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Explicit maximal totally real embeddings

Nefton Pali Bruno Salvy
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Abstract

This article deals with an explicit canonical construction of a maximal totally real em-
bedding for real analytic manifolds equipped with a covariant derivative operator acting on
the real analytic sections of its tangent bundle or of its complexified tangent bundle. The
existence of maximal totally real embeddings for real analytic manifolds is known from pre-
vious celebrated works by Bruhat-Whitney [Br-Wh] and Grauert [Gra]. Their construction is
based on the use of analytic continuation of local frames and local coordinates that are far
from being canonical or explicit. As a consequence, the form of the corresponding complex
structure has been a mystery since the very beginning. A quite simple recursive expression
for such complex structures has been provided in the first author’s work ”On maximal totally
real embeddings” [Pali2]. In our series of articles we focus on the case of torsion free connec-
tions. In the present article we give a fiberwise Taylor expansion of the canonical complex
structure which is expressed in terms of symmetrization of curvature monomials and a rather
simple and explicit expression of the coefficients of the expansion. We explain also a rather
simple geometric characterization of such canonical complex structures. Our main result and
argument can be useful for the study of open questions in the theory of the embeddings in
consideration such as their moduli space.
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1 Introduction and statement of the main result

1.1 Previous works and motivation

We first recall notation and definitions from previous work [Pali2].

Over a smooth manifold M, the vector bundle Tp,,|ar =~ T & Ty is a complex one with the
canonical complex structure J" : (u,v) — (—v,u) acting on the fibers. Any almost complex
structure which is a continuous extension of J" in a neighborhood of M inside Tj; makes M an
(almost complex) maximally totally real sub-manifold of Ths. Let 7 : Thy — M be the canonical
projection. We denote by

T € COO(TM77T*T]TJ®RTT]\/I)

the canonical section which, at the point n € Thy, takes the value T}, : Ty, — T, , n, Which is
the canonical isomorphism map.

Definition 1 Let M be a smooth manifold. An M-totally real almost complex structure over
an open neighborhood U C Ty of the image of the zero section Oy is a couple (o, B) with « €
C>(U, Ty, ®, Tr,,) and B € C®(U,n* GL(T))) such that dr - o = Lpp,, over U and such
that ag, = d,0nr, Bo, = Iy, ,, for allp € M. With A := o+ iTB, the almost complex structure
Ja associated to (a, B) is the one which satisfies T%’;’JA’” = Ay (CTarr(my) C CTryyy for all
nel CTy.

Every almost complex smooth extension of the canonical complex structure J" of Tr,,|ps over
a neighborhood of M inside Th; can be expressed, over a sufficiently small neighborhood U C T, of
M, as the almost complex structure associated to a unique M-totally real almost complex structure
over U.

Over a real analytic manifold X, Bruhat-Whitney [Br-Wh] and Grauert [Gra] have shown the
existence of an M-totally real complex structure J, over an open neighborhood U C Ty of the
image of the zero section. The construction in these works uses local analytic continuation of local
frames constructed by means of local coordinates defined over the base manifold.

The authors [Br-Wh, Gra] show that the construction is independent of the choice of the local
frame. Their local construction is not intrinsic.

The nature of their local construction shows that it is not possible to to obtain an explicit
expression of the complex structure. As a consequence it is not possible to determine by using the
local expression in the articles [Br-Wh, Gra] if a general ”canonical” global section defined over
a neighborhood of the base manifold inside the tangent bundle is holomorphic or not. The term
“canonical” global section means here an intrinsic section on a neighborhood of the base manifold
inside the tangent bundle obtained in an explicit way from the choice of a linear connection operator
on the base manifold.

The main motivation of the present article is to provide a rather simple and explicit global
expression of the complex structure J from [Br-Wh, Gra]. This is important for applications to
analytic micro local analysis over manifolds. It allows indeed an explicit global construction of the
complex extension of a given global Fourier integral operator defined on a real analytic manifold.
Applications in the theory of polarized complex deformations with real analytic regularity are part
of a work in progress.

It has been 64 years since the existence of complex structures on Grauert Tubes was proven
for the first time by Bruhat-Whitney [Br-Wh]. Still, up to now, the explicit form of the Taylor
expansion has remained quite mysterious to the community of experts in the field. This is finally
clarified in the main theorem 1 below. Indeed, in the main theorem 1, the expression of the
complex structure is given in terms of fiberwise Taylor expansion constructed by means of global
intrinsic sections (symmetrization of compositions of covariant derivatives of the curvature) over
the base manifold. If we compare our Taylor expansion with a standard one on functions we can
observe that the sections Sy, correspond to the polynomials of total degree k in the standard Taylor
expansion. The total degree k in our article is measured by the pseudo-norm ||D|| of D (see the
definition of pseudo-norm in notation 1 below) in the statement of the main theorem 1.



