the second inequality. For monotony of TPT  ,
fix the sets D ⊆ U ⊆ φ(x) for which the minimum in the
formula of TPT [x, �,ψ , η] is attained. Then, by monot-
ony of Q�

x , replacing ψ by ψ ′ and η by η′ in this formula
does not increase its value and this value is at most
TPT [x, �,ψ ′, η′] since it is obtained for one of several
possible choices for D and U. If x is not a leaf in Ŵ then
monotonicity of Q�

x[i, . . .] is implied by monotonicity
of Q�

x[i − 1, . . .] and monotonicity of TPT [v, . . .] for the
children v of x. Finally, monotonicity of TPT follows from
monotonicity of Q�

x as in the induction base.� �

(7)

min
D ⊆ U ⊆ φ(x)

U �= ∅

Q�xx→U
x



t,ψx

�

x → D
∀
y∈Succ↑N (x)

y → ψx(y) \ U

�

, ηx





x → |U |
.
−
�

u∈Pred↓
N (x)

|�x(u)|

∀
y∈Succ↑N (x)

y → ηx(y)
.
−|U |









+

�

�

�

�

�

�

�

U \






D ∪

�

u∈Pred↓
N (x)

�x(u)







�

�

�

�

�

�

�

(8)















min
ψ ′�ψ |

YWŴ
vi

min
η′�η|

YWŴ
vi

Q
�
x[i − 1,ψ − ψ ′, η − η′] + T

PT [vi, � |
YWŴ

vi

,ψ ′, η′] if i > 0

−ρ(x) if i = 0 and ψ = −→
0 and η = −→

0 [x → ρ(x)]
∞ otherwise

T
PT [x, �,ψ ′, η′] ≤ T

PT [x, �,ψ , η] and Q
�
x[i,ψ

′, η′] ≤ Q
�
x[i,ψ , η]

Lemma 10  Let Ŵ be a tree agreeing with N, let x ∈ V (N),
let ψx, �x : YWŴ

x → 2c and ηx : YWŴ
x → N. Let f minimize

cost(f) among all lineage functions in LFN ,φ such that, for
all w ∈ YWŴ

x  , �x(w) = f (w) , ψx(w) = f (w) ∩
⋃

u∈Pred↑x
N (w)

f (u),
and ηx(w) ≤

∑

u∈PredN↑x(w) |f (u)|. If there are no such f,

then TPT [x, �x,ψx, ηx = ∞]. Otherwise,

Proof Sketch. Let us abbreviate Zi :=
⋃

j≤i V (Ŵvj) . We
first show that the table Q does what we expect it to do.

Claim 3  Let �,ψ : YWŴ
x ∪ {x} → 2C and

η : YWŴ
x ∪ {x} → N such that ψ � � � φ . Let fi ∈ LFN ,φ

have minimum cost on ⋃
j≤i

Ŵvj
 among all lineage functions

for N that, for all w ∈
⋃

j≤i
YW

Ŵ
vj
 , satisfy (a) �(w) = fi(w) ,

(b) ψ(w) = fi(w) ∩
⋃

j≤i

⋃

u∈Pred
↑vj
N (w)

fi(u) , and (c)

η(w) ≤
∑

j≤i

∑

u∈Pred
↑vj
N (w)

|fi(u)| Then, Q�
x[i,ψ , η] =

∑

j≤i
∑

u∈Ŵvj
costfi(u).

Proof Sketch. For “ ≥ ”, let ψ ′ � ψ |YWŴ
vi

 and η′ � η |YWŴ
vi

such that equality holds in (8). Let fi−1 ∈ LFN ,φ mini-
mize

∑

j<i

∑

u∈Ŵvj
costfi−1

(u) among all lineage functions
satisfying (a)–(c) for i − 1 . Let f ∗ ∈ LFN ,φ minimize
∑

u∈Ŵvi
costf ∗(u) among all lineage functions that, for all

w ∈ YWŴ
vi

 , satisfy �(w) = f ∗(w) , ψ ′(w) = f
∗(w) ∩

⋃

u∈
Pred

↑vi
N

(w)f ∗(u) and η′(w) =
∑

u∈Ŵvi

|f ∗(u)| . By induction
hypotheses, the cost of fi−1 on Zi is Q�

x[i − 1,ψ − ψ ′
, η − η′]

TPT [x, �x,ψx, ηx] =
∑

z≤Ŵx

costf (z)

Page 16 of 31Scornavacca and Weller ﻿Algorithms for Molecular Biology (2022) 17:15

and the cost of f ∗ on Ŵvi is TPT [vi, � |YWŴ
vi

,ψ ′, η′] . From

fi−1 and f ∗ , we construct a lineage function f ′ ∈ LFN ,φ
whose cost on Zi is ∑j<i

∑

u∈Ŵvj
costfi−1

(u)+
∑

u∈Ŵvi
costf ∗ (u) .

Then, “ ≥ ” follows by optimality of fi on Zi.
For “ ≤ ”, let ψ ′ and η′ be such that, for all w ∈ YWŴ

vi
 , we

have ψ ′(w) = fi(w) ∩
⋃

u∈Pred↑vi
N (w)

fi(u) ⊆ ψ(w) and

η′(w) =
∑

u∈Pred↑vi
N (w)

|fi(u)| . By independence of sub-
solutions, fi is optimal on Zi−1 and on Ŵvi so, by induction
hypotheses, the cost of fi on Zi−1 is
Q�
x[i − 1,ψ − ψ ′, η − η′] and the cost of fi on Ŵvi is

TPT [vi, � |YWŴ
vi

,φ′, η′] . Since ψ ′ and η′ are only one of the

possible choices for the minimum in (8), “ ≤ ” follows.� �

For “ ≥ ”, let D ⊆ U ⊆ φ(x) such that equality holds in
(7). We construct a lineage function f ′ that assigns
f ′(x) = U and such that the lineages of D are inherited
from parents of x (in N) that are below x in Ŵ . To this end,
we ask the dynamic programming table for the cost of a
lineage function that is optimal on Zt and such that 1.
ψ ′(x) = D (lineages in D are inherited from parents of x
in Ŵx ) 2. ψ ′(w) = ψ ′(w) \U for all w ∈ Succ

↑
N (x) (chil-

dren of x in YWŴ
x no longer need to inherit the lineages in

U from Ŵx ) 3. η′(x) = |U |
.
−
∑

u∈Pred↓
N (x)

|�x(u)| (x needs
to inherit |U| lineages in total: |�x(u)| come from every
parent u of x in YWŴ

x while the rest has to be inherited
from Ŵx ) and 4. η′(w) = ηx(w)

.
−|U | for all w ∈ Succ

↑
N (x)

(children of x in YWŴ
x can inherit a maximum of |U| line-

ages from x). Since the functions �
′ := �x[x → U] ,

ψ ′ := ψx

[

x → D,∀
u∈Succ↑N (x)

w → ψx(w) \U
]

 and
η′ := ηx

[

x → |U |
.
−
∑

u∈Pred↓
N (x)

|�x(u)|,∀
u∈Succ↑N (x)

w →

ηx(w)
.

−|U |
]

 satisfy the conditions of Claim 3, the optimal
cost of such a lineage function f ′ on Zt is Q�

x[t,ψ ′, η′] .
Further, the cost of f ′ on x is the number of lineages in U
that is not inherited “for free” from parents of x, that is,
|U \ (D ∪

⋃

u∈Pred↓
N (x)

�x(u))| . Then, “ ≥ ” follows by opti-
mality of f on Ŵx.

For “ ≤ ”, let U := f (x) and let D := U ∩
⋃

u∈Pred↑
N (x)

f (x)
be the set of lineages of U that are inherited from parents of
x in N that are below x in Ŵ . By independence of sub-solu-
tions, f is optimal on Zt so, by Claim 3, its cost on Zt is
Q�
x[t,ψ ′, η′] where ψ ′ := ψx[. . .] and η′ := ηx[. . .] are

defined as in (7) and its cost on x is |f (x) \ (
⋃

u∈Pred↑
N (x)

f (x)

∪
⋃

u∈Pred↓
N (x)

f (x))| = |U \ (D ∪
⋃

Pred
↓
N (x)

f (x))| . Then,
“ ≤ ” follows from the fact that U and D are only one of the
possible choices for the minimum in (7).� �

To solve the parental parsimony problem given N, φ
and Ŵ , we compute TPT [x, �x,ψx, ηx] for each x bot-
tom-up in Ŵ , each ψx, �x : YWŴ

x → 2C with
ψx � �x � φ and each ηx : YWŴ

x → {0, . . . , |C|} (by Def-
inition 7, no value larger than |C| ever enters ηx and
all modifications to ηx decrease the mapped-to val-
ues). To this end, Q�

x[i,ψ , η] is computed for each x, i,
� , ψ , and η by making at most 2|C|·|YW

Ŵ
x | · |C||YW

Ŵ
x |

queries to Qψx
x,cx and TPT  . As there are O(|A(N)|) valid

combinations of x and i, the table Q can be computed
in O(|A(N)| · 3|C|·yw(N)

· |C|
yw(N)

· 2|C|·ywN
· |C|

yw(N))

= O(|A(N)| · 6|C|·yw(N)|
· 4yw(N)·log |C|) time. Further,

computing each TPT [x, �x,ψx, ηx] requires testing
3|φ(x)| ≤ 3|C| choices for D ⊆ U ⊆ φ(x) and computing
|U \ (D ∪

⋃

u∈Pred↓
N (x)

�x(u))| in O(|C|) time (we
precompute

⋃

u∈Pred↓
N (x)

�x(u) for each fix x and �x ).
Thus, the table TPT can be computed in
O(3|C|·yw(N) · (|C|yw(N)+1 · 3|C| + |A(N)|)) time, which
is dominated by the construction of Q.

Theorem 3  Given a network N, φ : V (N) → 2C
and a tree Ŵ agreeing with N, the paren-
tal parsimony score of (N ,φ) can be computed in
O(6yw(Ŵ)·|C| · 4yw(Ŵ)·log |C| · |A(N)|) time.

