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Localization and tracking control of autonomous vehicles in time-varying
bearing formation

Zhiqi Tang Antonio Lorı́a

Abstract— This letter proposes an observer-based formation
tracking control approach for multi-agent velocity-controlled
vehicles under the assumption that either relative or global
position measurements are unavailable for all the vehicles. It is
assumed that only some vehicles (at least one) have access to
their own global position, and all vehicles are equipped with
sensors capable of sensing the bearings relative to neighboring
vehicles. Each vehicle estimates its global position using relative
bearing measurements and estimates of neighboring vehicles
received over a communications network. Then, a distributed
output-feedback observer-based controller is designed relying
on bearing measurements and the estimated global positions.
In contrast with the literature on bearing-based localization
and control, we relax the common assumption of so-called
bearing rigidity, and, in addition, we do not assume that the
interconnections are constant. To the best of our knowledge,
the bearing-based localization-and-tracking control problem
under such assumptions remains open. In support of our
theoretical findings, some simulation results are presented
to illustrate the performance of the proposed observer-based
tracking controllers.

I. INTRODUCTION
Multi-vehicle systems are in demand to accomplish mis-

sions in different challenging scenarios, such as infrastructure
inspection, surveillance, precision agriculture, exploration
of deep waters, land, and space, etc. [1]. During these
coordinated tasks, it is always essential for a multi-agent
system to have the ability to localize the position and
track desired trajectories in a decentralized fashion. The
different kinds of sensors and measurements gives, as a
matter of fact, one of many ways to classify controllers
for cooperative vehicles [2]. Two of the most common
methods to acquire the localization information rely either on
global positioning systems or on on-board proximity sensors.
The former are particularly useful in outdoor environments,
specifically when the vehicles in the swarm are too far
apart for on-board sensors to work. The latter, however, are
preferred in indoor and congested environments. There are
many different sensors that deliver measurements of different
kinds. For instance, vision sensors provide simple visual cues
such as relative bearing (direction) measurements, which are
robust to noise. Other sensors, such as ultra-wide band [3]
deliver accurate relative distance measurements through radio
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tuto Superior Técnico, Universidade de Lisboa, Portugal (e-mail: zhiqi-
tang@tecnico.ulisboa.pt). A. Lorı́a is with the Laboratoire des signaux et
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communication. Thanks to the passive property of cameras,
follower vehicles that see a leader may be able to estimate
their location using their inter-agent bearing with respect to
the said leader.

The main body of work on bearing-based localization [4],
[5] relies on so-called bearing rigidity theory [6] (also termed
parallel rigidity [7]), which establishes the conditions on the
graph’s topology and the agents’ physical configuration that
ensure the unique shape of the latter up to a translational
and a scaling factors using constant inter-agent bearing
measurements. Provided that the formation is bearing rigid,
and at least two agents have access to their positions, dis-
tributed localization algorithms using bearing measurements
are developed in [8] and [4]. These works mainly focus on
formations with constant bearing measurements and under
fixed interaction graph topologies. Multi-agent coordination,
however, typically evolves in time with dynamic configura-
tion and involves time-varying interaction topology among
agents. This interaction may change dynamically because
the visible neighbors may not always be the same. Some
other works only consider specific dynamic formations or
time-varying graph topologies. For instance, the bearing-
based localization algorithm in [9] is limited to a three-agent
formation, for which each agent has to perform a circular
motion. In [10] and [11] the bearing-based observability
under time-varying graph topologies is analyzed for the
particular case of a group of agents defined in a two-
dimensional space.

In this letter we address the bearing-based localization
and the formation-tracking control problems for multi-agent
systems defined in two and three dimensions. In particular,
we consider that a set of inter-agent bearings can be time-
varying, so the fundamental conditions of bearing-rigidity
theory are not satisfied. Moreover, we relax the classical
bearing-rigidity assumption and we lift the scale ambiguity
of bearing formation. At any given instant, a given pair of
bearings with respect to two neighbors may yield different
estimates of the follower’s position, as in the instance of a
square configuration without a diagonal connection [4]. That
is, the fundamental condition of localizability does not hold.
This condition, however, is not necessary; it may be replaced
with the relaxed property that a multi-agent system’s forma-
tion be Bearing Persistently Exciting (BPE) [12]. Persistency
of excitation (PE) is a concept that originated in the 1960s
in the literature on adaptive control, but has also proved
useful in control of autonomous vehicles. For instance, in
smooth stabilization of nonholonomic vehicles [13], in the
simultaneous localization and mapping problem [14], or in



target localization and enclosed control of a group of agents
in two-dimensional space [15].

