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Introduction and statement of the main result 1.Previous works

We remind first some notations and definitions from the work [Pali]. We recall first that over a smooth manifold M , the vector bundle T TMjM ' T M T M , is a complex one with the canonical complex structure J can : (u; v) 7 ¡! (¡v; u) acting on the fibers. Any almost complex structure which is a continuous extension of J can in a neighborhood of M inside T M makes M an (almost complex) maximally totally real sub-manifold of T M . We denote by

T 2 C 1 (T M ; T M R T T M ) ;
the canonical section which at the point 2 T M takes the value T : E p ¡! T Ep; , which is the canonical isomorphism map. We remind now the following definition from [Pali].

Definition 1.1. Let M be a smooth manifold. An M-totally real almost complex structure over an open neighborhood U T M of the image of the zero section 0 M is a couple (; B) with 2 C 1 (U ; T M R T TM ) and with B 2 C 1 (U ; GL(T M )) such that d = I TM over U and such that 0 p = d p 0 M , B 0 p = I T M ;p , for all p 2 M. With A: = + iTB, the almost complex structure J A associated to (; B) is the one which satisfies T TM ;JA; 0;1 = A (CT M ;() ) CT TM ; for all 2 U T M .

Every almost complex smooth extension of the canonical complex structure J can of T TMjM over a neighborhood of M inside T M writes, over a sufficiently small neighborhood U T M of M , as the almost complex structure associated to a unique M -totally real almost complex structure over U . Definition 1.2. We denote by Circ the circular operator (Circ )(v 1 ; v 2 ; v 3 ; ) = (v 1 ; v 2 ; v 3 ; ) + (v 2 ; v 3 ; v 1 ; ) + (v 3 ; v 1 ; v 2 ; ) ; acting on the first three entries of any q-tensor , with q > 3. We also define the permutation operation 2 (v 1 ; v 2 ; ) := (v 2 ; v 1 ; ).

For any complex covariant derivative operator r acting on the smooth sections of CT M we denote by H r the associated horizontal distribution. We define the operator

d 1 r : C 1 (M ; T M ;k R CT M ) ¡! C 1 ¡ M ; 2 T M R T M ;(k¡1) R CT M ;
with k > 1 as follows d 1 r A ( 1 ; 2 ; ) := r 1 A ( 2 ; ) ¡ r 2 A ( 1 ; ) ; with 1 ; 2 2 T M and with 2 T M (k¡1)

. In the case r acts on the smooth sections of T M , we denote by (; t) 7 ¡! t r () 2 T M , the geodesic flow of r starting at a point 2 T M .

For any two sections A 2 C 1 (M ; T M ;(k+1) R CT M ) and B 2 C 1 (M ; T M ;(l+1) R CT M ) we define the exterior product

A ^1 B 2 C 1 ¡ M ; 2 T M R T M ;(k+l¡1) R CT M
as (A ^1 B)( 1 ; 2 ; ; ) := A( 1 ; B( 2 ; ); ) ¡A( 2 ; B( 1 ; ); ) ;

with 1 ; 2 2 T M , 2 T M l and 2 T M (k¡1)
. We denote by Sym r 1 ;:::;r s the symmetrizing operator (without normalizing coefficient!) acting on the entries r 1 ; :::; r s of a multi-linear form. We use the convention that a sum and a product running over an empty set are equal respectively to 0 and 1.

We observe that the argument given in the proof of corollary 2 in [Pali] applies without modifications in the case of a general torsion free covariant derivative operator acting on the smooth sections of the tangent bundle. For the convenience of the reader we provide in the appendix, the argument in this more general setting. We therefore have the following statement.

Corollary 1.3. Let M be a smooth manifold equipped with a torsion free covariant derivative operator r acting on the smooth sections of the tangent bundle T M , let U T M be an open neighborhood of the image of the zero section with connected fibers, let J J A be an M-totally real almost complex structure over U, real analytic along the fibers of U and consider the fiberwise Taylor expansion at the origin

T ¡1 (H r ¡ A ) = i + X k>1 S k ( ; k ) ;
with 2 T M in a sufficiently small neighborhood of the image of the zero section, with 2 T M ;() arbitrary with

S k 2 C 1 (M ; T M R S k T M R CT M ) and with k := k 2 T M ;() k .
Then the almost complex structure J is integrable over U and for any 2 U, the complex curve : t + is 7 ¡! s t r (), defined in a neighborhood of 0 2 C, is J-holomorphic if and only if S 1 = 0,

S k = i (k + 1)!k!
Sym 2;:::;k+1 k r ;

for all k > 2, with 2 r := 2R r , with

k r := ¡2i (id 1 r ) k¡3 (rR r ) 2 + X r=3 k¡1 (r + 1)! X p=2 r ¡1
(id 1 r ) k¡1¡r (pS p ^1 S r ¡ p+1 ) ; for all k > 3 and the equations Circ Sym 3;:::;k+1 k r =0, are satisfied for all k > 4.

We remind that by the results due to Guillemin-Stenzel [Gu-St], Lempert [Lem], Lempert-Szöke , Szöke [Szo] and Bielawski [Bie] in particular, the complex structures in the statement of corollary 1.3 exist in the case M is a compact real analytic manifold and r is a torsion free covariant derivative operator acting on the real analytic sections of T M .

By corollary 1.3, the vanishing of the tensor Circ Sym 3;:::;k+1 k r , for all k > 4, is certainly true in the above analytic case. We feel however that a proof independent of [Gu-St, Lem, Le-Sz1, [START_REF] Szöke | Complex structures on the tangent bundle of Riemannian manifolds[END_REF]Bie] provide a more general statement useful for the applications.

The first author has shown [Pali] that the equation Circ Sym 3;:::;k+1 k r =0 is satisfied for k = 4 even in the more general case of a torsion free complex covariant derivative operator acting on the smooth sections of the complexified tangent bundle.

We wish to point out that in this more general case it is not possible to have a statement similar to corollary 1.3, simply because there are no geodesics in M associated to the complex covariant derivative operator.

However this complex case is rather important to the applications to micro-local analysis since quite often the operators there are expressed in terms of complex covariant derivative operators. In this article we build a general formalism which allows us to give a more compact proof of the vanishing of the tensor Circ Sym 3;:::;k+1 k r in the case k = 4, and which allows us to provide also a proof in the case k = 5.

We have checked by using computer algebra [Pal-Sal] the above vanishing also for the cases k = 6; 7. It is quite likely that the vanishing is always satisfied in the torsion free complex covariant derivative case.

Statement of the main result

We provide now more notations useful for the statement of our main theorem.

Notation 1.4. We denote by A 0 p any element A (a 1 ; :::; a N ) 2 Z >0 N with N 2 Z >0 arbitrary such that jAj := P j=1 N a j = p. We set l A := N. We denote also A! := a 1 !a N !,

jAj j := X s=1 j a s ;
kAk j := jAj j + j ;

for any 1 6 j 6 N, and we set kAk := kAk N + N. For any l = 1; :::; N, we define A l ¡ := (a 1 ; :::; a l )

A l + := (a l+1 ; :::; a N ) and 

A l;h 0 := (A h ¡ ) l + = (
:; v p ) 2 T M p .
Let R (a) := r a R r . We denote by R (a) (1; :::; a + 1; ; a + 2) the endomorphism a) (1; :::; a + 1; v; a + 2) :

v 7 ¡! R (
Given a family of endomorphisms (T j ) j=1 p we denote by

Y j=1 p T j := T 1 T p :
We also define the curvature monomial of multi-degree A as

R A (1; :::; kAk + 1) := 2 4 Y j =1
lA R (aj) ¡ kAk j ¡1 + 2 ; :::; kAk j + 1; ; kAk ¡ j + 2 3 5 1 ;

i.e. the curvature monomial R A writes as R A (1; :::; kAk + 1) = R (a1) ¡ 2; :::; a 1 + 2; R (a2) ¡ a 1 + 3; :::; a 1 + a 2 + 3; R (a3) ¡ a 1 + a 2 + 4; :::; a 1 + a 2 + a 3 + 4; R (a4) ¡ ::: :::; R (al A ) ¡ kAk l A ¡1 + 2; :::; kAk l A + 1; 1; kAk l A + 2 ; kAk l A + 3 ; ::: ; kAk + 1 :

We denote by l any 2 Z >1 p such that jj = l and we define for any A 2 Z >0 l the coefficient

C A := X 06H 6A (¡1) jH j C(H) H! (A ¡ H)! ; with l H = l ; C(H) := X l H (¡1) l kH 1 ¡ k Y j =1 l Y s=jj j ¡1 jjj ¡1 1 kH s;jjj 0 k(kH s;jjj 0 k + 1)
:

With these notation we can state our main theorem.

Theorem 1.5. (Main theorem: Explicit maximal totally real embeddings)

Let M be a smooth manifold equipped with a torsion free covariant derivative operator r acting on the smooth sections of the tangent bundle T M , let U T M be an open neighborhood of the image of the zero section with connected fibers, let J J A be an M-totally real almost complex structure over U, real analytic along the fibers of U and consider the fiber-wise Taylor expansion at the origin

T ¡1 (H r ¡ A ) = i + X k>1 S k ( ; k ) ;
with 2 T M in a sufficiently small neighborhood of the image of the zero section, with 2 T M ;()

arbitrary with S k 2 C 1 (M ; T M R S k T M R CT M ) and with k := k 2 T M ;() k .
Then the almost complex structure J is integrable over U and for any 2 U, the complex curve

: t + is 7 ¡! s t r (), defined in a neighborhood of 0 2 C, is J-holomorphic if and only if S 1 = 0, S k = 1 i k+1 k! X kDk=k C D Sym 2;:::;k+1 R D ; with D > 0;
for all k > 2 and the equations Circ Sym 3;:::;k+1 k r =0, with

k r := ¡2i (id 1 r ) k¡3 (rR r ) 2 + X r=3 k¡1 (r + 1)! X p=2 r ¡1 (id 1 r ) k¡1¡r (pS p ^1 S r ¡ p+1 ) ;
are satisfied for all k > 6.

The main theorem is a direct consequence of corollary 1.3, combined with the following general result (as well as the vanishing for k = 4; 5 that we provide below).

Theorem 1.6. Let M be a smooth manifold and let r be a torsion free complex covariant derivative operator acting on the smooth sections of the complexified tangent bundle CT M . Then for all k > 2, a section

S k 2 C 1 (M ; T M R S k T M R CT M ) satisfies S k = i (k + 1)!k! Sym 2;:::;k+1 k r ;
with 2 r := 2R r and with

k r := ¡2i (id 1 r ) k¡3 (rR r ) 2 + X r=3 k¡1 (r + 1)! X p=2 r ¡1 (id 1 r ) k¡1¡r (pS p ^1 S r ¡ p+1 ) ;
for all k > 3, if and only if

S k = 1 i k+1 k! X kDk=k C D Sym 2;:::;k+1 R D ; with D > 0;
for all k > 2.

In the auxiliary preprint [Pal-Sal], we provide a Maple program verifying the main equivalent statement in the proof of the theorem 1.6. We warmly thank François Guenard for providing an alternative verification of the same statement in "Mathematica", that we also include there. In [Pal-Sal], we provide as well verifications of the vanishing of the integrability equations for the cases k = 4; :::; 7.

Proof of theorem 1.6

In all the article, with the exception of the appendix, we assume r be a torsion free complex covariant derivative operator acting on the smooth sections of the complexified tangent bundle CT M . 

Expliciting the powers of the

:; v q ) := X j=1 q
(v 1 ; :::; A(u 1 ; :::; u p ) v j ; :::; v q ) :

We denote R r : :=R r ¡R r :.

We denote by Alt 2 , the alternating operator (without normalizing coefficient!) acting on the first two entries of any tensor. We recall the following well known fact (see [Pali]).

Lemma 2.2. For any complex covariant derivative operator r acting on the smooth sections of the complexified tangent bundle CT M and for any tensor 2 C 1 (M ; T M ;k R CT M ), holds the commutation identity Alt 2 r 2 =R r : :

(2.1)

We observe now two other elementary lemmas. Their proof is left to the reader.

Lemma 2.3. For any p-tensor ,

(d 1 r ) k (1; :::; k + p) = X 2S k+1
" r k ( 1 ; :::; k+1 ; k + 2; :::; k + p) ;

where S k+1 is the set of permutations of the set f1; ::

:; k + 1g such that if 1 6 j < k < l 6 k + 1 then j < k and j < l .
Lemma 2.4. For any p-tensor ,

(d 1 r ) k (1; :::; k + p) = X jr¡1<lr<jr6k+1 j 0 :=0;r>1 (¡1) P r>1
(jr ¡lr) r k (1; :::; l ^1; :::; j 1 ; l 1 ; j 1 + 1; :::;

; :::; l ^2; :::; j 2 ; l 2 ; j 2 + 1; :::; l ^r; :::; j r ; l r ; j r + 1; :::; k + 2; :::; k + p) :

The notation a; :::; b for integers a < b denotes the increasing by one sequence from the left to the right hand side. We ignore this notation when a > b. We start by showing the following fundamental proposition.

