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Introduction

One of the most fundamental equations for modeling flows in porous media is the Richards equation. It can be viewed as a simplified two-phase model, e.g., for water and air, where one of the phases is assumed to be of constant pressure. For a detailed review of the role of the Richards equation in porous media modeling see, e.g., [START_REF] Chen | Computational Methods for Multiphase Flows in Porous Media[END_REF][START_REF] De Boer | Theory of Porous Media[END_REF]. The equation describes the evolution in space and in time of the pressure p and saturation s for a fluid in a porous medium. Given a domain Ω ⊂ R d , for d = 1, 2, 3, and a final time T > 0, the Richards equation is given by

∂ s -∇•[Kκ(s)(∇p + g)] = f, in Ω × [0, T ] (1) 
where the constant vector -g represents the force of gravity, K : Ω → R d×d is the absolute permeability tensor, κ : [0, 1] → [0, 1] is the relative permeability function, and f : Ω × [0, T ] → R a forcing term, all considered as data. Suitable initial and boundary conditions need to be added. The system is closed by an algebraic relationship expressing the saturation as a function of the pressure, i.e., there exists a function S : R → [0, 1] such that s = S(p).

(

) 2 
For the well-posedness of this initial boundary value problem see, e.g., [START_REF] Alt | Quasilinear elliptic-parabolic differential equations[END_REF]. Realistic choices for the saturation function S of (2) and relative permeability κ are nonlinear cf. Figures 1 and2. This means that once the equation ( 1) is discretized with an implicit time-stepping scheme, a linearization procedure must be applied at each timestep. Moreover, these functions are typically nonsmooth and degerenate, which is the central bottleneck.

The design of robust and efficient linearization schemes for the Richards equation is an active area of research. Newton's method [START_REF] Lehmann | Comparison of iterative methods for improved solutions of the fluid flow equation in partially saturated porous media[END_REF][START_REF] List | A study on iterative methods for solving Richards' equation[END_REF][START_REF] Deuflhard | Newton Methods for Nonlinear Problems[END_REF] is an attractive choice due to its potentially quadratic convergence. A sufficient condition for the convergence of Newton's method in the context of the Richards equation was derived in [START_REF] Illiano | Iterative schemes for surfactant transport in porous media[END_REF]. In particular, the authors of [START_REF] Illiano | Iterative schemes for surfactant transport in porous media[END_REF] considered the lowest order continuous Galerkin finite element method (FEM) as a spatial discretization and an implicit Euler time discretization and derived a condition of the form τ < CS

2+r r m h d , (3) 
where τ is the time step size, h is the mesh size, S m := inf S ≥ 0, and C, r > 0 depends on the functions S and κ. In practice, satisfying this condition may render the timestep τ prohibitively small, or the condition may even be impossible to satisfy if the derivative S = 0 (elliptic degeneracy). Other linearization schemes include the modified Picard method [START_REF] Celia | A general mass-conservative numerical solution for the unsaturated flow equation[END_REF], L-schemes [START_REF] Slodicka | A robust and efficient linearization scheme for doubly nonlinear and degenerate parabolic problems arising in flow in porous media[END_REF][START_REF] List | A study on iterative methods for solving Richards' equation[END_REF][START_REF] Pop | Mixed finite elements for the Richards' equation: Linearization procedure[END_REF][START_REF] Mitra | A modified L-scheme to solve nonlinear diffusion problems[END_REF], and the Jäger-Kačur method [START_REF] Jäger | Solution of porous medium type systems by linear approximation schemes[END_REF][START_REF] Jäger | Solution of doubly nonlinear and degenerate parabolic problems by relaxation schemes[END_REF]. These methods are generally more robust than Newton's method at the cost of slower convergence. In particular, the L-scheme was shown to be unconditionally convergent in [START_REF] Radu | Newton-type methods for the mixed finite element discretization of some degenerate parabolic equations[END_REF], though it only converges linearly. The tradeoff between the robustness of the linearly-converging methods and the speed of Newton's method have motivated hybrid methods such as those studied in [START_REF] List | A study on iterative methods for solving Richards' equation[END_REF] where the authors apply several iterations of the slower scheme to provide an initial guess to Newton. More recently, this strategy was taken further in [START_REF] Stokke | An adaptive solution strategy for Richards' equation[END_REF], where an a posteriori error estimator was designed to provide a criteria to switch between the L-scheme and Newton's method.

The degenerate nature of the Richards equation (see §3) partially explains the difficulty encountered by Newton's method. One way to address the degeneracy involves the choice of the unknown in [START_REF] Alt | Quasilinear elliptic-parabolic differential equations[END_REF]. In particular, whenever the function S in ( 2) is invertible, one has the choice of whether to solve for the pressure p or the saturation s in [START_REF] Alt | Quasilinear elliptic-parabolic differential equations[END_REF]. This idea led to the so-called primary variable switching methods [START_REF] Forsyth | Robust numerical methods for saturated-unsaturated flow with dry initial conditions in heterogeneous media[END_REF][START_REF] Diersch | On the primary variable switching technique for simulating unsaturated-saturated flows[END_REF]. Initially, these methods required a local choice (by looping over degrees of freedom in the context of a Galerkin method) for which variable to solve for. This idea was elegantly adapted in [START_REF] Brenner | Improving Newton's method performance by parametrization: The case of the Richards equation[END_REF], where the authors achieved a continuous variable switch by introducing a global C 1 parameterization of the saturation curve (2). The parameter is chosen so that it is proportional to the saturation in the dry regions (where s 1) and otherwise it is proportional to the pressure. The continuous variable switching was recently generalized in [START_REF] Bassetto | On several numerical strategies to solve Richards' equation in heterogeneous media with finite volumes[END_REF] as well as in the PhD thesis [START_REF] Bassetto | Vers Une Prise En Compte plus Robuste et Précise Des Effets Capillaires Lors de Simulations d'écoulements Multiphasiques En Milieux Poreux[END_REF] where the authors consider an additional switch that aids in the case of heterogeneous media.