Again, we can replace yw(Ŵ) by tw(N) using Proposi-
tion 1.

Corollary 3  Let (N ,φ) be an instance of Parental Par-
simony. Let t ≥ tw(N) and let T be the time in which a
width-t tree decomposition of N can be computed. Then,
the parental parsimony score of (N ,φ) can be computed in
O(T + 6t·|C| · 4t·log |C| · |A(N)|) time.

Note that the parental parsimony setting supports
assigning multiple states of a character to a single spe-
cies, thereby modeling species carrying multiple alleles
of a single gene. By forcing D ⊆ U = φ(x) instead of
D ⊆ U ⊆ φ(x) if x is a leaf, we can trivially modify our
dynamic programming to explain multiple character
states in extant species.

Corollaries 1, 2 and 3 give the running times of our
algorithms as depending on the treewidth of N. The
state-of-the-art solutions for Hardwired Parsi-
mony, Softwired Parsimony and Parental Par-
simony have the following respective running times:
O(|C|r+2|V (N)|) [9], O(2ℓ|C|2|V (N)||A(N)|) [8] and
O(|2C |ℓ+3|V (N)|) [12]. Since the scanwidth of N is

Page 17 of 31Scornavacca and Weller ﻿Algorithms for Molecular Biology (2022) 17:15 	

potentially much smaller than its level ℓ [28], and the
treewidth of N is smaller than its scanwidth [20], we have
tw(N)− 1 ≤ ℓ ≤ r . Thus, we expect that there will be
several cases where our algorithms will be faster than the
current best-known ones.

Discussion
In this paper, we focused on the small version of the
parsimony problem for networks given a specific posi-
tion in the genome. When markers can be assumed to
be independent, as it is the case when a certain distance
is preserved between genomic locations included in the
matrix, each position can be analyzed separately, and the
parsimony score of a network w.r.t. the matrix is simply
the sum of the parsimony scores of the network for each
genomic location. Thus, the algorithms presented here
can be easily expanded to several independent genomic
locations. Moreover, our formulations are defined for
networks that are not necessarily binary, can account for
polymorphism and can impose restrictions on ancestral
states. As discussed above, our algorithms can be orders
of magnitude faster than the state-of-the-art solutions.
A comparison of the reticulation number, the level, the
scanwidth and the treewidth for practically relevant
classes of networks would thus be an interesting project
for future work.

Our results are slightly overshadowed by the fact that
optimal tree decompositions are very hard to compute.
However, practical exact and approximative algorithms
are available today and we expect them do perform well,
as phylogenetic networks can be expected to only be
moderately tangled.

paper by Bachoore and Bodlaender [29], considering tree
decompositions minimizing a weight function over the
bags.

The ability to fast-score phylogenetic networks under
the parsimony framework could be a big help in design-
ing likelihood-based heuristics or bayesian methods to
infer networks from independent markers [28, 30] by
providing fast heuristics to compute the initial networks
with which to start the likelihood or bayesian search, or
to design fast local-search techniques.

In the future, we would like to tackle the small parsi-
mony problem for several dependent genomic locations
(e.g. a gene). Little is known for this problem, except that
it stays NP-hard even for binary characters on level-1
networks [31] and that it is fixed-parameter tractable in
the number of reticulations of the network [6]. Another
important direction would be to study the big parsi-
mony problem, which is currently wide open, even lack-
ing a consensus of the definition of optimality [6, 32–34].

Appendix
Lemma 7  Let x ∈ V (N) and let ψx : YWŴ

x → C with
ψx � φ. Let ψ : V (N) → C with ψx � ψ � φ such that ψ
minimizes

∑

uw∈Ax(N) δ ψ(u,w). Then,

Proof  The proof is by induction on the height of x in Ŵ .
For the induction base, suppose that x is a leaf in Ŵ and
note that Ax(N) = A{x}(N) in this case. Then, (3) simpli-
fies to

Since ψ(x) ∈ φ(x) , we know that ψ(x) participates in the
minimum in (9), implying the “ ≤”-direction. For the “ ≥”-
direction, assume that THW [x,ψx] <

∑

uw∈Ax(N) δ ψ (u,w) .
By (9), there is some cx = ψ(x) with cx ∈ φ(x) and
∑

uw∈Ax(N) δ ψx[x→cx](u,w) <
∑

uw∈Ax(N) δ ψ(u,w). Since
cx ∈ φ(x) , we still have ψx � ψx[x → cx] � φ , contradict-
ing optimality of ψ on Ax(N). For the induction step, sup-
pose that t > 0 and consider both directions separately.

THW [x,ψx] =
∑

uw∈Ax(N)

δ ψ(u,w)

(9)

THW [x,ψx] = min
cx∈φ(x)

�

z∈Pred↓
N (x)∪Succ↑N (x)

δ (cx,ψx(z))

= min
cx∈φ(x)







�

zx∈A↓
x (N)

δ (cx,ψx(z))+
�

xz∈A↑
x (N)

δ (cx,ψx(z))







= min
cx∈φ(x)

�

uw∈Ax(N)

δ ψx[x→cx](u,w)

Furthermore, closer inspection of our dynamic pro-
gramming formulations (most prominently Defini-
tion 6) unveils that their computation is faster when the
maximum number of reticulations in each bag is small.
Thus, it would be interesting to be able to compute tree
decompositions in which this quantity is low, to the point
where one could improve running time of the algorithm
by sacrificing optimality of the decomposition in favor
of reducing this “reticulation density”. Research in this
direction is, to the best of our knowledge, limited to a

Page 18 of 31Scornavacca and Weller ﻿Algorithms for Molecular Biology (2022) 17:15

“≤ ”: Let i ≤ t , and let ψi := ψ |
YW

Ŵ
vi

= ψx[x → ψ(x)] |
YW

Ŵ
vi

.
Then, by Lemma 6 (with Z = {x} , Y = {vi} , G = {N } and
(Sy)y∈Y = (N)y∈Y  ), optimality of ψ on Ax(N) implies
optimality of ψi on Avi(N) . Thus, we can use the induc-
tion hypothesis on THW [vi,ψi] . Since ψ(x) participates
in the minimum of (3),

“≥ ”: Assume towards a contradiction that the lemma is
false, that is, “<” holds. By (3), there is some cx ∈ φ(x)
such that

Since cx ∈ φ(x) , we can extend ψx[x → cx] to V(N) with-
out violating φ , that is, there are functions
ψ ′ : V (N) → C with ψx[x → cx] � ψ ′ � φ . Among
them, let ψ ′ minimize

∑

i≤t

∑

uw∈Avi
(N) δ ψ ′(u,w) . By

Lemma 6 (with Z = SuccŴ(x) , Y = {vi} , G = {N } , and
(Sy)y∈Y = (N)y∈Y  ), ψ ′ also minimizes
∑

uw∈Avi
(N) δ ψ ′(u,w) for all 1 ≤ i ≤ t . Thus, the induc-

tion hypothesis applies to THW [vi,ψx[x → cx] |YWŴ
vi

] for

all i. Then,

THW [x,ψx]
(3)
≤

∑

1≤i≤t

THW [vi,ψi] +
∑

z∈Pred↓
N (x)∪Succ↑N (x)

δ (ψ(x),ψx(z))

IH=
∑

1≤i≤t

∑

uw∈Avi
(N)

δ ψ(u,w)+
∑

z∈Pred↓
N (x)∪Succ↑N (x)

δ ψ(x, z)

=
∑

uw∈Ax(N)

δ ψ(u,w)

(10)

T
HW [x,ψx] =

∑

1≤i≤t

T
HW [vi,ψx[x → cx] |YWŴ

vi

]

+
∑

z∈Pred↓
N (x)∪Succ↑N (x)

δ (cx,ψx(z))

THW [x,ψx]
(10)=

∑

1≤i≤t

THW [vi,ψx[x → cx] |YWŴ
vi

] +
∑

z∈Pred↓
N (x)∪Succ↑N (x)

δ (cx,ψx(z))

IH=
∑

1≤i≤t

∑

uw∈Avi
(N)

δ ψ ′(u,w)+
∑

z∈Pred↓
N (x)∪Succ↑N (x)

δ (cx,ψx(z))

ψx=ψ ′|
YWŴ

x=
∑

1≤i≤t

∑

uw∈Avi
(N)

δ ψ ′(u,w)+
∑

z∈Pred↓
N (x)∪Succ↑N (x)

δ ψ ′(x, z)

=
∑

uw∈Ax(N)

δ ψ ′(u,w)

Since, by assumption, THW [x,ψx] is strictly less than the
cost of ψ on Ax(N) , we conclude that the cost of ψ ′ on
Ax(N) is strictly less than that of ψ , contradicting opti-
mality of ψ.� �

Lemma 8  Let Ŵ be a tree that agrees with N, let x ∈ V (N),
let ψx : YWŴ

x → C with ψx � φ, and let Rx ⊆ Succ
R↑
N (Ŵx).

If SŴx→Rx (N) = ∅, then TSW [x,ψx,R
x = ∞]. Other-

wise, let S ∈ SŴx→Rx (N) and ψ : V (N) → C such that
(a) ψx � ψ � φ and (b)

∑

uw∈Ax(S)
δ ψ(u,w) is minimum

among all such S and ψ. Then,

Proof  Note that arcs that are incoming to tree nodes
cannot be switched off and, thus, SuccT↑

N (z) = Succ
T↑
S′ (z)

for all z ∈ V (N) and all switchings S′ ∈ S(N) . The proof
is by induction on the height of x in Ŵ.

Case 1: x is a leaf in Ŵ , that is, t = 0 . First, note that
Rx ⊆ Succ

R↑
N (x) and no r ∈ Rx ⊆ R(N) can have all their

parents in Ŵx = {x} , thus implying Sx→Rx (N) �= ∅ .
Next, let y be the predecessor of x in S and note that
y ∈ Pred

↓
N (x) = PredN (x) . Further, y minimizes δ ψ(y, x)

among all y ∈ PredN (x) as, otherwise, we can construct

(6)TSW [x,ψx,R
x] =

∑

uw∈Ax(S)

δ ψ(u,w).