Polynomials are given by coefficients and monomials of multi degree D. In our article the
monomials correspond to symmetrization of compositions of covariant derivatives of the curvature.
The compositions of covariant derivatives of the curvature (denoted by R” in the statement of the
main theorem) are encoded by the following quite simple and elementary object.

We take a sequence of sequential increasing numbers from 2 to d := ||D| + 1 and we start
by opening parenthesis which are collocated at a ”distance” d; + 1 until we reach the central
parentheses which is of the form (...k, 1, k+1). Then we start closing parenthesis one by one under
the form

(b, LLE+ 1), E+2)k+ 3)...d).

The expression of the coefficients C'p (see the expressions 1, 2) in the statement of the main
theorem 1 is rather simple if compared with standard formulas in formal calculus. We can not
expect to have a trivial and elementary expression for the coefficients of the Taylor expansion of
a sophisticated object such as an integrable complex structure. The meaning of the expression 2
for the coefficient C'(H) is the following. We take a sum of arbitrary ”partitions” A of the sub-
compositions H of D, we compute the pseudo-norm of each ”piece” included between the "middle”
s of any part of the partition and the end of that part. Call z that pseudo norm, compute the
function 1/(z(x + 1)) and take the product over all indices.

The expression in the main theorem 1 allows also to perform useful explicit global intrinsic
operator computations in the sense of [Palil]. In more explicit terms, given a global intrinsic
section over the Grauert tube, an explicit formula for the complex structure such as the one in in
the main theorem 1, allows to determine if the section is holomorphic or not. This is due to the
fact that the same linear connection operator is used to define, via a global explicit expression,
both the section and the complex structure.

A first step towards an explicit global expression was done in work of the first author [Pali2],
where a recursive formula for the coefficients of the fiber-wise Taylor expansion at the origin was
provided. We recall this result in Corollary 1 below. We start with a few definitions from [Pali2].

Definition 2 We denote by Circ the circular operator
(Circ0)(vi,va,v3,0) = 0(v1,v2,v3,0) + 0(v2,v3,v1,8) + 0(v3,v1,02,0),
acting on the first three entries of any q-tensor 0, with ¢ > 3. We also define the permutation
operation 02(vi, v, ®) := O(va, vy, ®).
For any complex covariant derivative operator V acting on the smooth sections of CTyy we
denote by HY the associated horizontal map (see lemmas 14, 16 and definition 5 in subsection 9.1

of the appendixz of the article [Pali2] for precise definitions and properties of the horizontal map
HY ). We define the operator

dY : C®(M,T5®" @, CTy) — C®(M, T @, TP Y @, CTy),
with k > 1 as follows
d1VA(§17£27H’) = vflA(SQa/u‘) - V§2A(§1,M),

with &1, & € Tay and with p € TEOF™Y.

For any two sections A € C*°(M, T]T/}®(k+l) ®, CTas) and B € C*(M, T;}®<l+1) ®, CTyy) we
define the exterior product

AMB € C®(M, ATy @, TR g CTy)
as

(A/\l B)(§17£25n7/1/) = A(glvB(é-Qan)nu)_A(527B(§1777)7:u)7

with £€1,62 € Ty, n € TI?IZ and p € T;‘?I(k_l). We denote by Sym,. . the symmetrizing operator
(without normalizing coefficient!) acting on the entries r1,...,rs of a multi-linear form. We use
the convention that a sum and a product running over an empty set are equal respectively to 0

and 1.



For any complex covariant derivative operator V acting on the smooth sections of Th;, we
denote by (1,t) — ®Y (1) € Tar, the geodesic flow of V starting at any point 1 € Thy.

We observe that the argument given in the proof of Corollary 1 in [Pali2] applies without
modifications in the case of a general torsion free covariant derivative operator acting on the
smooth sections of the tangent bundle. For the convenience of the reader, the argument in this
more general setting is given in Section 6 below. We therefore have the following statement.