On top of difficulties related to degeneracy, the specific forms of the nonlinearities for the most common models (Brooks-Corey and van Genuchten-Mualem see §2) also suffer from low regularity. Approaches to address this while keeping good convergence of Newton's method include the line search or trust region methods, where the step size of Newton is limited in certain critical zones of the nonlinearity, see, e.g., [START_REF] Jenny | Unconditionally convergent nonlinear solver for hyperbolic conservation laws with S-shaped flux functions[END_REF][START_REF] Wang | Trust-region based solver for nonlinear transport in heterogeneous porous media[END_REF][START_REF] Bassetto | Robust Newton solver based on variable switch for a finite volume discretization of Richards equation[END_REF] and the references therein. Another alternative to handle low regularity is the so-called semismooth Newton method [START_REF] Kräutle | The semismooth Newton method for multicomponent reactive transport with minerals[END_REF][START_REF] Qi | A nonsmooth version of Newton's method[END_REF], where the main tenant is to work with elements of the subdifferential to a nonsmooth function.

A useful tool in the context of the Richards equation, both theoretically and practically, is regularization, i.e, considering an auxiliary perturbed problem to obtain some desired properties. The authors of [START_REF] Pop | Regularization schemes for degenerate Richards equations and outflow conditions[END_REF] rely on regularization to prove well-posedness of a certain case of the Richards equation. Regularization has already been explored for improving the performance of iterative schemes in, for example, [START_REF] Jäger | Solution of doubly nonlinear and degenerate parabolic problems by relaxation schemes[END_REF][START_REF] Bassetto | Robust Newton solver based on variable switch for a finite volume discretization of Richards equation[END_REF]. In [START_REF] Jäger | Solution of doubly nonlinear and degenerate parabolic problems by relaxation schemes[END_REF], regularized versions of the nonlinear functions are introduced to control the degeneracy whereas in [START_REF] Bassetto | Robust Newton solver based on variable switch for a finite volume discretization of Richards equation[END_REF] a kind of slope limiting method was proposed to handle the case where the derivative of the relative permeability κ tends to infinity. However, in practice, a natural question to ask is how much regularization should be added to obtain a tradeoff between model error and performance.

In this work, we seek to provide a possible answer to the above questions by introducing regularization and adaptively updating a regularization parameter. In particular, the adaptive choice is steered by a posteriori error estimators. Our a posteriori estimators follow the spirit of those derived in [START_REF] Mitra | A posteriori error estimates for the Richards equation[END_REF] in the context of the fully degenerate the Richards equation, where a rigorous a posteriori analysis leads to a reliable and efficient estimator.

We also take inspiration from our recent work [START_REF] Févotte | Adaptive regularization, discretization, and linearization for nonsmooth problems based on primal-dual gap estimators[END_REF], where we introduced an adaptive algorithm for regularizing a nonsmooth nonlinearity based on an additive decomposition of an estimator. The central observation is that regularization (model) error is often dominated by the discretization error and hence does not impact the overall accuracy of the scheme. In the setting of [START_REF] Févotte | Adaptive regularization, discretization, and linearization for nonsmooth problems based on primal-dual gap estimators[END_REF], we were able to recover the optimal rate of convergence with respect to total degrees of freedom by solving a sequence of regularized problems without ever sending the regularization parameter to 0. We seek to apply this same strategy to this setting, where component estimators will guide an adaptive algorithm and in particular ensure that the regularization component estimator remains sufficiently below that of discretization. Iterative linearization error is then made subordinate to the regularization one.

Our scheme has several advantages to those already mentioned. Firstly, it does not require the modification of the underlying linearization solver and allows for the Newton one. For the test cases we consider, the regularization allows Newton to converge where it takes hundreds of iterations or does not converge without. Finally, by adaptively lowering the level of regularization, we are able to produce a solution that matches well visually with a solution obtained without regularization.

The rest of the paper is organized as follows. In §2, we introduce the necessary notation as well as the assumptions on the data. In §3, we discuss the various difficulties for a nonlinear solver and introduce our proposed regularization. In §4, we present the backward Euler-finite element discretization of the the Richards equation with its corresponding regularized and linearized problems. In §5 we detail our adaptive algorithm. In §6, we present numerical experiments and we conclude in §7 where we also give an outlook on future research.