Page 19 of 31Scornavacca and Weller ﻿Algorithms for Molecular Biology (2022) 17:15 	

a new switching S′ ∈ SŴx→Rx (N) by replacing yx by some
y′x with y′ ∈ PredN (x) , thereby contradicting (b). Clearly,
Pred

↑
N (x) = ∅ and Qψx

x,cx [0,Rx \ R∗] �= ∞ only if R∗ = Rx .
Thus,

and there is some cx ∈ φ(x) such that equality holds if
ψ(x) = cx . Let ψ∗ := ψ[x → cx] be the result of chang-
ing the assignment of x to cx in ψ and note that ψx � ψ∗ .
Clearly, we still have S ∈ SŴx→Rx (N) . Thus,

Case 2: x has children v1 , v2 , ..., vt in Ŵ . Recall that
we suppose that x ∈

⋃

i≤t YW
Ŵ
vi

 by Lemma 3. For
all S∗ ∈ S(N) and all anti-chains Y in Ŵ , abbreviate
S
Y→

⋃

y∈Y Succ
R↑
S∗ (Ŵy)(N) =: SY ,S∗(N) , that is, roughly, the

set of switchings of N with the same “behavior” as S∗ on Y.
The proof of Case 2 relies on the independence of partial
solutions established by Lemma 6 with G = SY ,S∗(N) . To
apply Lemma 6, we show that any set of switchings Sy such
that {SuccR↑Sy (Ŵy) | y ∈ Y } is a partition of

⋃

y∈Y Succ
R↑
S∗ (Ŵy)

is a Y-substitution system for SY ,S∗(N).

Claim 4  Let S∗ ∈ S(N) and let Y be an anti-chain in Ŵ . For
each y ∈ Y  , let Sy ∈ S(N) such that {SuccR↑Sy (Ŵy) | y ∈ Y } is
a partition of

⋃

y∈Y Succ
R↑
S∗ (Ŵy) . Let

T
SW [x,ψx,R

x] (4)= min
cx∈φ(x)







�

r∈Rx∪SuccT↑
N (x)

δ (cx,ψx(r))+ min
y∈Pred↓

N (x)

δ (cx,ψx(y))







ψ(x)∈φ(x)
≤

�

r∈Rx∪SuccT↑
N (x)

δ (ψ(x),ψx(r))+ min
yx∈A↓

x (N)

δ (ψ(x),ψx(y))

=
�

xr∈A↑
x (S)

δ ψ(x, r)+
�

yx∈A↓
x (S)

δ ψ(y, x) =
�

uw∈Ax(S)

δ ψ(u,w)

TSW [x,ψx,R
x](4)=

∑

r∈Rx∪SuccT↑
N (x)

δ (cx,ψx(r))+ min
yx∈A↓

x (N)

δ (cx,ψx(y))

ψx�ψ∗
=

∑

xr∈A↑
x (S)

δ ψ∗(x, r)+
∑

yx∈A↓
x (S)

δ ψ∗(y, x)

=
∑

uw∈Ax(S)

δ ψ∗(u,w)
Lemma 8(b)

≥
∑

uw∈Ax(S)

δ ψ(u,w)

S′ :=



V (N),



A(S∗) \
�

y∈Y
Ay(S

∗)



 ∪
�

y∈Y
Ay(S

y)





Then, S′ ∈ SY ,S∗(N).

Proof  Since {SuccR↑Si (Ŵy) | y ∈ Y } is a parti-
tion of

⋃

y∈Y Succ
R↑
S∗ (Ŵy) , it is sufficient to show that

S′ ∈ S(N) . Towards a contradiction, assume there

is a node w ∈ V (N)− ρN that does not have exactly
one parent in S′ and let u∗ be the parent of w in S∗ .
Clearly, for each y ∈ Y  , we have w /∈ Ŵy as, otherwise,
PredS′(w) = PredSy(w) . Further, w ∈

⋃

y∈Y YWŴ
y as, oth-

erwise, PredS′(w) = PredS∗(w).

First, suppose w has no parent in S′ . Then,
u∗w ∈

⋃

y∈Y Ay(S
∗) that is, u∗ ∈ Ŵy for some y ∈ Y  , but

w /∈ Ay(S
y) . But since Sy ∈ S(N) , we know that w has a

parent in Sy (which is not u∗ since w /∈ Ay(S
y) ),

implying that w is a reticulation in N. Thus,
w ∈ Succ

R↑
S∗ (Ŵy) ⊆

⋃

y′∈Y Succ
R↑
Sy′
(Ŵy′) so there is some

y′ ∈ Y with w ∈ Succ
R↑
Sy′
(Ŵy′) (note that y = y′ is possi-

ble). But then, Sy′ contains an arc uw ∈ Ay′(Sy′) which
is in S′ by construction, thus contradicting w having
no parents in S′.

Second, suppose that w has at least two distinct parents
u and u∗ in S′ and note that, again, w is a reticulation in N.
Since S∗ is a switching, at least one of them, say u, is such
that uw ∈

⋃

y∈Y Ay(S
y) . However, since the SuccR↑Sy (Ŵy)

are disjoint and each Sy is a switching, we cannot have
u∗w ∈

⋃

y∈Y Ay(S
y) . Thus, u∗w ∈ A(S∗) \

⋃

y∈Y Ay(S
∗) .

However, since
⋃

y∈Y Succ
R↑
S∗ (Ŵy) =

⋃

y∈Y Succ
R↑
Sy (Ŵy) , we

Page 20 of 31Scornavacca and Weller ﻿Algorithms for Molecular Biology (2022) 17:15

know that uw ∈ AS∗(Ŵy) for some y ∈ Y  . But then, w has
two parents in S∗ contradicting S∗ ∈ S(N).� �

In the following, we prove the semantics of the table Qψx
x,cx .

For all i ≤ t , abbreviate
⋃

1≤j≤i Ŵvj =: Zi.

Claim 5  Let 1 ≤ i ≤ t , let cx ∈ φ(x) , and let R′ ⊆ R(N) .
If SZi→R′(N) = ∅ , then Qψx

x,cx [i,R′] = ∞ . Otherwise, let
Si ∈ SZi→R′(N) and ψi : V (N) → C such that (a) ψi � φ ,
(b) ψi coincides with ψx[x → cx] on

⋃

j≤i YW
Ŵ
vj

 and
(c)

∑

j≤i

∑

uw∈Avj
(Si)

δ ψi(u,w) is minimum among all
such Si and ψi and

Proof  The proof is by induction on i, noting that
ψx[x → cx] |YWŴ

vi

= ψi |YWŴ
v1

 by Claim 5(b).

Case i = 1 : By (5), Q
ψx
x,cx [0,R′ \ R∗] �= ∞ only if

R∗ = R′ ⊆ Succ
R↑
N (Z1) and TSW [v1,ψ1 |YWŴ

v1

,R∗] �= ∞ .

However, if SZi→R′(N) = ∅ then, by induction hypothe-
sis (of the lemma), TSW [v1,ψ1 |YWŴ

v1

,R′] = ∞ and so

Q
ψx
x,cx [0,R′ \ R∗] = ∞ . Furthermore, S1 , ψ1 , and R′ satisfy

the conditions of the lemma for v1 , so we can employ the
induction hypothesis of the lemma. Thus,

Qψx
x,cx

[i,R′] =
∑

j≤i

∑

uw∈Avj
(Si)

δ ψi(u,w)

Q
ψx

x,cx
[1,R′] = 0+ T

SW [v1,ψ1 |YWŴ
v1

,R′]

IH lemma=
∑

uw∈Av1
(S1)

δ ψ1(u,w)

Case i > 1 : First, by (5), Q
ψx
x,cx [i,R′] �= ∞ only if

Q
ψx
x,cx [i − 1,R′ \ R∗] �= ∞ and TSW [vi,ψi |YWŴ

vi

,R∗] �= ∞ .

By induction hypotheses (of the claim and the lemma), there
are switchings Si−1 and S′ of N with SuccR↑Si−1

(Zi−1) = R′ \ R∗
and Succ

R↑
S′ (Ŵvi) = R∗ . Now, we construct a digraph

Si := (V (N), (A(Si−1 \ Avi(Si−1)) ∪ Avi(S
′)) and show that

Si ∈ SZi→R′(N) . Since Succ
R↑
Si
(Zi) = Succ

R↑
Si−1

(Zi−1)

⊎SuccR↑
S′ (Ŵvi

) = (R′ \ R∗) ⊎ R
∗ = R

′ , it is sufficient to show
that Si can be turned into a switching of N without changing
Succ

R↑
Si
(Zi) . To this end, suppose that there is a node w = ρN

of N that does not have exactly one parent in Si . Since Si−1
and S′ are switchings, w has parents ui−1 and u′ in Si−1 and
S′ , respectively. If w has no parent in Si , then
ui−1w ∈ Avi(Si−1) and u′w /∈ Avi(S

′) and, thus,
ui−1 ≤Ŵ vi <Ŵ u′ , implying u′ �= ui−1 as well as w ∈ YWŴ

vi

and w /∈ R′ . Then, we can just add the arc u′w to Si without
changing SuccR↑Si (Zi) . If w has at least two parents, then ui−1
and u′ are both parents of w in Si , that is, ui−1w /∈ Avi(Si−1)
and u′w ∈ Avi(S

′) and, thus, u′ <Ŵ vi <Ŵ ui−1 , implying
u′ �= ui−1 as well as w ∈ YWŴ

vi
 and w ∈ R∗ . But then, we can

remove ui−1w from Si without changing SuccR↑Si (vi) . Repeat-
ing this argument, we can turn Si into a switching of N with
Succ

R↑
Si
(Zi) = R′ , implying that SZi→R′(N) �= ∅ . For the

second part of the claim, we show both inequalities
separately.

