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. The main goal of the paper is to establish that these solutions converge exponentially fast to a constant state, and to specify the convergence rate in terms of the viscosity coefficients.

We also prove exponential decay estimates for the solutions to the inhomogeneous incompressible Navier-Stokes equations. This latter result extends to the torus case the recent paper [9] dedicated to this system in smooth bounded domains.

Introduction

In this article, our main object of study is the long-time behavior of global solutions to the barotropic compressible Navier-Stokes system in a general two-dimensional periodic box T 2 . This system that governs the evolution of the density ρ = ρ(t, x) ∈ [0, ∞) and of the velocity field u = u(t, x) ∈ R 2 of compressible viscous flows reads:

(CN S)        ρ t + div (ρu) = 0 in R + × T 2 , (ρu) t + div (ρu ⊗ u) -µ∆u -(λ+µ)∇div u + ∇P = 0 in R + × T 2 , (ρ, u)| t=0 = (ρ 0 , u 0 ) in T 2 .
Above, the pressure P is a given function of the density and the real numbers λ and µ are the bulk and shear viscosity coefficients, respectively, they are assumed to satisfy (0.1) µ > 0 and ν := λ + 2µ > 0.

It is well known that sufficiently smooth solutions of (CNS) satisfy for all t ≥ 0 :

• the conservation of total mass and momentum, namely (0.2)

T 2 ρ(t, x) dx = T 2
ρ 0 (x) dx and

T 2 (ρu)(t, x) dx = T 2
(ρ 0 u 0 )(x) dx;

• the following energy balance:

(0.3) E(t) + t 0 (µ ∇Pu(τ ) 2 L 2 + ν div u(τ ) 2 L 2 ) dτ = E(0) =: E 0 with E(t) := T 2
1 2 ρ(t, x) |u(t, x)| 2 + e(t, x) dτ.

Above, e stands for the potential energy of the fluid defined (up to a linear function) by (0.4) e(ρ) := ρ ρ ρ P (s) s 2 ds -

P (ρ) ρ (ρ -ρ) = ρ ρ ρ P (s) -P (ρ) s 2 ds, ρ ∈ R + .
For simplicity, we here focus on the isentropic case, namely (0.5) P (ρ) = κρ γ with κ > 0 and γ ≥ 1.

Note that for κ = ρ = 1, we have

(0.6) e(ρ) = ρlog ρ -ρ + 1 if γ = 1, ρ γ γ-1 -γρ γ-1 + 1 if γ > 1.
Since the 60ies, a number of mathematical works have been dedicated to studying the well-posedness of (CNS) in various domains. On the one hand, whenever the data are smooth enough and bounded away from vacuum (i.e. inf ρ 0 > 0), one can construct smooth local-in-time solutions [START_REF] Nash | Le problème de Cauchy pour les équations différentielles d'un fluide général[END_REF], that are global in the perturbative regime of a stable constant solution [START_REF] Matsumura | The initial value problem for the equations of motion of viscous and heat-conductive gases[END_REF]. On the other hand, by taking advantage of the energy balance (0.3), one can produce global-in-time weak solutions with finite energy [START_REF] Feireisl | Dynamics of viscous compressible fluids[END_REF][START_REF] Lions | Incompressible Models[END_REF].

Here we are interested in an intermediate situation, first considered by D. Hoff in [START_REF] Hoff | Global well-posedness of the Cauchy problem for the Navier-Stokes equations of nonisentropic flow with discontinuous initial data[END_REF], where the density has no regularity but where the velocity is more regular than required for (0.3). We shall adopt the framework that has been introduced by B. Desjardins in [START_REF] Desjardins | Regularity of weak solutions of the compressible isentropic Navier-Stokes equations[END_REF] and used more recently by the first author in a recent joint paper with P.B. Mucha [START_REF] Danchin | Compressible Navier-Stokes equations with ripped density[END_REF]: the initial velocity u 0 is in H 1 (T 2 ) and the initial density ρ 0 is only bounded:

(0.7) 0 ≤ ρ 0 ≤ ρ * 0 := sup x∈T 2 ρ 0 (x) < ∞.
In the smooth situation with periodic boundary conditions, it is expected that global solutions with 'nice' properties converge exponentially fast to (ρ, 0) with ρ being the mean value of ρ 0 , when time goes to infinity. This fact has been proved recently for the full Navier-Stokes equations in T 3 , see [START_REF] Zhang | Convergence to equilibrium for the solution of the full compressible Navier-Stokes equations[END_REF], and in smooth bounded domains [START_REF] Danchin | Critical regularity issues for the compressible Navier-Stokes system in bounded domains[END_REF]. It turns out to be also true for not so smooth data with, possibly, vacuum. In this direction, one may mention the recent paper [START_REF] Wu | Global Stability and Non-Vanishing Vacuum States of 3D Compressible Navier-Stokes Equations[END_REF] by G. Wu, L. Yao and Y. Zhang. There, density is in W 1,q (T 3 ) for some q > 3 (which, unfortunately precludes handling discontinuous densities) but not necessarily positive everywhere, and the velocity is in H 2 (T 3 ).

Both [START_REF] Wu | Global Stability and Non-Vanishing Vacuum States of 3D Compressible Navier-Stokes Equations[END_REF] and [START_REF] Zhang | Convergence to equilibrium for the solution of the full compressible Navier-Stokes equations[END_REF] required a priori the density to stay uniformly bounded for all positive time. Our main goal here is to get rid of this assumption and to prove that the global solutions that have been constructed in [START_REF] Danchin | Compressible Navier-Stokes equations with ripped density[END_REF] under much weaker regularity assumptions converge exponentially fast to the constant state (ρ, 0). We shall also specify the rate of convergence with respect to the viscosity coefficients, pointing out that the viscous effective flux G := νdiv u -P has faster decay. As a by-product of our results, we shall obtain an accurate control on the lower and upper bound of the density. In particular, no vacuum may appear if there is no vacuum initially.

The rest of the paper is structured as follows. In the first section, as a warm-up, we prove exponential decay of solutions in a simpler situation, namely that of the inhomogeneous incompressible Navier-Stokes equations under similar assumptions on the data. The bulk of the paper is Section 2. There, we state different families of time decay estimates for (CNS), involving the energy and higher order quantities. Some key Poincaré type inequalities specific to the torus case are presented in Appendix.

Notation. Throughout the text, A

B means that A ≤ CB, where C stands for various positive real numbers the value of which does not matter. The notation L p will designate L p (Ω, d ¯x) with d ¯x the normalized Lebesgue measure on T d . The notation for the convective derivative:

u def = u t + u • ∇u. Finally, P (resp. Q) denotes the Leray projector on divergence free (resp. potential) vector fields.

The incompressible case

Here we are concerned with the inhomogeneous incompressible Navier-Stokes system:

(IN S)              ρ t + div (ρu) = 0 in R + × T d , (ρu) t + div (ρu ⊗ u) -µ∆u + ∇P = 0 in R + × T d , div u = 0 in R + × T d , (ρ, u)| t=0 = (ρ 0 , u 0 ) in T d ,
where ρ, u stand for the density and velocity of the fluid, respectively, and P is the (scalar) pressure function. Note that in contrast with the compressible situation, the pressure is not given.

In a recent paper [START_REF] Danchin | The incompressible Navier-Stokes equations in vacuum[END_REF], P.B. Mucha and the first author established a global-in-time existence and uniqueness result for (INS) supplemented with any data (ρ 0 , u 0 ) with ρ 0 just satisfying (0.7) and divergence free u 0 in H 1 . A 'commercial' version of the result obtained therein reads:

Theorem 1.1. Let d = 2, 3. Let ρ 0 satisfy (0.7) and let u 0 ∈ H 1 (T d ) be such that div u 0 = 0. If d = 3, assume additionally that (ρ * 0 ) 3/2 √ ρ 0 u 0 L 2 ∇u 0 L 2 ≪ µ 2 .
Then, System (INS) admits a unique global solution (ρ, u, P ) such that (among others)

(1.1) ρ ∈ L ∞ (R + ; L ∞ ), u ∈ L ∞ (R + ; H 1 ), √ ρu t , ∇ 2 u, ∇P ∈ L 2 (R + ; L 2 ), ∇u ∈ L 1,loc (R + ; L ∞ ), √ ρu ∈ C(R + ; L 2 ) and ρ ∈ C(R + ; L p ) for all 1 ≤ p < ∞.
In another recent paper [START_REF] Danchin | Stability of the density patches problem with vacuum for incompressible inhomogeneous viscous flows[END_REF] in collaboration with P.B. Mucha and T. Piasecki, the first author established that the solutions of the above theorem have exponential decay, if the fluid domain is smooth and bounded. As a warm-up, we shall establish that exponential decay also holds in the torus case: Theorem 1.2. Let (ρ, u) be a solution to (INS) given by Theorem 1.1. There exists a positive constant C 0 depending only on the initial data and on the measure of T d , and 0 < β 2 < β 1 such that for all t ≥ 0, we have:

T d ρ(t) |u(t)| 2 d ¯x ≤ e -β 1 t T d ρ 0 |u 0 | 2 d ¯x, (1.2) sup t∈R + ∇u(t) L 2 ≤ C 0 e -β 2 t , (1.3) ∞ 0 e 2β 2 t ρ(t)u t (t) 2 L 2 + ∇ 2 u(t) 2 L 2 + ∇P (t) 2 L 2 dt ≤ C 0 . (1.4)
Furthermore, there exists β 3 < β 1 , we have

(1.5) sup t∈R + √ ρt e β 3 t u t (t) 2 L 2 + sup t∈R + √ t e β 3 t (∇ 2 u, ∇P )(t) 2 L 2 + ∞ 0 e 2β 3 t √ t∇u t 2 L 2 dt ≤ C 0 ,
Finally, there exists β 4 < β 1 , we have

e β 4 t (∇ 2 u, ∇P ) ∈ L 1 (R + ; L r (T d )) for all r < ∞, (1.6) e β 4 t ∇u ∈ L 1 (R + ; L ∞ (T d )). (1.7)
Proof. What differs from [START_REF] Danchin | Stability of the density patches problem with vacuum for incompressible inhomogeneous viscous flows[END_REF] is the proof of (1.2), as the classical Poincaré inequality that we would like to apply to z = u:

(1.8) z L 2 ≤ c T d ∇z L 2 ,
is valid only for functions with mean value zero. As a a substitute, we shall use (A.8) (see the Appendix). Now, testing the momentum equation by u, we get 1 2

d dt T d ρ |u| 2 d ¯x + µ T d |∇u| 2 d ¯x = 0.
Using (A.8) and the fact that ρ(t) L 2 is time independent, we get

c 2 T d ρ 0 2 L 2 2µ d dt T d ρ |u| 2 d ¯x + T d |u| 2 d ¯x ≤ 0.
Multiplying both sides by ρ * 0 and using the obvious facts that ρ |u| 2 ≤ ρ * 0 |u| 2 and that ρ(t) L∞ is time independent, we obtain

1 β 1 d dt T d ρ |u| 2 d ¯x + T d ρ |u| 2 d ¯x ≤ 0 with β 1 := 2µ ρ * 0 c 2 T d ρ 0 2 L 2 , whence (1.2).
Proving (1.3) and (1.4) from (1.2) is the same as for Lemma 6 in [START_REF] Danchin | Stability of the density patches problem with vacuum for incompressible inhomogeneous viscous flows[END_REF]. Combining these two inequalities with the following Gagliardo-Nirenberg inequalities: ensures in addition that

(1.9) ∞ 0 e 2 β 2 t u 2 L∞ + ∇u 2 L 3 dt ≤ C 0 , β 2 < β 2 .
Indeed, the above inequalities combined with (1.3), (1.4) (and (A.8

) if d = 2) give ∞ 0 e 2 β 2 t u 2 L∞(T 2 ) dt ≤ C 0 ,
and we have u L∞(T 2 ) ≤ |ū| + u L∞(T 2 ) with, owing to (A.5) and to (1.8),

(1.10) |ū| ≤ c T 2 ρ 0 -1 L 2 ∇u L 2 .
Proving the second part of (1.9) is left to the reader.