Proposition 2.5. Let r be a torsion free complex covariant derivative operator acting on the smooth sections of CT M with curvature operator R r (; ) R r (; ; ). Then for all integers k > 1, Sym 2;:::;k+4 

:; k + 4) := ¡ (¡1) k X j =2 k+1 r j ¡2 ¡ R r :r k+1¡j R r
(3; :::; j ; 2; j + 1; :::

; k + 3; 1; k + 4) ; V k (1; :::; k + 4) := (¡1) k X j=2 k+1 r j ¡2 ¡ R r :r k+1¡ j R r
(3; :::; j ; 1; j + 1; :::; k + 3; 2; k + 4) :

Proof. We notice first that the symmetrization of a tensor with two alternating entries vanishes. Applying this fact to the covariant derivatives of R r we infer the identities Sym 2;:::;k+4 

:; k + 4) := ¡ (¡1) k r k (rR r ) 2
(1; 3; :::; k + 1; 2; k + 2; k + 3; k + 4) ; which rewrite as ' k (1; :::; k + 4) = (¡1) k r k+1 R r (2; :::; k + 2; 1; k + 3; k + 4) = ¡ (¡1) k r k+1 R r (2; :::; k + 3; 1; k + 4) ; k (1; :::; k + 4) = ¡ (¡1) k r k+1 R r (1; 3; :::; k + 2; 2; k + 3; k + 4) = (¡1) k r k+1 R r (1; 3; :::; k + 3; 2; k + 4) ; thanks to the alternating property of R r . We deduce in particular the identity (2.2). Using the identity (2.1) we infer ' k (1; :::; k + 4) = ¡ (¡1) k r k+1 R r (3; 2; 4; :::; k + 3; 1; k + 4)

¡ (¡1) k ¡ R r :r k ¡1 R r
(2; :::; k + 3; 1; k + 4) ; k (1; :::; k + 4) = (¡1) k r k+1 R r (3; 1; 4; :::; k + 3; 2; k + 4)

+ (¡1) k ¡ R r :r k ¡1 R r
(1; 3; :::; k + 3; 2; k + 4) :

We now show by finite induction on p, the identities ' k (1; :::; k + 4) = ¡ (¡1) k r k+1 R r (3; :::; p + 1; 2; p + 2; :::

; k + 3; 1; k + 4) ¡ (¡1) k X j =2 p r j ¡2 ¡ R r :r k+1¡ j R r
(3; :::; j ; 2; j + 1; :::; k + 3; 1; k + 4) ; k (1; :::; k + 4) = (¡1) k r k+1 R r (3; :::; p + 1; 1; p + 2; :::; k + 3; 2; k + 4)

+ (¡1) k X j =2 p r j ¡2 ¡ R r :r k+1¡ j R r
(3; :::; j ; 1; j + 1; :::; k + 3; 2; k + 4) ;

for any integer p, with 2 6 p 6 k + 1. We assume them true for p < k + 1. Applying the covariant derivative r 3;:::;p+1 p¡1 to the identity (2.1), with := r k+2¡ p R r , we infer the conclusion of the induction. If we set p := k + 1 in the previous identities we obtain (' k + k )(1; :::; k + 4) = ¡ (¡1) k r k+1 R r (3; :::; k + 2; 2; k + 3; 1; k + 4) ¡ (¡1) k r k+1 R r (3; :::; k + 2; 1; 2; k + 3; k + 4)

+ (Q k + V k )(1; :::; k + 4) ;
thanks to the alternating property of R r . Then the identity (2.3) follows from the differential Bianchi identity.

Equivalent definitions of the tensor S k

We start by noticing a few elementary equivalent definitions of the tensors S k introduced in the statement of corollary 1.3. We assume more in general here that r acts on the smooth sections of CT M . For notational simplicity we use the identification r k S S (k) for any tensor S. Definition 2.6. We define for all k > ¡1 k (1; :::; k + 4) := ¡ (¡1) k R (k+1) (2; :::; k + 3; 1; k + 4) :

Using the identity (2.2) we infer the following equivalent definition for S k .

Lemma 2.7. The tensors S k defined in the statement of corollary 1.3 satisfy for all k > 2,

S k = i (k + 1)!k!
Sym 2;:::;k+1 k ; (Notice that in the case r = k ¡ 1 the set I is empty). Using the elementary properties of the symmetrization operators we infer the following equivalent definition of S k .

k := 2i k k ¡3 + k! X p=2 k¡2 (pS p ^Sk¡p ) + X r=3 k ¡2 (r + 1)! X p=2
Lemma 2.12. The tensors S k defined in the statement of corollary 1.3 satisfy for all k > 2, 

S k = i (k + 1)!k! Sym 2;:::;k+1 k ; k := 2i k k ¡3 + k ; k : = X r=3 k ¡1 X p=2 r ¡1 (r + 1)!(¡i) k¡1¡r (r ¡ p + 2)! (p +
S k = i (k + 1)!k!
Sym 2;:::;k+1 ~k ;

with ~k = X D 0 k ¡2l D C D R D ;
where the coefficients C D are given by C D := 2 (¡i) k for l D = 1 and by the recursive formula

C D = ¡ X 16h6l D ¡1 06A6D l A =l D (¡i) jD ¡Aj jD ¡ Aj D ¡ A kAk!C A h ¡ C A h + (kA h ¡ k + 1)!(kA h + k + 1)! ; (2.4) for l D > 2.
Proof. We assume by induction on k > 3 that

S p = i (p + 1)! p!
Sym 2;:::; p+1 ~p ;

for any p = 2; ::::; k ¡ 1, with ~p under the form

~p = X A 0 p¡2l A C A R A ;
for some coefficients C A , with obviously ~2 = 2R and C A = 2 (¡i) p in the case l A = 1, thanks to the equivalent definition of S p given in lemma (2.12). We show that ~k writes under the form claimed in the statement of the proposition 2.13 with the coefficients C D given by the recursive formula (2.4). For this purpose we notice first that the straightforward argument showing the equivalent definition (2.12) of S k implies for all k > 3 the identity

S k = i (k + 1)!k!
Sym 2;:::;k+1 ^k ; We observe now that for any A 0 p ¡ 2l A and any integer q > 0, the Leibniz identity implies

with ^k := 2i k k ¡3 + ^k ; ^k := X r=3 k ¡1 X p=2 r ¡1 (r + 1)!(¡i) k¡1¡r (r ¡ p + 2)! (p +
(R A ) (q) (1; :::; q + p + 1) = X f 2Map(q;l A ) 2 4 Y j =1 lA R f ; j A;q 3 5 (q + 1) ; with R f ;j A; q := R (aj+jf ¡1 (j)j) ¡ f ¡1 (j)
; kAk j ¡1 + q + 2; :::; kAk j + q + 1; ; p ¡ j + q + 2 :

We write now

~p (jI j) = X A 0 p¡2l A C A (R A ) (jI j) ;
and we notice that the shape of (R A ) (jI j) shows that ^k;r;p;k¡h+1 I , with h := l A , are the only terms with non vanishing symmetrization of the variables 2; :::; k + 1. Indeed we consider the factor 1 ¡ a h ;:::;p ¡ h + 1;1;p ¡ h + 2) ; (2.5)

R (ah+jf ¡1 (h)j) (f ¡1 (h); p ¡ h +
with f 2 Map(I ; h) in the expression of (R A ) (jI j) (I ; 1; :::; p + 1) and we perform the change of variables

1 # k ¡ r + 1 2 # k ¡ p + 3 ::: ::: j ¡ k + p ¡ 1 # j j ¡ k + p # ~r¡p+1 (j{I j) ({I ; 1; k ¡ r + 2; :::; k ¡ p + 2) j ¡ k + p # j + 1 ::: ::: p + 1 # k + 1
in the factor (2.5) with j 2 fk ¡ p + 2; :::; k + 1g. (We recall that we ignore the standard increasing notation a; :::; b when a > b.) The only case when the symmetrization of the variables 2; :::; k + 1 does not annihilate the factor (2.5), is when the index j 2 fk ¡ p + 2; :::; k + 1g satisfies the equality

j ¡ k + p = p ¡ h + 1;
i.e. only when j = k ¡ h + 1. This shows the required statement about ^k;r;p;k¡h+1 I . We infer that for all k > 3 the equality hold

S k = i (k + 1)!k!
Sym 2;:::;k+1 k ; for any integers x; y > 0 and using the change of variables

with k := 2i k k¡3 + k ; with k := X 36r6k¡1 26p6r ¡1 (r + 1)!(¡i) k ¡1¡r (r ¡ p + 2)! (p + 1)! X A0 p¡2lA B0r ¡ p+1¡2lB I f2;:::;k ¡rg C A C B k
k p + 3 # k p + 3 ::: ::: k l A + 1 # k l A + 1 k l A + 2 # R B (1; k r + 2; :::; k p + 2) k l A + 3 # k l A + 2 ::: ::: k + 2 # k + 1
we infer the equality R A (k r + 1; k p + 3; :::; k lA + 1; R B (1; k r + 2; :::; k p + 2); k lA + 2; :::

; k + 1) = 2 4 Y j =1 lA¡1 R (aj) ¡ kAk j ¡1 + k p + 3; :::; kAk j + k p + 2; ; k j + 2 3 5 R (al A ) ¡ k lA + 2 ¡ a lA ; :::; k lA + 1; R B (1; k r + 2; :::; k p + 2); k r + 1; k lA + 2 : Indeed notice that jAj + l A = p ¡ l A = k l A + 2 ¡ (k p + 2) and p ¡ j + (k p + 3) ¡ 1 = k j + 2.
Expanding R B (1; k r + 2; :::; k p + 2) we obtain

R A (k r + 1; k p + 3; :::; k lA + 1; R B (1; k r + 2; :::; k p + 2); k lA + 2; :::; k + 1) = 2 4 Y j=1 lA¡1 R (aj) ¡ kAk j ¡1 + k p + 3; :::; kAk j + k p + 2 ; ; k j + 2 3 5 R (al A ) (k l A + 2 ¡ a l A ; :::; k l A + 1; ; k r + 1; k l A + 2) " Y t=1 lB R (bt) ¡ kB k t¡1 + k r + 2; :::; kB k t + k r + 1; ; k p ¡ t + 3 # 1; since kB k ¡ t + k r + 2 = k p ¡ t + 3.
For any integer a > 1, we denote by [a] 1 :=f2; :::; a + 1g and we set [0] 1 := ;. For any integer b > 1, we denote by Map(

[a] 1 ; b) the set of maps f: [a] 1 ¡! [b].
Using the Leibniz formula and the alternating property of R we infer the identity

k = X 36r6k ¡1 26p6r ¡1 (r + 1)!(¡i) k¡1¡r (r ¡ p + 2)! (p + 1)! X A0 p¡2lA B0r ¡p+1¡2lB f 2Map([kr ¡1]1;lA+lB) C A C B k;r;p f ;A;B ; (2.6) with ¡ k;r; p f ;A;B (1; :::; k + 1) := 2 4 Y j =1 lA¡1 R (aj+jf ¡1 (j)j) (f ¡1 (j) ; kAk j ¡1 + k p + 3; :::; kAk j + k p + 2; ; k j + 2) 3 5 R (al A +jf ¡1 (lA)j) ¡ f ¡1 (l A ) ; k lA + 2 ¡ a lA ; :::; k lA + 1; k r + 1 ; ; k lA + 2 " Y t=1 lB R (bt+jf ¡1 (lA+t)j) ¡ f ¡1 (l A + t) ; kB k t¡1 + k r + 2; :::; kB k t + k r + 1; ; k p ¡ t + 3 # 1:
We observe the equality ¡ Sym 2;:::;k+1 k;r; p f ;A;B = Sym 2;:::;k+1 R D ;

(2.7) with l D := l A + l B and with D 0 k ¡ 2l D given by

d j := 8 > > < > > :
a j + jf ¡1 (j)j ; j = 1; :::; l A ; b j ¡lA + jf ¡1 (j)j ; j = l A + 1; :::; l D :

(2.8)

We deduce that ~k writes under the form claimed in the statement of the proposition 2.13.

We denote by abuse of notations D ¡ A ¡ B > 0 when d j ¡ a j > 0 for all j = 0; :::; l A and when d j ¡ b j ¡l A > 0 for all j = l A + 1; :::; l D .