We investigate the use of persistency of excitation in
relation to the time-varying Bearing Laplacian matrix of
multi-agent systems under any jointly connected undirected
switching graphs. Based on the BPE property, we design a
distributed localization algorithm using inter-agent bearings
measures and the position measure of a single agent (the
leader). Then, we use the estimated position to design the ve-
locity control input to track desired time-varying trajectories
for a multi-agent system under single-integrator dynamics.
We show that both the estimation and position tracking
errors converge asymptotically to zero, provided the desired
formation is BPE.

The key advantages of the proposed approach are that
the distributed observer-based formation tracking controller
i) can be applied to multi-agent systems under any jointly
connected undirected switching graph topologies and hence
loosens the constraints on the graph topology often required
in the classical bearing-based localization algorithms based
on bearing rigidity [8] and [4], ii) needs only one leader
with known position (instead of two as described in the
existing literature [10], [8], [4]) to localize the formation’s
configuration using inter-agent bearings, and iii) achieves any
BPE d-dimensional trajectory whereas only translational and
scaling maneuvering can be realized in the existing literature
on bearing-based formation maneuver control [16]. Relative
to [12], we generalize the BPE property to encompass time-
varying graph topologies, used to design desired trajectories
of the formation. Furthermore, we stress that in [12] only
the formation control problem is addressed, but not the
localization problem nor tracking maneuvers.

The remainder of this letter is organized in six sections. In
Section II we provide some mathematical preliminaries on
graph theory. In Section III we formulate the bearing based
estimation and tracking control problem that we address. In
Section IV we provide the concepts of BPE formation under
switching graph topologies. In Section V we present the
integrated distributed bearing-based localization algorithm
and the formation tracking controller. Simulation results are
presented in Section VI and the letter is wrapped up with
some final comments in Section VII.

II. MATHEMATICAL PRELIMINARIES

Notation: We denote by Sd−1 := {y ∈ Rd : ‖y‖ = 1}
the d − 1-Sphere (d ≥ 2); ‖ · ‖ denotes the Euclidean
norm. The null space and rank of a matrix are denoted by
null(·) and rank(·), respectively. The operator diag(Ai) =
blkdiag{A1, . . . , An} ∈ Rnd×nd indicates the block di-
agonal matrix with elements given by Ai ∈ Rd×d, with
i ∈ {1, 2, . . . , n}.

On graph theory: The interaction topology of a n-agent
system can be modeled as an undirected graph G := (V, E),
where V = {1, . . . , n} (n ≥ 2) is the set of vertices and
E ⊆ V × V is the set of undirected edges. Two vertices i
and j are called adjacent (or neighbors) when (i, j) ∈ E .
The set of neighbors of agent i is denoted by Ni := {j ∈

V|(i, j) ∈ E}. If j ∈ Ni, it follows that i ∈ Nj , since
the edge set in an undirected graph consists of unordered
vertex pairs. An undirected graph G is connected if there
exists a path between every pair of vertices in G and in
that case m ≥ n − 1. An undirected spanning tree is a
connected subgraph of G without circuits and involving all
the vertices of G. An oriented graph is an undirected graph
together with an orientation which is the assignment of a
direction to each edge. The incidence matrix H ∈ Rm×n of
an oriented graph is the {0,±1}-matrix with rows indexed
by edges and columns by vertices: [H]ki = 1 if vertex
i is the head of the edge k, [H]ki = −1 if it is the
tail, and [H]ki = 0 otherwise. Note that one always has
H1n = 0, where 1n = [1, . . . , 1]T ∈ Rn. For a connected
graph, or equivalently a graph which has a spanning tree,
rank(H) = n− 1. The graph Laplacian matrix is defined as

L := H̄>H̄, with H̄ = H ⊗ Id, (1)

where ⊗ denotes the Kronecker product, Id the identity
matrix of dimension d, and null(L) = span(U) with U =
1n ⊗ Id. If the graph is connected, one has rank(L) =
rank(H̄) = dn − d, null(L) = span(U) and hence,
by adopting λi as the ith eigenvalue of L under a non-
increasing order, one ensures that λdn−d is the smallest
positive eigenvalue of L.