For proving (1.5), it is only a matter of showing that

(1.11) e βt √ t √ ρu t L∞(L 2 ) + e βt √ t∇u t L 2 (0,T ×T 2 ) ≤ C 0 .
Note that the momentum equation of (IN S) may be seen as the following Stokes system:

(1.12)

-∆u + ∇P = ρ u and div u = 0 in R + × T 2 .
Hence using

(1.13) z L 4 (T d ) z 1-d 4 L 2 (T d ) ∇z d 4 L 2 (T d ) , d = 2, 3,
implies that

e βt √ t∇ 2 u L 2 + e βt √ t∇P L 2 ≤ C( e βt √ t √ ρu t L 2 + e βt √ t √ ρu • ∇u L 2 ) ≤ C( e βt √ t √ ρu t L 2 + ρ * 0 e βt √ t u L 4 ∇u 1-d 4 L 2 ∇ 2 u d 4
L 2 ) whence, by Young inequality and (1.3), (1.10), (1.13),

(1.14) e βt √ t(∇ 2 u, ∇P ) L∞(L 2 ) C 0 (ρ * 0 ) 2 4-d √ te (β-2β 2 )t + e βt √ t √ ρu t L∞(L 2 ) .
To prove (1.11), apply ∂ t to the momentum equation of (INS). We get

ρu tt + ρu • ∇u t -∆u t + ∇P t = -ρ t u -ρu t • ∇u.
By taking the L 2 scalar product of the above equation with e 2βt u t , we obtain 1 2

d dt T d ρe 2βt t |u t | 2 d ¯x+ T d e 2βt t |∇u t | 2 d ¯x ≤ β T 2 e 2βt tρ |u t | 2 d ¯x+ 1 2 T d e 2βt ρ |u t | 2 d ¯x - T d e 2βt tρ t u • u t d ¯x - T d e 2βt tρ(u t • ∇u) • u t d ¯x = 4 i=1 I i .
For term I 1 , using (A.7), (1.2) and (1.3) gives:

I 1 ≤βρ * 0 te 2βt u t 2 L 2 ≤Cβρ * 0 te 2βt ((ρ * 0 ) 2 u 2 L 2 ∇u 2 L 2 + c 2 T d ∇u t 2 L 2 ) ≤Cβρ * 0 c 2 T d te 2βt ∇u t 2 L 2 + C 2 0 β(ρ * 0 ) 3 te 2(β-2β 2 )t •
For term I 3 , the mass equation of (IN S) and integration by parts yield Since ∇ u = ∇u t + ∇(u • ∇u), we may write (1.15)

I 3 = T d e 2βt tdiv (
I 31 = - T d e 2βt t(ρu • ∇u t ) • u t d ¯x - T d e 2βt t(ρu • u • ∇ 2 u) • u t d ¯x - T d e 2βt t(
e βt √ t √ ρu t L 6 (T d ) ≤ e βt √ t ρ * 0 (ρ * 0 u L 2 (T d ) ∇u L 2 (T d ) + c T d ∇u t L 2 (T d )
). Now, by Hölder inequality, we have

I 311 ≤ ρ * 0 √ te βt ∇u t L 2 (T d ) √ ρte βt u t L 2 (T d ) u L∞(T d ) .
For term I 312 , applying (1.15) yields

I 312 ≤ ρ * 0 ∇ 2 u L 2 (T d ) u 2 L 6 (T d ) e βt √ t √ ρu t L 6 (T d ) √ te βt ∇ 2 u L 2 (T d ) u 2 L 6 (T d ) √ te βt (e βt √ t u L 2 (T d ) ∇u L 2 (T d ) + e βt √ t∇u t L 2 (T d ) )•
Let us just treat I 313 in the case d = 3 (the case d = 2 is left to the reader). Then, taking advantage of Sobolev embedding Ḣ1 (T 3 ) ֒→ L 6 (T 3 ) and Young inequality, we get

I 313 ≤ ρ * 0 ∇u 2 L 6 u L 6 e βt √ t √ ρu t L 2 √ te βt e βt √ t √ ρu t 2 L 2 ∇ 2 u 2 L 2 + e 2βt t ∇ 2 u 2 L 2 ∇u 2 L 2 • Sobolev embedding directly implies that I 31 ≤ ε e βt √ t∇u t 2 L 2 (T 3 ) + Cte 2βt ∇ 2 u L 2 ∇u 2 L 2 u L 2 ∇u L 2 + C e βt √ t √ ρu t 2 L 2 ( u 2 L∞ + ∇ 2 u 2 L 2 ) + Cte 2βt ∇ 2 u 2 L 2 ∇u 2 L 2 (1 + ∇u 2 L 2 ) ≤ ε e βt √ t∇u t 2 L 2 (T 3 ) + C 4 0 te 2(β-2β 2 )t ∇ 2 u L 2 + C e βt √ t √ ρu t 2 L 2 ( u 2 L∞ + ∇ 2 u 2 L 2 ) + C 2 0 te 2(β-β 2 )t (1 + e -2β 2 t ) ∇ 2 u 2 L 2 . For I 32 , embedding H 1 (T d ) ֒→ L 6 (T d ) ensures that for all ε > 0, I 32 ≤ ρ * 0 e βt √ t∇u t L 2 ( u L∞ e βt √ t √ ρu t L 2 + ρ * 0 e βt √ t ∇u L 6 u 2 L 6 ) ε e βt √ t∇u t 2 L 2 (T 2 ) + C( u 2 L∞ e βt √ t √ ρu t 2 L 2 + C 2 0 te 2(β-2β 2 )t (1 + ∇ 2 u 2 L 2 )).
For I 4 , thanks to (1.15), (1.3) and Young inequality, one has

I 4 ≤ e βt √ t √ ρu t L 2 ∇u L 3 e βt √ t √ ρu t L 6 ≤ ε e βt √ t∇u t 2 L 2 + Cρ * 0 e βt √ t √ ρu t 2 L 2 ∇u 2 L 3 + te 2βt (ρ * 0 ) 2 u 2 L 2 ∇u 2 L 2 ≤ ε e βt √ t∇u t 2 L 2 + Cρ * 0 (e -2β 2 t e βt √ t √ ρu t 2 L 2 e β 2 t ∇u 2 L 3 + C 2 0 te 2(β-2β 2 )t (ρ * 0 ) 2 ).
Putting together with (1.2), (1.3) and choosing ε small enough we conclude that for all β ≤ β 2 there exists a positive constant c only depending on β and β 2 such that

d dt T d ρe 2βt t |u t | 2 d ¯x + T d e 2βt t |∇u t | 2 d ¯x ≤ C √ ρe βt u t 2 L 2 + C 2 0 te -ct (1 + ∇ 2 u 2 L 2 + u 2 L∞ ) + C e βt √ t √ ρu t 2 L 2 ( u 2 L∞ + ∇ 2 u 2 L 2 + ∇u 2 L 3 ).
Hence, using Gronwall inequality and (1.4), (1.9) ensures (1.11) and thus (1.5).

Granted with this inequality, it is easy to establish the last two inequalities of the theorem. Clearly, the second one follows from the first one with r > d, Inequality (1.3) and the following Gagliardo-Nirenberg inequality:

∇z L∞ ≤ C ∇z θ L 2 ∇ 2 z 1-θ Lr and θ = 2(r -d) 2(r -d) + rd •
In order to prove (1.6), we observe that for 2 < r < ∞, we have

(1.16) z Lr ≤ C z γ L 2 ∇z 1-γ L 2 with γ = 1 + d r - d 2 •
Now, since (u, ∇P ) satisfies (1.12), using the L r regularity theory for the Stokes system and (1.16) implies that

∞ 0 e βt (∇ 2 u, ∇P ) Lr ≤ C ρ * 0 ∞ 0 e βt √ ρu t Lr + ρ * 0 u L∞ ∇u γ L 2 ∇ 2 u 1-γ L 2 dt •
On the one hand, by using (1.16), for all β < β 2 , the second term may be bounded by means of (1.3), (1.4), (1.9). On the other hand, owing to (1.16) and (1.5), we have for all

β < β 3 , ∞ 0 e βt √ ρu t Lr dt = ∞ 0 1 t 1-γ 2 e (β-γβ 2 -(1-γ)β 3 )t e β 2 t √ ρu t γ L 2 e β 3 t √ t∇u t 1-γ L 2 dt 1 0 dt t 1-γ + ∞ 1 e 2(β-β 3 )t dt 1 2 e β 2 t √ ρu t γ L 2 (R + ;L 2 ) e β 3 t √ t∇u t 1-γ L 2 (R + ;L 2 ) ≤ C 0 .
Putting together the above inequalities completes the proof of the theorem.

Remark 1.3. As in [START_REF] Danchin | Stability of the density patches problem with vacuum for incompressible inhomogeneous viscous flows[END_REF], we expect the above results to imply stability with respect to the data.

The compressible case

As a starting point of our study of (CNS), let us recall the result of [START_REF] Danchin | Compressible Navier-Stokes equations with ripped density[END_REF]. ρ 0 < ∞, and vector field u 0 in H 1 (T 2 ) satisfying for some fixed K > 0,

(2.2) div u 0 L 2 ≤ Kν -1/2 and T 2 ρ 0 u 0 d ¯x = 0.
Let us define the viscous effective flux G by the relation:

(2.3) G := νdiv u -P.
There exists a positive number ν 0 depending only on T 2 , κ, K, γ, µ,

√ ρ 0 u 0 L 2 , ∇u 0 L 2 and ρ 0 L∞ such that if ν > ν 0 then System (CNS) with pressure law (0.5) admits a global-in-time solution (ρ, u) fulfilling ρ ∈ L ∞ (R + × T 2 ) ∩ C(R + ; L p (T 2 )) for all p < ∞ and √ ρu ∈ C(R + ; L 2 (T 2 )), u ∈ L ∞ (R + ; H 1 (T 2 )), (∇ 2 Pu, ∇G, √ ρ u) ∈ L 2 (R + × T 2 ), √ ρt u ∈ L ∞,loc (R + ; L 2 (T 2 )) and √ t∇ u ∈ L 2,loc (R + ; L 2 (T 2 )).
In addition, both div u and curl u are in L r,loc (R + ; L ∞ (T 2 )) for all r < 2, and (0.2), (0.3) are satisfied on R + .

Our main goal is to prove that the solutions constructed in the above theorem converge exponentially fast to (ρ, 0), with ρ being the mean value of ρ 0 on T 2 , when the time goes to infinity. In this direction, let us state a first result.