Given A; B; D as before we denote by Map

A;B D ([k ¡ r ¡ 1] 1 ; l D ) the sub-set of Map([k ¡ r ¡ 1] 1 ; l D )
given by the elements f which satisfy condition (2.8). We denote also by

M A;B;k;r D := jMap A;B D ([k ¡ r ¡ 1] 1 ; l D )j :
Using (2.6) and (2.7), we infer the recursive formula

C D = X 36r6k ¡1 26p6r ¡1 (r + 1)!(¡i) k+1¡r (r ¡ p + 2)! (p + 1)! X A 0 p¡2l A B 0 r ¡ p+1¡2l B l A +l B =l D D ¡A¡B>0 C A C B M A;B ;k;r D ;
We remind that in the case l D = 1 hold the formula C D = 2 (¡i) k for all k > 2.

Remark 2.14. Let A 0 a with l A = q and consider the sub-set Map A (a; q) of Map(a; q) given by the elements f such that jf ¡1 (j)j = a j , for all j = 1; :::; q. Then jMap A (a; q)j = a A :

The fact that in our set-up jDj ¡ jAj ¡ jB j = k ¡ r ¡ 1, allows to apply the previous remark to the set Map

A;B D ([k ¡ r ¡ 1] 1 ; l D ).
We infer the formula

M A;B;k;r D = (k ¡ r ¡ 1)! Y j=1 lA 1 (d j ¡ a j )! Y j =lA+1 lD 1 (d j ¡ b j ¡l A )! :
We conclude the explicit recursive formula

C D = X 36r6k ¡1 26p6r ¡1 A 0 p¡2l A B 0 r ¡ p+1¡2l B l A +l B =l D D ¡A¡B>0 (¡i) k+1¡r (k ¡ r ¡ 1)!(r + 1)!C A C B (r ¡ p + 2)! (p + 1)! Q j =1 lA (d j ¡ a j )! Q j =l A +1 lD (d j ¡ b j ¡l A )! ;
which rewrites as (2.4). This concludes the proof of proposition 2.13.

Example 2.15. In this example we set for simplicity R 0 : =R (1) and R 00 := R (2) . For k = 6 we have the expression ~6(1; :::; 7) = ¡2 3 (1; :::; 7) + C 2;0 R 00 (2; 3; 4; R(5; 1; 6); 7) + C 0;2 R(2; R 00 (3; 4; 5; 1; 6); 7)

+ C 1;1 R 0 (2; 3; R 0 (4; 5; 1; 6); 7) + C 0;0;0 R(2; R(3; R(4; 1; 5); 6); 7) ; C 2;0 = 10;

C 0;2 = 10; C 1;1 = 17; C 0;0;0 = ¡ 32 3 :
3 Expliciting the recursive formula for C D Lemma 3.1. For any integer k > 3 and any

D 0 k ¡ 2l D with l D > 1, C D = ¡i X p2SuppD C D ¡1p ¡ k! X h=1 lD ¡1 C D h ¡ C D h + (kD h ¡ k + 1)!(kD h + k + 1)! :
Proof. In the case l D = 1 we have C k ¡2 = ¡iC k ¡3 , for k > 3 by definition. This coincides with what provides the formula in the lemma under consideration. We consider now the case l D > 2 and we use the identifications D (d 1 ; :::; d l D ); A (a 1 ; :::; a l D ). Using the recursive formula (2.4) we write

¡i X p2SuppD C D ¡1p = ¡ X p2SuppD 06A6D¡1p l A =l D (¡i) jDj¡jAj d p ¡ a p jDj ¡ jAj jDj ¡ jAj D ¡ A F A ;
with

F A := kAk! X h=1 lD ¡1 C A h ¡ C A h + (kA h ¡ k + 1)!(kA h + k + 1)! :
Let I (1; :::; 1) 2 Z lD and let S D := jSupp Dj. We denote by I D 2 Z lD the vector such that Supp I D = Supp D and 0 6

I D 6 I. Then ¡i X p2SuppD C D ¡1p = ¡ X 06A6D ¡ID lA=lD (¡i) jDj¡jAj 2 6 6 4 X 16 p6lD p2SuppD d p ¡ a p jDj ¡ jAj 3 7 7 5 jDj ¡ jAj D ¡ A F A ¡ X p2SuppD D ¡ID6A6D¡1p lA=lD jDj¡SD<jAj (¡i) jDj¡jAj jDj ¡ jAj jDj ¡ jAj D ¡ A F A :
We notice indeed that the conditions D ¡ I D 6 A 6 D ¡ 1 p , jDj ¡ S D < jAj, when they are not empty, imply

a p = d p ¡ 1. We infer ¡i X p2SuppD C D¡1 p = ¡ X 06A6D ¡ID lA=lD (¡i) jDj¡jAj jDj ¡ jAj D ¡ A F A ¡ X D ¡I D 6A6D l A =l D jDj¡S D <jAj<jDj jfp: a p = d p ¡ 1gj (¡i) jDj¡jAj jDj ¡ jAj jDj ¡ jAj D ¡ A F A = ¡ X 06A6D lA=lD jAj<jDj (¡i) jDj¡jAj jDj ¡ jAj D ¡ A F A ;
since jfp:

a p = d p ¡ 1gj = jDj ¡ jAj.
Then the conclusion follows from the formula (2.4).

Definition 3.2. Given t 2 R Z>0 , s 2 R and A 2 Z >0 p ; B 2 Z >0 q , with p; q 2 Z >0 we define the concatenation product (t A s p ) (t B s q ) := t 1 a1 t p ap t p+1 b1 t p+ q bq s p+ q ;

and we extend it by linearity.

Definition 3.3. Given t 2 R Z>0 , s 2 R, A 2 Z >0
p and j 2 Z >0 we define the contraction product

t j : (t A s p ) := t A+1j s p ;
where A + 1 j := A + 1 p;j , if j 6 p, with 1 p; j the vector of length p with vanishing components except the j-th one which has value 1 and where A + 1 j := A, if j > p. We extend the contraction product by linearity.

Lemma 3.4. Let t 2 R Z>0 , s 2 R, and x 2 R. Then the function

u(x; t; s) := X D>0 C D t D s lD x kDk+1 (kDk + 1)! ;
is the unique solution of the Riccati-type ODE

@ x u + uu x 2 + i X j >1 t j ! :u + sx 2 = 0;
with the initial condition u(0; ; ) 0.

Proof. We write first

@ x u(x; t; s) = X D>0 C D t D s lD x kDk kDk! = X D>0 jDj+2lD>3 C D t D s lD x kDk kDk! +C 2;0 s x 2 2 = X D>0 jDj+2l D >3 C D t D s lD x kDk kDk! ¡sx 2 :
On the other hand

(uu)(x; t; s) = " X A>0 C A t A s lA x kAk+1 (kAk + 1)! # " X B>0 C B t B s lB x kB k+1 (kB k + 1)! # = x 2 X A;B>0 C A C B (t A s lA ) (t B s lB ) x kAk+kB k (kAk + 1)!(kB k + 1)! = x 2 X D>0 t D s lD X h=1 lD¡1 C D h ¡ C D h + x kDk (kD h ¡ k + 1)!(kD h + k + 1)! = x 2 X D>0 jDj+2lD>3 t D s lD X h=1 lD¡1 C D h ¡ C D h + x kDk (kD h ¡ k + 1)!(kD h + k + 1)! ; and " X j >1 t j ! :u # (x; t; s) = X j >1 (t j :u)(x; t; s) = X j >1 X D>0 C D t D+1j s lD x kDk+1 (kDk + 1)! = X D>0 X j =1 lD C D t D+1j s lD x kDk+1 (kDk + 1)! = X D>0 t D s lD x kDk kDk! X p2SuppD C D ¡1 p ! = X D>0 jDj+2lD>3 t D s lD x kDk kDk! X p2SuppD C D¡1 p ! :
Then lemma (3.1) implies that the function u satisfies the singular Riccati's ODE. The uniqueness statement follows from the following corollary. (3.1)

:; t l ) := X D>0 l D =l C D t D x kDk+1 (kDk + 1)! ; satisfies the recursive system of linear ODE's 8 > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > : @ x u 1 (x; t 1 ) + it 1 u 1 (x; t 1 ) + x 2 = 0; @ x u l (x;
with initial conditions u l (0; t 1 ; :::; t l ) = 0, for all l > 1 and all (t 1 ; :::; t l ) 2 R l .

Proof. According to the proof of lemma 3.4 we can write On the other hand still according to the proof of lemma 3.4 we can write " X

(uu)(x; t; s) = x 2 X A;B>0 C A C B (t A s lA ) (t B s lB ) x kAk+kB k (kAk + 1)!(kB k + 1)! = x 2 X l>2 s l X p=1 l¡1 X A>0 lA= p X B>0 lB=l¡ p C A C B t 1 a1 t p ap t p+1 b1 t l bl¡p x kAk+kB k (kAk + 1)!(kB k + 1)! = X l>2 s l X p=1
j>1 t j ! :u # (x; t; s) = X D>0 X j=1 lD C D t D+1j s lD x kDk+1 (kDk + 1)! = X l>1 s l X D>0 l D =l X j =1 l C D t D t j x kDk+1 (kDk + 1)! = X l>1 s l 0 @ X j =1 l t j 1 A u l (x; t 1 ; :::; t l ) :
The required conclusion follows from the Riccati-type equation in the statement of lemma 3.4.

In general we introduce the concatenation product for functions of the type The concatenation product is associative.

u(x; t; s) = X l>1 u l (x;
Lemma 3.6. The solution u of the system (3:1) is equivalent to the solution

v(x; t; s) = X l>1 v l (x; t 1 ; :::; t l ) s l ;
of the Riccati-type ODE We infer that the system (3.1) rewrites as

@ x v ¡ i x 2 v v + ix 2 e
8 > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > : @ x v 1 (x; t 1 ) + ix 2 e ixt1 =0; @ x v l (x; t 1 ; :::; t l ) ¡ i x 2 X p=1 l¡1
v p (x; t 1 ; :::; t p ) v l¡ p (x; t p+1 ; :::; t l ) = 0; 8l > 2;

(3.3) which is equivalent to the equation (3.2).

General facts about Riccati-type equations

In this subsection we denote for notational simplicity y_(x; t; s) @ x y(x; t; s). 

u ¡ R(x) u _ + H u = 0; R := a 1 + a _ 2 a 2 ; H := a 2 a 0 ;
via the identification u _ + a 2 y u = 0, with u 1 (x; t 1 ) f (t 1 ), for some non vanishing function and

y l (x; t 1 ; :::; t l ) = X l (¡1) l u _ 1 +1 (x; t 1 ; :::; t 1 +1 ) a 2 (x)f (t 1+1 ) Y j =2
l u j+1 (x; t jjj ¡1+1 ; :::; t jjj+1 )

f (t jjj+1 ) ; (3.4)
for all l > 1, with jj j := P p=1 j p .

Proof. The function v := a 2 y satisfies Riccati-type equation

v_ = v v + R(x) v + H(x; t; s) : Indeed v_ = a _ 2 y +a 2 y_ = a _ 2 a 2 v + a 2 a 0 + a 1 y + a 2 y y = a 0 a 2 + a 1 + a _ 2 a 2 v + v v :
We now show that if u _ + v u = 0 then the function u satisfies the second order linear ODE in the statement. Indeed

u = ¡ v_ u ¡ v u _ = ¡ v_ u + v (v u) = (¡ v_ + v v) u = ¡ [R(x) v + H] u = R(x) u _ ¡ H u:
We notice now that the identification u _ + v u = 0 implies u _ 1 0, i.e. which is precisely formula (3.4).

Notice that y 1 is given directly by the solution of the ODE y_ 1 (x; t 1 ) = a 1 (x)y(x; t 1 ) + a 0;1 (x; t 1 ).

In this paper we will always consider the case u(0; t; s) = t 1 s. In the Riccati-type equation (3.2) we have a 2 (x) = ix ¡2 , a 1 = 0, a 0 (x; t; s) = ¡ix 2 e ixt1 s. Therefore the corresponding second order linear ODE writes as

U + 2 x U _ + (e ixt1 s) U =0: (3.6)
with U (0; t; s) = t 1 s and U _ (0; t; s) = 0. Then according to formula (3.4) we infer the expression v l (x; t 1 ; ::

:; t l ) =¡ix 2 X l (¡1) l U _ 1+1 (x; t 1 ; :::; t 1+1 ) t 1+1 Y j =2
l U j+1 (x; t jjj ¡1+1 ; :::; t jjj+1 )

t jj j +1 ; (3.7)
for all l > 1, for the solution v of the equation (3.2).