Corollary 1 Let M be a smooth manifold equipped with a torsion free covariant derivative operator
V acting on the smooth sections of the tangent bundle Ty, let U C Thy be an open neighborhood of
the image of the zero section with connected fibers, let J = J4 be an M -totally real almost complex
structure over U, real analytic along the fibers of U and consider the fiber-wise Taylor expansion
at the origin

&= i+ ) S&n)

k>1

with n € Tr in a sufficiently small neighborhood of the image of the zero section, with § € Ty (y)
arbitrary with Sy, € C*° (M, Ty @, SFTy, @, (CTM) and with n* == n*k Tj‘;{“ﬂ(n).
Then the statements (a) and (b) below are equivalent.
(a) The almost complex structure J is integrable over U and for any n € U, the smooth map
ty t+is — s®Y (n), defined in a neighborhood of 0 € C, is J-holomorphic.
(b) The components Sy satisfy S; =0,
S = m Sme,...,k+1 @kva k>2,

with ©Y :=2RY and

k r—2
oy = —2i(idY)*"}(VRY )y + > r1> (idy )" (pSy A1 Srp),
r=4 p

=2
for all k > 3 and the equations CircSymg ;. 1q Oy =0 are satisfied for all k > 4

In particular, the famous Grauert tube [Gra] of a compact real analytic Riemannian manifold
has a complex structure which, paired with the Levi-Civita connection, satisfies the statement (a)
above. Therefore the vanishing of the tensors Ij, := CircSymg 14 Oy, for all k > 4, is certainly
true in the compact real analytic case considered in [Br-Wh, Gra]. We feel however that a proof
independent of their celebrated work provides a more general statement useful for the applications
aimed to the global complex extension of a global integral Fourier operator defined via a torsion
free covariant derivative operator acting on the smooth sections of the complexified tangent bundle.
Indeed, in many analysis applications, these operators are very often defined by this type of more
general connections.

The first author has shown [Pali2] that the equation I, = 0 is satisfied for k¥ = 4 even in
the more general case of a covariant derivative operator acting on the smooth sections of the
complexified tangent bundle. In this more general case it is not possible to have a statement
similar to Corollary 1, simply because there are no geodesics in M associated to the complex
covariant derivative operator.

In this article we build a general formalism that allows us to give a more compact proof of the
vanishing of the tensor [j in the case k = 4, and which allows us to provide also a proof in the case
k = 5. Using computer algebra (see sections 2 and 5 in [Pal-Sal]) we can show the vanishing of I,
for k = 4,...7. In section 5 in [Pal-Sal] we use the explicit expression in theorems 1, 2 below and
we observe that in the case k = 7, the computer perform the computation in approximately one
second, but we expect that the case k = 8 would take a computation of approximately two weeks.
We feel confident at this point to formulate the following conjecture.



Conjecture 1 Let M be a smooth manifold and let V be a torsion free complex covariant derivative
operator acting on the smooth sections of the bundle CTy;. Then the sequence of tensors Sy €
ce (M, Ty, @, STy, ®, (CTM), k > 2, defined by the inductive rule

— i \Y
S = m Sym2,...,k:+1 O,
with ©F = 2RV and with
k r—2
oy = —2i(idY)* (VR )2+ > 1Y (idY)* " (pSy A1 Spp),
r=4 p=2

for all k > 3, satisfies the identities
Iy, := CircSymgy  j4q @kv =0,
for all k > 4.

A general mathematical proof for the vanishing of all the integrability conditions Iy is part of
a long and difficult work in progress.

1.2 Statement of the main result

We provide now more notations useful for the statement of our main Theorem.

Notation 1 We denote by D Eq p any element D = (dy,...,dyN) € Zgo with N € Z~q arbitrary
such that |D| := Z;\f:l dj =p. Wesetlp:=N. We denote also D! :==d;!---dn!,

J
|D|j = Z ds,
s=1

1Dl == Dl + 3,
for any 1 < j < N, and we set |D| = |D||y + N. For anyl =1,...,N, we define D; :=
(dl,...,dl), l)lJr = (dl+17...,dN) and
Dy = (Dy)) = (disa, .-, dn),

for any l,h € Zxo with I < h < N. In all this article, for notation simplicity, we use the
identification (vi,...,vp) = (1,...,p), for a given element (v1,...,vp) € Tgp.
For any integer a > 0, let R(®) := V°RY. We denote by R\ (1,...,a + 1,8,a + 2) the
endomorphism
v — R a+1,v,a+2).

Given a family of endomorphisms (Tj)§:1 we denote by
P
[z = Tio o1,
j=1
We also define the curvature monomial of multi-degree D as

Ip
RP(L. DI +1) = TR (D1 + 2, |Dl; + Lo D] —j+2)| 1,
j=1



i.e. the curvature multinomial RP writes as
RP(1,..,|D] +1)
— Rldn) (2,...,d1 +2,R(d2)(d1 £33 dy +dy+3,
R(ds) (d1 Tdy+4,....d +d2+d3+4,R(d4)<...

R0 (D1 + 2, 1Dl + 1,1, 1D, +2) 1Dl +3), ..

) ID| + 1).