For graphs with time-varying interaction topology we use
Gσ to denote the corresponding time-dependent graph with
σ : [0,+∞)→ P a piece-wise constant function. The set P
represents the set of indexes for all possible graphs, including
non-connected ones, defined on vertices {1, . . . , n}, with
|P| = 2

n(n−1)
2 , where |P| denotes the cardinality of P .

We assume hereafter that there exists a switching sequence
{tι}, ι ∈ N at which the index of the interaction topology
σ(tι) changes. The time intervals [tι, tι+1) are assumed to
be uniformly bounded and non-overlapping. We assume that
tι+1 − tι ≥ τ0 > 0, where τ0 is the dwell time during
which σ(t) is constant and the interaction topology keeps
fixed. Define Eσ and N i

σ as the corresponding edge set and
neighbors set of agent i, respectively, at t.

III. PROBLEM FORMULATION

Consider a group of n vehicles modeled by the equation

ṗi = vi, i ∈ {1, 2, . . . , n}. (2)

The position of the ith vehicle with respect to a common
inertial frame is given by the vector pi ∈ Rd and the velocity
vi ∈ Rd is assumed to be the control input. It is required for
these vehicles, to move in formation in a d-dimensional space
(d ∈ {2, 3}), under the following standing hypothesis.

Assumption 1: At least, and possibly only, one agent in
the formation can measure its own position pi, without error.
Such agent is referred to as the leader.

Without global position measurements, the position pi is
unknown to the follower vehicles. However, relative bearing
measurements are obtained through onboard sensors. More



precisely, for the ith vehicle that “sees” the jth neighbor
agent, with j ∈ Ni, we denote by

pij := pj − pi, (3)

the position vector of the jth vehicle relative to the ith and,
if ‖pij‖ 6= 0, we denote by

gij := pij/‖pij‖ ∈ Sd−1 (4)

the bearing of agent j relative to agent i. Then, it is assumed
that a bidirectional interconnection between adjacent nodes
exists as described below.

Assumption 2: Each agent i ∈ V can measure the relative
bearing vectors gij , with respect to its neighbors j ∈ Ni,
in a common inertial frame. In addition, each agent can
communicate its position estimation to its neighbor agents.
Assumption 2 implies that each agent knows its orientation
matrix relative to a common inertial frame, so the relative
bearing measured in its local frame can be represented in the
inertial frame.

Under the latter assumption, defining the configuration
p := [p>1 , ..., p

>
n ]> ∈ Rdn, the vehicles define a system

of n connected agents, represented by a formation denoted
G(p). Then, the bearing-based formation tracking control
problem is posed as follows. By assigning one leader in
the formation, 1) design a distributed localization algorithm
using the velocity control input of each agent and the inter-
agent bearings to estimate the agents’ positions and 2)
design an observer-based distributed controller relying on
the estimated positions to asymptotically track any feasible
desired formation.

Stated in such generic form, the bearing-based localization
and formation tracking control problems have been addressed
in a number of works—see the Introduction—but not neces-
sarily simultaneously, as we do here. For instance, in [4]
only the localization problem is addressed. Furthermore,
a recurring assumption in the literature on bearing-based
control is that the interconnections are constant—see e.g,
[8], [16], [12]. In this letter we consider that the graph’s
topology changes with time, as a consequence of intercon-
nections persistently switching on and off—see Figure 1 and
Assumption 3 next.

Assumption 3: The group’s topology is time-varying, rep-
resented by a switching graph Gσ , as defined in Section II.

In our preliminary work [17], graphs with switching
topologies are considered, but the localization problem is
disregarded.

IV. BEARING PERSISTENTLY EXCITING FORMATION
UNDER SWITCHING GRAPH TOPOLOGIES

Given a group of interconnected agents in a configuration
p, the underlying formation G(p) is composed of nodes
labeled i ∈ V and edges (i, j) ∈ E , to this formation cor-
responds a so-called bearing Laplacian matrix LB , defined
as follows—cf. [4]. Consider an arbitrary orientation of the
graph and denote

p̄k := pij , k ∈ {1, 2, . . . ,m}, (i, j) ∈ E (5)

(c1) (c2)

(d1) (d2) (d3)

(a1) (a2)

(b1) (b2) (b3)

Fig. 1. Union of the graphs ∪
(t,t+T )

Gσ(t) of BPE formations in two (a1-b3)

and three-dimensional space (c1-d3). Red lines represent edges for which
the corresponding bearing vector are PE and blue lines represent edges for
which the corresponding bearing vectors are not necessarily PE. These are
instances of time-varying formations covered by our main results.

as the edge vector with assigned direction such that i and
j are, respectively, the initial and the terminal nodes of p̄k.
Denote the corresponding bearing vector by

ḡk :=
p̄k
‖p̄k‖

∈ Sd−1, k ∈ {1, 2, . . . ,m}.