“≤ ”: Let Si ∈ SZi→R
′
(N) and ψi : V (N) → C ψi coincides

with ψx[x → cx] on
⋃

j≤i YW
Ŵ
vj

 and ∑
j≤i

∑

uw∈A(Si)
vj

δ ψi
(u,w)

is minimum among all such Si and ψi . Further, let
R∗ := Succ

R↑
Si
(Ŵvi) . Note that Succ

R↑
Si
(Zi−1) and

Succ
R↑
Si
(vi) = R∗ are disjoint since Si is a switching, imply-

ing SuccR↑Si (Zi−1) = R′ \ R∗ and, thus, Qψx
x,cx [i − 1,R′ \ R∗]

and TSW [vi,φi,R∗] are finite by induction hypotheses.
Then, as R∗ ⊆ R′ ∩ Succ

R↑
N (Ŵvi) , we know that R∗ partici-

pates in the minimum of (5). Thus,

Qψx
x,cx

[i,R′] ≤ Qψx
x,cx

[i − 1,R′ \ R∗] + TSW [vi,ψi |YWŴ
vi

,R∗]

IH claim
IH lemma

≤
∑

j≤i−1

∑

uw∈Avj
(Si)

δ ψi(u,w)+
∑

uw∈Avi
(Si)

δ ψi(u,w)

=
∑

j≤i

∑

uw∈Avj
(Si)

δ ψi(u,w)

Page 21 of 31Scornavacca and Weller ﻿Algorithms for Molecular Biology (2022) 17:15 	

“≥ ”: Clearly, this direction is trivial if Qψx
x,cx [i,R′] is infinite,

so suppose it is finite. By (5), there is some
R∗ ⊆ R′ ∩ Succ

R↑
N (Ŵvi) with Q

ψx

x,cx [i,R′] = Q
ψx

x,cx [i − 1,

R
′ \ R∗] + T

SW [vi,ψi |YWŴ
vi

,R
∗] . First, since

TSW [vi,ψi |YWŴ
vi

,R∗] �= ∞ , the induction hypothesis (of

the lemma) guarantees that there is some S∗ ∈ S
Ŵvi

→R∗(N)
and ψ∗ : V (N) → C such that (a) ψi |YWŴ

vi

� ψ∗ � φ , (b)

(S∗,ψ∗) is optimal on Avi(S
∗) , and (c)

TSW [vi,ψi |YWŴ
vi

,R∗] =
∑

uw∈Avi
(S∗) δ ψ∗(u,w) . Second,

since Qψx
x,cx [i − 1,R′ \ R∗] �= ∞ , the induction hypothesis

(of the claim) guarantees that there are
Si−1 ∈ SZi−1→R′\R∗(N) and ψi−1 : V (N) → C such that
(a) ψi−1 � φ , (b) ψi−1 coincides with ψx[x → cx] on
⋃

j<i YW
Ŵ
vj

 , (c)
∑

j<i

∑

uw∈Avj
(Si−1)

δ ψi−1(u,w) is minimal
among all such Si−1 and ψi−1 , and (d) Qψx

x,cx [i − 1,R
′ \ R∗]

=
∑

j<i

∑

uw∈Avj
(Si−1)

δ ψi−1
(u,w). Finally, we construct a

new solution S′ by replacing Si by S∗ on Ŵvi and by Si−1 on
Zi−1 and we use Claim 5(c) to show that the cost of Si is at
most that of S′ . More formally, let

Since {v1, v2, . . . , vi} is an anti-chain in Ŵ and
{SuccR↑Si−1

(Zi−1), Succ
R↑
S∗ (Ŵvi)} = {R∗,R′ \ R∗} is a parti-

tion of SuccR↑Si (Zi) = R′ , Claim 4 implies S′ ∈ SZi→R′(N).
Further, let ψ ′ : V (N) → C such that, for all a ∈ A(S′) ,
ψ ′(a) := ψi−1(a) if a ∈ AZi(Si−1) , ψ ′(a) := ψ∗(a) if
a ∈ Avi(S

∗) , and ψ ′(a) := ψi(a) , otherwise. Note that
ψ ′ � φ . Further, ψi and ψi−1 coincide on YWŴ

Zi−1
 and,

thus, ψ ′ and ψi−1 coincide on all nodes touched by
AZi−1(S

′) = AZi−1(Si−1) . Further, ψi and ψ∗ coincide on
YWŴ

vi
 and, thus, ψ ′ and ψ∗ coincide on all nodes touched

by Avi(S
′) = Avi(S

∗) . Thus,

� �

(11)S′ :=



V (N),



A(Si) \
�

j≤i

Avj (Si)



 ∪
�

j<i

Avj (Si−1) ∪ Avi(S
∗)





Qψx
x,cx

[i,R′] = Qψx
x,cx

[i − 1,R′ \ R∗] + TSW [vi,ψ∗ |YWŴ
vi

,R∗]

(c),(g)=
∑

j<i

∑

uw∈Avj
(Si−1)

δ ψi−1(u,w)+
∑

uw∈Avi
(S∗)

δ ψ∗(u,w)

df.ψ ′,(11)=
∑

j<i

∑

uw∈Avj
(S′)

δ ψ ′(u,w)+
∑

uw∈Avi
(S′)

δ ψ ′(u,w)

=
∑

uw∈AZi
(S′)

δ ψ ′(u,w)
Claim 5(c)

≥
∑

j≤i

∑

uw∈Avj
(Si)

δ ψi(u,w)

Having established the semantics of Qψx
x,cx , we can finish

proving Case 2 of Lemma 8s. First, consider the case that
SŴx→Rx (N) = ∅ and assume that TSW [x,ψx,R

x] �= ∞ .
By Eq. (4) and Claim 5, there is some cx and
R∗ ⊆ Rx ∩ Succ

R↑
N (x) such that SZt→Rx\R∗(N) �= ∅ or

SZt→(Rx\R∗)∪({x}∪R(N))(N) �= ∅ . Let S′ be a switching in
one of these sets and note that SuccR↑S′ (Ŵx) = Rx \ R∗ .
If there is some y ∈ Rx \ SuccR↑S′ (Ŵx) , then y ∈ R∗ and
S′ contains an arc zy for some z /∈ Ŵx , implying that we
can swap zy for xy in S′ without affecting SuccR↑S′ (Zt) or
S′ being a switching. Thus, we can assume without loss of
generality that SuccR↑S′ (Ŵx) = Rx . But then, S′ ∈ SŴx→Rx
contradicting SŴx→Rx = ∅ . In the following, we thus
assume that SŴx→Rx �= ∅ and we show both directions of
the lemma separately.

“≤ ”: Let cx := ψ(x) ∈ φ(x) , let R∗ := Succ
R↑
S (x) , and

note that R∗ = Succ
R↑
S (x) ⊆ Succ

R↑
S (Ŵx) = Rx . Fur-

ther, let y := PredS(x) be the parent of x in S. Since Ŵ
agrees with N (and, thus, with S) we know that either
x <Ŵ y or x >Ŵ y . If x <Ŵ y , that is, y ∈ Pred

↓
N (x) , then

Succ
R↑
S (Zt) = Succ

R↑
S (Ŵx) \ SuccR↑S (x) = Rx \ R∗ and, by

Claim 5,

If x >Ŵ y , that is, y ∈ Pred
↑
N (x) , then SuccR↑

S
(Zt) = (R(N)

∩{x}) ∪ (Succ
R↑
S
(Ŵx) \ SuccR↑S (x)) = (R(N) ∩ {x}) ∪ (Rx \ R∗)

and, by Claim 5,

(12)

∑

uw∈AZt (S)

δ ψ(u,w)+
∑

uw∈A↓
{x}(S)

δ ψ(u,w)

≥ Qψx
x,cx

[t,Rx \ R∗] + δ ψ(x, y)

≥ Qψx
x,cx

[t,Rx \ R∗] + min
yx∈A↓

{x}(N)

δ (cx,ψ(y))

Page 22 of 31Scornavacca and Weller ﻿Algorithms for Molecular Biology (2022) 17:15

Then, since cx and R∗ are valid choices for the minima in
(4), we have

“≥ ”: Suppose that TSW [x,ψx,R
x] �= ∞ as, otherwise,

this direction is trivial. We consider each case of the
minimum in (4) individually (although both cases are
analogous).

Case 2.1: Pred↓N (x) �= ∅ and there are cx ∈ φ(x) and
R∗ ⊆ Rx ∩ Succ

R↑
N (x) such that

By Claim 5, there is some S′ ∈ SZt→Rx\R∗(N) and some
ψ ′ : V (N) → C such that (a) ψ ′ � φ , (b) ψ ′ coincides
with ψx[x → cx] on

⋃

i≤t YW
Ŵ
vi

 (recall that x ∈
⋃

i≤t YW
Ŵ
vi

 )
(c)

∑

uw∈AZt (S
′) δ ψ ′(u,w) is minimum among all such S′

and ψ ′ and

(13)

∑

uw∈AZt
(S)

δ ψ(u,w)+
∑

uw∈A↓
{x}(S)

δ ψ(u,w)

≥ Q
ψx

x,cx
[t, (R(N) ∩ {x}) ∪ R

x \ R∗]

TSW [x,ψx,R
x]

(4),(12),(13)
≤

∑

r∈R∗∪SuccT↑
N (x)

δ (cx,ψ(r))+
∑

uw∈AZt (S)

δ ψ(u,w)+
∑

uw∈A↓
{x}(S)

δ ψ(u,w)

=
∑

xr∈A↑
{x}(S)

δ ψ(x, r)+
∑

uw∈AZt (S)

δ ψ(u,w)+
∑

uw∈A↓
{x}(S)

δ ψ(u,w) =
∑

uw∈Ax(S)

δ ψ(u,w)

(14)

TSW [x,ψx,R
x] =

∑

r∈R∗∪SuccT↑
N (x)

δ (cx,ψx(r))

+ Qψx
x,cx

[t,Rx \ R∗] + min
y∈Pred↓

N (x)

δ (cx,ψx(y))