In order to compute the solution U we need an other elementary lemma.

Lemma 3.8. In the set up of the previous lemma, any ODE

u + a 1 (x)u _ + a 0 u = f (x; t; s) ; is equivalent to the ODE w ¡ 1 4 (2 a _ 1 + a 1 2 ¡ 4a 0 ) w = e 1 2 R a1 f ; via the identification u = e ¡ 1 2
R a1 w :

Proof. We write u = A(x)w and we observe the elementary equalities u _ = A _ w + A w _ ,

u = A w + 2 A _ w _ +A w :
Then the ODE on u in the statement is equivalent to the ODE

A w + 2 A _ w _ +A w + a 1 A w _ + a 1 A _ w + Aa 0 w = f ; i.e. A w + (2 A _ +a 1 A)w _ + (A + a 1 A _ + Aa 0 ) w = f : We seek for A solution of the ODE 2 A _ + a 1 A = 0, i.e. A = e ¡ 1 2 R a1
. We infer in particular the identity

A + 1 2 a _ 1 A + 1 2 a 1 A _ = 0:
Using this we write

A + a 1 A _ + Aa 0 = ¡ 1 2 a _ 1 A + 1 2 a 1 A _ + Aa 0 = ¡ A 4 (2 a _ 1 + a 1 2 ¡ 4a 0 ) ;
which implies the required conclusion.

We infer that if we set U = x ¡1 w, then the equation ( 3 for all l > 1, for the solution v of the equation (3.2).

Expression for the solution of the equation (3.8)

We notice first the equalities w(0; t; s) = w (0; t; s) = 0, w _ 1 (0; t 1 ) = t 1 , w 1 0. We set

w p;l (t 1 ; :::; t l ) := 1 p! w l (p)
(0; t 1 ; :::; t l ) :

Differentiating the equation (3.8) with respect to the variable x and evaluating at x = 0 we infer for all l > 2 w k+2;l (t 1 ; :::

; t l ) = ¡ 1 (k + 2)(k + 1) X r=0 k¡1 i r r!
t 1 r w k¡r;l¡1 (t 2 ; :::; t l ) ; which we rewrite as w p;l (t 1 ; :::

; t l ) = ¡ 1 p(p ¡ 1) X r=0 p¡3 i r r! t 1 r w p¡r ¡2;l¡1 (t 2 ; :::; t l ) = 1 p(p ¡ 1) X r=2 p¡1 i r (r ¡ 2)! t 1 r ¡2
w p¡r;l¡1 (t 2 ; :::; t l ) :

We deduce

w p;2 (t 1 ; t 2 ) = i p¡1 p ¡ 2 p! t 1 p¡3 t 2 ;
for all p > 3 and zero otherwise. We deduce also

w p;3 (t 1 ; t 2 ; t 3 ) = 1 p(p ¡ 1) X r=2 p¡1 i r (r ¡ 2)! t 1 r ¡2 w p¡r;2 (t 2 ; t 3 ) = 1 p(p ¡ 1) X r=2 p¡3 i r (r ¡ 2)! t 1 r ¡2
w p¡r;2 (t 2 ; t 3 ) ; since w p¡r;2 = 0 for p ¡ r > 3. Thus

w p;3 (t 1 ; t 2 ; t 3 ) = i p¡1 p(p ¡ 1) X r=2 p¡3 (p ¡ r ¡ 2) t 1 r ¡2 t 2 p¡r ¡3 (r ¡ 2)!(p ¡ r)! t 3 :
We compute now w p;4 (t 1 ; :::; t 4 ) = 1 p(p ¡ 1)

X r=2 p¡1 i r (r ¡ 2)!
t 1 r ¡2 w p¡r;3 (t 2 ; :::

; t 4 ) = 1 p(p ¡ 1) X r=2 p¡5 i r (r ¡ 2)! t 1 r ¡2
w p¡r;3 (t 2 ; :::; t 4 ) ; since w p¡r;3 = 0 for p ¡ r > 5. Thus w p;4 (t 1 ; :::

; t 4 ) = i p¡1 p(p ¡ 1) X r 1 =2 p¡5 X r 2 =2 p¡r1¡3 (p ¡ r 1 ¡r 2 ¡ 2) t 1 r1¡2 t 2 r2¡2 t 3 p¡r1¡r2¡3 (p ¡ r 1 )(p ¡ r 1 ¡ 1)(r 1 ¡ 2)!(r 2 ¡ 2)!(p ¡ r 1 ¡ r 2 )! t 4 :
We compute now w p;5 (t 1 ; :::

; t 5 ) = 1 p(p ¡ 1) X r=2 p¡1 i r (r ¡ 2)! t 1 r ¡2
w p¡r;4 (t 2 ; :::

; t 5 ) = 1 p(p ¡ 1) X r=2 p¡7 i r (r ¡ 2)! t 1 r ¡2
w p¡r;4 (t 2 ; :::; t 5 ) ; since w p¡r;4 = 0 for p ¡ r > 7. Thus w p;5 (t 1 ; :::

; t 5 ) = i p¡1 p(p ¡ 1) X r1=2 p¡7 X r2=2 p¡r1¡5 X r3=2 p¡r1¡r2¡3 p ¡ r 1 ¡r 2 ¡ r 3 ¡ 2 (p ¡ r 1 )(p ¡ r 1 ¡ 1)(p ¡ r 1 ¡ r 2 )(p ¡ r 1 ¡ r 2 ¡ 1) t 1 r1¡2 t 2 r2¡2 t 3 r3¡2 t 4 p¡r1¡r2¡r3¡3 (r 1 ¡ 2)!(r 2 ¡ 2)!(r 3 ¡ 2)!(p ¡ r 1 ¡ r 2 ¡ r 3 )! t 5 :
We deduce the general formula w p;l (t 1 ; :::

; t l ) = i p¡1 p(p ¡ 1) X rj=2 16j 6l¡2 p¡jrjj ¡1¡2(l ¡j)+1 (p ¡ jrj l¡2 ¡ 2) 2 4 Y j=1 l¡3 1 (p ¡ jrj j )(p ¡ jrj j ¡ 1) 3 5 2 4 Y j =1 l¡2 t j rj ¡2 (r j ¡ 2)! 3 5 t l¡1 p¡jr jl¡2¡3 (p ¡ jrj l¡2 )! t l ;
for all l > 3. Performing the change of variables r j 0 = r j ¡ 2 we infer w p;l (t 1 ; :::

; t l ) = i p¡1 p(p ¡ 1) X r j =0 16 j 6l¡2 p¡jr jj ¡1¡2l+1 (p ¡ jrj l¡2 ¡ 2l + 2) 2 4 Y j =1 l¡3 1 (p ¡ jrj j ¡ 2 j)(p ¡ jrj j ¡ 2 j ¡ 1) 3 5 2 4 Y j =1 l¡2 t j rj r j ! 3 5 t l¡1 p¡jr jl¡2¡2l+1 (p ¡ jrj l¡2 ¡ 2l + 4)! t l :
If we set r l¡1 := p ¡ jrj l¡2 ¡ 2l + 1, then we can rewrite the previous sum as w p;l (t 1 ; :::

; t l ) = i p¡1 p(p ¡ 1) X r 0 l ¡1 p¡2l+1 (r l¡1 + 1) 2 4 Y j=1 l¡3 1 (p ¡ jr j j ¡ 2 j)(p ¡ jrj j ¡ 2 j ¡ 1) 3 5 2 4 Y j=1 l¡2 t j rj r j ! 3 5 t l¡1 rl¡1 (r l¡1 + 3)! t l = i p¡1 p(p ¡ 1) X r 0 l ¡1 p¡2l+1 2 4 Y j =1 l¡2 1 (p ¡ jrj j ¡ 2 j)(p ¡ jrj j ¡ 2 j ¡ 1) 3 5 2 4 Y j =1 l¡1 t j rj r j ! 3 5 t l ;
where r 0 l¡1 p ¡ 2l + 1 denotes the compositions of length l ¡ 1 and jrj = p ¡ 2l + 1.

We notice that the previous formula hold also for l = 2. In conclusion

w 1 (x; t 1 ) = xt 1 ;
w l (x; t 1 ; :::; t l ) = X p>2l¡1 w p;l (t 1 ; :::; t l ) x p ; for all l > 2.

The explicit expression of the coefficients C D

By the result of the previous subsection, we infer the expression 

w j +1 (x;
= i p¡1 p(p ¡ 1) X r 0 j p¡2 j ¡1 " Y s=1 j ¡1 1 (p ¡ jrj s ¡ 2s)(p ¡ jrj s ¡ 2s ¡ 1) #" Y s=1 j t jjj ¡1+s rs r s ! # : Thus w j+1 (x; t jjj ¡1+1 ; :::; t jjj+1 ) t jjj+1 = X p>2 j +1 i p¡1 x p p(p ¡ 1) X r 0 j p¡2j ¡1 " Y s=1 j ¡1 1 (p ¡ jrj s ¡ 2s)(p ¡ jrj s ¡ 2s ¡ 1) #" Y s=1 j t jjj ¡1+s rs r s ! # ; and w _ 1+1 (x; t 1 ; :::; t 1+1 ) t 1+1 = 1 x X p>21+1 i p¡1 x p (p ¡ 1) X r 0 1 p¡21¡1 " Y s=1 1¡1 1 (p ¡ jrj s ¡ 2s)(p ¡ jrj s ¡ 2s ¡ 1) #" Y s=1 1 t s rs r s ! # :
We infer in conclusion v l (x; t 1 ; :::

; t l ) = ¡i X l (¡1) l x l¡1 X p j >2 j +1 rj 0 j pj ¡2j ¡1 j =1;:::l (p 1 ¡ 1) Y j =1 l i pj ¡1 x pj p j (p j ¡ 1) 2 4 Y j=1 l Y s j =1 j ¡1 1 (p j ¡ jr j j sj ¡ 2s j )(p j ¡ jr j j sj ¡ 2s j ¡ 1) 3 5 2 4 Y j =1 l Y s j =1 j t jj j ¡1 +s j rj;s j r j;sj ! 3 5 ; for all l > 1. Thus v l (x; t 1 ; :::; t l ) = (¡1) l+1 i X H 2Z >0 l X l (¡1) l (jH j 1 + 2 1 ) i jH j x jH j+2l+1 2 4 Y j =1 l Y s=jjj ¡1 jjj ¡1 1 [ P r=s+1 jjj h r + 2(jj j ¡ s) + 1][ P r=s+1 jjj h r + 2(jj j ¡ s)] 3 5 t H H! ;
for all l > 1, which we rewrite as v l (x; t 1 ; :::

; t l ) = (¡1) l+1 i X H 2Z >0 l i jH j x jH j+2l+1 t H H! X l (¡1) l (jH j 1 + 2 1 ) 2 4 Y j =1 l Y s=jj j ¡1 jjj ¡1 1 [ P r=s+1 jjj h r + 2(jj j ¡ s) + 1][ P r=s+1 jjj h r + 2(jj j ¡ s)] 3 5 :
We now recall that thanks to lemma 3.6 the solution u of the Riccati-type equation in lemma 3.4 is given by u l (x; t 1 ; :::; t l ) = ¡ie ¡ix P j =1 l tj v l (x; t 1 ; :::; t l ) :

Then using the expansion

e ¡ix P j =1 l tj = X H 2Z >0 l (¡i) jH j x jH j t H H! ;
we deduce the formula u l (x; t 1 ; :::

; t l ) = (¡1) l+1 X D2Z >0 l (¡i) jDj x jDj+2l+1 t D X 06H 6D (¡1) jH j H! (D ¡ H)! X l (¡1) l (jH j 1 + 2 1 ) 2 4 Y j =1 l Y s=jj j ¡1 jjj ¡1 1 [ P r=s+1 jjj h r + 2(jj j ¡ s) + 1][ P r=s+1 jjj h r + 2(jj j ¡ s)] 3 5 ;
for all l > 1. We conclude the explicit expression

C D = (¡1) l+1 (¡i) jDj (jDj + 2l + 1)! X 06H 6D (¡1) jH j H! (D ¡ H)! X l (¡1) l (jH j 1 + 2 1 ) 2 4 Y j =1 l Y s=jj j ¡1 jjj ¡1 1 [ P r=s+1 jjj h r + 2(jj j ¡ s) + 1][ P r=s+1 jjj h r + 2(jj j ¡ s)] 3 5 ;
for all D 2 Z >0 l . We write now C D = ¡(¡i) kDk (kDk + 1)!C D . We obtain the expression of the coefficients C D in the statement of theorem 1.6.