We notice that the data of a curvature monomial R is encoded in a multi-parenthesis as follows

RP(1,...,|D| +1)
E(2,...,d1+2,(d1+3,...,d1+d2+3,(d1—|—d2—|—4,...,d1—|—d2—|—d3—|—4,(...
S UPlip -1 42, [1Dllip + 1, LDl +2), 1Dl +3),---), DI+ 1),

since the distance of the opening parenthesis determine the degrees d;.
We denote by A E 1 any \ € Z% >1 such that [A| =1 and we define for any D € 7L So the coefficient

_ (-)"eH) , _
Cp = >, D) with 1y =1, (1)
0<H<A
I IAL=1 1
C(H) := (D™ HL : (2)
M:ZZH A HS_E_l ||H;,|,\|_7‘|(“H§,|>\\J|| +1)

With these notations we can state our main Theorem.

Theorem 1 (Main Theorem: Explicit maxzimal totally real embeddings)
With the same notation and hypothesis as in Corollary 1, statement (b) can be replaced by:
(b) The components Sy satisfy S; =0,
1

Se = g > CpSym, 4 RP, with D >0
IDI|=k

Jor all k = 2 and the equations CircSymg 14 ey =0, with

[\

k r—
Oy = =2i(idY )" }(VRY )2 + > !> (idY )" " (pS, A1 Sr—p),

r=4 p

[
N

are satisfied for all k > 6.

The main Theorem 1 is a direct consequence of corollary 1, combined with the following general
result (as well as the vanishing for k = 4,5 that we provide below).

Theorem 2 Let M be a smooth manifold and let V be a torsion free complex covariant derivative
operator acting on the smooth sections of the complezified tangent bundle CTy;. Then for all k > 2,
a section Sy, € C* (M, Ty, @, S¥Ty; @, CTy) satisfies

i v
Sk = ms}’mz,...,kﬂ Oy,
with ©F := 2RV and with
k r—2
Oy = =2i(idY)* }(VRY )2 + > !> (idY )" " (pS, A1 Sr—p),
r=4 p=2



for all k = 3, if and only if

1 )
Sk = m Z CD Sym27_“7k+1 RD, with D = 0,
IDlI=F

for all k > 2.

A corollary of the solution of the conjecture 1, of the main Theorem in [Pali2] and of theorem
2 will be the following striking result which allow canonical construction of maximal totally real
embeddings.

Corollary 2 (Canonical mazimal totally real embeddings).

Let M be a real analytic manifold and let V be a torsion free complex covariant derivative
operator acting on the real analytic sections of the complexified tangent bundle CTy;. Then there
exists an open neighborhood U C Ty of the zero section with connected fibers and a fiberwise
real-analytic section S of 7* End (Ths) over U with fiberwise Taylor expansion at the origin

Sp& = Y Sk(&nb),

k>2

Jor anyn € U and any § € Thy x(y), with S, € C™ (M, Ty, @, STy, ®, (CTM) for all k > 2, (we

denote by n* == n*k Tj‘flkﬁ(n) ) given by the explicit formula

.....

I D=k
for all k > 2, such that J4 with
A = —iTly, + HY - TS,
is an M -totally real complex structure over U which is real-analytic over U.

We notice that the notation HY in the above definition of the section A is slightly abusive. We
mean there by HV the restriction to T of the horizontal map over CTy; associated to the complex
covariant derivative operator V. We must observe here the obvious inclusion T¢r,,|7,, C CT71),.

Definition 3 The M -totally real complex structure J in the statement of Corollary 2 is called the
canonical M-totally real complex structure associated to V over U.

We introduce now an important vector field which allows to characterize the canonical M-totally
real complex structure.

Definition 4 Let M be a smooth manifold equipped with a covariant derivative operator V act-
ing on the smooth sections of CTy;. We define the canonical vector field ¢V € C°°(Tw,CTr,,)
associated to V by

n— & =HY -n—iTy -n=[(HY —iT)lr, ]y

(We think here the identity operator Ir,, as a section in C*° (T, 7*Tys)). With the above notation
we have the following characterization.

Corollary 3 Let M be a real analytic manifold equipped with a torsion free covariant derivative
operator V acting on the real analytic sections of the complezified tangent bundle CTy, let U C Ty
be an open neighborhood of the image of the zero section with connected fibers and let J = J4 be an
M -totally real almost complex structure over U which is real analytic along the fibers of U. Then
the almost complex structure J is integrable over U and the vector field £ is of type (1,0) for J
over U, if and only if J is the canonical M -totally real complex structure associated to V over U.



We recall that in the general setting of a torsion free complex covariant derivative operator V
acting on the sections of the complexified tangent bundle CT}; there are no geodesics associated
to V. (Cauchy’s existence theorem does not apply).

We wish also to point out that in mathematics and in theoretical physics there are many
important natural complex differential operators that are defined via complex connections as above.