Theorem 2.2. Let (ρ, u) be a solution to (CNS) given by Theorem 2.1. Set (2.4) G := G -Ḡ and P := P -P with Ḡ :=

T 2
G d ¯x and P :=

T 2 P d ¯x.
There exist two positive constants C 0 and ν 0 (depending on E 0 , ∇u 0 L 2 , ρ * 0 , µ, κ, T 2 and γ, but independent of t), α 1 depending only on µ, T 2 , and ρ * 0 , and c ρ * 0 depending only on T 2 , ρ * 0 , κ and γ, such that if ν > ν 0 , then we have for all t ≥ 0: (i) Exponential decay of the energy:

(2.5) E(t) ≤ 2E 0 e -α 0 t with α 0 := c ρ * 0 min µ ρ , ρP ′ (ρ) ν , and 
(2.6) D(t) ≤ 2D(0)e -α 1 t + C 0 ν -1 e -α 0 t with D := 1 2 T 2 ρ |u| 2 d ¯x + 1 ν T 2 e d ¯x.
(ii) Exponential decay of H 1 norms and of the viscous effective flux:

(2.7) ν div u(t) 2 L 2 + ∇Pu(t) 2 L 2 + ν -1 G(t) 2 L 2 ≤ C 0 e -α 1 2 t + ν -1 e -α 0 2 t , t ≥ 0.
(iii) Exponential decay of L 2 -in-time norms:

(2.8) ∞ 0 e α 0 4 t T 2 ρ |u t | 2 +|div u| 2 +µ 2 ∇ 2 Pu 2 +|∇G| 2 d ¯x+ν -1 | P (t)-1| 2 dt ≤ C 0 .
(iv) Exponential decay of the pressure:

(2.9)

P (t) L 2 ≤ C 0 e -α 0 4 t .
(v) Lower and upper bound of the density:

(2.10) 1 2 ρ 0, * ≤ ρ(t, x) ≤ C 0 for a.e. (t, x) ∈ R + × T 2 .
Remark 2.3. Looking at the definition of α 0 , the reader may find it odd that the rate of decay deteriorates when ν increases. This may be already observed on the linearized compressible Navier-Stokes about the constant state (ρ, 0). Assuming for simplicity that ρ = 1 and P ′ (ρ) = 1 and that T 2 is the torus with lengths 2π in the two directions, the eigenvalues corresponding to the frequency k ∈ Z 2 are:

• µ|k| 2 for Pu;

• λ ± k := -ν|k| 2 2 (1 ± R k ) with R k := 1 -4 ν 2 |k| 2
for the system satisfied by (a, div u).

In the asymptotics ν → ∞ then λ - k → -1/ν so that the overall decay of the solution is only e -t ν . At the same time, G tends to be a good approximation of the parabolic mode with diffusion ν, and it is thus expected that it decays faster. This has been indeed partially justified in the small data case (see [START_REF] Danchin | Compressible Navier-Stokes system : large solutions and incompressible limit[END_REF]). Whether it is still true in our context of large data with vacuum is an open question.

Our next result states that the time weighted quantities appearing at the end of Theorem 2.1 also have exponential decay.

Theorem 2.4. Under the assumptions of Theorem 2.2 we have in addition

sup t∈R + t e α 0 t √ ρ u 2 L 2 + ∇Pu(t) 2 L 2 + ν -1 G(t) 2 L 2 + ∞ 0 te α 0 t ∇G 2 L 2 + ∇ 2 Pu 2 L 2 + ∇ u 2 L 2 + div u 2 L 2 dt ≤ C 0
with α 0 defined as in Theorem 2.2 (but, possibly, smaller). Furthermore, for all small enough θ > 0, we have

∞ 0 e α 0 t G L∞ dt ≤ C 0 ν θ and ∞ 0 e α 0 t ∇Pu L∞ dt ≤ C 0 .
The rest of this section will be dedicated to proving the above results.

2.1. Proving Theorem 2.2. Throughout the proof, we shall denote by C 0 (resp. C 0,ρ * ) various 'constants' that only depend on E 0 , ∇u 0 L 2 , µ, κ, T d , γ and ρ * 0 (resp. ρ * ). We reserve the notation C ρ * for constants depending only on ρ * , γ and T 2 .

The first step of the proof is to establish (2.5) with ρ * instead of ρ * 0 , assuming that (2.11)

ρ * := sup (t,x)∈R + ×T 2 ρ(t, x) < ∞.
As in [START_REF] Wu | Global Stability and Non-Vanishing Vacuum States of 3D Compressible Navier-Stokes Equations[END_REF], this will be achieved by introducing a modified energy functional, equivalent to the classical energy. Once (2.5) (and its variation (2.6)) would have been proved, we will plug the exponential decay information in the higher order energy functional defined in [START_REF] Danchin | Compressible Navier-Stokes equations with ripped density[END_REF], so as to establish Inequalities (2.7), (2.8) and (2.9). This exponential decay will also enable us to get a precise control of the lower bound of the density (see (2.10)).

In the first four steps, we shall prove Inequalities (2.5), (2.6), (2.7), (2.8), (2.9) with C 0,ρ * instead of C 0 , under Assumption (2.11). In the fifth step, these inequalities, combined with a bootstrap argument, will be used to prove (2.10). Thanks to that, we will be able to get rid of the dependence on ρ * in (2.5), (2.6), (2.7), (2.8) and (2.9).

In order to simplify the presentation, we perform the change of unknowns (2.12)

ρ(t, x) = ρ ρ ρ µ t, ρ P ′ (ρ) µ x and u(t, x) = P (ρ) ρ u ρ µ t, ρ P ′ (ρ) µ x •
Note that (ρ, u) satisfies (CNS) in T 2 with viscosity coefficients λ and µ if and only if ( ρ, u) satisfies (CNS) with viscosity coefficients λ/µ and 1, pressure law P (r) = r γ , in the torus

T 2 := ρ√ P ′ (ρ) µ
T 2 , and the mean value of the density is 1. Therefore, in the rest of the proof, we will focus on the case κ = µ = ρ = 1 and remove all the tildes for notational simplicity. We shall use repeatedly that (2.13)

T d ρ(x) d ¯x = 1 and T d (ρu)(x) d ¯x = 0.
Step 1: Exponential decay of the energy functional. Our starting point is the energy balance (0.3) before time integration, namely:

d dt E(t) + T 2 |∇u| 2 d ¯x + (λ + 1) T 2 |div u| 2 d ¯x = 0. Since (2.14) ∇u 2 L 2 + (λ + 1) div u 2 L 2 = ∇Pu 2 L 2 + ν div u 2 L 2 and ν = λ + 2, we have (2.15) d dt E(t) + T 2 |∇Pu| 2 d ¯x + ν T 2 |div u| 2 d ¯x = 0.
Let a := ρ -1. As P = (1 + a) γ with γ ≥ 1, the following inequality (that can be proved by considering separately the cases a ∈ [-1, 0] and a ≥ 0) is true:

aP ≥ a + a 2 .
As the mean value of a is 0, we thus get:

(2.16)

T 2 a 2 d ¯x ≤ T 2 aP d ¯x.
Applying the operator (-∆) -1 div to the momentum equation yields (2.17)

P = (-∆) -1 div (ρu) t + div (ρu ⊗ u) + νdiv u.
Hence, thanks to the first equation of (CN S), Cauchy-Schwarz inequality and the properties of continuity of (-∆) -1 ∇ 2 in L 2 , we obtain

T 2 aP d ¯x = T 2 (-∆) -1 div (ρu) t + div (ρu ⊗ u) • a d ¯x + ν T 2 a div u d ¯x = d dt T 2 (-∆) -1 div (ρu) • a d ¯x - T 2 ∇(-∆) -1 div (ρu) • ρu d ¯x + T 2 (-∆) -1 div (div (ρu ⊗ u)) • a d ¯x + ν T 2 a div u d ¯x ≤ d dt T 2 (-∆) -1 div (ρu) • a d ¯x + ρu 2 L 2 + ρu ⊗ u L 2 a L 2 + ν div u L 2 a L 2 .
Along with (2.16) and Young inequality, the above inequality implies that

- 1 ν d dt T 2 (-∆) -1 div (ρu) • a d ¯x + 1 ν T 2 a 2 d ¯x ≤ ρ * ν √ ρu 2 L 2 + 1 ν ρu ⊗ u 2 L 2 + ν div u 2 L 2 + 1 2ν a 2 L 2 .
Now, combining Hölder inequality and Sobolev inequality (A.3) with p = 6 yields

ρ 1/4 u ⊗ u 2 L 2 ≤ √ ρu L 2 u 3 L 6 ≤ Cc T 2 √ ρu L 2 (ρ * ) 3 ∇u 3 L 2 • (2.18)
Hence, for some suitable C ρ * depending continuously on ρ * ,

- 1 ν d dt T 2 (-∆) -1 div (ρu)•a d ¯x+ 1 2ν a 2 L 2 ≤ 2ρ * ν √ ρu 2 L 2 +C ρ * c 2/3 T 2 ν ∇u 6 L 2 +ν div u 2 L 2 .
Since ∇u L 2 is bounded uniformly in time in terms of the initial data (see [7, Proposition 2.1]), thanks to (A.1) and (2.13), we conclude that

(2.19) - 1 ν d dt T 2 (-∆) -1 div (ρu) • a d ¯x + 1 2ν a 2 L 2 ≤ c T 2 C 0 ν ∇u 2 L 2 + ν div u 2 L 2 .
Consequently, if we set for some η ∈ (0, 1) (that will be completely fixed at the end of the proof):

(2.20)

Ě := E - η ν T 2 (-∆) -1 div (ρu) • a d ¯x,
then we get, thanks to (2.15),

(2.21) d dt Ě + ∇Pu 2 L 2 + ν(1 -η) div u 2 L 2 + η 2ν a 2 L 2 ≤ C 0 ηc 2 T 2 ν -1 ∇u 2 L 2 .
As the mean value of a is 0, owing to Poincaré inequality and to Lemma A.3, we have

η ν T 2 (-∆) -1 div (ρu) • a d ¯x ≤ η ν ∆ -1 div (ρu) Ḣ1 a Ḣ-1 ≤ η ν ρ * √ ρu L 2 a L 2 ≤ η 2 ν 2 C 2 ρ * 2 √ ρu 2 L 2 + 1 2 e L 1 . (2.22) Therefore, choosing η ≤ ν/(4C ρ * ) implies Ě ≃ E. Furthermore, since ∇u 2 L 2 = ∇Pu 2 L 2 + div u 2 L 2 , it is not difficult to see from (2.21) that if, additionally ηc 2
T 2 ≤ c 0 ν (with c 0 depending only on the data and on ρ * ), and ν ≥ 1 then

d dt Ě + 1 4 ∇u 2 L 2 + η 2ν a 2 L 2 ≤ 0.
Finally, by using Proposition A.1 and the obvious fact that ρ |u| 2 ≤ ρ * |u| 2 , we obtain

(2.23) 1 2c 2 T 2 (ρ * ) 3 T 2 ρ |u| 2 2 d ¯x ≤ 1 4 T 2 |∇u| 2 d ¯x, while Lemma A.3 yields η 2ν a 2 L 2 ≥ η 2C ρ * ν e L 1 .
Hence we end up with, using Ě ≃ E,

(2.24) d dt Ě + 1 4 min 1 (ρ * ) 3 c 2 T 2 , η C ρ * ν Ě ≤ 0.
If ν is large enough, then one can take η = 1/2, which allows to get (2.5) in the particular case ρ = κ = µ = 1. The general case follows after scaling back in (2.12).