Then, the bearing Laplacian matrix is denoted as

LB(p) := H̄>Π(p)H̄, Π(p) = diag(πḡk), (6)

where, for any y ∈ Sd−1,

πy := I − yy> ≥ 0

denotes the operator that projects y onto its orthogonal plane.
Since span{U,p} ⊆ null(LB(p)), it follows that

rank(LB) ≤ dn− d− 1. According to [4], if the formation
is Infinitesimal Bearing Rigid (IBR) then rank(LB) =
dn − d − 1 and null(LB(p)) = span{U,p} for each
fixed configuration p. Then, it is possible to reconstruct the
positions of follower agents, pi, provided that two leaders
know their global positions and all the bearing measurements
and interconnections remain constant.

In this letter, we allow for only one leader know its
global position and assume that some of the inter-agent
bearings are time-varying such that the formation is Bearing
Persistently Exciting (BPE) [12]. Besides, we consider the
scenario in which the topology undergoes persistent switches.
A BPE formation is a type of time-varying bearing formation,
introduced first in [12], whose configuration can be uniquely
determined up to a translation using only inter-agent bearings
and velocity of each agents. The property defined in [12], for
fixed topologies, is recalled below.

Definition 1 (BPE): A formation G(p) is called Bearing
Persistently Exciting (BPE) if G is connected and the bearing
Laplacian matrix is persistently exciting, i.e., there exists
T > 0 and µ > 0 such that

1

T

∫ t+T

t

LB(p(τ))dτ ≥ µL ∀ t ≥ 0. (7)



Remark 1: There is an obvious abuse of terminology in
the previous definition since (7) does not imply that the
bearing Laplacian is persistently exciting [18] along the
trajectories, i.e., that there exist T > 0 and µ > 0 such
that

1

T

∫ t+T

t

LB(p(τ))dτ ≥ µI ∀ t ≥ 0 (8)

which cannot hold because L is not full rank.
Note that Π(p) being persistently exciting along the trajec-
tories implies (7), but not viceversa. For detailed properties
of BPE formation under fixed graph topologies (including
necessary conditions and sufficient and necessary conditions
to guarantee a BPE formation), please refer to [12] and [19].

To provide a generalization of Definition 1 that encom-
passes switching-graph topologies Gσ , we assume that there
exists T > τ0 such that, for all τ ∈ [t, t+T ] and any t ≥ 0,
the corresponding incidence matrix is H̄σ(t) = W (t)H̄ . In
the latter H̄ is the constant incidence matrix of the joint
graph G̊ = ∪τ∈(t,t+T )Gσ(τ) and W (t) = diag(w̄k(t)). In
turn, w̄k(t) is a binary valued-function that equals to 1 if
the corresponding edge is connected and to 0 if otherwise.
Then, we define the Laplacian Lσ(t) := H̄σ(t)>H̄σ(t) and
the bearing Laplacian LBσ (p, t) := H̄>Πσ(p, t)H̄ , where
Πσ(p, t) = W (t)Π(p)W (t) = W (t)Π(p) = Π(p)W (t).

Under a fixed graph topology, one can verify that W =
Idn, hence Lσ = L and LBσ = LB . For time-varying
topologies, we have the following useful statement.

Lemma 1: Consider a formation Gσ(p), with σ ∈ P . If the
formation G̊(p) under the joint graph is BPE with parameters
T and µ̄ > 0 and

1

T

∫ t+T

t

Πσ(p(τ), τ)dτ ≥ µ̄
∫ t+T

t

Π(p(τ))dτ,

then the formation Gσ(p) is also BPE. That is, ∀t ≥ 0

1

T

∫ t+T

t

LBσ (p(τ), τ)dτ ≥ µ̄

T

∫ t+T

t

LB(p(τ))dτ.
�

The statement follows from the observation that

LBσ (p, t) = H̄>W (t)Π(p)W (t)H̄. (9)

The formation being BPE implies that some of the bear-
ings between pairs of agents belonging to the formation are
PE [19], i.e., the shape of the multi-agent system may be
time-varying or fixed. An illustration of a BPE formation is
provided in Figure 2 below.