(15)Qψx
x,cx

[t,Rx \ R∗] =
∑

uw∈AZt (S
′)

δ ψ ′(u,w)

From S′ we construct a switching S∗ ∈ SŴx→Rx (N) by 1.
swapping each arc zr ∈ A(S′) with r ∈ R∗ for xr (which
exists in N since R∗ ⊆ Succ

R↑
N (x) ), 2. swapping each

arc xr ∈ A(S′) with r /∈ Rx for an arc zr with z /∈ Ŵx (which
exists in N since SŴx→Rx (N) �= ∅ ), and 3. swapping the
arc yx ∈ A

↓
{x}(S

′) with an arc zx ∈ Pred
↓
N (x)× {x} mini-

mizing δ ψ ′(x, z) . Since this operation does not change the
in-degree of any node, S∗ is still a switching of N and we
have SuccR↑S∗ (x) = R∗ and AZt (S

′) = AZt (S
∗) by construc-

tion. Thus, SuccR↑S∗ (Zt) = Rx \ R∗ and SuccR↑S∗ (Ŵx) = Rx .
Altogether,

Case 2.2: Pred↑N (x) �= ∅ and there are cx ∈ φ(x) and
R∗ ⊆ Rx ∩ Succ

R↑
N (x) such that

Abbreviate R′ := (R(N) ∩ {x}) ∪ Rx \ R∗ . By Claim 5,
there is some S′ ∈ SZt→R′(N) and some ψ ′ : V (N) → C
such that (a) ψ ′ � φ , (b) ψ ′ coincides with ψx[x → cx] on
⋃

i≤t YW
Ŵ
vi

 , (c)
∑

uw∈AZt (S
′) δ ψ ′(u,w) is minimum among

all such S′ and ψ ′ and

We construct a switching S∗ ∈ SŴx→Rx (N) by 1. swap-
ping each arc zr ∈ A(S′) with r ∈ R∗ forxr (which

TSW [x,ψx,R
x](14),(15)=

∑

r∈R∗∪SuccT↑
N (x)

δ (cx,ψx(r))+
∑

uw∈AZt (S
′)

δ ψ ′(u,w)+ min
y∈Pred↓

N (x)

δ (cx,ψx(y))

=
∑

r∈R∗∪SuccT↑
N (x)

δ (cx,ψx(r))+
∑

uw∈AZt (S
∗)

δ ψ ′(u,w)+ min
y∈Pred↓

N (x)

δ (cx,ψx(y))

ψx=ψ ′|
YWŴ

x=
∑

xr∈A↑
{x}(S

∗)

δ ψ ′(x, r)+
∑

uw∈AZt (S
∗)

δ ψ ′(u,w)+
∑

yx∈A↓
{x}(S

∗)

δ ψ ′(y, x)

=
∑

uw∈Ax(S∗)

δ ψ ′(u,w)
Lemma 8(b)

≥
∑

uw∈Ax(S)

δ ψ(u,w)

(16)

T
SW [x,ψx,R

x] =
∑

r∈R∗∪SuccT↑
N (x)

δ (cx,ψx(r))

+ Q
ψx

x,cx
[t, (R(N) ∩ {x}) ∪ R

x \ R∗]

(17)Qψx
x,cx

[t,R′] =
∑

uw∈AZt (S
′)

δ ψ ′(u,w)

Page 23 of 31Scornavacca and Weller ﻿Algorithms for Molecular Biology (2022) 17:15 	

exists in N since R∗ ⊆ Succ
R↑
N (x) ) and 2. swapping

each arc xr ∈ A(S′) with r /∈ Rx for an arc zr with

z /∈ Ŵx (which exists in N since SŴx→Rx (N) �= ∅ ).
Since this operation does not change the in-degree

of any node, S∗ is still a switching of N and we have
Succ

R↑
S∗ (x) = R∗ and AZt (S

′) = AZt (S
∗) by construction.

Thus, SuccR↑S∗ (Zt) = R′ and SuccR↑S∗ (Ŵx) = Rx . Further,
note that if x is a tree node, then Pred↑N (x) �= ∅ implies
A
↓
{x}(S

∗) ⊆ A
↓
{x}(N) = ∅ and, otherwise, x ∈ R′ implying

A
↓
{x}(S

∗) = ∅ . Altogether,

		� �

Lemma 9  Let x ∈ V (N), let i ∈ N, let � : YWŴ
x → 2C,

let η, η′ : YWŴ
x → N, and let ψ ,ψ ′ : YWŴ

x → 2C such that
ψ ′ � ψ � � and

−→
0 [x → ρ(x)] � η′ � η. Then,

Proof  Note that the inequality on Q�
x trivially holds

if Q�
x[i,ψ , η] = ∞ and, similarly for TPT  . The proof is

based on the observation that the transformations done
to ψ and η in Equations (7) and (8) are monotone.�

TSW [x,ψx,R
x](16),(17)=

∑

r∈R∗∪SuccT↑
N (x)

δ (cx,ψx(r))+
∑

uw∈AZt (S
′)

δ ψ ′(u,w)

=
∑

r∈R∗∪SuccT↑
N (x)

δ (cx,ψx(r))+
∑

uw∈AZt (S
∗)

δ ψ ′(u,w)

ψx=ψ ′|
YWŴ

x=
∑

xr∈A↑
{x}(S

∗)

δ ψ ′(x, r)+
∑

uw∈AZt (S
∗)

δ ψ ′(u,w)

A
↓
{x}(S

∗)=∅

=
∑

uw∈Ax(S∗)

δ ψ ′(u,w)
Lemma 8(b)

≥
∑

uw∈Ax(S)

δ ψ(u,w)

T
PT [x, �,ψ ′, η′] ≤ T

PT [x, �,ψ , η]
and Q

�
x[i,ψ

′, η′] ≤ Q
�
x[i,ψ , η]

Claim 6  Let U ,D ∈ N . The following functions (acting
on functions) are montone

Let ψ ,ψ ′ : YWŴ
x → 2C with ψ ′ � ψ . Then, for

all y ∈ YWŴ
x  , Further, for all y ∈ Succ

↑
N (x) , we have

f (ψ ′)(y) = ψ ′(y) \ U ⊆ ψ(y) \U = f (ψ)(y).

The proof for gU ,D is completely analogous.� �

With Claim 6, we can show that monotonicity of Q�
x

implies monotonicity of TPT .

Claim 7  Let v1, v2, . . . , vt be the children of x in Ŵ and
suppose that Q�

x is monotone. Then, TPT is monotone.

Proof  If TPT [x, �,φ, η] �= ∞ , there are D ⊆ U ⊆ φ(x)
such that the minimum in Equation (7) in Definition 7 is
attained, that is,

for some constants cU ,D and c∗U ,D that are independant of
φ and η . Since, by assumption, Q�

x is monotone for all � and
both fU ,D and gU ,D are monotone by Claim 6, we conclude

fU ,D(ψ) := ψ

�

x → D
∀
y∈Succ↑N (x)

y → ψ(y) \U

�

gU ,D(η) := η





x → |U |
.
−
�

u∈Pred↓
N (x)

|�x(u)|

∀
y∈Succ↑N (x)

y → η(y)
.
−|U |





f (ψ ′)(y) =







D if x = y

ψ ′(y) \ U if y ∈ Succ
↑
N (x)

ψ ′(y) otherwise
�







D if x = y

ψ(y) \U if y ∈ Succ
↑
N (x)

ψ(y) otherwise

= f (ψ)(y)

TPT [x, �,φ, η] = Q�x→U
x [0, fU ,D(φ), gU ,D(η)]+ cU ,D

= Q�
x[0, fU ,D(φ), gU ,D(η)] + c∗U ,D

Page 24 of 31Scornavacca and Weller ﻿Algorithms for Molecular Biology (2022) 17:15

Note the last “ ≥ ” since we only know that this par-
ticular value participates in the minimum that forms
TPT [x, �,ψ ′, η′] , while this minimum may be attained at
an even smaller value.� �

By Claim 7, in order to prove Lemma 9, it is sufficent to
show that Q�

x is monotone. This proof is by induction on
the height of x in Ŵ and the value of the first argument i
of Q�

x.
For the induction base, suppose that x is a leaf of Ŵ and

note that x has t = 0 children. If Q�
x[0,ψ , η] �= ∞ , we

have ψ = −→
0 and η = −→

0 [x → ρ(x)] . But then, ψ ′ = ψ
and η′ = η , implying Q�

x[0,ψ ′, η′] = Q�
x[0,ψ , η].

For the induction step, let x have t children v1, v2, . . . , vt
and let 0 < i ≤ t . First, let ψ∗ � ψ |YWŴ

vi

 and

η∗ � η |YWŴ
vi

 be such that the minimum in Equation (8)

in Definition 7 is attained, that is, Q�
x[i,ψ , η] = Q

�
x[i − 1,

ψ − ψ∗
, η − η∗] + T

PT [vi, � |
YW

Ŵ
vi

,ψ∗
, η∗] . Further, let

ψ ′∗ and η′∗ be defined as ψ ′∗(y) := ψ ′(y) ∩ ψ∗(y) and
η′∗(y) := min{η′(y), η∗(y)} . Clearly, ψ ′∗ � ψ ′ and
ψ ′∗ � ψ∗ and η′∗ � η′ and η′∗ � η∗ . Further, for all y,

so ψ ′ − ψ ′∗ � ψ − ψ∗ and η′ − η′∗ � η − η∗ . Since ψ ′∗
and η′∗ participate in the minimum in the definition of
Q�
x[i,ψ ′, η′],

� �

Lemma 10  Let Ŵ be a tree agreeing with N, let x ∈ V (N),
let ψx, �x : YWŴ

x → 2c and ηx : YWŴ
x → N. Let f minimize

cost(f) among all lineage functions in LFN ,φ such that, for
all w ∈ YWŴ

x  , �x(w) = f (w) , ψx(w) = f (w) ∩
⋃

u∈
Pred

↑x
N
(w)f (u), and ηx(w) ≤

∑

u∈PredN↑x(w) |f (u)|. If

TPT [x, �,ψ , η] ≥ Q�
x[0, fU ,D(ψ), gU ,D(η)] + c∗U ,D

≥ Q�
x[0, fU ,D(ψ

′), gU ,D(η
′)] + c∗U ,D ≥ TPT [x, �,ψ ′, η′]