Step 

T 2 |div u| 2 d ¯x = - T 2 ∇P • u d ¯x.
Now, performing an integration by parts in the last term, using (2.14) and putting together with (2.26) implies that

d dt D(t) + T 2 |∇Pu| 2 d ¯x + ν T 2 |div u| 2 d ¯x = (1 -ν -1 ) T 2 (P -1) div u d ¯x, with D(t) := 1 2 T 2 ρ(t, x) |u(t, x)| 2 d ¯x + 1 ν T 2 e(t, x) d ¯x.
Combining Cauchy-Schwarz inequality and (2.5) yields

T 2 (P -1) div u d ¯x ≤ C ρ * a L 2 div u L 2 ≤ ν 4 div u 2 L 2 + C 2 ρ * ν a 2 L 2 .
Further remember that (2.19) holds true. Hence, setting

Ď := D - 1 2ν T 2 (-∆) -1 div (ρu) • a d ¯x,
we discover that

d dt Ď + ∇Pu 2 L 2 + ν 4 div u 2 L 2 + 1 4ν a 2 L 2 ≤ C 0 ν ∇u 2 L 2 + C 2 ρ * ν a 2 L 2 .
Arguing as in (2.22), we see that Ď ≃ D for large enough ν, and Lemma A.3 also ensures that the term a 2 L 2 may be replaced with e L 1 in the left-hand side, up to a harmless constant depending only on ρ * and γ. This allows to conclude that

d dt Ď + 1 8 ∇u 2 L 2 + c ρ * ν e L 1 ≤ C 2 ρ * ν a 2 L 2 .
Using (2.23) and remembering the definition of D as well as the equivalence with Ď , this may be rewritten up to a change of C ρ * :

(2.28)

d dt Ď + α Ď ≤ C 2 ρ * ν e L 1 for all α ≤ min c ρ * , 1 8(ρ * ) 2 •
Hence, multiplying by e αt , then integrating and bounding e(t) L 1 according to Inequality (2.5), we get

e αt Ď(t) ≤ Ď(0) + 2E 0 C 2 ρ * ν t 0 e (α-α 0 )τ dτ.
Choosing α = 1 2 min c ρ * , 1 8(ρ * ) 2 and remembering Ď ≃ D completes the proof of (2.6).

Step 3: Exponential decay of higher order norms. In this step, we will prove (2.7) and, defining F 1 according to (A.9),

(2.29)

∞ 0 T 2 e α 0 4 t ρ |u t | 2 + (h + P + P ) |div u| 2 + ( P -1) 2 νF 2 1 (ρ * ) + 1 ρ * ∇ 2 Pu 2 + 1 ρ * |∇G| 2 d ¯x dt ≤ C 0,ρ * .
The first thing to do is to test the momentum equation of (CNS) by u t . We get

(2.30) 1 2 d dt T 2 |∇u| 2 d ¯x + λ+1 2 d dt T 2 |div u| 2 d ¯x + T 2 ρ |u t | 2 d ¯x + T 2 ∇P • u t d ¯x = - T 2 (ρu • ∇u) • u t d ¯x.
To handle the pressure term, we note that (2.31) P t + div (P u) + hdiv u = 0 with h := ρP ′ -P, which, along with the definition of G in (2.3), gives

T 2 P t div u d ¯x = 1 2ν d dt T 2 P 2 d ¯x + 1 ν T 2 P t G d ¯x = 1 2ν d dt T 2 P 2 d ¯x + 1 ν T 2 P u • ∇G d ¯x - 1 ν T 2 h G div u d ¯x. (2.32) Hence T 2 ∇P • u t d ¯x = - T 2 P • (div u) t d ¯x = - d dt T 2 P div u d ¯x + T 2 P t div u d ¯x = - d dt T 2 P div u d ¯x + 1 2ν d dt T 2 P 2 d ¯x + 1 ν T 2 P u • ∇G d ¯x - 1 ν T 2 h G div u d ¯x,
Plugging this identity in (2.30), then using (2.14) yields 1 2

d dt T 2 |∇Pu| 2 d ¯x + ν 2 d dt T 2 |div u| 2 d ¯x - d dt T 2 P div u d ¯x + 1 2ν d dt T 2 P 2 d ¯x + T 2 ρ |u t | 2 d ¯x = - T 2 (ρu • ∇u) • u t d ¯x - 1 ν T 2 P u • ∇G d ¯x + 1 ν T 2 h G div u d ¯x.
Remembering (2.3), we get

1 2 d dt T 2 |∇Pu| 2 d ¯x + 1 2ν d dt T 2 G 2 d ¯x + T 2 ρ |u t | 2 d ¯x = - T 2 (ρu • ∇u) • u t d ¯x - 1 ν T 2 P u • ∇G d ¯x + 1 ν T 2 h G div u d ¯x.
Inserting (2.15) divided by two into this inequality yields

(2.33) d dt 1 2 T 2 |∇Pu| 2 d ¯x + 1 4 T 2 ρ |u| 2 d ¯x + 1 2ν T 2 G 2 d ¯x + 1 2 T 2 e d ¯x + ν 2 T 2 |div u| 2 d ¯x + 1 2 T 2 |∇Pu| 2 d ¯x + T 2 ρ |u t | 2 d ¯x = - T 2 (ρu • ∇u) • u t d ¯x - 1 ν T 2 P u • ∇G d ¯x + 1 ν T 2 h G div u d ¯x.
In order to exhibit some exponential decay for G 

1 2 T 2 |∇Pu| 2 d ¯x + 1 4 T 2 ρ |u| 2 d ¯x + 1 2ν T 2 G 2 d ¯x + T 2 ρ |u t | 2 d ¯x + 1 2ν T 2 | G| 2 d ¯x + 1 2 T 2 |∇Pu| 2 d ¯x = - T 2 (ρu • ∇u) • u t d ¯x - 1 2ν T 2 P G d ¯x - 1 ν T 2 P u • ∇G d ¯x + 1 ν T 2 hGdiv u d ¯x.
Next, testing (2.31) with div u, using (2.32) and integrating by parts yields

(2.38) 1 2ν d dt T 2 P 2 d ¯x + T 2 h |div u| 2 d ¯x = 1 ν T 2 hGdiv u d ¯x - 1 2ν T 2 P 2 div u d ¯x. As ρ = P (ρ) = 1, Lemma A.3 implies that (2.39) 1 2ν T 2 | P | 2 d ¯x + ( P -1) 2 2ν ≤ F 1 (ρ * ) 2 2ν T 2 |a| 2 d ¯x.
Putting the above three relations together, we get

(2.40) 1 2 d dt T 2 |∇Pu| 2 d ¯x + 1 2 T 2 ρ |u| 2 d ¯x + 1 ν T 2 (G 2 + P 2 ) d ¯x + T 2 ρ |u t | 2 d ¯x + 1 2ν T 2 | G| 2 d ¯x + 1 2 T 2 |∇Pu| 2 d ¯x + T 2 h |div u| 2 d ¯x + 1 2νF 2 1 (ρ * ) T 2 | P | 2 d ¯x + ( P -1) 2 2νF 2 1 (ρ * ) ≤ - T 2 (ρu • ∇u) • u t d ¯x - 1 2ν T 2 P G d ¯x - 1 ν T 2 P u • ∇G d ¯x + 2 ν T 2 hGdiv u d ¯x - 1 2ν T 2 P 2 div u d ¯x + 1 2ν T 2 |a| 2 d ¯x.
To handle the right-hand side, let us rewrite the momentum equation in terms of the viscous effective flux G = νdiv u -P as follows:

(2.41) (∆u -∇div u) + ∇G = ρ u.

From it, we discover that

(2.42) ∆Pu 2 L 2 + ∇G 2 L 2 = ρ u 2 L 2 ≤ ρ * √ ρ u 2 L 2 .
In addition, we deduce from (2.31), (2.34) and P = -Ḡ that (2.43)

2 ν T 2 hG div u d ¯x = - 2 ν P T 2 hdiv u d ¯x + 2 ν T 2 hdiv u G d ¯x = 2 ν P T 2 P t d ¯x + 2 ν T 2 hdiv u G d ¯x = 1 2ν 
d dt P 2 + 1 2ν d dt Ḡ2 + 2 ν T 2 hdiv u G d ¯x,
and

- 1 2ν T 2 div u P 2 d ¯x = - 1 2 T 2 P |div u| 2 d ¯x - P 2ν T 2 div u P d ¯x + 1 2ν T 2 div u P G d ¯x = - 1 2 T 2 P |div u| 2 d ¯x - P 2 T 2 |div u| 2 d ¯x + P 2ν T 2 div u G d ¯x + 1 2ν T 2 div u P G d ¯x.
Insert (2.42), (2.43) and the above inequality into (2.40) and use

(2.44)

T 2 |G| 2 d ¯x = | Ḡ| 2 + T 2
| G| 2 d ¯x and

T 2 |P | 2 d ¯x = | P | 2 + T 2 | P | 2 d ¯x. Let Φ := 1 2 T 2 |∇Pu| 2 d ¯x + 1 2ν T 2 G2 + P 2 d ¯x.
From the previous relations, we get (2.45)

d dt Φ + 1 4 T 2 ρ |u| 2 d ¯x + 1 2ν T 2 | G| 2 d ¯x + 1 2νF 2 1 (ρ * ) T 2 | P | 2 d ¯x + 1 2 T 2 |∇Pu| 2 d ¯x+ ( P -1) 2 2νF 2 1 (ρ * ) + T 2 ρ |u t | 2 d ¯x+ T 2 h |div u| 2 d ¯x+ T 2 (P + P ) 2 |div u| 2 d ¯x + 1 4ρ * T 2 |∆Pu| 2 d ¯x + 1 4ρ * T 2 |∇G| 2 d ¯x ≤ 1 4 √ ρ u 2 L 2 - 1 2ν T 2 P G d ¯x - T 2 ρu • ∇u • u t d ¯x - 1 ν T 2 P u • ∇G d ¯x + 2 ν T 2 hdiv u G d ¯x + P ν T 2 div u G d ¯x + 1 2ν T 2 div u P G d ¯x + 1 2ν T 2 |a| 2 d ¯x =: 8 j=1 I j .
Now, from the definition of u and Young's inequality, we have (2.46)

I 1 + I 3 ≤ 3 4 T 2 ρ |u t | 2 d ¯x + 3 2 T 2 ρ |u • ∇u| 2 d ¯x.
The first term can be absorbed by the left-hand side of (2.45). For the second one, we use that

(2.47) u = Pu - 1 ν ∇(-∆) -1 G - 1 ν ∇(-∆) -1 P .
Hence, since ∇ 2 (-∆) -1 maps L 4 (T 2 ) to itself and owing to (A.2) with p = 4, we get

√ ρu•∇u 2 L 2 ≤ 3 √ ρu•∇Pu 2 L 2 + 3 ν 2 √ ρu•∇ 2 (-∆) -1 G 2 L 2 + 3 ν 2 √ ρu•∇ 2 (-∆) -1 P 2 L 2 ρ * ρ 1 4 u 2 L 4 ( ∇Pu L 2 ∇ 2 Pu L 2 + 1 ν 2 G L 2 ∇G L 2 + 1 ν 2 P L 2 P L∞ ) ≤ C ρ 1 4 u 4 L 4 (ρ * ) 2 ∇Pu 2 L 2 + (ρ * ) 2 ν 4 G 2 L 2 + ρ * F 2 1 (ρ * ) ν 3 P 2 L∞ + 1 12ρ * ∇ 2 Pu 2 L 2 + 1 24ρ * ∇G 2 L 2 + 1 12νF 2 1 (ρ * ) P 2 L 2 .
Remembering (2.18), the bound ∇u L∞(R + ;L 2 ) ≤ C 0 and (2.6), we get (2.48)