Expliciting the integrability equations

In this section we provide some basic tools for a general expression of the integrability equations Circ Sym 3;:::;k+1 k r = 0;

for k > 4. We notice in particular that the equation Circ Sym 3;4;5 4 r = 0 writes as Circ Sym 3;4;5

3d 1 r (rR r ) 2 ¡ 2 R ~r ^1R ~r =0;
with R ~r := Sym 2;3 R r . Its vanishing has been proved in [Pali] by using a direct computation.

Expliciting the powers of the 1-differential. Part II

From now on let k; j := ¡ R:R (k+1¡ j) (j ¡2) and notice that

k; j 2 C 1 ¡ M ; T M ;(j ¡2) R 2 T M R T M ;(k+1¡j) R 2 T M R T M R CT M ;
satisfies the circular identity with respect to its last three entries and in the case j 6 k the tensor k; j v satisfies the circular identity with respect to its last three entries for any vector v 2 T M . We remind the identity R (k+1) (2; :::; k + 3; 1; k + 4) = R (k+1) (3; :::; k + 2; 2; k + 3; 1; k + 4)

+ X j =2 k+1 
k; j (3; :::; j ; 2; j + 1; :::; k + 3; 1; k + 4) ; obtained in the proof of the identity (2.3) in proposition 2.5. We rewrite it in the more general form (j ¡ 1) k;j (4; :::; j + 1; 3; j + 2; :::; k + 3; 1; 2; k + 4) :

Proof. We notice first that for any tensor (1; :::; k + 4), the tensor ~(1; :::

; k + 4) := X j =3 k+4 
(1; 2; 4; :::; j ; 3; j + 1; :::; k + 4) ; satisfies the identity Sym 3;:::;k+4 = Sym 4;:::;k+4 ~:

Applying the previous definition to our tensor T k we obtain the expression T ~k(1; :::

; k + 4) = (¡1) k X j=3 k+3
R (k+1) (4; :::; j ; 3; j + 1; :::; k + 3; 1; 2; k + 4) + (¡1) k R (k+1) (4; :::; k + 4; 1; 2; 3) :

Using the commutation identity (4.1) we infer R (k+1) (4; :::; j ; 3; j + 1; :::; k + 3; 1; 2; k + 4) = R (k+1) (4; :::; k + 3; 3; 1; 2; k + 4) + X h=j k+2 k;h¡3 (4; :::; h; 3; h + 1; :::; k + 3; 1; 2; k + 4) :

We infer the equality T ~k(1; :::; k + 4) = (¡1) k (k + 1) R (k+1) (4; :::; k + 3; 3; 1; 2; k + 4) + (¡1) k R (k+1) (4; :::; k + 4; 1; 2; 3)

+ (¡1) k X j =3 k+2 X h= j k+2
k;h¡3 (4; :::; h; 3; h + 1; :::; k + 3; 1; 2; k + 4) :

Using the elementary equality

X s=a b X h=s b C h = X h=a b (h ¡ a + 1) C h ;
we obtain the identity T ~k(1; :::; k + 4) = (¡1) k (k + 1) R (k+1) (4; :::; k + 3; 3; 1; 2; k + 4) + (¡1) k R (k+1) (4; :::; k + 4; 1; 2; 3)

+ (¡1) k X h=3 k+2
(h ¡ 2) k;h¡3 (4; :::; h; 3; h + 1; :::; k + 3; 1; 2; k + 4) :

Using the algebraic and differential Bianchi identities and performing the change of variable h = j + 1, we infer the required conclusion.

Lemma 4.2. In the set up of proposition 2.5, for all integers k > 1, Circ Sym 3;:::;k+4

h (d 1 r ) k (rR r ) 2 i = X j=2 k+1
Circ Sym 4;:::;k+4 ( T k; j + Q k;j + V k;j ) ; with T k;j (1; :::; k + 4) := (¡1) k (j ¡ 2) k; j (4; :::; j + 1; 3; j + 2; :::; k + 3; 1; 2; k + 4) ; Q k;j (1; :::; k + 4) := ¡ (¡1) k X s=3 j k;j (4; :::; s; 3; s + 1; :::; j ; 2; j + 1; :::

; k + 3; 1; k + 4) ¡ (¡1) k X s= j +1 k+3 
k; j (4; :::; j + 1; 2; j + 2; :::; s; 3; s + 1; :::; k + 3; 1; k + 4) ;

V k;j (1; :::; k + 4) := (¡1) k X s=3 j k;j (4; :::; s; 3; s + 1; :::; j ; 1; j + 1; :::; k + 3; 2; k + 4)

+ (¡1) k X s= j +1 k+3 
k; j (4; :::; j + 1; 1; j + 2; :::; s; 3; s + 1; :::; k + 3; 2; k + 4) :

Proof. In the computation that will follow we will denote by k;j (:::) p with p = 0; 1, the terms that summed-up together annihilate the operator Circ Sym 4;:::;k+4 . For all 2 6 j 6 k + 1, we define T ^k;j (1; :::; k + 4) := (¡1) k (j ¡ 1) k;j (4; :::; j + 1; 3; j + 2; :::; k + 3; 1; 2; k + 4) ; Q ^k;j (1; :::; k + 4) := ¡ (¡1) k X s=3 j k; j (4; :::; s; 3; s + 1; :::; j ; 2; j + 1; :::

; k + 3; 1; k + 4) ¡ (¡1) k X s= j+1
k+3 k;j (4; :::; j + 1; 2; j + 2; :::; s; 3; s + 1; :::; k + 3; 1; k + 4) ¡ (¡1) k k;j (4; :::; j + 1; 2; j + 2; :::; k + 4; 1; 3) 2 ;

V ^k;j (1; :::; k + 4) := (¡1) k X s=3 j k; j (4; :::; s; 3; s + 1; :::; j ; 1; j + 1; :::; k + 3; 2; k + 4) + (¡1) k X s= j+1 k+3 k;j (4; :::; j + 1; 1; j + 2; :::; s; 3; s + 1; :::; k + 3; 2; k + 4) = (¡1) k k;j (4; :::; j + 1; 1; j + 2; :::; k + 4; 2; 3) 1 ;

and we notice the equalities Sym 3;:::

;k+4 Q k = X j=2 k+1
Sym 4;:::;k+4 Q ^k;j ;

Sym 3;:::;k+4 V k = X j=2 k+1
Sym 4;:::;k+4 V ^k;j :

Then proposition 2.5 and lemma 4.1 imply Circ Sym 3;:::;k+4

h (d 1 r ) k (rR r ) 2 i = X j =2 k+1
Circ Sym 4;:::;k+4 ( T ^k;j + Q ^k;j + V ^k;j ) :

(4.2)
We write

T ^k;j (1; :::; k + 4) = (¡1) k (j ¡ 2) k; j (4; :::; j + 1; 3; j + 2; :::; k + 3; 1; 2; k + 4) ¡ (¡1) k k;j (4; :::; j + 1; 3; j + 2; :::; k + 4; 1; 2) ¡ (¡1) k k;j (4; :::; j + 1; 3; j + 2; :::; k + 3; 2; k + 4; 1) = (¡1) k (j ¡ 2) k; j (4; :::; j + 1; 3; j + 2; :::; k + 3; 1; 2; k + 4) ¡ (¡1) k k;j (4; :::; j + 1; 3; j + 2; :::; k + 4; 1; 2) 1 + (¡1) k k;j (4; :::; j + 1; 3; j + 2; :::; k + 4; 2; 1) 2 :

We infer the identity Circ Sym 4;:::;k+4 ( T ^k;j + Q ^k;j + V ^k;j ) = Circ Sym 4;:::;k+4 ( T k;j + Q k; j + V k; j ) ; which combined with the identity (4.2) implies the required statement.

Lemma 4.3. In the set up of proposition 2.5, for all integers k > 1, Circ Sym 3;:::;k+4

h (d 1 r ) k (rR r ) 2 i = (¡1) k X j=2 k+1
Circ Sym 4;:::;k+4

(j ¡ 2) T k;j ¡ Alt 2 Q k; j ;
with T k;j (1; :::; k + 4) := X I f4;:::; j +1g R (jI j) (I ; 3; j + 2; R (k+1¡ j +j{I j) ({I ; j + 3; :::; k + 3; 1; 2; k + 4)) ¡ X I f4;:::;j +1g j +36h6k+3 R (k+1¡ j +jI j) (I ; j + 3; :::; R (j{I j) ({I ; 3; j + 2; h); :::; k + 3; 1; 2; k + 4) ¡ X I f4;:::;j +1g R (k+1¡ j +jI j) (I ; j + 3; :::; k + 3; R (j{I j) ({I ; 3; j + 2; 1); 2; k + 4) ¡ X I f4;:::;j +1g R (k+1¡ j +jI j) (I ; j + 3; :::; k + 3; 1; R (j{I j) ({I ; 3; j + 2; 2); k + 4) ¡ X I f4;:::;j +1g R (k+1¡ j +jI j) (I ; j + 3; :::; k + 3; 1; 2; R (j{I j) ({I ; 3; j + 2; k + 4)) ; and with Q k; j (1; :::; k + 4) := X 36s6 j I f4;:::;s;3;s+1;:::;j g R (jI j) (I ; 2; j + 1; R (k+1¡j +j{I j) ({I ; j + 2; :::; k + 3; 1; k + 4)) ¡ X 36s6 j I f4;:::;s;3;s+1;:::;j g j +26h6k+3 R (k+1¡j +jI j) (I ; j + 2; :::; R (j{I j) ({I ; 2; j + 1; h); :::; k + 3; 1; k + 4) ¡ X 36s6 j I f4;:::;s;3;s+1;:::;j g R (k+1¡j +jI j) (I ; j + 2; :::; k + 3; R (j{I j) ({I ; 2; j + 1; 1); k + 4) ¡ X 36s6 j I f4;:::;s;3;s+1;:::;j g R (k+1¡j +jI j) (I ; j + 2; :::; k + 3; 1; R (j{I j) ({I ; 2; j + 1; k + 4)) + X I f4;:::; j+1g R (jI j) (I ; 2; 3; R (k+1¡ j +j{I j) ({I ; j + 2; :::; k + 3; 1; k + 4)) ¡ X I f4;:::;j +1g j+26h6k+3 R (k+1¡ j+jI j) (I ; j + 2; :::; R (j{I j) ({I ; 2; 3; h); :::; k + 3; 1; k + 4) ¡ X I f4;:::; j+1g R (k+1¡ j +jI j) (I ; j + 2; :::; k + 3; 1; R (j{I j) ({I ; 2; 3; k + 4)) + X j+26s6k+3 I f4;:::;j +1g R (jI j) (I ; 2; j + 2; R (k+1¡ j+j{I j) ({I ; j + 3; :::; s; 3; s + 1; :::; k + 3; 1; k + 4))

¡ X j+36s6k+3 I f4;:::;j +1g j +36h6s R (k+1¡ j+jI j) (I ; j + 3; :::; R (j{I j) ({I ; 2; j + 2; h); :::; s; 3; s + 1; :::; k + 3; 1; k + 4) ¡ X j+26s6k+3 I f4;:::;j +1g R (k+1¡ j+jI j) (I ; j + 3; :::; s; R (j{I j) ({I ; 2; j + 2; 3); s + 1; :::; k + 3; 1; k + 4) ¡ X j+26s6k+2 I f4;:::;j +1g s+16h6k+3 R (k+1¡ j+jI j) (I ; j + 3; :::; s; 3; s + 1; :::; R (j{I j) ({I ; 2; j + 2; h); :::; k + 3; 1; k + 4) ¡ X j+26s6k+3 I f4;:::;j +1g R (k+1¡ j+jI j) (I ; j + 3; :::; s; 3; s + 1; :::; k + 3; R (j{I j) ({I ; 2; j + 2; 1); k + 4) ¡ X j+26s6k+3 I f4;:::;j +1g R (k+1¡ j+jI j) (I ; j + 3; :::; s; 3; s + 1; :::; k + 3; 1; R (j{I j) ({I ; 2; j + 2; k + 4)) ;

where the symbol I f4; :::; s; 3; s + 1; :::; j g means a subset of the elements 4; :::; s; 3; s + 1; :::; j written in this order and {I f4; :::; s; 3; s + 1; :::; j g denotes its complementary set respecting the same order.