(18)

(ψ ′ − ψ ′∗)(y) = ψ ′(y) \ (ψ ′(y) ∩ ψ∗(y)) = ψ ′(y) \ ψ∗(y)

⊆ ψ(y) \ ψ∗(y) = (ψ − ψ∗)(y)

(19)

(η′ − η′∗)(y) = η′(y)−min{η′(y), η∗(y)} = η′(y)
.
−η∗(y)

≤ η(y)
.
−η∗(y) = (η − η∗)(y),

Q�
x[i,ψ , η] = Q�

x[i − 1,ψ − ψ∗, η − η∗] + TPT [vi, � |YWŴ
vi

,ψ∗, η∗]

IH ,(18),(19)
≥ Q�

x[i − 1,ψ ′ − ψ ′∗, η′ − η′∗] + TPT [vi, � |YWŴ
vi

,ψ ′∗, η′∗]

≥ Q�
x[i,ψ

′, η′]

there are no such f, then TPT [x, �x,ψx, ηx = ∞].
Otherwise,

Proof  Note that, if the cost of f is finite, then
|f (v)| ≤

∑

u∈Pred(v) |f (u)| for all v = ρN and |f (ρN)| = 1
by Definition 4. Again, the proof is by induction on the
height of x in Ŵ.

Case 1: x is a leaf in Ŵ , that is, t = 0 and Pred↑xN (v) ⊆ {x}
for all v. Then, by Definition 7, TPT [x, �x,ψx, ηx] is finite
if and only if

and

if and only if (considering the assignments of the above
modifications of ψx and ηx individually) (a) D = ∅ , (b)
|U |

.
−
∑

r∈Pred↓
N (x)

|�x(r)| = ρ(x) (c) for each
y ∈ SuccN (x),

In this case, the table entry is assigned the cost
|U \

⋃

r∈Pred↓
N (x)

�x(r)| − ρ(x) = |U \
⋃

r∈Pred(x) f (r)| − ρ(x)  .

If x = ρN , this simplifies to |U | − 1 and, since |f (ρN)| = 1 ,
the cost is minimized by U = f (ρN) and the table entry
equals 0 = costf (ρN) . Thus, in the following, let x = ρN.

“≤ ”: Since (20) is satisfied for U = f (x) , the minimum
over all U is at most the cost when choosing U = f (x) ,
which is |f (x) \

⋃

r∈Pred(x) f (r)| = costf (x)

TPT [x, �x,ψx, ηx] =
∑

z≤Ŵx

costf (z)

ψx

[

x → D
∀
y∈Succ↑N (x)

y → ψx(y) \U

]

= −→
0

ηx





x → |U |
.
−
�

r∈Pred↓
N (x)

|�x(r)|

∀
y∈Succ↑N (x)

y → ηx(y)
.
−|U |



 = −→
0 [x → ρ(x)],

(20)
U ⊇ ψx(y) = f (y) ∩ f (x). and |U | ≥ ηx(y) = |f (x)|

Page 25 of 31Scornavacca and Weller ﻿Algorithms for Molecular Biology (2022) 17:15 	

“≥ ”: Towards a contradiction, assume that there is a U
satisfying (20) such that T

PT
[x, �x,ψx, ηx] =

|U \
⋃

r∈Pred(x) f (r)| < |f (x) \
⋃

r∈Pred(x) f (r)| = costf (x)   .
We show that f ′ := f [x → U] has less overall cost than f,
contradicting its optimality. Since changing f(x) to U only
influences the cost of x and its children in N, it suffices to
consider them. To this end, let y be any child of x in N.
First, by (b), |f ′(x)| = |U | ≤

∑

r∈PredN (x) |f
′(r)| so

costf ′(x) = |U \
⋃

r∈PredN (x) f (r)| < costf (x) by assump-

tion. Further, |f ′(y)| = |f (y)| ≤
∑

u∈Pred(y) |f (u)|
≤

∑

u∈Pred(y) |f
′(u)| since |U | ≥ |f (x)| by (20). Finally, for

each y ∈ SuccN (x),

Case 2: x has children v1, v2, . . . , vt with t ≥ 1 in Ŵ . In the
following, we abbreviate Yi :=

⋃

j≤i YW
Ŵ
vj

 and
Zi :=

⋃

j≤i Ŵvj . Further, we call a lineage function f ′ eligi-
ble with respect to an anti-chain Y in Ŵ and functions �′ ,
ψ ′ , and η′ if, for all w ∈

⋃

y∈Y YWŴ
y  , we have �(w) = f ′(w) ,

ψ ′(w) ⊆ f ′(w) ∩
⋃

y∈Y
⋃

u∈Pred↑y
N (w)

f ′(u) and

η′(w) ≤
∑

y∈Y
∑

u∈Pred↑y
N (w)

|f (u)| + ρ(w) and the cost
of f ′ is finite on

⋃

y∈Y Ŵy . We first show how the table Q�
x

is used to distribute lineages among the vi.

Claim 8  Let 1 ≤ i ≤ t , Let ηi : Yi → N and
let �,ψi : Yi → 2C with ψi � � . Let fi minimize
∑

z∈Zi
costfi(z)− ρ(x) among all lineage functions that

are eligible with respect to Yi , � , ψi , and ηi . If no such f
exists, then Q�

x[i,ψi, ηi] = ∞ . Otherwise,

Proof  The proof of the claim is by induction on i.

costf (y) = |f (y) \
⋃

v∈Pred(y)

f (v)| = |f (y) \ (f (x) ∪
⋃

v∈Pred(y)−x

f (v))|

(20)
≥ |f ′(y) \ (U ∪

⋃

v∈Pred(y)−x

f ′(v)))| = costf ′(y)

Q�
x[i,ψi, ηi] =

∑

z∈Zi

costfi(z)− ρ(x).

Case i = 1 : By Definition 7, Q�
x[0,ψ1 − ψ ′, η1 − η′] is

finite if and only if ψ ′ = ψ1 , η′ = η1 and
TPT [v1, � |YWŴ

v1

,ψ ′, η′] is finite, that is, by induction

hypothesis of the lemma, there is a lineage function f ′
that is eligible for Y1 , � , ψ1 = ψ ′ and η1 = η′ . Thus, the
first part of the claim follows. Since ψ1 and η1 are the only
valid choices for the minima in (8) that result in finite val-
ues, we conclude

since fi is eligible with respect to Y1 , � , ψ1 and η1 and min-
imizes

∑

z∈Z1
costfi(z)− ρ(x).

Case i > 1 : First, suppose that Q�
x[i,ψi, ηi] �= ∞ . By (8),

there are ψ ′ � ψi and η′ � ηi such that Q�
x[i − 1,ψi−1,

ηi−1] �= ∞ and TPT [vi, � |YWŴ
vi

,ψ ′, η′] �= ∞ , where

ψi−1 := ψi − ψ ′ and ηi−1 := ηi − η′ . By induction
hypotheses, there are functions fi−1 and f ′ such that fi−1
is eligible with respect to Yi−1 , � , ψi−1 , ηi−1 and f ′ is eligi-
ble with respect to {vi} , � , ψ ′ , η′ . We construct a func-
tion f ∗ by setting

(Note that the cost of f on N might be ∞ but we will
see that its cost on Zi is finite). First, we show that f ∗ is
eligible with respect to Yi , � , ψi , and ηi . To this end, let
w ∈ YWŴ

y for any y ∈ Yi . Then, by eligibility of f ′ and fi−1
and Ŵvj ∩ Ŵvi = ∅ for all j < i , we have

Q�
x[1,ψ1, η1] = −ρ(x)+ TPT [v1, � |YWŴ

v1

,ψ1, η1]
IH lemma=

∑

z∈Z1

costfi(z)− ρ(x)

f ∗(w) :=











f ′(w) ifw ∈ YWŴ
vi
∪ Ŵvi

fi−1(w) ifw ∈
�

y∈Yi−1

�

YWŴ
y ∪ Ŵvj

�

\ YWŴ
vi

C otherwise.

Page 26 of 31Scornavacca and Weller ﻿Algorithms for Molecular Biology (2022) 17:15

Finally, the cost of f ∗ on Zi equals the cost of fi−1 on Zi−1
plus the cost of f ′ on Ŵvi and is, therefore, finite. Thus, f ∗
is eligible for Yi , � , ψi and ηi , implying the contraposition
of the first part of the lemma. For the cost equality, we
consider both directions separately.

“≤ ”: Let ψ ′ : YWŴ
vi
→ 2C and η′ : YWŴ

vi
→ N be defined

on YWŴ
vi

 as

f ∗(w) =







f ′(w) = � |YWŴ
vi

(w) = �(w) ifw ∈ YWŴ
vi

f ∗(w) = fi−1(w) = � |�
j<iYW

Ŵ
vj

(w) = �(w) otherwise

ψi(w) = ψi−1(w) ∪ ψ ′(w)

⊆






fi−1(w) ∩

�

y∈Yi−1

�

u∈Pred↑y
N (w)

fi−1(u)






∪






f ′(w) ∩

�

u∈Pred↑vi
N (w)

f ′(u)







= f ∗(w) ∩
�

y∈Yi

�

u∈Pred↑y
N (w)

f ∗(w).

ηi(w) = ηi−1(w)+ η′(w) ≤
�

y∈Yi−1

�

u∈Pred↑y
N (w)

|fi−1(u)| +
�

u∈Pred↑vi
N (w)

|f ′(u)|

=
�

y∈Yi

�

u∈Pred↑y
N (w)

|f ∗(u)|.