Setting and specification of the data

In this section we detail the necessary information to describe precisely the problem under consideration. We use the standard notation from functional analysis. Let Ω ⊂ R d , d = 1, 2, 3 be a domain with polygonal boundary. For ω ⊆ Ω, let (•, •) ω and • ω correspond to the L 2 (ω) inner product and norm respectively. We drop the subscripts when ω = Ω. Let H 1 (Ω) be the Sobolev space of functions defined on Ω with firstorder weak derivatives in L 2 (Ω). We also introduce the space H(div,

Ω) := {v ∈ [L 2 (Ω)] d : ∇•v ∈ L 2 (Ω)}.
We now specify the initial and boundary conditions for the problem (1). We consider a partition of the boundary ∂Ω = Γ D ∪ Γ N into Dirichlet and Neumann boundaries, where Γ D has strictly positive measure. The boundary conditions are specified as

p = p D on Γ D × (0, T ], (4a) Kκ(s)(∇p + g) • n = 0 on Γ N × (0, T ], (4b) 
and the corresponding space incorporating the Dirichlet boundary condition is given by

H 1 D (Ω) := {v ∈ H 1 (Ω) : v| ΓD = p D }. (5) 
The initial condition is imposed on the saturation,

s(x, 0) = s 0 (x), x ∈ Ω. (6) 
We introduce a conforming triangulation T h of Ω, i.e., T h = ∪ K K where the intersection of (the closure of) two simplices K, K ∈ T h are either disjoint or an l-dimensional simplex for 0 ≤ l ≤ d -1. We consider uniform time stepping with N time steps so that the interval (0, T ) is partitioned with fixed step size τ = T /N and the time points {t n } N n=0 are given by t n = nτ for all n = 0, . . . , N . We consider the following assumptions on the data of problem (1)-(6).

Assumption 2.1 (Assumptions on the data).

The following holds for a given mesh T h and time points {t n } N n=0 : (A1) The absolute permeability tensor K : Ω → R d×d is piecewise constant with respect to T h and satisfies the ellipticity and boundedness conditions, i.e., there exists constants K m , K M > 0 such that, for almost every x ∈ Ω, there holds

K m |x| 2 ≤ x T K(x)x ≤ K M |x| 2
(A2) The boundary condition p D is affine and continuous in space and constant in time.

(A3) The initial saturation s 0 is piecewise constant on T h .

(A4) The source function f is piecewise constant on T h in space and piecewise constant in time.

The two most common equations of state for the nonlinear functions S and κ are the Brooks-Corey model [START_REF] Brooks | Properties of Porous Media Affecting Fluid Flow[END_REF] 

κ(s) = s 2+3λ 1 λ 1 (7a) S(p) = (-p/p M ) -λ1 p ≤ p M , 1 otherwise, (7b) 
for parameters p M < 0, λ 1 ∈ (0, 1) and the van Genuchten-Mualem model [START_REF] Van Genuchten | A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[END_REF], for p M ∈ R, where

κ(S (s)) = κ c S (s)(1 -(1 -S (s) 1/λ2 ) λ2 ) 2 , (8a) 
S(p) = S left (p) p ≤ p M , S V otherwise, (8b) (8c) 
S left (p) = S R + (S V -S R ) (1 + (-αp) 1 1-λ 2 -λ2 and S (s) = s -S R S V -S R , (9) 
with S V the water content, S R the residual water content, and κ c the hydraulic conductivity.

Difficulties related to the nonlinearities and proposed regularization

We first outline the possible difficulties a nonlinear solver can encounter in the context of the Richards equation. We summarize them in the following list:

1. Hyperbolic degeneracy: if κ = 0, the terms containing spatial derivatives vanish and the PDE changes type from parabolic to an ODE.

2. Elliptic degeneracy: If S = 0, the PDE changes type from parabolic to elliptic. This is typically not a serious problem for solvers in the pressure formulation that we have chosen.

3. For the van Genuchten-Mualem model ( 8), the derivative of the relative permeability function blows up, i.e., κ (S (s)) → ∞ as s → S V .

4. For the Brooks-Corey model (7a), the saturation function S(p) is non-differentiable at p = p M .

We thus replace the saturation function S and the relative permeability function κ by their regularized counterparts denoted by S and κ , respectively. The parameter > 0 determines the amount of added regularization, and is adaptively updated to balance the incurred model error (see §5) with the discretization error. The regularization is designed with the intention of alleviating the problems mentioned in the previous list. We now state our conditions on the regularization. Assumptions (A1) and (A2) ensure that the regularized functions are good pointwise approximations of the true functions S and κ. The Assumption (A3), ensures that the regularized function κ does not induce a hyperbolic degeneracy. The last two assumptions are smoothness requirements that appear whenever the derivatives of S and κ • S are employed in the nonlinear solver, as we will see below in §4. [START_REF] Bassetto | Vers Une Prise En Compte plus Robuste et Précise Des Effets Capillaires Lors de Simulations d'écoulements Multiphasiques En Milieux Poreux[END_REF].