Proof. We recall first the definition (R:R (p) )(1; :::; p + 5) = R(1; 2; R (p) (3; :::; p + 5))

¡ X h=3 p+5
R (p) (3; :::; R(1; 2; h); :::; p + 5) ;

which writes in the case (R:R (k+1¡ j) )(j ¡ 1; :::

; k + 4) = R(j ¡ 1; j ; R (k+1¡j) (j + 1; :::; k + 4)) ¡ X h= j +1 k+4
R (k+1¡ j) (j + 1; :::; R(j ¡ 1; j ; h); :::; k + 4) :

We infer the expression k; j (1; :::; k + 4) = X I f1;:::;j ¡2g R (jI j) (I ; j ¡ 1; j ; R (k+1¡ j +j{I j) ({I ; j + 1; :::; k + 4)) ¡ X I f1;:::;j ¡2g X h= j +1 k+4 R (k+1¡ j +jI j) (I ; j + 1; :::; R (j{I j) ({I ; j ¡ 1; j ; h); :::; k + 4) :

Performing the change of variables 1 # 4

:::

::: j ¡ 2 # j + 1 j ¡ 1 # 3 j # j + 2 ::: ::: k + 1 # k + 3 k + 2 # 1 k + 3 # 2 k + 4 # k + 4 ;
we infer the expression k;j (4; :::; j + 1; 3; j + 2; :::; k + 3; 1; 2; k + 4) = X I f4;:::;j +1g R (jI j) (I ; 3; j + 2; R (k+1¡j +j{I j) ({I ; j + 3; :::; k + 3; 1; 2; k + 4)) ¡ X I f4;:::;j +1g X h= j +3 k+3 R (k+1¡ j +jI j) (I ; j + 3; :::; R (j{I j) ({I ; 3; j + 2; h); :::; k + 3; 1; 2; k + 4) ¡ X I f4;:::;j +1g R (k+1¡j +jI j) (I ; j + 3; :::; k + 3; R (j{I j) ({I ; 3; j + 2; 1); 2; k + 4) ¡ X I f4;:::;j +1g R (k+1¡j +jI j) (I ; j + 3; :::; k + 3; 1; R (j{I j) ({I ; 3; j + 2; 2); k + 4) ¡ X I f4;:::;j +1g R (k+1¡j +jI j) (I ; j + 3; :::; k + 3; 1; 2; R (j{I j) ({I ; 3; j + 2; k + 4)) :

Performing now the change of variables 1 # 4

:::

::: s ¡ 3 # s s ¡ 2 # 3 s ¡ 1 # s + 1 ::: ::: j ¡ 2 # j j ¡ 1 # 2 j # j + 1 ::: ::: k + 2 # k + 3 k + 3 # 1 k + 4 # k + 4 ;
we infer the expression k; j (4; :::; s; 3; s + 1; :::; j ; 2; j + 1; :::; k + 3; 1; k + 4) = X I f4;:::;s;3;s+1;:::; j g R (jI j) (I ; 2; j + 1; R (k+1¡ j+j{I j) ({I ; j + 2; :::; k + 3; 1; k + 4)) ¡ X I f4;:::;s;3;s+1;:::; j g X h= j +2 k+3 R (k+1¡ j +jI j) (I ; j + 2; :::; R (j{I j) ({I ; 2; j + 1; h); :::; k + 3; 1; k + 4) ¡ X I f4;:::;s;3;s+1;:::; j g R (k+1¡ j+jI j) (I ; j + 2; :::; k + 3; R (j{I j) ({I ; 2; j + 1; 1); k + 4) ¡ X I f4;:::;s;3;s+1;:::; j g R (k+1¡ j+jI j) (I ; j + 2; :::; k + 3; 1; R (j{I j) ({I ; 2; j + 1; k + 4)) :

We perform finally the change of variables 1 # 4

:::

::: j ¡ 2 # j + 1 j ¡ 1 # 2 j # j + 2 ::: ::: s ¡ 2 # s s ¡ 1 # 3 s # s + 1 ::: ::: k + 2 # k + 3 k + 3 # 1 k + 4 # k + 4 :
We distinguish two cases. In the first case, when s = j + 1, we have k;j (4; :::; j + 1; 2; 3; j + 2; :::; k + 3; 1; k + 4) = X I f4;:::; j+1g R (jI j) (I ; 2; 3; R (k+1¡ j +j{I j) ({I ; j + 2; :::; k + 3; 1; k + 4)) ¡ X I f4;:::;j +1g j+26h6k+3 R (k+1¡ j+jI j) (I ; j + 2; :::; R (j{I j) ({I ; 2; 3; h); :::; k + 3; 1; k + 4) ¡ X I f4;:::; j+1g R (k+1¡ j +jI j) (I ; j + 2; :::; k + 3; R (j{I j) ({I ; 2; 3; 1); k + 4) ¡ X I f4;:::; j+1g R (k+1¡ j +jI j) (I ; j + 2; :::; k + 3; 1; R (j{I j) ({I ; 2; 3; k + 4)) ;

and in the second case, when j + 2 6 s 6 k + 3, we have k;j (4; :::; j + 1; 2; j + 2; :::; s; 3; s + 1; :::; k + 3; 1; k + 4) = X I f4;:::;j +1g R (jI j) (I ; 2; j + 2; R (k+1¡j +j{I j) ({I ; j + 3; :::; s; 3; s + 1; :::; k + 3; 1; k + 4)) ¡ X I f4;:::; j+1g j +36h6s R (k+1¡j +jI j) (I ; j + 3; :::; R (j{I j) ({I ; 2; j + 2; h); :::; s; 3; s + 1; :::; k + 3; 1; k + 4) ¡ X I f4;:::;j +1g R (k+1¡j +jI j) (I ; j + 3; :::; s; R (j{I j) ({I ; 2; j + 2; 3); s + 1; :::; k + 3; 1; k + 4) ¡ X I f4;:::; j+1g s+16h6k+3 R (k+1¡j +jI j) (I ; j + 3; :::; s; 3; s + 1; :::; R (j{I j) ({I ; 2; j + 2; h); :::; k + 3; 1; k + 4) ¡ X I f4;:::;j +1g R (k+1¡j +jI j) (I ; j + 3; :::; s; 3; s + 1; :::; k + 3; R (j{I j) ({I ; 2; j + 2; 1); k + 4) ¡ X I f4;:::;j +1g R (k+1¡j +jI j) (I ; j + 3; :::; s; 3; s + 1; :::; k + 3; 1; R (j{I j) ({I ; 2; j + 2; k + 4)) :

Then the conclusion follows from lemma 4.2. We consider now the case r = k + 2. We consider the expansion (p S ^p ^1 S ^k¡p+3 )(1; :::; k + 4) = p S ^p(1; S ^k¡p+3 (2; :::; k p + 1); k p + 2; :::; k + 4)

Expliciting the

¡ p S ^p(2; S ^k¡p+3 (1; 3; :::; k p + 1); k p + 2; :::; k + 4) = 4i k+5 (p + 1)!(p ¡ 1)!(k ¡ p + 4)!(k ¡ p + 3)! (Sym 3;:::; p+1 ~p¡3 )(1; (Sym 2;:::;k p k¡ p )(2; :::; k p + 1); k p + 2; :::; k + 4) which shows the required formula.

¡ 4i k+5 (p + 1)!(p ¡ 1)!(k ¡ p + 4)!(k ¡ p + 3)! (
5 Vanishing of the integrability conditions in the cases k = 4; 5

We recall the notation R 0 : =R (1) . In this section we show the identity Circ Sym 3;:::;k+4 and thus (5.1).

2 4 2i(id) k (R 0 ) 2 ¡ X r=3 k+2 (r + 1)! X p=2 r ¡1 (id)

Vanishing of the integrability conditions in the case k = 5

We want to show the identity Circ Sym 3;:::;6

2 4 2id 2 (R 0 ) 2 + X r=3 4 (r + 1)! X p=2 r ¡1
(id) 4¡r (pS p ^Sr¡p+1 ) where we denote by a subscript j = 1; :::; 12, the terms that we combine together inside the expression Circ Sym 4;:::;6 [T 2;3 ¡ Alt 2 (Q 2;2 + Q 2;3 )]. (j = 12 is combined with itself). Indeed combining:

for j = 1, The result is (we keep the indices according to the sums on j = 1; :::; 13.) (6.4) for any 2 U if and only if for any 2 U, the complex curve : t + is 7 ¡! s t r (), defined in a neighborhood of 0 2 C, is J-holomorphic.

(
Proof. We observe first that the differential of the maps is given by d t0+is0 a @ @t +b @ @s = ad(s 0 I TM ) _ t0 r () + bT s0 t 0 r () t0 r () :

But _ t 0 r () = r t 0 r () = H t 0 r () r t0 r () ;
thanks to (6.1). Then using the property, H r = d ( I TM ) H r , of the linear connection r (see the identity 8.5 in [Pali])we infer d t 0 +is 0 a @ @t +b @ @s = ¡ aH s0 t 0 r () + bT s0 t 0 r () t 0 r () : (6.5)

The complex curve is J -holomorphic if and only if d t 0 +is 0 ¡b @ @t +a @ @s = Jd t 0 +is 0 a @ @t +b @ @s ; thus, if and only if ¡ ¡b H s0 t 0 r () + aT s0 t 0 r () t0 r () = J ¡ aH s0 t 0 r () + bT s0 t 0 r () t0 r () :

For s 0 = 0 this is equivalent to (6.4). For s 0 = 0 this is equivalent to (6.3). We deduce the required conclusion.

The condition (6.3) implies that J is an M -totally real complex structure. We provide now the proof of corollary 1.3.

Proof. If we write A = + iT B and = H r ¡ T ¡, then S := T ¡1 (H r ¡ A ) = ¡ + iB. We set S k = ¡ k + iB k . From the proof of corollary 6.2 we know that in the case J is integrable over U , the curve is J -holomorphic if and only if hold (6.4). The later rewrites as H r = ¡J T :

Using the property

J jKerd =¡ B ¡1 T ¡1 ;
(see the identity 1.7 in [Pali]), we infer that the previous identity is equivalent to

H r = B ¡1 : (6.6)
Taking d on both sides of (6.6) we deduce = B ¡1 . Therefore (6.6) is equivalent to the system 8 > > < > > :

B = ; H r = :
(6.7)

Then the system (6.7) rewrites as 8 > > > > > > > > < > > > > > > > > :

X k>1 B k ( k+1 ) = 0 ; X k>1 ¡ k ( k+1 ) = 0 :
and thus as S k ( k+1 ) = 0 for all k > 1. We remind now that, according to the main theorem in [Pali], the integrability of the structure J implies the condition S 1 2 C 1 (M ; S 2 T M R CT M ). We infer S 1 = 0.

We notice that, with the notations of the statement of the main theorem in [Pali] the equation Circ k = 0 hold for all k > 1. This combined with the identity [Circ; Sym 2;:::;k+2 ] = 0, implies Circ Sym 2;:::;k+2 k =0;

(6.8) for all k > 1. So if we apply the Circ operator to both sides of the definition of S 2 in the statement of the main theorem in [Pali], we infer Circ S 2 = Circ 2 = 3 2 . If we evaluate this equality to 3 we infer S 2 ( 3 ) = 2 ( 3 ), which implies 2 = 0. We show now by induction that k = 0 for all k > 2. Indeed by the inductive assumption S k+1 = i (k + 2)! Sym 2;:::;k+2 k + k+1 :

Applying the Circ operator to both sides of this identity and using the equation (6.8), we infer Circ S k+1 = Circ k+1 = 3 k+1 , which evaluated at k+2 gives S k+1 ( k+2 ) = k+1 ( k+2 ). We deduce k+1 = 0. Using the identity Sym 2;:::;k+1 Sym 3;:::;k+1 = (k ¡ 1)! Sym 2;:::;k+1 ; (6.9)

  j) ¡ I ; k ¡ r + 1; k ¡ p + 3; :::; j ; ~r¡p+1 (j{I j) ({I ; 1; k ¡ r + 2; :::; k ¡ p + 2); j + 1; :::; k + 1 : For any integer a > 1, we denote by [a] := f1; :::; ag and we set [0] := ;. For any integer b > 1, we denote by Map(a; b) the set of maps f: [a] ¡! [b].