We learned from Professor Joel Merker that the results and techniques developed in this article
and in [Pali2] can be applied to the articles by Foo-Merker-Ta [Fo-Mer-Tal, Fo-Mer-Ta2], Merker-
Nurowski [Mer-Nurl, Mer-Nur2], Hill-Merker-Nie-Nurowski [Hill-Mer-Nie-Nur1, Hill-Mer-Nie-Nur2],
Merker [Mer] as well as Merker-Sabzevari [Mer-Sab], in order to obtain even more explicit results.

In the auxiliary preprint [Pal-Sal], we provide a Maple program verifying the main equivalence
in the proof of theorem 2 for the first values of k. The result for £ < 20 is automatically verified
in 6 minutes.

Acknowledgments. We thank Professor Joel Merker for his careful mathematical proof reading
of the main arguments in the proof of Theorem 2 as well as for providing an alternative Maple
verification independent of the one in our auxiliary preprint [Pal-Sal].

We thank also Professor Frangois Guenard for providing an alternative verification of the main
equivalence in the proof of Theorem 2 for the first values of k£ in the Mathematica system.

2 Proof of theorem 2

In all the article, with the exception of the appendix, we assume V be a torsion free complex
covariant derivative operator acting on the smooth sections of the complexified tangent bundle
CTyy.

2.1 Expliciting the powers of the 1-differential. Part I

Notation 2 Forany A € TITj@p@EndC (CTy) and for any 0 € T;j®q®(CTM, the product operations
of tensors A -6, A-0 € T]T/}®(p+q) ® CTns are defined by

(A-0)(u,...,up,v1,...,09) = Alur,...,up) 0(v1,...,vq),
q

(A=0)(u1, ..., up,v1,...,0q) = Zﬂ(vl,...,A(ul,...,uP)~vj,...,vq).
j=1

We denote RV.0 := RY - — RV—0.

We denote by Alts, the alternating operator (without normalizing coefficient!) acting on the
first two entries of any tensor. We recall the following well known fact (see [Pali2]).

Lemma 1 For any complex covariant derivative operator V acting on the smooth sections of
the complexified tangent bundle CTy; and for any tensor 6 € C'° (M, T]t[@k Qg (CTM>, holds the
commutation identity

Alt, V20 = RY 6. (3)

We recall that the notation a,...,b for integers a < b denotes the increasing by one sequence
from the left to the right hand side. We ignore this notation when a > b. We observe now two
other elementary lemmas.

Lemma 2 For any p-tensor 0,

(dlv)k9(17ak+p) = Z Eovke(gla"'7Uk+17k+27"'ak+p)a

oESE

where S, is the set of permutations o of the set {1,...,k+1} such that if 1 < j <k <I<k+1
then 0; < oy, or 0 < 0.



Proof Note that if o € Sj_,, then necessarily 01 € {1,2}. Let ¢4 : Nyg — N5 be defined by
¢4+ (i) =i+ 1 for all i and let ¢_ : Nyg — N5 be defined by ¢_(i) =i+ 1 for all ¢ > 2 and
#_(1) = 1. For each o € S}, one obtains two permutations in S}, as

7T+(O') = (17 ¢+(01)7 LR ¢+(0k+1))7 T (J) = (27 d), (01)7 ce »¢7(0—k+1))a

with €(7+) = +e(0). Conversely, all elements of S, , can be constructed this way , see [Sim-Sch].

For k = 1, Lemma 2 follows from the definition of d;. Then by induction it holds for all values
of k. Indeed we assume true the formula in the statement of the lemma for & and we show that it
hold true for k + 1. For this purpose we consider the equality

@)1, k4+p+1) =V((dY)*0)A,... . k+p+1) = V((dY)*0)(2,1,3,....,k+p+1). (4)
Notice now the identity

@)F0(1,3,.. . k+p+1)= > V(¢ (01),..., ¢ (Oks1), k+3,... . k+p+1).

UES;_H
We deduce
(@) e, .. k+p+1)
= Z 5gvk+19(7rf'(0),...,7r2'+2(0),k+3,...,k+p+1)
oESE
- Z eV O(n (o), ..., Too(0),k+3,.. k+p+1),
oESE
which implies the required conclusion. a

We can also write in operator terminology

@)= > e,0mV

oESE

The previous formulas write in the following more explicit way

Lemma 3 For any p-tensor 0,

(dYYk0(1,... k+p) = Z eqt VFO(ol, .. ob 1, k+2,... k+Dp), (5)
LEP, [k+1]

where Py [k + 1] is the set of parts L of [k + 1] :=={1,...,k+ 1} of even cardinality Xy, and if in

the case v := Ny /2 > 0, we use the identification L = (ly,...,ls,), then ol e Sk+1 denotes the
permutation
O'L = (1,...,?1,...,12,[1,12+1,...72:9,,...,14,l3,l4+1,...
e 7l27‘—37 e 7127‘—27 127‘—3a 127'—2 + 17 e 7127‘—17 ety l27‘7ZQT—17 l2'r‘ + 17 ey

--~,Z\2u—3, vyl oy oy 3,12 + 1, .. 72\2u—1, coloyyloy1, by + 1,00 B+ 1),
In the case v =0, we set 0¥ := Id.