ρ 1/4 u 4 L 4 ≤ C 0,ρ * e -α 1 2 t + ν -1 e -α 0 2 t • Hence, (2.49) 3 2 √ ρu • ∇u 2 L 2 ≤ C 0,ρ * e -α 1 2 t + ν -1 e -α 0 2 t + 1 8ρ * ∇ 2 Pu 2 L 2 + 1 16ρ * ∇G 2 L 2 + 1 8νF 2 1 (ρ * ) P 2 L 2 .
For I 4 , we just write that (2.50)

I 4 ≤ 1 ν (ρ * ) γ-1 2 √ ρu L 2 ∇G L 2 ≤ 8(ρ * ) 2γ ν 2 √ ρu 2 L 2 + 1 32ρ * ∇G 2 L 2 .
For the other terms, one takes advantage of Young's inequality and (1.8) to get

I 2 = - 1 2ν T 2 P G d ¯x ≤ 1 8νF 2 1 (ρ * ) T 2 | P | 2 d ¯x + c 2 T 2 F 2 1 (ρ * ) 2ν T 2
|∇G| 2 d ¯x,

I 5 = 2 ν T 2 hdiv u G d ¯x ≤ 1 2 T 2 h |div u| 2 d ¯x + 2 h L∞ ν 2 T 2
| G| 2 d ¯x,

I 6 = P 2ν T 2 div u G d ¯x ≤ P 4 T 2 |div u| 2 d ¯x + P 4ν 2 T 2 | G| 2 d ¯x, I 7 = 1 2ν T 2 div u P G d ¯x ≤ 1 4 T 2 P |div u| 2 d ¯x + P L∞ 4ν 2 T 2 | G| 2 d ¯x.
Let us assume that ν ≥ max 16ρ * c 2 T 2 F 2 1 (ρ * ), 8 h L∞ + P + P L∞ , 4(ρ * ) γ √ α 1 so that in particular the sum of the coefficients of the last term in I 5 , I 6 , I 7 is smaller than 1 4ν and the coefficients of the first term in I 4 is smaller than α 1 /2 (where α 1 has been defined in Inequality (2.6)). Then, reverting to (2.45), we end up with

d dt Φ + 1 4 T 2 ρ |u| 2 d ¯x + Φ 4F 2 1 (ρ * ) + 1 2 T 2 ρ |u t | 2 d ¯x + ( P -1) 2 2νF 2 1 (ρ * ) + 1 2 T 2 h |div u| 2 d ¯x + T 2 (P + P ) 4 |div u| 2 d ¯x + 1 8ρ * T 2 ∇ 2 Pu 2 d ¯x + 1 16ρ * T 2 |∇G| 2 d ¯x ≤ C 0,ρ * e -α 1 2 t + ν -1 e -α 0 2 t + 1 2νc γ T 2 e d ¯x.
Inserting half of (2.28) (with α = α 0 /8) into the above inequality implies that

d dt Ψ + Φ 4F 2 1 (ρ * ) + α 1 2 Ď1 + 1 2 T 2 ρ |u t | 2 d ¯x + ( P -1) 2 2νF 2 1 (ρ * ) + 1 2 T 2 h |div u| 2 d ¯x + T 2 (P + P ) 4 |div u| 2 d ¯x + 1 8ρ * T 2 ∇ 2 Pu 2 d ¯x + 1 16ρ * T 2 |∇G| 2 d ¯x ≤ C 0,ρ * e -α 1 2 t + ν -1 e -α 0 2 t + C ρ * ,γ ν T 2 e d ¯x, with Ď1 := 1 2 T 2 ρ |u| 2 d ¯x + 1 2ν T 2 e d ¯x - 1 4ν T 2 (-∆) -1 div (ρu) • a d ¯x and Ψ := Φ + Ď1 .
Then, bounding e L 1 in the above inequality according to Inequality (2.6) and taking α ≤ min(α 1 , 1/(4F 2 1 (ρ * ))) yields 

d dt Ψ + αΨ + 1 2 T 2 ρ |u t | 2 d ¯x + 1 2 T 2 h |div u| 2 d ¯x + T 2 (P + P ) 4 |div u| 2 d ¯x + ( P -1) 2 2νF 2 1 (ρ * ) + 1 8ρ * T 2 ∇ 2 Pu 2 d ¯x + 1 16ρ * T 2 |∇G| 2 d ¯x ≤ C 0,ρ * e -α 1 2 t + ν -1 e -α 0 2 t • Taking α such that α 0 < 2 α < α 1 (
(ρ * ) + 1 8ρ * ∇ 2 Pu 2 + |∇G| 2 16ρ * d ¯x dτ ≤ Ψ(0) + C 0,ρ * α 1 -2 α + C 0,ρ * ν(2 α -α 0 ) e ( α-α 0 2 )t
which, owing to Ď1 ≃ D gives (2.7).

In order to get (2.29), we observe that (2.51) implies that (2.52)

t 0 e ατ f (τ ) dτ ≤ C 0,ρ * 1 + ν -1 e ( α-α 0 2 )t
for all t ≥ 0, with

f := ( P -1) 2 2νF 2 1 (ρ * ) + T 2 ρ |u t | 2 2 + h |div u| 2 2 + (P + P ) 4 |div u| 2 + 1 8ρ * ∇ 2 Pu 2 + |∇G| 2 8ρ * d ¯x.
Now, integrating by parts, we see that

t 0 e α 0 4 τ f (τ ) dτ = t 0 e ( α 0 4 -α)τ e ατ f (τ ) dτ = e ( α 0 4 -α)t t 0 e ατ f (τ ) dτ + α - α 0 4 t 0 e ( α 0 4 -α)τ τ 0 e ατ ′ f (τ ′ ) dτ ′ dτ.
Then, using Inequality (2.52) to bound the right-hand gives (2.29).

Step 4: Exponential decay of the pressure. Let hdiv u be the mean value of hdiv u. From (2.31) we gather that P satisfies ( P ) t + div ( P u) + (h + P )div u = hdiv u.

Hence, multiplying the above equation by e 2βt P and integrating on T 2 , one gets

1 2 d dt e 2βt T 2 P 2 d ¯x = β T 2 e 2βt P 2 d ¯x - 1 2 T 2 e 2βt div u P 2 d ¯x - T 2 e 2βt (h + P )div u • P d ¯x.
We have then by (2.7) and Hölder inequality:

1 2 d dt e 2βt T 2 | P | 2 d ¯x ≤βνe 2βt C 0,ρ * e -α * 2 t + ν -1 e -α 0 2 t + ν 1 2 div u L 2 ν -1 2 P L 2 e 2βt h + 1 2 ( P + P ) L∞ ≤e 2βt C 0,ρ * e -α * 2 t + ν -1 e -α 0 2 t βν + h + 1 2 ( P + P ) L∞ •
Now, integrating with respect to t and taking β = α 0 /4 gives (2.9).

Step 5: Upper bound of the density. This has been proved in [START_REF] Danchin | Compressible Navier-Stokes equations with ripped density[END_REF], and this does not require exponential decay estimates.

Reverting to the previous steps, this completes the proof of (2.5), (2.6), (2.7), (2.8) and (2.9).

Step 6: Lower bound of the density. We leave aside the case ρ 0, * = 0 and assume that (2.53)

ρ * := sup [0,T ]×T 2 ≥ ρ 0, * /2 > 0.
We claim that if ν is large enough (independently of T ), then (2.53) actually holds true with a strict inequality. To prove it, we observe that

∂ t log ρ + u • ∇log ρ = - 1 ν ( P + G),
and that applying div to the momentum equation of (CNS) gives ∆ G = ∂ t (div (ρu)) + div (div (ρu ⊗ u)).

Hence, following [START_REF] Desjardins | Regularity of weak solutions of the compressible isentropic Navier-Stokes equations[END_REF] and introducing

ϕ := log ρ -ν -1 (-∆) -1 div (ρu),
we discover that (2.54)

∂ t ϕ + u • ∇ϕ + P ν = - 1 ν i,j [u j , (-∆) -1 ∂ i ∂ j ]ρu i .
Observe that the map x → e x -1

x is increasing on R. Hence, taking x = log ρ γ yields

ρ γ ≤ 1 + M -log ρ with M -:= ρ γ * -1 log ρ * if ρ * ≤ ρ < 1, ρ γ ≤ 1 + M + log ρ with M + := (ρ * ) γ -1 log ρ * if 1 ≤ ρ ≤ ρ * . Let M (ρ) = M -if ρ * ≤ ρ < 1 and M (ρ) = M + if 1 ≤ ρ ≤ ρ * . From (2.54), we have ∂ t (-ϕ) + u • ∇(-ϕ) - M ϕ ν = P -M ϕ ν - P ν + 1 ν [u j , (-∆) -1 ∂ i ∂ j ]ρu i ≤ 1 - P ν + 1 ν [u j , (-∆) -1 ∂ i ∂ j ]ρu i + M ν 2 (-∆) -1 div (ρu)•
Hence, setting ϕ -= max {-ϕ, 0}, M * = min(M -, M + ) and M * = max (M -, M + ) yields

∂ t ϕ -+ u • ∇ϕ -+ M * ν ϕ -+ P -1 ν ≤ 1 ν [u j , (-∆) -1 ∂ i ∂ j ]ρu i + M * ν 2 (-∆) -1 div (ρu) • As P -1 = (γ -1) T 2 e d ¯x ≥ 0, this gives ∂ t ϕ -+ u • ∇ϕ -+ M * ν ϕ -≤ 1 ν [u j , (-∆) -1 ∂ i ∂ j ]ρu i + M * ν 2 (-∆) -1 div (ρu) , whence (2.55) ϕ -(t) L∞ ≤ e -M * ν t ϕ -(0) L∞ + 1 ν t 0 e -M * ν (t-τ ) [u j , (-∆) -1 ∂ i ∂ j ]ρu i L∞ dτ + M * ν 2 t 0 e -M * ν (t-τ ) (-∆) -1 div (ρu) L∞ dτ.
To bound the integrals, we proceed as in [START_REF] Desjardins | Regularity of weak solutions of the compressible isentropic Navier-Stokes equations[END_REF] : on the one hand Sobolev embedding and the continuity of Riesz operator ensure that

(2.56) (-∆) -1 div (ρu) L∞ ∇(-∆) -1 div (ρu) L 4 ρu L 4 .
On the other hand, Sobolev embedding and Coifman, Lions, Meyer and Semmes inequality [START_REF] Coifman | Compensated compactness and Hardy spaces[END_REF] enable us to write that

[u j , (-∆) -1 ∂ i ∂ j ]ρu i L∞ ∇u L 12 ρu L 4 ∇ 2 Pu L 2 + ν -1 ( ∇G L 2 + P L∞ ) ρu L 4 • (2.57)
Plugging (2.56) and (2.57) in (2.55), then using (2.29), (2.48) we end up with

ϕ -(t) L∞ ≤ ϕ -(0) L∞ + C 0,ρ * 1 ν 3/4 + M * νM * •
Hence, using the definition of ϕ and, again, (2.48), (2.56), we get

log 1 ρ ≤ log 1 ρ 0, * + C 0,ρ * 1 ν 3/4 + M * νM * on [0, T ].
In other words,

ρ(t) ρ 0, * ≥ exp - C 0,ρ * M * νM * exp - C 0,ρ * ν 3/4 for all t ∈ [0, T ].
It is clear that if ν is large enough, then the right-hand side is strictly larger than 1/2, and combining with a bootstrap argument allows to complete the proof.