ψ ′(w) :=ψi(w) ∩ fi(w) ∩
⋃

u∈Pred↑vi
N (w)

fi(u)

and

Clearly, ψ ′ � ψi |YWŴ
vi

 and η′ � ηi |YWŴ
vi

 . Furthermore,

define ψi−1 and ηi−1 by, for all w ∈
⋃

y∈Yi−1
YWŴ

y  , setting

η′(w) :=min{ηi(w),
∑

u∈Pred↑vi
N (w)

|fi(u)| + ρ(w)}.

ψi−1(w) := ψi(w)− ψ ′(w) ⊆






f ′(w) ∩

�

y∈Yi

�

u∈Pred↑y
N (w)

f ′(u)






\






f ′(w) ∩

�

u∈Pred↑vi
N (w)

f ′(u)







⊆ f ′(w) ∩
�

y∈Yi−1

�

u∈Pred↑y
N (w)

f ′(u)

and

ηi−1(w) := ηi(w)− η′(w) ≤
∑

y∈Yi

∑

u∈Pred↑y
N (w)

|fi(u)| −
∑

u∈Pred↑vi
N (w)

|fi(u)|

=
∑

y∈Yi−1

∑

u∈Pred↑y
N (w)

|fi(u)|.

Page 27 of 31Scornavacca and Weller ﻿Algorithms for Molecular Biology (2022) 17:15 	

Thus, fi is eligible with respect to Yi−1 , � , ψi−1 and ηi−1 ,
implying

“≥ ”: Let Q�
x[i,ψi, ηi] be finite as, otherwise, “ ≥ ” trivially

holds. By (8), there are ψ ′ � ψi |YWŴ
vi

 and η′ � ηi |YWŴ
vi

such that

Towards a contradiction, assume that this value is strictly
smaller than

∑

z∈Zi
costfi(z)− ρ(x) . By the induction

hypothesis of the lemma, there is a lineage function f ′
that is eligible with respect to {vi} , � , ψ ′ , and η′ with
TPT [vi, � |YWŴ

vi

,ψ ′, η′] =
∑

z≤Ŵvi
costf ′(z) . Further, by

Q�
x[i,ψi, ηi]

Def. 7
≤ Q�

x[i − 1,ψi − ψ ′, ηi − η′] + TPT [vi, � |YWŴ
vi

,ψ ′, η′]

Lem. 9
≤ Q�

x[i − 1,ψi−1, ηi−1] + TPT [vi, � |YWŴ
vi

,ψ ′, η′]

IH claim
IH lemma

≤
∑

z∈Zi−1

costfi(z)− ρ(x)+
∑

z≤vi

costfi(z)

=
∑

z∈Zi

costfi(z)− ρ(x)

Q
�
x[i,ψi, ηi] = Q

�
x[i − 1,ψi − ψ ′

, ηi − η′]
+ T

PT [vi, � |
YW

Ŵ
vi

,ψ ′
, η′]

the induction hypothesis of the claim, there is a lineage
function fi−1 that is eligible with respect to Yi−1 , � ,
ψi − ψ ′ , and ηi − η′ with Q

�
x[i − 1,ψi − ψ ′

, ηi − η′]

=
∑

z∈Zi−1
costfi−1

(z)− ρ(x) . We construct a lineage
function f ∗ by setting

By eligibility of fi−1 , fi and f ′ , we know that fi−1 , fi and
f ∗ coincide with � on

⋃

y∈Yi−1
YWŴ

y and f ′ , fi and f ∗
coincide with � on YWŴ

vi
 . To contradict optimality of f, it

thus suffices to show that f ∗ is eligible with respect to Yi ,
� , ψi , and ηi , To this end,note that, for all w ∈

⋃

y∈Yi YW
Ŵ
y  ,

we have

f ∗(w) :=







fi−1(w) ifw ∈ Zi−1

f ′(w) ifw ∈ Ŵvi
fi(w) otherwise

ψi(w) = (ψi − ψ ′)(w) ∪ ψ ′(w)

⊆






�(w) ∩

�

y∈Yi−1

�

u∈Pred↑y
N (w)

fi−1(u)






∪






�(w) ∩

�

u∈Pred↑vi
N (w)

f ′(u)







= f ∗(w) ∩
�

y∈Yi

�

u∈Pred↑y
N (w)

f ∗(u)

as well as

� �

ηi(w) = (ηi − η′)(w)+ η′(w) ≤
∑

y∈Yi−1

∑

u∈Pred↑y
N (w)

|fi−1(u)| +
∑

u∈Pred↑vi
N (w)

|f ′(u)| + ρ(w)

=
∑

y∈Yi

∑

u∈Pred↑y
N (w)

|f ∗(u)| + ρ(w)

Page 28 of 31Scornavacca and Weller ﻿Algorithms for Molecular Biology (2022) 17:15

Having established the equality for Q�
x , we can now

prove the lemma for i > 1 . For the first part, suppose that
TPT [x, �x,ψx, ηx] �= ∞ . By (7), there are D ⊆ U ⊆ φ(x)
such that T

PT [x, �x,ψx, ηx] = Q
�xx→U
x [t,ψt , ηt]

+|U \ (D ∪
⋃

u∈Pred↓
N (x)

�x(u))| , where

By Claim 8, there is a lineage function ft that is eli-
gible for {vt} , �t := �x[x → U] , ψt , and ηt . With-
out loss of generality, suppose that ft(w) = �t(w)
for all w ∈ (YWŴ

x ∪ {x}) \
⋃

y∈Yt YW
Ŵ
y  . In particular,

ft(x) = �t(x) = U and ft has finite cost on Zt.

ψt := ψx

�

x → D, ∀
w∈Succ↑N (x)

w → ψx(w) \U
�

and

ηt := ηx






x → |U |

.
−

�

u∈Pred↓
N (x)

|�x(u)|, ∀w∈Succ↑N (x)
w → ηx(w)

.
−|U |






.

|ft(x)| >
∑

u∈PredN (x) |ft(u)| . In the first case,
nt(x) = |U | > 1 , contradicting ηt(x) ≤ ρ(x) . In the sec-
ond case, nt(x) = |U |

.
−
∑

u∈Pred↓
N (x)

|�x(u)| , implying

contradicting ft(x) = U . Further, for each
w ∈ YWŴ

x \ Succ↑N (x),

|ft(x)| >
∑

u∈PredN (x)

|ft(u)|

=
∑

u∈Pred↓
N (x)

|ft(u)| +
∑

y∈Yt

∑

u∈Pred↑y
N (x)

|ft(u)|

≥
∑

u∈Pred↓
N (x)

|�x(u)| + nt(x) ≥ |U |

ψx(w) = ψt(w) ⊆ ft(w) ∩
⋃

y∈Yt

⋃

u∈Pred↑y
N (w)

ft(u) = ft(w) ∩
⋃

u∈Pred↑x
N (w)

ft(u)

ηx(w) = ηt(w) ≤
∑

y∈Yy

∑

u∈Pred↑y
N (w)

|ft(u)| =
∑

u∈Pred↑x
N (w)

|ft(u)|

and, for each w ∈ Succ
↑
N (x),

ψx(w) ⊆ ψt(w) ∪U ⊆ ft(w) ∩
⋃

y∈Yt

⋃

u∈Pred↑y
N (w)

ft(u) ∪ ft(x) = ft(w) ∩
⋃

u∈Pred↑x
N (w)

ft(u)

ηx(w) ≤ ηt(w)+ |U | ≤
∑

y∈Yy

∑

u∈Pred↑y
N (w)

|ft(u)| + |ft(x)| =
∑

u∈Pred↑x
N (w)

|ft(u)|

Thus, ft is eligible with respect to {x} , �x , ψx and ηx ,
implying the first part of the lemma. For the second part,
we consider the directions seperately.

We show that ft is eligible with respect to {x} , �x , ψx
and ηx . First, assume that costft (x) = ∞ , that is, either
x = ρN and |ft(x)| = |U | > 1 or x = ρN and

Page 29 of 31Scornavacca and Weller ﻿Algorithms for Molecular Biology (2022) 17:15 	

“≥ ”: We pick up the definition of ft and show that
TPT [x, �x,ψx, ηx] ≥

∑

z∈Ŵx
costft (z) . Then, “ ≥ ” follows

from optimality of f on Ŵx . Indeed,

and, since ψt(x) = D ⊆ ft(x) ∩
⋃

u∈Pred↑x
N (x)

ft(u),

“≤ ”: Let U := f (x) and let D := f (x) ∩
⋃

u∈Pred↑x
N (x)

f (u) ⊆ U .
Then, |U \ (D ∪

⋃

u∈Pred↓
N (x)

f (u)�x(u))| = costf (x)+ ρ(x) . Fur-
ther, let

TPT [x, �x,ψx, ηx] = Q�xx→U
x [t,ψt , ηt]+ |U \ (D ∪

⋃

u∈Pred↓
N (x)

�x(u))|

≥
∑

z∈Zt

costft (z)+ |ft(x) \ (
⋃

u∈Pred↑
N (x)

ft(u) ∪
⋃

u∈Pred↓
N (x)

ft(u))|

=
∑

z∈Zt

costft (z)+ costft (x) =
∑

z∈Ŵx

costft (z)

ψt := ψx

�

x → D, ∀
w∈Succ↑N (x)

w → ψx(w) \U
�

and

ηt := ηx






x → |U |

.
−

�

u∈Pred↓
N (x)

|�x(u)|, ∀w∈Succ↑N (x)
w → ηx(w)

.
−|U |






.