All elements of S;, | can be described in this way. (The elementary proof is left to the reader).
We notice the equality

fr = (~)FFaaletrn ()l

We give a proof of Lemma 3 independent of the statement of Lemma 2.

Proof For k = 1, Lemma 3 follows from the definition of d. We show by induction that it
holds for all values of k. Indeed we assume true the formula (5) for a certain k. We define the



set P,(A), for any subset A = {ao} + {a1,...,a2} C Zso, 0 < ag < a1 < ag, by replacing
[k + 1] with A in the definition of P.[k + 1]. For any L € P.(A), we define also by oX € Sy =
{the set of permutationsof A} as we did for [k + 1]. With these notations we have the expressions

dY))k0(2,... . k+p+1)

— Z et VFO(oL, ... ok 1 k+3,.. k+p+1),
LeP, ([k+1]+1)
(dY)k0(1,3,...,k+p+1)

= > eerVEO(L, . ok k43, k+p+1).
LeP. ([k+2]-{2})

Using the equality (4), we deduce

(dY)YF o1, k+p+1)

= Z EULVk+19(1,01L,...,o,f+1,k+3,...,k—|—p—|—1)
LeP.([k+1]4+1)

- > eer VE10(2, 0L ok k3, .k p ).
LeP.([k+2]—{2})

For any element L € P, [k + 2|, we distinguish two cases. In the case I; > 1 we have the expression
ol = (1,0, with L' € P,([k 4+ 1] + 1) given by L’ := L. In this case we have also the obvious
identity e,z = e_.,. In the case I} = 1 we have o = (2,6%"), with L” € P.([k + 2] — {2}) given
by L” := L in the sub-case ly > 2 and by L” := (Is,...,l2,), in the sub-case I = 2. (We notice
that L” = (), if » = 1). In both sub cases ¢,o = —¢_r~, which implies the required conclusion of
the induction. a

We show now the following fundamental Proposition.

Proposition 1 Let V be a torsion free complex covariant derivative operator acting on the smooth
sections of CTy; with curvature operator RY (-,-)- = RV (,-,-). Then for all integers k > 1,

Syms 4 [(dY)F(VRY),] = Symy  pia Pr, (6)
Sym3,.A.,k+4 [(dY)k(Vva] = (—1)k Sym3,...,k+4(Tk — Alty Qp), (7)
with
Dp(l,...,k+4) = —(=DFV*IRY(2,... k+3,1,k+4),
Tu(1,...,k+4) = VFIRV(3, ... k+3,1,2,k+4),
k+1
Qr(l,...,k+4) = Y VI2(RV.VMIRY)(3,...,5,2,5+1,...,k+3,1,k+4).
j=2

Proof We notice first that the symmetrization of a tensor with two alternating entries vanishes.
Applying this fact to the covariant derivatives of RV in the expression (5) with 6 := (VRV)s, we
infer the identities

Sme,...,k+4 [(dlv)k(Vth] = (—1)kSym2,i..,k+4<Pk’
Symg  jia [(dlv)k(VRv)Z] = (—l)kSym37“_7k+4Alt2<pk,
with
or(l,...,k4+4) = VHVRY)(2,....,k+1,1,k+2,k+3,k+4),

which we can rewrite as

or(l,... k+4) = VFIRV(2, ... k+21,k+3k+4)
—VFHIRY(2,... k+3,1,k+4),
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thanks to the alternating property of RYV. We deduce in particular the identity (6). Using the
identity (3) we infer

or(l,...,k+4) = —V*IRV(3,2,4,...,k+3,1,k+4)
(RV.VFIRY) (2,...,k + 3,1,k +4).