We now introduce our choices of regularization which satisfy Assumption 3.1. The choices depend on the chosen models, namely the Brooks-Corey model (7a) and van Genuchten-Mualem [START_REF] Brezzi | Mixed and Hybrid Finite Element Methods[END_REF]. First, in the case of the Brooks-Corey model, the regularization of the relative permeability is simply

κ (s) = κ(s) + . (10) 
This ensures that κ > 0 for all s ∈ [0, 1] and the smoothness requirements are already satisfied. The regularized saturation for the Brooks-Corey model is given by

S (p) = S k (p) if |p -p M | < , S(p) otherwise, (11) 
where S k (p) is determined by polynomial interpolation so that S ∈ C k (R) is k-times continuously differentiable. In particular we choose k = 2, over satisfying Assumption (A4) but advantageous to the Newton linearization. A plot is given in Figure 3 for several values of . For the van Genuchten-Mualem model, to satisfy Assumption (A5) we follow the approach in [START_REF] Bassetto | Robust Newton solver based on variable switch for a finite volume discretization of Richards equation[END_REF] where the relative permeability (8a) is replaced by a second degree polynomial near the critical point S (s) = 1:

κ (S ) = κ(s) + , if s ≤ 1 -, κ(s) + , otherwise, (12) 
where

κ(s) = κ (1 -) 2 (s -(1 -)) 2 + κ (1 -)(s -(1 -)) + κ(1 -),
see Figure 4 for a plot with a range of values of .

Discrete problem and solution method

In this section we give details about the discretization strategy we employ to solve the Richards equation [START_REF] Alt | Quasilinear elliptic-parabolic differential equations[END_REF]. We define the lowest order continuous finite element trial space by

V D h = {u h ∈ H 1 D (Ω) : u h | K ∈ P 1 (K) ∀ K ∈ T h } (13) 
as well as the test space [START_REF] Brezzi | Mixed and Hybrid Finite Element Methods[END_REF]. We do not regularize the saturation in this case, since it it already smooth.

V 0 h = u h ∈ H 1 0 (Ω), u h | K ∈ P 1 (K) ∀ K ∈ T h . (14) 

Discretization

For the time discretization we use the lowest order implicit method, i.e., the backward Euler method.

For each n ∈ {1, . . . , N } and a given p n-1,h ∈ V D h , we need to find the approximate pressure

p n,h ∈ V D h satisfying 1 τ (S(p n,h ) -S(p n-1,h ), ϕ h ) + (F (p n,h ), ∇ϕ h ) = (f (•, t n ), ϕ h ) ∀ϕ h ∈ V 0 h , (15) 
where the flux function is defined as

F (q) := Kκ(S(q))[∇q + g]. (16) 
For n = 1, we use directly s 0 in place of S(p 0,h ).

Regularization

We also consider a regularized version of problem [START_REF] Diersch | On the primary variable switching technique for simulating unsaturated-saturated flows[END_REF]. First, for a given timestep t n , we introduce a positive sequence { j n } j≥1 such that 1 n is independent of n (see §5). The regularized problem is then:

given p j n-1,h ∈ V D h find p j n,h ∈ V D h satisfying 1 τ (S j n (p j n,h ) -S j n (p j n-1,h ), ϕ h ) + (F j n (p j n,h ), ∇ϕ h ) = (f (•, t n ), ϕ h ) ∀ϕ h ∈ V 0 h , (17) 
where the corresponding regularized flux is given by

F j n (q) := Kκ j n (S j n (q))[∇q + g], (18) 
and j is a stopping index that will be defined in §5. For n = 1, we still use s 0 in place of S(p j 0,h ).

Linearization

Due to the nonlinear nature of problem [START_REF] Ern | Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs[END_REF], iterative linearization is usually used to approximate p j n,h . To this end, we consider the following linearized problem: given an initial guess p j,k-1 n,h , find

p j,k n,h ∈ V D h such that 1 τ (S j n (p j,k-1 n,h )-S j n (p j, k n-1,h ), ϕ h )+ 1 τ (L(p j,k n,h -p j,k-1 n,h ), ϕ h )+(F k j n , ∇ϕ h ) = (f (•, t n ), ϕ h ) ∀ϕ h ∈ V 0 h , (19) 
where j and k are stopping indices that will be defined in §5 and the linearized flux is given by

F k j n := Kκ j n (S j n (p j,k-1 n,h ))[∇p j,k n,h + g] + ξ(p j,k n,h -p j,k-1 n,h ). (20) 
Here, (L, ξ) ∈ L ∞ (Ω; R d+1 ) depends on the specific linearization used. For the case of the modified Picard iteration [START_REF] Celia | A general mass-conservative numerical solution for the unsaturated flow equation[END_REF], we set

L := S j n (p j,k-1 n,h ), ξ := 0. (21) 
For Newton's method, we set

L := S j n (p j,k-1 n,h ) ξ := K(κ j n • S j n ) (p j,k-1 n,h )[∇p j,k-1 n,h + g]. (22) 
As before, for n = 1, we use s 0 in place of S(p j, k 0,h ). Remark 4.1 (Appearance of derivatives in the linearization). We note that the for both the modified Picard scheme and Newton's method, the derivative S (p j,k-1 n,h ) appears. Additionally, in the case of Newton's method, the derivative of the composite function (κ j n • S j n ) (p j,k-1 n,h ) appears. This is the motivation for the regularity requirements we impose on the regularization, i.e., Assumptions (A4) and (A5).