We show that f is eligible with respect to Yt , �x , ψt and
ηt . Then, Q

�xx→D
x [t,ψt , ηt] =

∑

z∈Zt
costf (z)− ρ(x)

by Claim 8, implying T
PT [x, �x,ψx, ηx] ≤

∑

z∈Zt
costf (z)− ρ(x)+ costf (x)+ ρ(x) =

∑

z∈Ŵx
costf (z)

since U and D are valid choices for the minimum in (7).
To see that f is eligible, note that f (w) = �x[x → U] for

all w ∈
⋃

y∈Yt YW
Ŵ
y since

⋃

y∈Yt YW
Ŵ
y ⊆ YWŴ

x ∪ {x} . Fur-
ther, for the conditions on ψt and ηt , consider three cases
for nodes in

⋃

y∈Yt YW
Ŵ
y  . First, if w = x , then

Second, if w ∈
⋃

y∈Yt YW
Ŵ
y ∩ Succ

↑
N (x) , then

as well as

ψt(x) = D = f (x) ∩
⋃

u∈Pred↑x
N (x)

f (u) = f (x) ∩
⋃

y∈Yt

⋃

u∈Pred↑y
N (x)

f (u)

ηt(x) = |U |
.
−

∑

u∈Pred↓
N (x)

|�x(u)| = |f (x)|
.
−

∑

u∈Pred↓
N (x)

|f (u)|
Def. 4
≤

∑

u∈Pred↑
N (x)

|f (u)|

=
∑

y∈Yt

∑

u∈Pred↑
N (x)

|f (u)|

ψt(w) = ψx(w) \ U ⊆ f (w) ∩
⋃

u∈Pred↑x
N (w)

f (u) \ f (x) = f (w) ∩
⋃

u∈Pred↑x
N (w)\{x}

f (u)

= f (w) ∩
⋃

y∈Yt

⋃

u∈Pred↑y
N (w)

f (u)

ηt(w) = ηx(w)
.
−|U | ≤

∑

u∈Pred↑x
N (w)

|f (u)| + ρ(x)
.
−|f (x)|

=
∑

u∈Pred↑x
N (w)\{x}

|f (u)| + |f (x)| + ρ(x)
.
−|f (x)| =

∑

y∈Yt

∑

u∈Pred↑y
N (w)

|f (u)| + ρ(x)

Page 30 of 31Scornavacca and Weller ﻿Algorithms for Molecular Biology (2022) 17:15

Otherwise, w ∈
⋃

y∈Yt YW
Ŵ
y \ (Succ↑N (x) ∪ {x}) and we

have

ψt(w) = ψx(w) ⊆ f (w) ∩
⋃

u∈Pred↑x
N (w)

f (u) = f (w) ∩
⋃

y∈Yt

⋃

u∈Pred↑x
N (y)

f (u)

ηt(w) = ηx(w) ≤
∑

u∈Pred↑x
N (w)

|f (u)| + ρ(x) =
∑

y∈Yt

∑

u∈Pred↑y
N (w)

|f (u)| + ρ(x)

	11.	 Jin G, Nakhleh L, Snir S, Tuller T. Maximum likelihood of phylogenetic
networks. Bioinformatics. 2006;22(21):2604–11.

	12.	 Van Iersel L, Jones M, Scornavacca C. Improved maximum parsimony
models for phylogenetic networks. Syst Biol. 2018;67(3):518–42.

	13.	 Bodlaender HL. A linear-time algorithm for finding tree-decompositions
of small treewidth. SIAM J Comput. 1996;25(6):1305–17.

	14.	 Authors V. The graph parameter hierarchy. Available at https://​gitlab.​com/​
gruen​wald/​param​eter-​hiera​rchy. 2021.

	15.	 Bodlaender HL. Discovering treewidth. In: Conference on Current Trends
in Theory and Practice of Computer Science (SOFSEM’05), pp. 1–16.
Springer, Berlin, Heidelberg. 2005.

	16.	 Bodlaender HL. Treewidth: structure and algorithms. In: International Col-
loquium on Structural Information and Communication Complexity, pp.
11–25. Springer. 2007.

	17.	 Bryant D, Lagergren J. Compatibility of unrooted phylogenetic trees is
FPT. Theoret Comput Sci. 2006;351(3):296–302.

	18.	 Courcelle B. The monadic second-order logic of graphs. i. recognizable
sets of finite graphs. Inf Comput. 1990;85(1):12–75.

	19.	 Bulteau L, Weller M. Parameterized algorithms in bioinformatics: an over-
view. Algorithms. 2019;12(12):256.

	20.	 Berry V, Scornavacca C, Weller M. Scanning phylogenetic networks is
NP-hard. In: Conference on Current Trends in Theory and Practice of Com-
puter Science (SOFSEM’20), pp. 519–530, Springer, 2020.

	21.	 Korhonen T. Single-exponential time 2-approximation algorithm for
treewidth. CoRR abs/2104.07463. 2021.

	22.	 Dell H, Komusiewicz C, Talmon N, Weller M. The PACE 2017 Parameter-
ized Algorithms and Computational Experiments Challenge: The Second
Iteration. In: 12th International Symposium on Parameterized and Exact
Computation (IPEC 2017), vol. 89. Leibniz International Proceedings in
Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zen-
trum fuer Informatik; 2018. p. 30–13012.

	23.	 Tamaki H. Positive-instance driven dynamic programming for treewidth. J
Comb Optim. 2019;37(4):1283–311.

	24.	 Dendris ND, Kirousis LM, Thilikos DM. Fugitive-search games on graphs
and related parameters. Theoret Comput Sci. 1997;172(1):233–54.

	25.	 Arnborg S. Efficient algorithms for combinatorial problems on
graphs with bounded decomposability—a survey. BIT Numer Math.
1985;25(1):1–23.

	26.	 Mescoff G, Paul C, Thilikos D. A polynomial time algorithm to compute
the connected tree-width of a series-parallel graph. 2021. 2004.00547v5.

	27.	 Kloks T. Treewidth: computations and approximations, vol. 842. Berlin:
Springer; 1994.

	28.	 Rabier C-E, Berry V, Stoltz M, Santos JaD, Wang W, Jean-Christophe G.
Pardi F, Scornavacca C. On the inference of complicated phylogenetic
networks by Markov Chain Monte-Carlo. Submitted.

	29.	 Bachoore E, Bodlaender HL. Weighted treewidth algorithmic techniques
and results. In: International Symposium on Algorithms and Computa-
tion, pp. 893–903. Springer; 2007.

	30.	 Zhu J, Wen D, Yu Y, Meudt HM, Nakhleh L. Bayesian inference of phy-
logenetic networks from bi-allelic genetic markers. PLoS Comput Biol.
2018;14(1):1005932.

	31.	 Kelk S, Pardi F, Scornavacca C, van Iersel L. Finding a most parsimoni-
ous or likely tree in a network with respect to an alignment. J Math Biol.
2019;78(1–2):527–47.

� �

Acknowledgements
We thank Christophe Paul for sharing his expertise on treewidth formula-
tions, and an anonymous reviewer for suggesting an interesting variant of
decomposition minimizing the maximum number of reticulation nodes per
bag for future work.

Author contributions
CS and MW contributed equally to the paper. Both authors read and approved
the final manuscript.

Funding
This work was supported by French Agence Nationale de la Recherche
through the CoCoAlSeq Project (ANR-19-CE45-0012).

Declarations

Competing interests
The authors declare that they have no competing interests

Author details
1 ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France. 2 LIGM,
Université Gustave Eiffel, CNRS, Paris, France.

Received: 24 January 2022 Accepted: 17 March 2022

References
	1.	 Felsenstein J. Inferring phylogenies, vol. 2. Sunderland: Sinauer Associates;

2004.
	2.	 Fitch WM. Toward defining the course of evolution: minimum change for

a specific tree topology. Syst Biol. 1971;20(4):406–16.
	3.	 Huson DH, Rupp R, Scornavacca C. Phylogenetic networks: concepts.

Algorithms and applications. Cambridge: Cambridge University Press;
2010.

	4.	 Kannan L, Wheeler WC. Maximum parsimony on phylogenetic networks.
Algo Mol Biol. 2012;7(1):9.

	5.	 Hein J. Reconstructing evolution of sequences subject to recombination
using parsimony. Math Biosci. 1990;98(2):185–200.

	6.	 Nakhleh L, Jin G, Zhao F, Mellor-Crummey J. Reconstructing phyloge-
netic networks using maximum parsimony. In: 2005 IEEE Computational
Systems Bioinformatics Conference (CSB’05), pp. 93–102 (2005). IEEE

	7.	 Zhu J, Yu Y, Nakhleh L. In the light of deep coalescence: revisiting trees
within networks. BMC Bioinformat. 2016;17(14):271–82.

	8.	 Fischer M, Iersel LV, Kelk S, Scornavacca C. On computing the maxi-
mum parsimony score of a phylogenetic network. SIAM J Discret Math.
2015;29(1):559–85.

	9.	 Kannan L, Wheeler WC. Exactly computing the parsimony scores on
phylogenetic networks using dynamic programming. J Comput Biol.
2014;21(4):303–19.

	10.	 Jin G, Nakhleh L, Snir S, Tuller T. Parsimony score of phylogenetic
networks: hardness results and a linear-time heuristic. IEEE/ACM Trans
Comput Biol Bioinf. 2009;6(3):495–505.

https://gitlab.com/gruenwald/parameter-hierarchy
https://gitlab.com/gruenwald/parameter-hierarchy

Page 31 of 31Scornavacca and Weller ﻿Algorithms for Molecular Biology (2022) 17:15 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	32.	 Jin G, Nakhleh L, Snir S, Tuller T. Inferring phylogenetic networks
by the maximum parsimony criterion: a case study. Mol Biol Evol.
2006;24(1):324–37.

	33.	 Wheeler WC. Phylogenetic network analysis as a parsimony optimization
problem. BMC Bioinformatics. 2015;16(1):1–9.

	34.	 Bryant C, Fischer M, Linz S, Semple C. On the quirks of maximum
parsimony and likelihood on phylogenetic networks. J Theor Biol.
2017;417:100–8.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	Treewidth-based algorithms for the small parsimony problem on networks
	Abstract
	Background:
	Results:
	Conclusions:

	Introduction
	Parsimony on trees
	Parsimony on networks
	Treewidth for phylogenetic networks

	Preliminaries
	Mappings
	Graphs and phylogenetic networks

	An alternative formulation of treewidth
	Parsimony
	Hardwired parsimony
	Softwired parsimony
	Parental parsimony

	Discussion
	Acknowledgements
	References