We now show by finite induction on p, the identity
or(l,...,k+4) = —V*IRVSE,....p+1,2,p+2,....k+3,1,k+4)
p
— > VW(RV.VFTIRYY (3,52, + 1, k4 3,1,k 4 4),
j=2

for any integer p, with 2 < p < k+ 1. We assume them true for p < k& + 1. Applying the
covariant derivative Vg:ip 41 to the identity (3), with 6 := V*T27PRY we infer the conclusion of

the induction. If we set p := k + 1 in the previous identities we obtain
Alty i (1,...,k+4) = —V*IRV3, ... k+2,2k+3,1,k+4)
VFHRY(3,.. . k+2,1,2,k+3,k+4)
— Alta Qi(L,...,k+4),

thanks to the alternating property of RV. Then the identity (7) follows from the differential
Bianchi identity. a

2.2 Equivalent definitions of the tensor S;

We start by noticing a few elementary equivalent definitions of the tensors Sy introduced in the
statement of corollary 1. We assume more in general here that V acts on the smooth sections of
CT)y . For notational simplicity we use the identification V*S = S*) for any tensor S. We notice
that the tensor @ in the statement of proposition 1, is well defined for all £k > —1. Using the
identity (6) we infer the following equivalent definition for S.

Lemma 4 The tensors Sy defined in the statement of corollary 1 satisfy for all k > 2,

1

S = m Symz,...,kﬂ Ok,
k—2 k—2 r—1
O = 20FBp 5+ kD> (pSy ASk-p) + D (r+ D! prrps
p=2 r=3 p=2
Perp(l, . k+1) = (=) @S, A8, )T k= Lk —r 1, k).

Remark 1 Notice that

0, = 201441255 A Sa,
and
Symy 3 4 5(S2 AS2) = Symg g4 5 pa,
M4(17...,5) = 752(2,5‘2(1,3,4),5).
This implies
1 -
Sym2,3,4,5(52 NSa) = 18 SYIH2,3,4,5 Ha,
fis(L,...,5) = R(2,R(1,3,4),5).

11



Remark 2 Notice that

05 = 2i®y+ 51255 A S5+ 51353 A S+ 4lps 32,
p57372(1,.. ,6) 722(32 /\SQ),(2,1,3,4,576),
and
Symg s 45605 = Symgsype(2iP2 + ps),
ps(l,...,6) = —5!1285(2,85(1,3,4,5),6) — 51355(2, Sa(1,3,4),5,6)

+ o 2i4185(2,3,55(1,4,5),6) + 2i4195(3, 55(2,1,4,5),6).

Sym2,3,4,5,6,“5 = Sym2,3,4,5,6ﬁ5
as(l,...,6) = —6iR(2,R'(3,1,4,5),6) —6iR'(2,3,R(1,4,5),6).

Remark 3 We observe the equality

(Sp/\l Sr_p+1)(1,k'—’l“—|—1,...,]€+1)
= S, S —pt1k—r+1,...;k—p+2),k—p+3,...,k+1)
- Sptk—r+1,S8 _pri(Lk—r+2,...,k—p+2),k—p+3,...,k+1).

Now, the fact that the tensors 8 have at least one couple of alternating entries combined with

the fact that the total symmetrization of such tensors vanishes implies the following equivalent
definition of S.

Lemma 5 The tensors Sy defined in the statement of corollary 1 satisfy for all k > 2,

i -
Sy = m Sym2,...,k+1 Ok,

Op = 2i"®p_3+

k—1 r—1
) W (S 1) Lot NS R SO
r=3

p=2 IC{2,..k—r}

with

Phrp(Lio o k+1)
= SOk —r+ 1,800 (CI 1k —r+2,. . k—p+2),k—p+3,....k+1).

(Notice that in the case r = k — 1 the set I is empty). Using the elementary properties of the
symmetrization operators we infer the following equivalent definition of Sj.

Lemma 6 The tensors Sy defined in the statement of corollary 1 satisfy for all k > 2,

Sy = msﬂﬂz ..... k+19k,

0p = 20y 3+ py,
k—1r—1

r (—g)k—1-7 AR,
My = ZZ(( ) Z Z Phrp.s

_ ! !
r=3 p=2 r=p+2)lp+1) IC{2,....k—r} j=k—p+2

with
Phorpi(Lie k4 1)
OV DIk —r+1,k—p+3,...,5,00) CL1,k—r+2,.. k—p+2),j+1,

r—p+1

k1)

12



For any A = (ay,...,an) € Zgo, we define the multinomial

() - 4

Proposition 2 For any integer k > 2

g

Sy = ms}’mz,m,kﬂeka
with
0. = > CpR”,
DEgk—2lp

where the coefficients Cp are given by Cp = 2(—i)* for Ip = 1 and by the recursive formula

- AN ARG, Oy
€ 2 (D—A)<||A;||+1>!<||A;||+1>!’ ®)

forlp > 2
Proof We assume by induction on k > 3 that

1 ~
Sp = m Sme,“.7p+1 ep,

for any p=2,....,k — 1, with 5p under the form

0, = ) CaR*,

A’Zop72lA

for some coefficients C 4, with obviously 0y =2Rand Cy = 2(—14)? in the case [4 = 1, thanks to the
equivalent definition of S, given in lemma (6). We show that Hk writes under the form claimed in
the statement of the proposition 2 with the coefficients Cp given by the recursive formula (8). For
this purpose we notice first that the straightforward argument showing the equivalent definition
(6) of Sk implies for all k£ > 3 the identity