A posteriori component error estimators by flux reconstruction

The key to our a posteriori error estimators will be a postprocessed approximation σ j,k n,h of the flux F k j n (20) that satisfies σ j,k n,h ⊂ H(div, Ω). The main tool to achieve this is the Raviart-Thomas-Nédélec (RTN) finite element space [START_REF] Brezzi | Mixed and Hybrid Finite Element Methods[END_REF]. We first introduce the lowest order broken RTN space,

RT 0 (T h ) := {v h ∈ [L 2 (ω)] d : v h | K ∈ [P 0 ] d + xP 0 , ∀K ∈ T h }, (23) 
and the H(div, Ω)-conforming space

RT 0 (Ω) := RT 0 (T h ) ∩ H(div, Ω). ( 24 
)
Our general approach is in the spirit of equilibrated flux reconstruction. The method of flux reconstruction in the context of a posteriori error analysis has origins in the works of Prager and Synge [START_REF] Prager | Approximations in elasticity based on the concept of function space[END_REF] as well as in Ladevèze and Leguillon [START_REF] Ladeveze | Error estimate procedure in the finite element method and applications[END_REF], Destuynder and Métivet [START_REF] Destuynder | Explicit error bounds in a conforming finite element method[END_REF], Braess and Schöberl [START_REF] Braess | Equilibrated residual error estimator for edge elements[END_REF], and Ern and Vohralík [START_REF] Ern | Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs[END_REF]. However, in this work we do not consider a full equilibration by solving local minimization problems, but rather a flux based on averaging and prescription of the degrees of freedom in H(div, Ω) as in [START_REF] Vlasák | On polynomial robustness of flux reconstructions[END_REF][START_REF] Ern | An accurate H(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems[END_REF].

In general this type of estimator satisfies the equilibration with the external load in a weak sense. First, we introduce some additional notation for the mesh. Let F denote the set of faces in the mesh and for a face F ∈ F let T F denote the edge patch of F , i.e.,

T F := {K ∈ T h : F ⊂ K}. ( 25 
)
Then we define the reconstructed flux σ j,k n,h ∈ RT 0 (Ω) by

1 |F | F σ j,k n,h • n F dS = 1 |T F ||F | K∈T F F -F k j n • n F dS ∀F ∈ F , (26) 
where |T F | denotes the cardinality of T F . The conditions in [START_REF] Lehmann | Comparison of iterative methods for improved solutions of the fluid flow equation in partially saturated porous media[END_REF] totally determine the function σ j,k n,h , see, e.g., [START_REF] Brezzi | Mixed and Hybrid Finite Element Methods[END_REF]. We thus define the following estimators with the help of the reconstructed flux (26):

η n,j,k dis := F k j n + σ j,k n,h (discretization), (27a) 
η n,j,k lin := F j n (p j,k n,h ) -F k j n (linearization), (27b) 
η n,j,k reg := F (p j,k n,h ) -F j n (p j,k n,h ) (regularization). ( 27c 
)
Remark 4.2 (Choice of estimators). We take inspiration for the discretization estimator from [START_REF] Ern | Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs[END_REF][START_REF] Févotte | Adaptive regularization, discretization, and linearization for nonsmooth problems based on primal-dual gap estimators[END_REF][START_REF] Mitra | A posteriori error estimates for the Richards equation[END_REF], where our estimator can be thought of a simplified version of η F . We make this choice because the current definition is very cheap to compute as it does not require the solution of local problems. The decomposition into component estimators is very much inspired by those established in [START_REF] Ern | Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs[END_REF][START_REF] Févotte | Adaptive regularization, discretization, and linearization for nonsmooth problems based on primal-dual gap estimators[END_REF]. In [START_REF] Ern | Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs[END_REF], a decomposition was established that identified errors associated with the discretization, linearization, algebra, and quadrature. These estimators were then used to define stopping criteria for the nested nonlinear and linear solvers. More recently in [START_REF] Févotte | Adaptive regularization, discretization, and linearization for nonsmooth problems based on primal-dual gap estimators[END_REF], we consider a regularized problem and introduce a corresponding regularization estimator, leading to the same (at least in spirit) choice of estimators as in [START_REF] List | A study on iterative methods for solving Richards' equation[END_REF]. In [START_REF] Févotte | Adaptive regularization, discretization, and linearization for nonsmooth problems based on primal-dual gap estimators[END_REF] we rigorously prove that the estimators tend to zero in their respective limits, i.e., η n,j,k lin tends to zero as k → ∞ and η n,j,k reg tends to zero as j, k → ∞.

Adaptive algorithm

In this section we present an adaptive algorithm for iteratively solving the system of nonlinear algebraic equations ( 15), Algorithm 1. For a given timestep t n , the algorithm constructs a sequence of regularized problems, with regularization parameter j n , and linearization iterations indexed by k, producing intermediate solutions p j,k n,h as per §4.2 and §4.3. The algorithm takes some user-specified parameters, starting with an initial regularization parameter ¯ 1 > 0 and an initial contraction factor C1 ∈ (0, 1). We take inspiration from Algorithm 1 in [START_REF] Févotte | Adaptive regularization, discretization, and linearization for nonsmooth problems based on primal-dual gap estimators[END_REF] to define the following stopping criteria, where bars denote the stopping indices,