2.2. Time weighted estimates with exponential decay. In this section, we prove Theorem 2.4. We need first the following intermediate result.

Proposition 2.5. Under the assumptions and notations of Theorem 2.1 in the particular case µ = ρ = P ′ (ρ) = 1, we have

t ∇Pu(t) 2 L 2 + ν -1 t G(t) 2 L 2 ≤ C 0 ν -1 e -α 0 3 t + e -α 2 t , (2.58) ∞ 0 e 2δt t √ ρ u 2 L 2 + ∇Pu 2 L 2 + ν div u 2 L 2 + t ∇G 2 L 2 + t ∇ 2 Pu 2 L 2 dt ≤ C 0 (2.59) with α 2 := min(α * , c -2
T 2 (ρ * ) -3 )/4 and δ := min(α 2 , α 0 )/4.

Proof. Testing the momentum equation of (CN S) with t u gives 1 2

d dt T 2 t |∇u| 2 d ¯x + λ + 1 2 d dt T 2 t |div u| 2 d ¯x + T 2 tρ | u| 2 d ¯x = - T 2 ∇P • tu t d ¯x + T 2 tρ u • (u • ∇u) d ¯x + 1 2 T 2 |∇u| 2 d ¯x + λ + 1 2 T 2 |div u| 2 d ¯x.
To handle the pressure term, we use (2.31) and integrate by parts to get

- T 2 ∇P • tu t d ¯x = d dt T 2 P tdiv u d ¯x + T 2 div (P u) • tdiv u d ¯x + T 2 hdiv u • tdiv u d ¯x - T 2 P div u d ¯x.
Putting the above two equations and (2.27), (2.14) together, we obtain 1 2

d dt T 2 t |∇Pu| 2 d ¯x + ν 2 d dt T 2 t |div u| 2 d ¯x + 1 2 d dt T 2 ρ |u| 2 d ¯x - d dt T 2 P tdiv u d ¯x + T 2 tρ | u| 2 d ¯x + 1 2 T 2 |∇Pu| 2 d ¯x + ν 2 T 2 |div u| 2 d ¯x = T 2 tρ u • (u • ∇u) d ¯x + T 2 div (P u) • tdiv u d ¯x + T 2 th(div u) 2 d ¯x,
which along with the fact that

ν 2 (div u) 2 = 1 2ν (G 2 -P 2 ) + P div u
and the following consequence of (2.38) and (2.43),

1 2ν d dt T 2 tP 2 d ¯x + T 2 th |div u| 2 d ¯x = 1 ν T 2 tG • hdiv u d ¯x - 1 2ν T 2 tP 2 div u d ¯x + 1 2ν T 2 P 2 d ¯x = 1 2ν d dt (t Ḡ 2 ) - 1 2ν Ḡ 2 + t ν T 2 hdiv u • G d ¯x - 1 2ν T 2 tP 2 div u d ¯x + 1 2ν T 2 P 2 d ¯x.
Remembering P = -Ḡ and using (2.44), the above three equalities gives

(2.60) 1 2 d dt T 2 t |∇Pu| 2 d ¯x + 1 2ν d dt T 2 t G 2 d ¯x + 1 2 d dt T 2 ρ |u| 2 d ¯x + T 2 tρ | u| 2 d ¯x + 1 2 T 2 |∇Pu| 2 d ¯x + ν 2 T 2 |div u| 2 d ¯x = T 2 tρ u • (u • ∇u) d ¯x + T 2 div (P u) • tdiv u d ¯x + 1 2ν T 2 P 2 dx - t 2ν T 2 P 2 div u dx + t ν T 2 hdiv u • G d ¯x.
Finally, taking advantage of (2.42) to incorporate t ∇ 2 Pu 2 L 2 and t ∇G 2 L 2 in the lefthand side of (2.60) and denoting

Π(t) := T 2 t(|∇Pu(t)| 2 + ν -1 | G(t)| 2 ) + ρ(t)|u(t)| 2 d ¯x, we end up with (2.61) d dt Π + T 2 t ρ| u| 2 + 1 ρ * (|∇ 2 Pu| 2 + |∇G| 2 ) d ¯x + T 2 |∇Pu| 2 + ν |div u| 2 d ¯x ≤ 1 ν T 2 P 2 dx + 2 T 2 tρ u • (u • ∇u) d ¯x + 2 T 2 div (P u) • tdiv u d ¯x - 1 ν T 2 tP 2 div u dx + 2 ν T 2 thdiv u • G d ¯x.
The first term in the right-hand side can be bounded according to (2.9). For the second one, we argue as for proving (2.49) except that we use

C 1 ν 2 P L 2 P L∞ ≤ 1 4ν 2 P 2 L 2 + C 2 ν 2 P L∞ . so that we get 2 T 2 tρ u • (u • ∇u) d ¯x ≤ t 2 √ ρ u 2 L 2 + t 4ρ * ∇ 2 Pu 2 L 2 + t 8ρ * ∇G 2 L 2 + t 2ν 2 P 2 L 2 +C 0 t e -α * 2 t + ν -1 e -α 0 2 t (ρ * ) 2 ∇Pu 2 L 2 + (ρ * ) 2 ν 4 G 2 L 2 + ρ * ν 2 P 2 L∞ •
Hence, bounding the terms with ∇Pu and G according to (2.7), we conclude that 2

T 2 tρ u • (u • ∇u) d ¯x ≤ t 2 √ ρ u 2 L 2 + t 4ρ * ∇ 2 Pu 2 L 2 + t 8ρ * ∇G 2 L 2 + t 2ν 2 P 2 L 2 + C 0 t e -α * 2 t + ν -1 e -α 0 2 t 2 + ν -2 e -α * 2 t + ν -1 e -α 0 2 t
• Next, using (2.7), we have

t ν T 2 P 2 div u d ¯x ≤ t ν div u L 2 P L∞ P L 2 ≤ C 0 ν t e -α * 2 t + ν -1 e -α 0 2 t • Hence, observing that t ν T 2 P 2 div u d ¯x ≤ t ν T 2 P 2 div u d ¯x + 2t ν | P | P L 2 div u L 2
and arguing as above for bounding the last term, we discover that

t ν T 2 P 2 div u d ¯x ≤ C 0 ν t e -α * 2 t + ν -1 e -α 0 2 t •
To handle the next term, we use (2.34) then integrate by parts to get

t T 2 div (P u) • div u d ¯x = t 2ν T 2 div u • P 2 d ¯x - t ν T 2 P • u • ∇G d ¯x.
The first term may be treated as above and for the second one, we use that thanks to Hölder and Young inequalities, (A.8), (2.7), then (2.42),

- t ν T 2 P • u • ∇G d ¯x ≤ 4tρ * ν 2 P 2 L∞ u 2 L 2 + t 16ρ * ∇G 2 L 2 ≤ 4c 2 T 2 t(ρ * ) 3 ν 2 P 2 L∞ ∇u 2 L 2 + t 16ρ * ∇G 2 L 2 ≤ C 0 ν -2 t e -α * 2 t + ν -1 e -α 0 2 t + t 16ρ * ∇G 2 L 2 .
To handle the last term of (2.61), using again Young inequality and (2.7) gives

t ν T 2 hdiv u • G ≤ t 16ρ * ∇G 2 L 2 + c 4 T 2 t ν 2 div u 2 L 2 ≤ t 16ρ * ∇G 2 L 2 + C 0 ν -3 t e -α * 2 t + ν -1 e -α 0 2 t •
Plugging all the above estimates in (2.61), we get

d dt Π + 1 2 T 2 t ρ| u| 2 + 1 ρ * (|∇ 2 Pu| 2 + |∇G| 2 ) d ¯x + T 2 |∇Pu| 2 + ν |div u| 2 d ¯x ≤ C 0 ν -1 e -α 0 2 t + ν -1 t e -α * 2 t + ν -1 e -α 0 2 t + t e -α * 2 t + ν -1 e -α 0 2 t 2 •
At this stage, the fundamental observation is that the basic Poincaré inequality (1.8) and (2.23) imply that

1 4 T 2 t ρ| u| 2 + 1 ρ * (|∇ 2 Pu| 2 + |∇G| 2 ) + |∇u| 2 d ¯x ≥ α 2 Π with α 2 := 1 4c 2 
T 2 (ρ * ) 3 • Hence after keeping only the main order terms (for large ν) in the right-hand side, the above inequality implies that

d dt Π + α 2 Π + Ξ ≤ C 0 ν -1 e -α 0 2 t + te -α * 2 t + ν -2 te -α 0 2 t with Ξ(t) := 1 4 T 2 t ρ| u| 2 + 1 ρ * (|∇ 2 Pu| 2 + |∇G| 2 ) d ¯x + 1 2 T 2 |∇Pu| 2 + ν |div u| 2 d ¯x.
Then, integrating yields assuming that ν is large enough and that 2α 2 > α 0

e α 2 t Π(t) + t 0 e α 2 τ Ξ(τ ) dτ ≤ Π(0) + C 0 (2α 2 -α * ) 2 + C 0 (2α 2 -α 0 ) 2 +C 0 e α 2 t ν -1 e -α 0 2 t 2α 2 -α 0 + te -α * 2 t |2α 2 -α * | + ν -2 te -α 0 2 t 2α 2 -α 0 •
At this stage, it suffices to use the fact that for all k > 0, we have

(2.62) sup t∈R + te -kt ≤ (ek) -1 and ∞ 0 te -kt dt = k -2 ,
and to argue as for proving (2.7) to get the desired inequalities.

Granted with Proposition 2.5, one can obtain the following time decay estimates for the convective derivative: Proposition 2.6. Let (ρ, u) be a solution to (CNS) given by Theorem 2.1. Then,

sup t∈R + T 2 te α 3 t ρ | u| 2 d ¯x + ∞ 0 T 2 te α 3 t |∇ u| 2 d ¯x dt + ν ∞ 0 T 2 te α 3 t |div u| 2 d ¯x dt ≤ C 0
with α 3 = δ/4 + min(α 2 , α 0 /4)/8.

Proof.

In what follows, we denote A : B = i,j A ij B i,j if A and B are two d×d matrices, (Du) i,j := ∂ j u i and (∇u) ij := ∂ i u j for 1 ≤ i, j ≤ d. Finally, both ḟ and D Dt f designate the convective derivative of f.