R

  R A ) (jI j) (I ; k r + 1; k p + 3; :::; k lA + 1; (R B ) (j{I j) ({I ; 1; k r + 2; :::; k p + 2); k lA + 2; :::; k + 1) ; and with k s := k ¡ s. Using the expression R A (x; y; :::; p + y ¡ 1) = (aj) ¡ kAk j ¡1 + y ; :::; kAk j + y ¡ 1; ; p ¡ j + y 3 5 x ;

R

  (c¡b+1) (1; b; :::; c; 2; d) = R (c¡b+1) (b; :::; c ¡ 1; 1; c; 2; d) (b; :::; h; 1; h + 1; :::; c; 2; d) ; for any 3 6 b < c. Differentiating we obtain the general commutation formula R (c¡a+1) (a; :::; b ¡ 1; 1; b; :::; c; 2; d) = R (c¡a+1) (a; :::; c ¡ 1; 1; c; 2; d) + X h=b¡1 c¡2 c¡a;h¡a+3 (a; :::; h; 1; h + 1; :::; c; 2; d) ; (4.1) for all 3 6 a 6 b < c < d. We now show two key elementary lemmas. Lemma 4.1. In the set up of proposition 2.5, for all integers k > 1, Circ Sym 3;:::;k+4 T k = Circ Sym 4;:::;k+4 T ^k ; with T ^k(1; :::; k + 4) := (¡1) k X j =2 k+1

  1-exterior product of the lower order term of S k Given a subset S Z >1 and I S we denote below by abuse of notation {I S the complementary set of I inside S. We show now the following key result. Proposition 4.4. For all h > 2, let S ^h := 2i h+1 (h + 1)!h! Sym 2;:::;h+1 h¡3 : Then for all k > 1, ¡i) k+1 (r + 1)!L k;r;p (r ¡ p + 2)! (p + 1)! ; and with L k;r; p (1; :::; k + 4) := X I f1;3;:::;k ¡r+3g

  We set for simplicity ab(c d ef ) := R(a; b; R 0 (c; d; e; f)) and a similar definition for a bc(d ef 

  324)16 + 5 5(423)16 + 5 3(524)16 + 5 5(624)13 + 5 561(324) + 5 561(423) + 5 361(524) + 5 531(624) : We notice that Circ L 2 = Circ L ~2, with L ~2(1; :::; 6) = 4 (1425)36 + 4 (1423)56 + 4 (214) + 5 563(412) + 5 162(534) + 5 512(634) ; and Sym 4;5;6 L ~2 = Sym 4;5;6 L 2 , with L 2 (1; :::; 6) = 4 (1425)36 + 4 (1423)56 + 4 (214) + 5 563(412) + 5 162(435) + 5 612(435) :We write now(Alt 2 L 2 )(1; :::; 6) = 4 (1425)36 1 + 4 (1423)56 3 + 4 (1425)63 4 ¡ 4 (2415)36 1 ¡ 4 (2413)56 3 ¡ 4 (2415)63 4 + 4 2(435)16 5 + 4 3(214)56 6 + 4 3(412)56 6 + 4 2(435)61 7 ¡ 4 1(435)26 5 ¡ 4 3(124)56 6 ¡ 4 3(421)56 6 ¡ 4 1(435)62 7 + 5 (2415)36 1 + 5 (4215)36 8 + 5 (4512)36 8 + 5 (6435)21 9 ¡ 5 (1425)36 1 ¡ 5 (4125)36 8 ¡ 5 (4521)36 8 ¡ 5 (6435)12 9 + 5 63(2415) 10 + 5 63(4215) 10 + 5 63(4512) 10 + 5 12(6435) 9 ¡ 5 63(1425) 10 ¡ 5 63(4125) 10 ¡ 5 63(4521) 10 ¡ 5 21(6435) 9 + 5 (214)536 11 + 5 (412)536 11 + 5 (435)126 5 + 5 (435)621 7¡ 5 (124)536 11 ¡ 5 (421)536 11 ¡ 5 (435)216 5 ¡ 5 (435)612 7 + 5 5(214)36 12 + 5 5(412)36 12 + 5 1(435)26 5 + 5 6(435)217 ¡ 5 5(124)36 12 ¡ 5 5(421)36 12 ¡ 5 2(435)16 5 ¡ 5 6(435)12 7 + 5 563(214) 13 + 5 563(412) 13 + 5 162(435) 7 + 5 612(435) 7 ¡ 5 563(124) 13 ¡ 5 563(421) 13 ¡ 5 261(435) 7 ¡ 5 621(435) 7 : We need to explain the details for the case j = 7. In this case we sum 4 2(435)61 + 5 (435)621 + 5 6(435)21 0 + 5 162(435) a + 5 612(435) a ¡ 4 1(435)62 ¡ 5 (435)612 ¡ 5 6(435)12 0 ¡ 5 261(435) a ¡ 5 621(435) a = 4 2(435)61 1 + 4 (435)621 1 + (435)621 3 + 5 612(435) 0 + 15 612(435) a ¡ 4 1(435)62 2 ¡ 4 (435)612 2 ¡ (435)612 3 = ¡4 62(435)1 1 + 4 61(435)2 2 + (435)126 3 + 20 612(435) = 24 612(435) + (435)126:

1-differential. Part I

  

	Notation 2.1. For any A 2 T M ;p End

C (CT M ) and for any 2 T M ;q CT M , the product operations of tensors A ; A: 2 T M ;(p+q) CT M are defined by (A )(u 1 ; :::; u p ; v 1 ; :::; v q ) := A(u 1 ; :::; u p ) (v 1 ; :::; v q ) ;

(A:) (u 1 ; :::; u p ; v 1 ; ::

  Now, the fact that the tensors k have at least one couple of alternating entries combined with the fact that the total symmetrization of such tensors vanishes implies the following equivalent definition of S k .

	r ¡1 k;r;p (1; :::; k + 1) := (¡i) k ¡1¡r (pS p ^Sr¡p+1 ) (k¡1¡r) (2; :::; k ¡ r; 1; k ¡ r + 1; :::; k + 1) : k;r;p ; Remark 2.8. Notice that 4 = 2 1 + 4!2S 2 ^S2 ; and Sym 2;3;4;5 (S 2 ^S2 ) = Sym 2;3;4;5 4 ; 4 (1; :::; 5) := ¡S 2 (2; S 2 (1; 3; 4); 5) : This implies Sym 2;3;4;5 (S 2 ^S2 ) = 1 18 Sym 2;3;4;5 ~4 ; ~4(1; :::; 5) = R(2; R(1; 3; 4); 5) : Remark 2.9. Notice that 5 = 2i 2 + 5!2S 2 ^S3 + 5!3S 3 ^S2 + 4! 5;3;2 ; 5;3;2 (1; :::; 6) = ¡2i(S 2 ^S2 ) 0 (2; 1; 3; 4; 5; 6) ; and Sym 2;3;4;5;6 5 = Sym 2;3;4;5;6 (2i 2 + 5 ) ; 5 (1; :::; 6) := ¡5!2S 2 (2; S 3 (1; 3; 4; 5); 6) ¡ 5!3S 3 (2; S 2 (1; 3; 4); 5; 6) + 2i4!S 2 0 (2; 3; S 2 (1; 4; 5); 6) + 2i4!S 2 (3; S 2 0 (2; 1; 4; 5); 6) : Sym 2;3;4;5;6 5 = Sym 2;3;4;5;6 ~5 ~5(1; :::; 6) := ¡6iR(2; R 0 (3; 1; 4; 5); 6) ¡6iR 0 (2; 3; R(1; 4; 5); 6) : Remark 2.10. We observe the equality (S p ^1 S r ¡ p+1 )(1; k ¡ r + 1; :::; k + 1) S k = i (k + 1)!k! Sym 2;:::;k+1 ~k ; ~k := 2i k k¡3 + k k := ¡ X r=3 k¡1 (r + 1)!(¡i) k ¡1¡r X p=2 r ¡1 p X I f2;:::;k ¡rg k;r;p I ; with k;r;p I (1; :::; k + 1) := S Lemma 2.11. The tensors S k defined in the statement of corollary 1.3 satisfy for all k > 2, := S p (jI j) ¡ I ; k ¡ r + 1; S r ¡p+1 (j{I j) ({I ; 1; k ¡ r + 2; :::; k ¡ p + 2); k ¡ p + 3; :::; k + 1 :

p (1; S r ¡ p+1 (k ¡ r + 1; :::; k ¡ p + 2); k ¡ p + 3; :::; k + 1) ¡ S p (k ¡ r + 1; S r ¡ p+1 (1; k ¡ r + 2; :::; k ¡ p + 2); k ¡ p + 3; :::; k + 1) :

  Sym 3;:::; p+1 ~p¡3 )(2; (Sym 2;:::;kp k¡ p )(1; 3; :::; k p + 1); k p + 2; :::; k + 4) :

	We infer		
	Sym 3;:::;k+4 (p S ^p ^1 S ^r¡p+1 ) =	4i k+5 (p + 1)!(k ¡ p + 4)!	Sym 3;:::;k+4 L ~k;k+2;p ;
	with		
	L ~k;k+2;p (1; :::; k + 4)		
	= ~p¡3 (1; k¡ p (2; :::; k p + 1); k p + 2; :::; k + 4)	
	¡ ~p¡3 (2; k¡ p (1; 3; :::; k p + 1); k p + 2; :::; k + 4)	
	= (¡1) k¡ p+1 ~p¡3 (1; R (k ¡p+1) (3; :::; k p ; 2; k p + 1); k p + 2; :::; k + 4)
	¡ (¡1) k¡ p+1 ~p¡3 (2; R (k ¡p+1) (3; :::; k p ; 1; k p + 1); k p + 2; :::; k + 4) :
	Using (4.4), we obtain		
	Sym 3;:::;k+4 (p S ^p ^1 S ^r¡p+1 ) =	4 (¡i) k+1 (p + 1)!(k ¡ p + 4)!	Sym 3;:::;k+4 L k;k+2; p ;

  ).

				¡ 12(4356) 5 ¡ 412(356) 6 ;	
	Q 2;2 (1; :::; 6) = 23(4516) 5 ¡ (234)516 7 ¡ 4(235)16 4 ¡ 451(236) 2
				+ 24(3516) 8 + 24(5316) 1 ¡ (245)316 9 ¡ (243)516 7
				¡ 5(243)16 4 ¡ 3(245)16 10 ¡ 35(241)6 11 ¡ 53(241)6 4
				¡ 351(246) 6 ¡ 531(246) 6 ;	
	Q 2;3 (1; :::; 6) = 24(3516) 8 + 324(516) 6 ¡ (3245)16 3 ¡ 3(245)16 10
				¡ 5(3241)6 12 ¡ 35(241)6 11 ¡ 51(3246) 8 ¡ 351(246) 6
				+ 23(4516) 5 + 423(516) 6 ¡ (4235)16 3 ¡ 4(235)16 4
				¡ 51(4236) 8 ¡ 451(236) 2 + 25(4316) 1 + 425(316) 2
				¡ (4253)16 3 ¡ 4(253)16 4 ¡ 3(4251)6 3 ¡ 43(251)6 4
				¡ 31(4256) 5 ¡ 431(256) 6 ;	
	Using lemma 4.3 we infer the identities		
	Circ Sym 3;:::;6 h	d 2 (R 0 ) 2	i	= Circ Sym 4;5;6	T 2;3 ¡ Alt 2 (Q 2;2 + Q 2;3 )	;
	T 2;3 (1; :::; 6) = 35(4126) 1 + 435(126) 2	
				¡ (4351)26 3 ¡ 4(351)26 4	
				+ (4352)16 3 + 4(352)16 4	