It shows an example of a 4-agent BPE formation with
time-varying shape in which p1, p2 and p3 are static while p4

is oscillating along the black dashed line. Inter-agent bearings
g21 and g23 are constant and g41 and g43 are PE during time
interval [t1,t3]. For each time instant, the graph topology
is not necessarily connected, and the time-varying sensing
graph topology indicates that each bearing is measured by
corresponding agents during a time interval greater than the
dwell time τ0 but may not be measured all the time from t1
to t3.

When the shape of a BPE formation is fixed, a similarity
transformation involving a time-varying rotation has to be

(b) 𝐺𝜎 𝑡1 (𝒑(𝑡1)) (c) 𝐺𝜎 𝑡2 (𝒑(𝑡2)) (d) 𝐺𝜎 𝑡3 (𝒑(𝑡3))

2

1

3

4 1

2 3

4
1

2 3

4

2

1

3

4

(a) ∪𝑡∈(𝑡1,𝑡3) 𝐺𝜎 𝑡

Fig. 2. An example of a BPE formation Gσ(p(t)) under a switching graph
topology. Sub-figure (a) shows the union of the graphs during time t1 to
t3. Sub-figures (b), (c), and (d) show three selected frames of the physical
configuration p(t) and connections Gσ(t) of the formation under a timed
sequence such that t1 < t2 < t3, t2−t1 > τ0 and 2τ0 < t3−t1 < T . The
color blue/red on the connections indicates that the corresponding bearings
are constant/PE, respectively. The dashed line indicates the trajectory of
agent 4.

imposed on the whole system so that (7) hold. This particular
case of BPE formation is defined as follows.

Definition 2: A formation Gσ(p) (σ ∈ P) is called
Relaxed Bearing Rigid if it is BPE and subject to a similarity
transformation, i.e., a rigid motion together with a rescaling:
for each t ≥ 0 and i ∈ V , pi(t) = s(t)R(t)>pi(0) + c(t)
where s(t) ∈ R+ is a scaling factor, c(t) ∈ Rd is a
translational factor, and R(t) ∈ SO(d) is a time-varying
rotation matrix1.

(b) 𝐺𝜎 𝑡1 (𝒑(𝑡1)) (c) 𝐺𝜎 𝑡2 (𝒑(𝑡2))

1 1

22

3 31

2

3

(a) ∪𝑡∈(𝑡1,𝑡2) 𝐺𝜎 𝑡

Fig. 3. An example of a RBR formation under a switching graph topology.
Sub-figure (a) shows the union of the graphs during time t1 to t2. Sub-
figures (b) and (c) show two selected frames of the physical configuration
p(t) and connections Gσ(t) of the multi-agent system under a timed
sequence such that t1 < t2 and τ0 < t2 − t1 < T . Connections in
red represent PE bearings. The dashed line indicates the trajectory of agent
3.

Figure 3 shows an example of 3-agent RBR formation in
three-dimensional space. The system is subject to a time-
varying rotation motion around the z-axis. Agents 1 and
2 are static on the z-axis and agent 3 rotates around z-
axis, as indicated by the black dashed line. Note that the
corresponding inter-agent bearings g31 and g32 are both PE
and ∪

t∈(t1,t2)
Gσ(t) is as presented as in Figure 3a.

V. BEARING-BASED LOCALIZATION AND FORMATION
TRACKING CONTROL UNDER SWITCHING GRAPH

TOPOLOGIES

Without loss of generality, we consider a formation in
which agent 1 is the leader, the unique agent in the for-
mation that measures its own position p1—cf. Assumption
1. The following hypothesis defines feasible desired BPE
formations.

Assumption 4: The desired velocities v∗i (t) := ṗ∗i (t) and
desired positions p∗i (t) (i ∈ V) are chosen such that, for all

1SO(d) stands for Special Orthogonal group of dimension d.



t, v∗i (t) are bounded, the resulting desired bearings g∗ij(t)
are well-defined and the desired formation Gσ(p∗(t)) under
switching graph topologies is BPE.