Now, applying D

Dt to the momentum equation and testing by te 2βt u, we obtain (2.63)

T 2 D Dt (ρ u) - D Dt ∆u -(λ + 1) D Dt ∇div u + D Dt ∇P • e 2βt t u d ¯x = 0.
First, taking advantage of the mass conservation equation, we get

T 2 D Dt (ρ u)e 2βt t u d ¯x = 1 2 T 2 D Dt (te 2βt ρ | u| 2 ) -e 2βt (ρ | u| 2 + 2βtρ | u| 2 + tdiv u ρ | u| 2 ) d ¯x.
Integrating by parts in the first term gives (2.64)

T 2 D Dt (ρ u)e 2βt t u d ¯x = 1 2 d dt T 2 te 2βt ρ | u| 2 d ¯x - T 2 te 2βt div u ρ | u| 2 d ¯x - 1 2 T 2 e 2βt ρ | u| 2 d ¯x - T 2 βte 2βt ρ | u| 2 d ¯x.
To handle the other terms of (2.63), we need the following relations:

D Dt ∆u = div (∇ u -∇u • ∇u) -∇u • ∇ 2 u with (∇u • ∇ 2 u) i := 1≤j,k≤d ∂ k u j ∂ j ∂ k u i , D Dt ∇div u = ∇div ( u) -∇u • ∇div u -∇(Tr(∇u • ∇Qu)), D Dt ∇P = ∇ Ṗ -∇u • ∇P and Ṗ = -(h + P )div u.
Thanks to them and to (2.64), we get

(2.65) 1 2 d dt T 2 te 2βt ρ | u| 2 d ¯x + T 2 te 2βt |∇ u| 2 d ¯x + (λ + 1) T 2 te 2βt |div u| 2 d ¯x = T 2 te 2βt div u ρ | u| 2 d ¯x + 1 2 T 2 e 2βt ρ | u| 2 d ¯x + T 2 βte 2βt ρ | u| 2 d ¯x + T 2 te 2βt (∇u • ∇u) • ∇ u d ¯x + T 2 te 2βt (∇u • ∇ 2 u) • u d ¯x + (λ + 1) T 2 te 2βt Tr(∇u • ∇Qu) div u d ¯x + (λ + 1) T 2 te 2βt (∇u • ∇div u) u d ¯x - T 2 te 2βt (h + P )div u • div u d ¯x + T 2 te 2βt (∇u • ∇ P ) • u d ¯x =: 9 k=1 I k .
Before estimating the terms I j , we present some results that play an important role in the proof. At first, we claim that for, say, η = δ/2 + min(α 2 /4, α 0 /16), we have (2.66) t 1/2 e ηt ∇Pu L 4 (R + ×T 2 ) ≤ C 0 and t 1/4 e ηt div u L 4 (R

+ ×T 2 ) ≤ C 0 ν -1 2 .
The first inequality stems from (2.58) and (2.59) and the fact that

t 1/2 e ηt ∇Pu 4 L 4 (R + ×T 2 ) ∞ 0 e 4ηt t 1/2 ∇Pu 2 L 2 t 1/2 ∇ 2 Pu 2 L 2 dt.
Similarly, we can get (using (2.29) and (2.7)to obtain the second inequality)

(2.67) 

t 1/2 e ηt G L 4 (R + ×T 2 ) ≤ C 0 ν 1/4
(R + ×T 2 ) ≤ C 0 ν -3 4 .
Finally, we shall also use the fact that, owing to Relation (2.41), we have for all p ∈ (1, ∞),

(2.70)

∇G Lp + ∇ 2 Pu Lp ≤ C ρ u Lp .
We are ready to bound the terms I j . Regarding I 1 , we observe that since ρ u has mean value zero, Inequality (A.3) and Theorem 2.1 allow to write that

I 1 = T 2 te 2βt ρ div u | u| 2 d ¯x ≤ te 2βt ρ * div u L 2 u 2 L 4 ≤ C 0 ν -1 2 √ te βt ∇ u 2 L 2 . (2.71)
So, if we assume that ν ≥ (µ -1 4C 0 ) 2 , then one gets (2.72)

I 1 ≤ µ 16 T 2 √ te βt ∇ u 2 L 2 d ¯x.
Next, combining (2.69) with (A.3) and (2.29) yields for all T > 0 (if β ≤ 2η):

T 0 I 2 dt ≤ T 0 e 2(β-α 2 )t e α 2 t √ ρu t 2 L 2 dt + T 0 e βt √ ρu • ∇u 2 L 2 dt ≤ C 0 + T 0 e 2βt √ ρu 2 L 4 ∇u 2 L 4 dt ≤ C 0 + T 0 e (2β-4η)t e ηt ∇u 4 L 4 dt ≤ C 0 . (2.73)
Next, in light of (2.59), we have For I 4 , using Hölder inequality, (1.13), (2.42) and (2.47) we have

I 4 √ te βt ∇ u L 2 √ te βt ∇Pu L 4 + 1 ν P L 4 + 1 ν G L 4 2 √ te βt ∇ u L 2 √ te βt ∇Pu L 2 ∇ 2 Pu L 2 + 1 ν 2 P L 2 P L∞ + 1 ν 2 G L 2 ∇G L 2 √ te βt ∇ u L 2 ∇Pu L 2 + 1 ν 2 G L 2 √ te βt ρ u L 2 + 1 ν 2 √ te βt P L 2 P L∞ ≤ 1 16 √ te βt ∇ u 2 L 2 + C ∇Pu L 2 + 1 ν 2 G L 2 √ te βt ρ u L 2 + √ te βt ν 2 P L 2 P L∞ 2 •
Hence, by using (2.7) and (2.62), and choosing β < α 0 /5, we obtain for all T > 0

T 0 I 4 dt ≤ 1 16 T 0 √ te βt ∇ u 2 L 2 dt +C T 0 ( ∇Pu L 2 + 1 ν 2 G L 2 ) 2 √ te βt ρ u 2 L 2 + C 0 ν 3 te 2βt e -α * 2 t + ν -1 e -α 0 2 t dt ≤ 1 16 T 0 √ te βt ∇ u 2 L 2 dt + C T 0 ( ∇Pu L 2 + 1 ν 2 G L 2 ) 2 √ te βt ρ u 2 L 2 dt+ C 0 ν 2 ≤ 1 16 T 0 √ te βt ∇ u 2 L 2 dt + C 0 T 0 e -α * 2 t + ν -1 e -α 0 2 t √ te βt ρ u 2 L 2 dt + ν -2 C 0 . (2.

75)

For I 6 , since νQu = -∇(-∆) -1 ( G + P ), and we have (1.13), (2.42), we find that

I 6 (λ+1) ν √ te βt div u L 2 √ te βt ∇Pu L 4 G + P L 4 + 1 ν ( G 2 L 4 + P 2 L 4 ) (λ+1) ν √ te βt div u L 2 ∇Pu 1 2 L 2 G 1 2 L 2 √ te βt ρ u L 2 + √ te βt 1 ν ( G, P ) 2 L 4 + (λ+1) ν √ te βt div u L 2 √ te βt ∇Pu 1 2 L 2 ρ u 1 2 L 2 P 1 2 L 2 P 1 2 L∞ ≤ C (λ+1) ν 2 ∇Pu L 2 G L 2 √ te βt ρ u 2 L 2 + 1 ν 2 t 1/4 e β 2 t ( G, P ) 4 L 4 + te 2βt ∇Pu L 2 ρ u L 2 P L 2 P L∞ + (λ+1) 4 √ te βt div u 2 L 2 .
Hence, according to (2.7), (2.67), (2.68), (2.9) and (2.58), choosing β < 2η we have

T 0 I 6 dt ≤ Cν -1 T 0 ( ∇Pu L 2 G L 2 + P 2 L 2 ) √ te βt ρ u 2 L 2 + √ te βt ∇Pu 2 L 2 P 2 L∞ dt + Cν -3 T 0 t 1/4 e β 2 t ( G, P ) 4 L 4 dt + (λ+1) 4 T 0 √ te βt div u 2 L 2 dt ≤ C 0 ν -1 T 0 √ νe -α * 2 t + e -α 0 2 t √ te βt ρ u 2 L 2 dt + ν -1 C 0 + (λ+1) 4 ∞ 0 √ te βt div u 2 L 2 dt. (2.76)
Thanks to (2.7), we obtain

I 8 ≤ √ te βt div u L 2 √ te βt div u L 2 h + P L∞ ≤ (λ + 1) 16 √ te βt div u 2 L 2 + C (λ + 1) te 2βt div u 2 L 2 h + P 2 L∞ ≤ (λ + 1) 16 √ te βt div u 2 L 2 + C 0 ν 2 te 2βt e -α * 2 t + ν -1 e -α 0 2 t •
Hence for all T > 0,

(2.77)

T 0 I 8 dt ≤ (λ + 1) 16 T 0 √ te βt div u 2 L 2 dt + C 0 ν •
Owing to (2.34) and to the decomposition (2.47), we find that (2.78)

I 7 = (λ+1) ν I 9 + I 71 with I 71 := (λ+1) ν T 2 te 2βt ∇Pu - 1 ν ∇ 2 (-∆) -1 ( G + P ) • ∇G • u d ¯x •
Remembering that λ + 1 ≤ ν and using (2.70), (A.3), (A.8) and (2.7), we get

I 71 ≤ te 2βt ∇Pu L 2 ∇G L 4 u L 4 + 1 ν te 2βt ( G L 2 + P L 2 ) ∇G L 4 u L 4 ≤ te 2βt ∇Pu L 2 ρ u 1 4 L 2 ρ u 3 4 L 6 u L 4 + C 0 ν 1/2 te 2βt ∇ u 2 L 2 C 0 ∇Pu L 2 √ te βt ρ u 1 4 L 2 √ te βt ∇ u 7 4 L 2 + C 0 ν 1/2 te 2βt ∇ u 2 L 2 ≤ 1 32 √ te βt ∇ u 2 L 2 + C 0 ∇Pu 8 L 2 √ te βt ρ u 2 L 2 + C 0 ν 1/2 te 2βt ∇ u 2 L 2 .
Hence, assuming that ν 1/2 > 32C 0 , one gets (2.79)

T 0 I 71 dt ≤ 1 16 T 0 √ te βt ∇ u 2 L 2 dt + C 0 T 0 ∇Pu 8 L 2 √ te βt ρ u 2 L 2 dt.
To handle I 9 , we use again (2.34), integrate by parts where needed and use (2.42) and (2.7) to get: From (A.8), Hölder and Young inequality, we infer that

I 9 = - T 2 te 2βt P u • ∇div u d ¯x - T 2 te 2βt P ∇u : D u d ¯x = 1 2ν T 2 te 2βt P 2 div u d ¯x - 1 ν T 2 te 2βt P ∇G • u d ¯x -
I 91 + I 92 ≤ √ t 2ν e βt P L 2 P L∞ √ te βt div u L 2 + ν -1 √ te βt ∇ u L 2 √ te βt P L∞ ∇G L 2 ≤ (λ + 1) 16 √ te βt div u 2 L 2 + 1 32 √ te βt ∇ u 2 L 2 + Cν -2 te 2βt ν -1 P 2 L 2 P 2 L∞ + P 2 L∞ ∇G 2 L 2 •
Hence, taking advantage of (2.29), (2.62) and (2.9), we get if β < α 2 , T 0

(I 91 + I 92 ) dt ≤ (λ + 1) 16 T 0 √ te βt div u 2 L 2 dt + 1 32 T 0 √ te βt ∇ u 2 L 2 dt + C 0 ν -1 .
Since α 2 ≃ ν -1 , using (2.47), (2.29) and (2.62) gives

T 0 I 93 dt ≤ T 0 √ te βt ∇ u L 2 √ te βt P • ∇u L 2 dt ≤ 1 32 T 0 √ te βt ∇ u 2 L 2 dt + C T 0 P 2 L∞ √ te βt ∇Pu 2 L 2 dt + C ν 2 T 0 te 2βt P 4 L 4 dt + C ν 2 T 0 te 2βt P • G 2 L 2 dt.
The last two terms may be bounded independently of ν (provided β ≤ 2η) by means of (2.66) and (2.67). Next, thanks to (2.59) and to (1.8), we have