  Alt 2 (4L 232 + 5L 242 + 5 L 243 ) ; Alt 2 (4L 232 + 5L 242 + 5 L 243 ) = Sym 4;5;6 Alt 2 L 2 ;

	and thus Moreover for the remaining terms we use the equalities and thus For j = 1, we have
	Sym 4;5;6 = Sym 4;5;6 Circ Sym 4;5;6 35(4126) ¡ 24(5316) + 14(5326) ¡ 25(4316) + 15(4326) 34(5126) ¡ 2 24(5316) + 2 14(5326) ; 35(4126) ¡ 24(5316) + 14(5326) ¡ 25(4316) + 15(4326) = Circ Sym 4;5;6 34(5126) ¡ 2 34(5126) + 2 34(5216) = ¡3 Circ Sym 4;5;6 [34(5126)] ; 435(126) + 2 451(236) ¡ 2 452(136) ¡ 425(316) + 415(326) Circ 435(126) + 2 451(236) ¡ 2 452(136) ¡ 425(316) + 415(326) = Circ ¡453(126) + 3 453(126) ¡ 3 453(216) = 5 Circ[453(126)] ; Circ (4352)16 ¡ (4351)26 + (3245)16 ¡ (3145)26 + (4235)16 ¡ (4135)26 + (4253)16 ¡ (4153)26 + 3(4251)6 ¡ 3(4152)6 = Circ (4352)16 ¡ (4351)26 + (2145)36 ¡ (1245)36 + (4235)16 ¡ (4325)16 + (4253)16 + (4513)26 ¡ (4251)36 + (4152)36 = Circ (4352)16 ¡ (4351)26 ¡ (2415)36 ¡ (1245)36 + (4235)16 + (4235)16 + (4253)16 + (4532)16 ¡ (4352)16 + (4351)26 = Circ 2 (4235)16 + (4125)36 + (4253)16 + (4532)16 = Circ 2 (4235)16 + (4125)36 ¡ (4325)16 = Circ[3(4235)16 + (4125)36] = 4 Circ[(4125)36] ; Circ 4(352)16 ¡ 4(351)26 + 2 4(235)16 ¡ 2 4(135)26 + 4(253)16 ¡ 4(153)26 + 43(251)6 ¡ 43(152)6 = Circ 4(251)36 ¡ 4(152)36 + 2 4(125)36 ¡ 2 4(215)36 + 4(152)36 ¡ 4(251)36 ¡ 4(251)36 + 4(152)36 = Circ 4 4(125)36 + 4(521)36 + 4(152)36 = Circ 4 4(125)36 ¡ 4(215)36 = 5 Circ[4(125)36] : Sym 4;5;6 5(243)16 ¡ 5(143)26 + 53(241)6 ¡ 53(142)6 = Sym 4;5;6 5(243)16 ¡ 5(143)26 ¡ 5(241)36 + 5(142)36 = Sym 4;5;6 4(253)16 ¡ 4(153)26 ¡ 4(251)36 + 4(152)36 ; Circ Sym 4;5;6 5(243)16 ¡ 5(143)26 + 53(241)6 ¡ 53(142)6 = Circ Sym 4;5;6 4(152)36 ¡ 4(251)36 ¡ 4(251)36 + 4(152)36 = 2 Circ Sym 4;5;6 4(152)36 + 4(521)36 ¡ 2 Circ Sym 4;5;6 [4(215)36] = 2 Circ Sym 4;5;6 [4(125)36] : Thus for j = 4 we have and thus for j = 2, for j = 3, for j = 4, and Circ Sym 4;5;6 4(352)16 ¡ 4(351)26 + 2 4(235)16 ¡ 2 4(135)26 + 4(253)16 ¡ 4(153)26 + 43(251)6 ¡ 43(152)6 + 5(243)16 ¡ 5(143)26 + 53(241)6 ¡ 53(142)6 = 7 Circ Sym 4;5;6 [4(125)36] : For j = 5, Circ ¡12(4356) ¡ 2 23(4516) + 2 13(4526) + 31(4256) ¡ 32(4156) = Circ ¡12(4356) ¡ 2 12(4536) + 2 21(4536) + 12(4356) ¡ 21(4356) = Circ ¡4 12(4536) + 12(4356) = 5 Circ[12(4356)] : For j = 6, Circ ¡412(356) + 351(246) + 531(246) ¡ 324(516) ¡ 423(516) + 431(256) + 351(246) = Circ ¡412(356) + 152(346) + 512(346) ¡ 214(536) ¡ 412(536) + 412(356) + 152(346) and Circ Sym 4;5;6 ¡ 412(356) + 351(246) + 531(246) ¡ 324(516) ¡ 423(516) + 431(256) + ; 351(246) = Circ Sym 4;5;6 ¡ 412(356) + 142(356) + 412(356) ¡ 214(536) ¡ 412(536) + ¡412(356) + 2 142(356) + 3 412(356) + 214(356) = Circ Sym 4;5;6 ¡412(356) + 142(356) ¡ 421(356) + 3 412(356) = Circ Sym 4;5;6 ¡412(356) + 142(356) + 4 412(356) : Moreover Circ Sym 4;5;6 ¡412(356) + 142(356) ¡ 241(356) + 4 412(356) ¡ 4 421(356) = Circ Sym 4;5;6 7 412(356) + 142(356) + 214(356) = Circ Sym 4;5;6 7 412(356) ¡ 421(356) = 8 Circ Sym 4;5;6 [412(356)] : For j = 7, Circ (234)516 ¡ (134)526 + (243)516 ¡ (143)526 = Circ (124)536 ¡ (214)536 + (142)536 ¡ (241)536 = Circ 2 (124)536 ¡ (412)536 ¡ (241)536 = 3 Circ[(124)536] : For j = 8, Sym 4;5;6 ¡2 24(3516) + 2 14(3526) + 51(3246) ¡ 52(3146) + 51(4236) ¡ 52(4136) = Sym 4;5;6 ¡2 24(3516) + 2 14(3526) + 41(3256) ¡ 42(3156) + 41(5236) ¡ 42(5136) = Sym 4;5;6 3 24(3156) ¡ 3 14(3256) ¡ 14(5236) + 24(5136) ; and = Circ Sym 4;5;6 3 34(1256) ¡ 3 34(2156) ¡ 34(5126) + 34(5216) = Circ Sym 4;5;6 3 34(1256) + 3 34(2516) ¡ 2 34(5126) = ¡5 Circ Sym 4;5;6 [34(5126)] : For j = 9, Circ[(245)316] = Circ[(345)126] ; Circ[(245)316 ¡ (145)326] = 2 Circ[(345)126] : For j = 10, 2 Circ[3(245)16 ¡ 3(145)26] = 2 Circ[1(345)26 ¡ 2(345)16] = 2 Circ[1(345)26 + 21(345)6] = ¡2 Circ[(345)216] = 2 Circ[(345)126] : For j = 11, 2 35(241)6 ¡ 2 35(142)6 = 2 35(241)6 + 2 35(412)6 = ¡2 35(124)6: For j = 12, 5(3241)6 ¡ 5(3142)6 = 5(3241)6 + 5(3412)6 = ¡5(3124)6: We infer the formula Circ Sym 3;:::;6 h d 2 (R 0 ) 2 i = Circ Sym 4;5;6 T 2 ; T 2 (1; :::; 6) = ¡334(5126) 1 + 5 453(126) + 4 (4125)36 + 7 4(125)36 + 5 12(4356) + 8 412(356) + 3 (124)536 ¡ 5 34(5126) 1 + 4 (345)126 Moreover Circ Sym 4;5;6 T 2 = Circ Sym 4;5;6 T ~2 ; T ~2(1; :::; 6) = ¡8 34(5126) + 5 453(126) + 4 (4125)36 + 7 5(124)36 1 + 5 12(4356) + 8 412(356) + 3 (124)536 1 + 4 (345)126 ¡ 2 35(124)6 1 : 7 5(124)36 ¡ 3 (124)356 ¡ 2 35(124)6 = 7 5(124)36 ¡ (124)356 + 2 5(124)36 = 9 5(124)36 ¡ (124)356: We conclude Circ Sym 3;:::;6 h d 2 (R 0 ) 2 i = Circ Sym 4;5;6 T 2 ; T 2 (1; :::; 6) = ¡8 34(5126) + 5 453(126) + 4 (4125)36 + 9 4(125)36 + 5 12(4356) + 8 412(356) ¡ (124)356 + 4 (345)126: On the other hand using proposition 4.4, we infer the identity Sym 3;:::;6 2 4 X r=3 4 (r + 1)! X p=2 r ¡1 (id) 4¡r (pS p ^Sr¡p+1 ) 3 5 = 2i 3 Sym 3;:::;6 L 232 (1; :::; 6) = (1425)36 + 1(425)36; L 242 (1; :::; 6) = (3425)16 + 61(3425) ; L 243 (1; :::; 6) = (324)516 + 5(324)16 + 561(324) : We write Sym 3;:::;6 L 2 (1; :::; 6) = 4 (1425)36 + 4 (1325)46 + 4 (1423)56 + 4 (1425)63 412(356) + 142(356) = Circ Sym 4;5;6 Circ Sym 4;5;6 ¡2 24(3516) + 2 14(3526) + 51(3246) ¡ 52(3146) + 51(4236) ¡ 52(4136) ¡ 2 35(124)6 ¡ 5(3124)6: + 4 1(425)36 + 4 1(325)46 + 4 1(423)56 + 4 1(425)63

= 435(126) + 2 451(236) ¡ 2 452(136) ¡ 452(136) + 451(236) = ¡453(126) + 3 451(236) ¡ 3 452(136) ;

  Alt 2 L 2 )(1; :::; 6) = ¡ (4125)36 1 + 4 (4123)56 3 + 4 (4125)63 4 + 11 (435)126 5 ¡ 12 3(124)56 6 + 24 612(435) 7 + (435)126 7 ¡ 15 (4125)36 8 + 15 12(6435) 9 ¡ 20 63(4125) 10 ¡ 15 (124)536 11 ¡ 15 5(124)36 12 ¡ 15 563(124) 13 :We recombine now the terms of the previous sum under the form The flow line t := t r () satisfies the identity and c t = H c _t r c_ t , which is the r-geodesic equation. Let M be a smooth manifold, let also r be a covariant derivative operator acting on the smooth sections of T M and let U be an open neighborhood U of M inside T M . A complex structure J over U satisfies the conditions

	_ t =H t r t :	(6.2)
	We deduce	
	c_ t = d t TM _ t	
	= d t T M H t r t	
	= t ;	
	Corollary 6.2. J jM = J can ;	(6.3)
	J H	
	(Alt 2 L 2 )(1; :::; 6) = ¡16 (4125)36 1 + 4 (4123)56 + 4 (4125)63 1	
	+ 12 (435)126 ¡ 12 3(124)56 2 + 24 612(435)	

+ 15 12(6435) ¡ 20 63(4125) 1 ¡ 15 (124)536 2 ¡ 15 5(124)36 2 ¡ 15 563(124) : Proof. r =T ;

R (p+jI j¡2) (I ; k p + 2; :::; k + 3; R (r ¡ p+j{I j¡1) ({I ; k r + 1; :::; k p ; 2; k p + 1); k r ; k + 4) ¡ X I f2;:::;k ¡r+3g R (p+jI j¡2) (I ; k p + 2; :::; k + 3; R (r ¡ p+j{I j¡1) ({I ; k r + 1; :::; k p ; 1; k p + 1); k r ; k + 4) :

with k p := k ¡ p + 4, in the case k + 2¡r > 1 and with L k;k+2;p (1; :::; k + 4) := X j =kp+1 k+3 R (p¡2) (k p + 2; :::; j ; R (k¡ p+1) (3; :::; k p ; 2; k p + 1); j + 1; :::; k + 3; 1; k + 4) + R (p¡2) (k p + 2; :::; k + 4; 1; R (k ¡p+1) (3; :::; k p ; 2; k p + 1))

k+3 R (p¡2) (k p + 2; :::; j ; R (k¡ p+1) (3; :::; k p ; 1; k p + 1); j + 1; :::; k + 3; 2; k + 4)

¡ R (p¡2) (k p + 2; :::; k + 4; 2; R (k ¡p+1) (3; :::; k p ; 1; k p + 1)) :

Proof. We notice that in the case k + 2¡r > 1, Sym 3;:::;k+4 (I ; k r ; R (r ¡ p+j{I j¡1) ({I ; k r + 1; :::; k p ; 2; k p + 1); k p + 2; :::; k + 4) for all integers k = 1; 2. We notice that S ^p = S p for p = 2; 3. This corresponds to the cases k = 4; 5 in the main integrability conditions Circ Sym 3;:::;k+1 k r = 0.

Alternative proof of the vanishing of the integrability conditions in the case k = 4

We set for simplicity ab; cde := R(a; b; R(c; d; e)) and a similar definition for abc; de or a; bcd; e.

We observe first that lemma 4.3 implies the identity (We denote by a subscript j = 1; 2; 3, the terms that we combine together). Using the fact that all the operators Circ; Sym (id) 4¡r (pS p ^Sr¡p+1 ) We deduce 3 = ¡3T 2 , which implies the required conclusion in the case k = 2.

Appendix

We recall first the following very elementary lemmas. The arguments below can be found in [Pali].

Lemma 6.1. Let M be a smooth manifold, let also r be a covariant derivative operator acting on the smooth sections of T M and consider the vector field over T M r := H r ; (6.1) 2 T M . We denote by t r the corresponding 1-parameter subgroup of transformations of T M . Then for any 2 T M the curve c t := T M t r () is the r-geodesic with initial speed c_ 0 = and c_ t = t r ().

we deduce from the statement of the main theorem in [Pali] and with the notations there

Sym 2;:::;k+1 k¡1 ;

for k > 2, with 1 := 2R r and

(id 1 r ) k¡r (pS p ^1 S r ¡ p+1 ) ; for all k > 2. Moreover the equation Circ k = 0, k > 3 rewrites as Circ Sym 3;:::;k+2 k =0. If we set k r := k¡1 , for all k > 2 we obtain the required expansion.

On the other hand if the expansion in the statement of the lemma under consideration hold then J is integrable thanks to the main theorem in [Pali] and Circ S k = 0 for all k > 2 (S 1 = 0). Indeed for k = 2; 3 this equality follows from the identities Circ k r = 0 and [Circ; Sym 2;:::;k+1 ] = 0: (6.10)