η n,j, k lin < γ lin η n,j, k reg , (28a) 
η n, j, k reg < γ reg η n, j, k dis , (28b) 
where γ reg , γ lin > 0 are further user-specified parameters. The first criterion (28a) states that the linearization procedure should not continue on a given regularized problem if it has sufficiently converged. The second criterion (28b) states that, on a given timestep t n , the error introduced by regularization should only be γ reg -times smaller than the inherent error due to discretization. In more details, the algorithm proceeds as follows: we start on a given timestep t n with the initial regularization parameter j n := ¯ 1 and contraction factor C j n := C1 . We proceed to iterate in the linearization until the first stopping criterion (28b) is satisfied. However, we also have a safety measure (line 12 of the algorithm) to check whether the linearization error does not increase between the previous and current linearization iterates k -1 and k. If this is the case, we revert the regularization parameter and reset the approximate pressure, with the help of p prev . Indeed, p prev acts as a checkpoint, as it is initialized with the initial guess, and then updated to store p j, k n,h every time the linearization has converged successfully on line 22. After this reset, we increase the current contraction factor C j n which limits the amount we decrease the regularization parameter between the steps j and j + 1. This strategy has some common aspects to the usual practice of cutting the timestep to provide a better initial guess, but the advantage here is that we only "go back" one value of the regularization parameter and not to the beginning of the timestep.

We also remark that the initial guess can be taken as p 0,0 0,h := S -1 (s 0 ) in the regime where S is invertible, namely s 0 < 1. For the points x ∈ Ω where s 0 (x) = 1, we simply take the initial guess p 0,0 0,h (x) := p M (x).

Numerical experiments

In this section we detail numerical experiments using our adaptive regularization of Algorithm 1. In particular, we consider three rather involved examples where a plain Newton solver struggles to converge. In all cases our adaptive algorithm succeeds. All numerical experiments are conducted with the help of the Gridap.jl library [START_REF] Badia | An extensible Finite Element toolbox in Julia[END_REF][START_REF] Verdugo | The software design of Gridap: A Finite Element package based on the Julia JIT compiler[END_REF] in the Julia programming language. For all the experiments, we take the linearization parameters γ reg = 0.2, γ lin = 0.3, C1 = 0.1, and ¯ 1 = 0.1. For comparison, we also test the unregularized Newton's method (corresponding to taking ¯ 1 = 0 in Algorithm 1), and the modified Picard scheme [START_REF] Jäger | Solution of porous medium type systems by linear approximation schemes[END_REF] In the unregularized case, instead of criterion (28a), we ensure that

η n,j,k lin < 1e-6. ( 29 
)
Remark 6.1 (Choice of the stopping criterion in the unregularized case). We use a fixed stopping criterion for the linearization in (29) because we would like to compare our adaptive strategy with a nonadaptive one, which is the much more common approach. For example, even in [START_REF] Stokke | An adaptive solution strategy for Richards' equation[END_REF] where the solver is chosen adaptively, the authors use a fixed stopping criterion for terminating the linearization procedure. Namely, their criterion ensures that the difference of two consecutive iterates of the approximate measured in a iteration dependent norm is less than 1e-7. Moreover, our choice of the value 1e-6 is partially related to the observation that in Figure 6 (described in detail below in §6.1), the linearization estimator η n,j,k lin is on the order of 1e-5 at the end of the iterations. Thus, we choose a value that at least ensures this level of accuracy for all the numerical experiments.

Strictly unsaturated medium

In this test case, we seek to reproduce the results obtained in [36, §4.1]. This means we have the following data: 

• Ω = Ω 1 ∪ Ω 2 , Ω 1 = (0, 1) × (0, 1/4], Ω 2 = (0, 1) × (1/4,
29 return {p j, k n,h } N n=1 • τ = 1 • Γ D = ∂Ω ∩ {y = 1} • Γ N = ∂Ω \ Γ D • g = (0, 1) T • f (x, y) = 0 (x, y) ∈ Ω 1 0.06 cos( 4 3 πy) sin(x) (x, y) ∈ Ω 2 • p 0 (x, y) = -y -1/4 (x, y) ∈ Ω 1 -4 (x, y) ∈ Ω 2 ,
• s 0 = S(p 0 )

• p D = p 0 | ΓD
We use the van Genuchten-Mualem model [START_REF] Brezzi | Mixed and Hybrid Finite Element Methods[END_REF] with the parameters specified in Figure 5. Please note that there is only 1 timestep. We first plot the approximate pressure at the final step of both Algorithm 1, as well as the modified Picard iteration with no regularization, see Figure 5. We observe that the two We now look more carefully at the evolution of the estimators in the adaptive algorithm for this example. In Figure 6, we plot the component estimators as a function of cumulative linearization steps. The components are all of the order of 0.1 on the first iteration. We see that the linearization estimator converges very rapidly for a given value of the regularization parameter j := ¯ 1 = 0.1, then j := 0.01, 0.001 and 0.0001. Furthermore, once we lower the regularization parameter, the regularization component estimator clearly decreases. On the final iteration, we see the discretization and regularization estimators stabilize with a constant gap between the two.