T 0 te 2βt P 2 L∞ ∇Pu 2 L 2 dt ≤ C ρ * T 0 te 2βt ∇ 2 Pu 2 L 2 dt ≤ C 0 .
Hence, remembering (2.78) and (2.79),

(2.80)

T 0 (I 7 + I 9 ) dt ≤ (λ + 1) 8 T 0 √ te βt div u 2 L 2 dt + 3 16 T 0 √ te βt ∇ u 2 L 2 dt + C 0 .
Finally, using again (2.47), we obtain

I 5 = T 2 te 2βt ∇u • ∇ 2 Pu - 1 ν ∇(-∆) -1 G - 1 ν ∇(-∆) -1 P • u d ¯x =: I 51 + I 52 + I 53 .
By continuity of Riesz operators on L 4 and Hölder inequality, one gets

I 51 + I 52 ≤ Cte 2βt ∇u L 2 ( ∇ 2 Pu L 4 + ∇G L 4 ) u L 4 .
Hence, remembering (A.3) and arguing as for proving (2.48), we easily get To bound I 53 , we set φ := (-∆) -1 P and use the following identity (see [7, (B.6)]):

I 51 + I 52 ≤ C ρ * √ te βt ∇u L 2 ρ 1/4 u L 4 √ te βt ∇ u L 2 , ≤ C ρ * √ te βt ∇ u 7/4 L 2 √ ρte βt u 1/4 L 2 ∇u L 2 ≤ 1 16 √ te βt ∇ u 2 L 2 + C ρ * ∇u 8 L 2 √ ρte βt u 2 L 2 ≤ 1 16 √ te βt ∇ u 2 L 2 + C 0 e -α * 2 t + ν -1 e -α
I 53 = 1 2ν 2 T 2 te 2βt P 2 • div u d ¯x - 1 ν 2 T 2 te 2βt P • ∇ 2 φ • ∇ u d ¯x + 1 ν 2 T 2 te 2βt ∇G • ∇ 2 φ • u d ¯x + 1 ν T 2 te 2βt ∇u • ∇ 2 φ • ∇ u d ¯x.
Therefore, thanks to Hölder inequality, (A.8) and to the continuity of ∇ 2 (-∆) -1 on L 4 (T 2 ), we get Then, using Gronwall and taking advantage of (2.62) completes the proof.

I
Corollary 2.7. Let (ρ, u) be a solution to (CNS) given by Theorem 2.1. There exists two positive constants C 0 and ν 0 depending only on the initial data, T 2 , µ, κ and γ,

The term with G (resp. ∇ u) can be bounded according to (2.7) (resp. Proposition 2.6), which, since θ ∈ (1/2, 1) gives the first inequality of the corollary.

For proving the second inequality, we proceed the same and now get The only difference is that we use (2.58) to bound √ t∇Pu L 2 . This allows to complete the proof of the corollary.

Proof. Let z := z -z where z stands for the mean value of z. Then, we have

(A.4) z 2 L 2 (T d ) = |z| 2 + z 2 L 2 (T d ) .
As the mean value of a is 1, we have The right-hand side may be bounded by means of (1.8) and, since the mean value of a is 1, we have a -1 2 L 2 + 1 = a 2 L 2 . Hence, reverting to (A.4) yields (A.1).

In order to prove (A.2), we take advantage of the Gagliardo-Nirenberg inequality for functions with zero mean value and argue as follows:

z Lp ≤ |z| + z Lp ≤ 1 + a -1 L p ′ ) z Lp ≤ C p 1 + |T 2 | 1 2 -1 p a -1 L 2 z 2/p L 2 ∇ z 1-2/p L 2 .
As z L 2 ≤ z L 2 and 1 + a -1 L 2 ≤ √ 2 a L 2 , we get (A.2). Proving (A.3) is similar except that we use (A.5) to bound z, then (1.8). Hence, if the mean value of ρ is 1 then

(A.7) u t L 2 ≤ T d ρu • ∇u d ¯x + c T d √ 2 ρ L 2 ∇u t L 2 .
Similarly, as the mean value of ρu and of ρ u (with u := u t + u • ∇u) is 0, we have

(A.8) u L 2 (T d ) ≤ c T d ρ L 2 ∇u L 2 (T d ) and u L 2 (T d ) ≤ c T d ρ L 2 ∇ u L 2 (T d ) .
In Section 2, we used repeatedly the equivalence between e L 1 , ρ-ρ 2 L 2 and P (ρ)-P (ρ) 2 L 2 when the density is bounded, as stated in the following lemma.

Lemma A.3. Let a := ρ -ρ and e be defined in (0.4) with P (ρ) = ρ γ for some γ ≥ 1.

Then, provided 0 ≤ ρ ≤ ρ * , there exist a positive constant c γ , an increasing function F 1 on R + with F 1 (0) = 1 depending only on γ, and an absolute constant C such that ργ-1 a ≤ P (ρ) -P (ρ) ≤ F 1 (ρ * /ρ)ρ γ-1 a and c γ ργ-2 a 2 ≤ e(ρ) ≤ C ργ-2 a 2 F 1 (ρ * /ρ).

Proof. By virtue of the mean value formula, we have (A.9) P (ρ) -P (ρ) = ργ-1 (ρ -ρ)F 1 (ρ/ρ) with F 1 (s) := γ 1 0

(1 + τ (s -1)) γ-1 dτ.

The function F 1 is increasing on R + with value 1 at 0, which gives the first inequality.

To prove the second one, from the definition of F 1 , we observe that ργ-1 ρ it is easy to complete the proof.

  ρu) u • u τ d ¯x = I 31 + I 32 with I 31 := -T d e 2βt t(ρu • ∇ u) • u τ d ¯x and I 32 := -T d e 2βt t(ρu • ∇u τ ) • u d ¯x.

Theorem 2 . 1 . 2 ρ 0

 2120 Consider any nonnegative bounded function ρ 0 fulfilling (2.1) ρ 0, * := inf x∈T ≥ 0 and ρ * 0 := sup x∈T 2

( 2 0 I 3

 203 dt ≤ C 0 for all T > 0.

T 2 te

 2 2βt P ∇u : D u d ¯x =: I 91 + I 92 + I 93 .

3 4 t ∇Pu θ L 2 ∇

 32 u 1-θ L 2 dt.

  + a -1 L 2 z L 2 .

Remark A. 2 .

 2 For smooth enough solutions of Systems (IN S) or (CN S), we have (A.6) T d ρu t d ¯x = -T d ρu • ∇u d ¯x.

ρ ρ s - ρ s 2 -1 ρ ρ ρ s - ρ s 2

 22 ds = ρ ρ ρ P (s) -P (ρ)s 2 F 1 (s/ρ) ds,which implies, owing to the definition of e that ργds ≤ e(ρ) = ρρ ρ P (s) -P (ρ) s 2 ds ≤ F 1 (ρ * /ρ) ρ ρ ρ (s -ρ) s 2 ds.Then, in light of the facts thatρ ρ ρ s -ρ s 2 ds = ρlog ρ ρ + ρ -ρ, lim ρ→0 ρlog (ρ/ρ) + ρ -ρ (ρ -ρ) 2 = 1ρ and lim a→0 (ρ + a)log (1 + a/ρ) -

  ρu • ∇u • ∇u) • u t d ¯x =: I 311 + I 312 + I 313

	and				
	I 32 = -	T d	e 2βt t(ρu • ∇u t ) • u t d ¯x -	T d	e 2βt t(ρu • ∇u t ) • (u • ∇u) d ¯x.
	Before bounding I 31 , we point out a useful inequality that stems from (A.7) and embed-ding H 1 (T d ) ֒→ L 6 (T d ):

  L 2 and P L 2 , we will use repeatedly (2.25) and the fact that

	Hence, subtracting (2.36) to (2.33), we obtain
	(2.37)	d dt								
	(2.34)								νdiv u = P + G.
	Now, integrating (2.25) on T 2 yields	
	(2.35)		1 2	d dt T 2	e d ¯x +	1 2ν T 2	| P | 2 d ¯x +	1 2ν T 2	P G d ¯x = 0,
	and									
	(2.36)	1 2	d dt T 2	e d ¯x +	ν 2 T 2	|div u| 2 d ¯x =	1 2ν T 2	| G| 2 d ¯x +	1 2ν T 2	P G d ¯x.

  and t 1/4 e ηt G L 4 (R + ×T 2 ) ≤ C 0 ν 1/4 ηt ∇u L 4 (R + ×T 2 ) ≤ C 0 and e ηt div u L 4

	and using (2.9), (2.62) gives				
	(2.68)	t 1/4 e ηt P 4 L 4 (R + ×T 2 )	0	∞	te 4ηt P 2 L 2	P 2 L∞ dt ≤ C 0 ν 2 .
	Putting (2.67) and (2.68) together, and remembering (2.34) gives the second part of
	(2.66). Note that arguing similarly but using only (2.7) and (2.34) , one can easily get
	(2.69)	e				

  ∇G L 4 P L 4 + ν ∇u L 4 P L 4 ) √ te βt ∇ u L 2 te 2βt P 4 L 4 + te 2βt ( ∇G 2 L 4 P L 2 P L∞ + ν 2 ∇u 2 Hence, using (2.29), (2.66), (2.68), (2.62), and choosing β < η, we conclude that Finally, plugging Inequalities (2.72), (2.73), (2.74), (2.75), (2.76), (2.77), (2.80), (2.81) and (2.82) in (2.65) (after integrating on [0, t]), we end up with -α * 2 τ + ν -1 e -α 0 2 τ e βτ √ ρτ u 2 L 2 dτ •

		53 ≤ + te βt ( ≤ 1 ν 2 √ te βt P 2 L 4 ( 1 ν 2 √ (λ + 1) 16 √ te βt div u 2 1 2 L 2 + √ te βt div u L 2 + 1 16 √ te βt ∇ u 2 √ L 2 te βt ∇ u L 2 )
				+	C ν 4 L 4	P 2 L 4 ) •
		0	T	I 53 dt ≤	(λ + 1) 16		0	T	√	te βt div u 2 L 2 dt +	1 16	0	T	√	te βt ∇ u 2 L 2 dt
									+	C ν 4	0	T	te 2(β-η)t e ηt P 4 L 4 dt
									+	C ν 4	0	T	te 2(β-α 2 )t e α 2 t ∇G 2 L 2	P L 2	P L∞ dt
									+	C ν 2	0	T	e 2(β-2η)t t 1/4 e ηt ∇u 2 L 4 t 1/4 e ηt P 2 L 4 dt
	(2.82)				≤	(λ + 1) 16		0	T	√	te βt div u 2 L 2 dt +	1 16	0	T	√	te βt ∇ u 2 L 2 dt +	C 0 ν	•
	e βt √	ρt u(t) 2 L 2 +	1 2	0	t	√	τ e βτ ∇ u 2 L 2 dτ +	ν 2	0	t	√	τ e βτ div u 2 L 2 dτ
										≤ C 0 1 +	0	t	ν -1/2 e
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Appendix A Let us first prove Poincaré and Sobolev inequalities in the torus for functions that need not have zero mean value.

Proposition A.1. Let a be a measurable function on T d with mean value 1, and let z be in H 1 (T d ). Denote by M a (z) the mean value of az. Then, we have for all d ≥ 1,

Furthermore, in the case M a (z) = 0 and d = 2, then we have for all p ∈ [2, ∞) .3)