Now, let p̂i ∈ Rd denote the estimate of pi. Then, the
observers of the leader’s and each follower’s positions are
defined by the equations

˙̂p1 = v1 − ko
n∑
j=1

w1j(t)πg1j (p̂1 − p̂j)− ko(p̂1 − p1) (10a)

˙̂pi = vi − ko
n∑
j=1

wij(t)πgij (p̂i − p̂j), i ∈ V\{1}, (10b)

where ko > 0, wij(t) := w̄k(t) = 1, j ∈ N i
σ(t) and wij(t) =

0 otherwise. Then, using the estimated position p̂i, let the
velocity control input of the system (2) be defined as

vi = −kc(p̂i − p∗i ) + v∗i , i ∈ V. (11)

Let v = [v>1 , . . . , v
>
n ]> and define the error variables δ :=

p̂ − p and p̃ = p − p∗ with p̂ = [p̂>1 , . . . , p̂
>
n ] and p∗ =

[p∗>1 , . . . , p∗>n ]>. From (10), one has ˙̂p = −ko[LBσ (p, t)p̂+
Aδ ] + v with A = diag(Id, 0, . . . , 0) ∈ Rdn×dn. Since
span(p) ⊆ null(LBσ ), we have p>LBσ (p, t)p ≡ 0, so it
is straightforward to verify that:

δ̇ = −ko(LBσ (p, t) +A)δ (12)
˙̃p = −kc(p̃+ δ). (13)

Proposition 1: Consider a n-agent system Gσ(p(t)) de-
fined in Rd under Assumptions 1–4. Then, for any initial
condition satisfying

‖p̃(0)‖ < min(i,j)∈E ‖p∗ij(t)‖/2, (14a)
‖δ(0)‖ < min(i,j)∈E ‖p∗ij(t)‖/2, (14b)

the observer (10) is well defined and the localization and
formation-tracking errors δ and p̃ converge to zero.

Proof: First, we show that δ and p̃ are bounded and
the bearing information gij(t),∀(i, j) ∈ E is well defined
∀t ≥ 0. Define the candidate Lyapunov function for δ-system
(12), W1 = 1

2‖δ‖
2, which satisfies

Ẇ1 = −koδ>(LBσ (p, t) +A)δ ≤ 0, (15)

since LBσ (p, t) +A ≥ 0 for all t ≥ 0. Hence, δ(t) ≤ δ(0)
for all t ≥ 0.

Next, to analyze the trajectories of the p̃-system (13), we
use W2 = 1

2‖p̃‖
2, whose total derivative yields

Ẇ2 = −kcp̃>(p̃+ δ) ≤ −kc‖p̃‖(‖p̃‖ − ‖δ‖). (16)

We see that Ẇ2 is negative definite for all ‖p̃‖ ≥ ‖δ‖.
Since ‖δ(t)‖ ≤ ‖δ(0)‖, one concludes that ‖p̃(t)‖ ≤
max{‖p̃(0)‖, ‖δ(0)‖),∀t ≥ 0.

To show that gij(t),∀(i, j) ∈ E is well defined ∀t ≥ 0,
which in turn implies that (10) is well defined under the pro-
posed initial condition, we have to prove that pij ,∀(i, j) ∈ E
never crosses zero. Using the fact that pij = p̃j − p̃i + p∗ij ,
one gets

‖pij(t)‖ ≥ ‖p∗ij(t)‖−‖p̃i(t)‖−‖p̃j(t)‖ ≥ ‖p∗ij(t)‖−2‖p̃(t)‖.

Combining this with (14) and the fact that ‖p̃(t)‖ ≤
max{‖p̃(0)‖, ‖δ(0)‖),∀t ≥ 0, one concludes that ‖p̃(t)‖ <
‖p∗ij(t)‖/2 and hence pij(t) 6= 0 for all t ≥ 0.

To show convergence to the equilibrium (δ, p̃)= (0, 0), we
first show that Ẇ1 is uniformly continuous and converges to
0. To that end, we use Barbălat’s Lemma [20, Lemma 9] ,
so we compute

Ẅ1 = −2δ̇
>

(koLBσ (p, t) +A)δ − δ>koH̄> diag(π̇ḡk)H̄δ.