Injection test

This test is inspired by the one presented in [7, §4.1]. In particular, we use the following model parameters:

• Ω = (0, 1) 2 • T = 1.0 • τ = 2.82e-2 • Quasi uniform mesh with h = 2.82e-2 • Γ D = {(x 1 , x 2 )|x 1 ∈ (0, 0.3), x 2 = 1} • Γ N = ∂Ω \ Γ D • g = (0, -1) T • f = 0 • p 0 = -1, s 0 = S(p 0 ) • p D = 1
We use the Brooks-Corey model (7a) with parameters specified in Figure 8. We note firstly that there is an inconsistency between the trace of p 0 and the imposed boundary condition p D at t = 0. This is mathematically valid, but can cause problems for the solver as we shall see shortly. The domain is initially "mildly dry" with S(p 0 ) = s 0 = 0.027. We remark that we were not able to consider a smaller value of s 0 as was done in, e.g., [START_REF] Brenner | Improving Newton's method performance by parametrization: The case of the Richards equation[END_REF][START_REF] Bassetto | Robust Newton solver based on variable switch for a finite volume discretization of Richards equation[END_REF]. It would likely be necessary to implement their variable switching strategy for this, which we discuss in §7. However, the current test still remains challenging for Newton's method.

In Figure 7, the total stepwise and cumulative iterations are plotted for Algorithm 1 using Newton's method with and without regularization as well as modified Picard without regularization. First of all, it is clear that Newton's method without regularization is not feasible and we cut the solver after 300 iterations on the first step. Next, we note that Modified Picard takes consistently more iterations than Newton solver with regularization, resulting in an approximate 3.3x speedup at the end of the simulation (1004 iterations for modified Picard vs 297 for the regularized Newton solver). We also note that the number of iterations is somewhat less stable for modified Picard with peaks of 56 iterations at t = 0.42, and 48 iterations at t = 0.22. In contrast the regularized Newton solver takes no more than 13 iterations per timestep. In fact, this only occurs at the beginning of the simulation.

In Figure 8 we see that Newton's method has trouble converging for the regularization parameter j n = 0.1 and the linearization estimator increases during the second and third timesteps, thus triggering the if statement on line 14 of Algorithm 1. Indeed, we see consequently the algorithm recovers by simultaneously increasing the regularization parameter to 2 n := 1 n /C 1 n and then increasing the contraction factor C 1 n = C 1 n . This combination allows the estimator to converge on the following series of regularized problem until the stopping criterion (28b) is achieved and the solver advances to the next timestep.

We now consider the effect of the regularization on the solution. In particular, in Figure 9, we compare side by side plots of the saturation profile for the regularized and unregularized solutions. The profiles match well, and we also note that the regularized profile appears smoother at the interface.

Realistic test

In this test, we take inspiration from [29, §6.3] by using the following model parameters: • K φ = 0.1

• Ω = (0, 1) 2 • T = 1 • τ = 2.02e-2 • Quasi uniform mesh with h = 2.02e-2 • g = (-1, 0) T • p L (x) = pout-pin 0.5 x • Q = cos θ -sin θ sin θ cos θ
• p out = -2.0 • p in = -0.2 • p D = p 0 | ΓD
where the initial condition and boundary conditions are fully specified with the help of the schema in Figure 10. We use the Brooks-Corey model (7a) with parameters specified in Figure 12.

We begin by comparing the stepwise and cumulative number of iterations in Figure 11. We first remark that Newton's method without regularization takes an unreasonable number of iterations on the first step (we stop the solver at 300 iterations). Modified Picard is able to finish the simulation but has some big peaks namely 208 iterations for t = 0.82, 101 iterations at t = 0.54, and 77 iterations at t = 0.78. In contrast, the number of iterations per step for the regularized Newton solver does not exceed 20. This gain is reflected clearly when comparing the cumulative number of iterations where by the end, modified Picard has taken almost 5-times as many iterations as the regularized Newton solver (2359 vs. 576).

To better understand how the adaptive algorithm works, we refer to Figure 12. In the left figure we see that no problems are encountered at the timesteps t = 0 through t = 0.061. In the right figure we plot the estimators around the time of the contact with the interface at t = 0.445-0.486 and we see that the linearization estimator begin to increase on the first timestep for = 0.001. The condition of the if statement on line 14 is then true, resetting to the result at the previous value of = 0.01, and increasing the contraction factor C j n thereby decreasing the "distance" between the two consecutive regularized problems. This allows the algorithm to proceed, albeit with more intermediate values of , to the end of the timestep.

Finally, we compare snapshots of the saturation for two timesteps t = 0.40 and t = 0.95 in Figure 13. As in the previous examples, the two profiles are comparable with the regularized version appearing smoother at the boundary of the evolving interface.

Conclusions and future work

In this work, we introduced an adaptive regularization algorithm to iteratively solve the Richards equation. The algorithm works with regularized versions of the nonlinearities present in Richards equation to improve the performance of Newton's method in solving the resulting nonlinear system. The proposed algorithm adaptively controls the level of regularization based on a posteriori error estimators. The proposed adaptive algorithm is able to converge where the unregularized version takes excessively many iterations. Furthermore, we compare the performance with the modified Picard scheme which is specific to the Richards equation. In all test cases the adaptive algorithm with regularization outperforms modified Picard and produces a perceptibly comparable solution. In terms of future work, we note that our proposed algorithm is not able to converge in the dry regime s 1. This is a well known difficulty and has been shown to be ameliorated by variable switching techniques, see [START_REF] Brenner | Improving Newton's method performance by parametrization: The case of the Richards equation[END_REF] and references therein. We would like to emphasize that our strategy is not incompatible with these methods, and that we would like to test a combination of regularization and variable switching to tackle even more difficult benchmark problems. Another future direction would be to study two independent regularization parameters for the functions κ and S in the case of the Brooks-Corey model.
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 1 Figure 1: [p M = -0.2, λ 1 = 0.66] Saturation and relative permeability functions for the Brooks-Corey equation of state (7a).