Now, the fact that π̇ḡk = − 1
‖p̄k‖ (πḡk v̄kḡ

>
k + ḡkv̄

>
k πḡk) is

bounded—since v̄k = ˙̄pk = vj−vi, (i, j) ∈ E is bounded and
p̄k (5) never crosses zero—implies that Ẅ1 is also bounded,
so Ẇ1 is uniformly continuous. It follows that Ẇ1 converges
to zero which implies ‖δ‖ converges to a constant. From
there, one ensures that δ converges to a constant vector.
Hence, from (13), one deduces that p̃ + δ converges to 0,
which indicates that p̂ converges to p∗. Now, integrating by
parts on both sides of

Ẇ1 = −koδ>(LBσ (p, t) +A)δ → 0, (17)

from t to t+ T , we obtain[
δ(s)>

(∫ s

t

(LBσ (p(τ), τ) +A)dτ

)
δ(s)

]∣∣∣∣t+T
t

−

tr

[∫ t+T

t

[∫ s

t

(LBσ (p(τ), τ) +A)dτ

] [
δ̇δ> + δδ̇

>]
ds

]
.

Note that the inner integral on the last line of this expression
is bounded since LBσ is bounded and the length of the
integration interval T is bounded. Using the fact that Ẇ1

and δ̇ → 0, one ensures that:

δ>
[∫ t+T
t

(LBσ (p(τ), τ) +A)dτ
]
δ → 0

Combining (17) and (9) with the fact that p̂ converges to
p∗, one verifies that p̂(t)>H̄>W (t)Π(p(t))H̄p̂(t) → 0 as
t → ∞ and hence p∗(t)>H̄>W (t)Π(p(t))H̄p∗(t) → 0.
This latter ensures that gij → g∗ij . From there, and since
LBσ (p∗) is PE one concludes that LBσ (p) is also PE. This,
in turn, implies that

∫ t+T
t

(LBσ (p(τ), τ) + A)dτ > 0 and
hence one concludes that δ → 0 and, in turn, p̃→ 0.

Remark 2: In the special case when all the bearings are
constant and the formation is Persistently Bearing Rigid [17]
(i.e., not necessarily IBR for each instant but the formation
under the joint graph is IBR), Proposition 1 still hold
provided two leaders knowing their own positions.

VI. SIMULATION RESULTS

In this section, simulation results are provided to illustrate
the effectiveness of the proposed distributed observer-based
formation tracking controller (10) (11). We consider a 4-
agent system tracking the smooth time-varying trajectories
with agent 1 as a leader. As we can see from Fig. 4, the
formation first form a fixed pyramid shape rotating around
the z-axis while translating along y-axis. Then, it tracks
a time-varying shape which transforms from a pyramid
shape to a square in the xy-plane. In the end, it continues



maintaining as the square shape while following circular
trajectories.

Figure 5 shows the evolution of the estimation and po-
sition errors, which converge to zero asymptotically under
the switching graph topologies. Note that the graph is not
necessarily instantaneously connected. The gains are chosen
as ko = 5 and kc = 10.
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Fig. 4. 3D evolution of the formation. The stars and void circles
represent initial estimates and initial positions, respectively. The colorful
lines represent the trajectories of the formation. The filled circles indicate
the configuration of the formation at t = 6.2, t = 15, and t = 18.1. The
black lines are connections of the joint graph ∪τ∈(t,t+T )Gσ(τ).
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Fig. 5. The first subplot shows the time evolution of the norm of the
estimation error ‖δ‖ and the second subplot indicates the time evolution
of the norm of the position error ‖p̃‖. The remaining subplots show the
intermittent interconnections; from these plots the topology at any instant
can be inferred.

VII. CONCLUSION

This paper solves an observer-based formation tracking
problem for multi-agent systems defined in two and three-
dimensional spaces. A distributed output-feedback observer-
based tracking controller is designed for the system using
inter-agent bearing measurements, the estimated global po-
sition of each agent, and the global position of at least one
leader agent. The key distinction of the proposed method
is that the estimation and tracking errors achieve asymptot-
ically to zero under time-varying graph topologies without
common assumptions of bearing rigidity. It also enables the
multi-agent system to track a larger set of feasible desired

formations, including rotational maneuvers and formations
with time-varying shapes. Future work includes extending
the observer design for multi-agent systems with each agent
under a second-order system to estimate both velocity and
position vectors for each agent. Attitude synchronization will
also be considered to deal with the practical issue that the
relative bearings are only measured in each agent’s local
frame without knowing its orientation matrix with respect
to a common inertial frame.
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