Figure 2 :

 2 Figure 2: [p M = 0, λ 2 = 0.66, S R = 0, S V = 1, α = 0.551] Saturation and relative permeability functions for the van Genuchten-Mualem equation of state (8).

Assumption 3 . 1 (

 31 Assumptions on the regularization). The approximations S to the saturation function S and κ to the relative permeability κ satisfy the following. (A1) The regularized relative permeability function satisfies lim →0 κ (s) = κ(s) for all s ∈ [0, 1] (A2) The regularized saturation function satisfies lim →0 S (p) = S(p) for all p ∈ R (A3) There exists a constant κ > 0 such that κ (s) > κ for all s ∈ [0, 1]. (A4) The regularized saturation function satisfies S ∈ C 1 (R) (A5) The regularized composite function satisfies κ • S ∈ C 1 (R).

1 Figure 3 :

 13 Figure 3: [λ 1 = 2, p M = -0.2, k = 2] Regularization of the relative permeability (left) (10) and of the saturation (11) (right) for the Brooks-Corey model (7a).
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 4 Figure 4: [p M = 0, λ 2 = 0.66] Regularization of the relative permeability (8) of the the van Genuchten-Mualem model[START_REF] Brezzi | Mixed and Hybrid Finite Element Methods[END_REF]. We do not regularize the saturation in this case, since it it already smooth.
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 11131511171 Uniform mesh with 40 × 40 × 2 elements • T = Adaptive regularization for the Richard equation Initialization: Choose an initial guess p 0,0 0,h ∈ V D h and initialize the time step counter n := 0 Parameters : γ reg , γ lin , ¯ 1 , C1 ∈ (0, 1) 1 p prev := p 0,0 0,h 2 while t n < T do Initialize j := 0, k := 0, j := 0 Loop Initialize

Figure 5 :

 5 Figure 5: [ §6.1, van Genuchten-Mualem model (8) with p m = 0, S R = 0.026, S V = 0.42, κ c = 0.12, α = 0.551, λ 2 = 0.655, solver parameters: γ reg = 0.2, γ lin = 0.3, C1 = 0.1] Approximate pressure p j, k n,h for the problem in §6.1 using Algorithm 1 with Newton's method and adaptive regularization ¯ 1 = 0.1 (left) and modified Picard with no regularization ¯ 1 = 0 (right).
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 67 Figure 6: [ §6.1, van Genuchten-Mualem model[START_REF] Brezzi | Mixed and Hybrid Finite Element Methods[END_REF] with p m = 0, S R = 0.026, S V = 0.42, κ c = 0.12, α = 0.551, λ 2 = 0.655, solver parameters: γ reg = 0.2, γ lin = 0.3, C1 = 0.1, ¯ 1 = 0.1] Evolution of the component estimators[START_REF] List | A study on iterative methods for solving Richards' equation[END_REF] for the Algorithm 1 with Newton's method and adaptive regularization with ¯ 1 = 0.1 applied to the test problem in §6.1.
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 8 Figure 8: [ §6.2, Brooks-Corey model (7a) p M = -0.2, λ 1 = 2.239, solver parameters γ reg = 0.2, γ lin = 0.3, C1 = 0.1, ¯ 1 = 0.1] Plots of the evolution of the estimators on the second and third timesteps (left) and of the fifth, sixth and seventh timesteps (right).

Figure 9 :

 9 Figure 9: [ §6.2, Brooks-Corey model (7a) with p M = -0.2, λ 1 = 2.239, solver parameters γ reg = 0.2, γ lin = 0.3, C1 = 0.1] Two snapshots comparing the evolution of the saturation field s = S(p j, k n,h ) using the Algorithm 1 with Newton's method and adaptive regularization ¯ 1 = 0.1 (left) and modified Picard with no regularization ¯ 1 = 0 (right).

Figure 10 :

 10 Figure 10: Schematic of the boundary and initial conditions for the test problem considered in §6.3.

Figure 11 :

 11 Figure 11: [ §6.3, Brooks-Corey model (7a) with p M = -0.2, λ 1 = 2, solver parameters γ reg = 0.2, γ lin = 0.3, C1 = 0.1, ¯ 1 = 0.1] Comparison of the total cumulative and stepwise iterations for the strategies.

Figure 12 :

 12 Figure 12: [ §6.3, Brooks-Corey model (7a) with p M = -0.2, λ 1 = 2, solver parameters γ reg = 0.2, γ lin = 0.3, C1 = 0.1, ¯ 1 = 0.1] Evolution of the estimators on the first and second timesteps (upper) and of the 22nd, 23rd and 24th timesteps (lower).

Figure 13 :

 13 Figure 13: [ §6.2, Brooks-Corey model (7a) with p M = -0.2, λ 1 = 2, solver parameters γ reg = 0.2, γ lin = 0.3, C1 = 0.1] Two snapshots comparing the evolution of the saturation field s = S(p j, k n,h ) using the adaptive regularization Algorithm 1 with Newton's method and ¯ 1 = 0.1 (left) and modified Picard with ¯ 1 = 0 (right).