7

S = ms}’mQ,...,k+1 ék,
with
0, = 2%, 3+ﬁk,
o k—1r—1 r+1 )714 k+1 ,
and with
pkrpj( k+1)
= 0kt k—pas 0 Ok 2 k—p4 2L k1),
For any integer a > 1, we denote by [a] := {1,...,a} and we set [0] := (. For any integer b > 1

we denote by Map(a, b) the set of maps f : [a] — [b].

13



We observe now that for any A Fg p — 2[4 and any integer g > 0, the Leibniz identity implies

la
(RHD,...,q+p+1) = > [TR: - (a+D),
f€Map(q,la) [J=1

with
A, a; 1 =1z ]
R = RO (71 G), | Alljmr + a4+ 2, Al + g+ 1, 0p—j +q+2).
We write now

(1)
0, = > Ca®rHM,

AEop—2l4

and we notice that the shape of (R4)()) shows that ﬁiyr’p’kfhﬂ, with h := 1[4, are the only terms
with non vanishing symmetrization of the variables 2,...,k + 1. Indeed we consider the factor

Rt WD (=1 (h), p—h+1—ap,....p—h+1,1,p— h+2), (9)

with f € Map(I, h) in the expression of (R4)(MD(1,1,...,p+ 1) and we perform the change of
variables

1 2 R | J—k+p j—k+p ... p+1
. ‘ i ~(IC11) ’ . '
k—r+1 k—p+3 ... J QPPH(CLLk_r+2’,._7k_p+2) Jj+1 o k41

in the factor (9) with j € {k—p+2,...,k+1}. (We recall that we ignore the standard increasing
notation a, ..., b when a > b.) The only case when the symmetrization of the variables 2,... k+1
does not annihilate the factor (9), is when the index j € {k—p+2,...,k+ 1} satisfies the equality

j—k+p = p—h+1,

i.e. only when j = k — h + 1. This shows the required statement about ﬁLT’p’k_h_H.
We infer that for all £ > 3 the equality hold

Sk = (k+ 1)']f' Sym2 ..... k+1 0k7
with
0, = 2"y 3+ 1y,
with
) (r + 1))(—i)f 1 148
Hie = Z _ 1 1 Z CaCBPkryp -
3<r<k—1 (r=p+2)lp+1)! AEgp—2la
2<pLr—1 BFor—p+1-—2ip
IC{2....k—r}
with

PP (L, k+1)
= BYUID(L ke + 1,k + 3, ki, + 1, (RECIDCL L ke + 2,0k +2), K, + 2, k4 1),
and with ks := k — s. Using the expression
la

RA(xayaap+y_l) = HR(GJ) (HAHJ*l"_y’7||A||J+y_1a.ap_]+y) © T,
j=1

14



for any integers =,y > 0 and using the change of variables

kp+3 klA+]- klA+2 klA+3 oo k42
\ 1 1 1 3
kpy+3 ... ky,+1 RB(Lk.+2,...k+2) k,+2 ... k+1

we infer the equality

RAky + 1,k +3, .. ki, + LRE(L ke + 2,0k +2) k1, +2,...,k+1)
lA—l

I B (1Al -1 + Ky + 3, ALl + Ep + 2,0,k +2)
j=1

RO (ky, +2—ay,, ... ki, +LRZ (Lk +2,... kpy+2) ke + LKy, +2).

Indeed notice that [A|+14 =p—14 = ki, +2—(kp+2) and p—j+ (kp+3) —1 = k; + 2. Expanding
RB(1,k, +2,...,k, +2) we obtain

Rk, + 1,k +3,.. . ki, + L, RB (L kp + 2,0k +2), ki, +2,...,k+ 1)
(141

IT B (Alj-1 + Ep + 3, .. ALl + Kp + 2,0,k + 2)

Jj=1

RWa) (b, 4+2—ap,, ... ki, + 1,0k +1,k, +2)-

Y
TTR® (IBller + Ky + 2. IBlle + by + 1,0,k — t +3)| - 1,
Lt=1

since ||B|| —t+kr +2 =k, —t+ 3.

For any integer a > 1, we denote by [a]; := {2,...,a+ 1} and we set [0]; := 0. For any integer
b > 1, we denote by Map([a]1,b) the set of maps f : [a]; — [b]. Using the Leibniz formula and
the alternating property of R we infer the identity

r (—g)k—1-7
T ()

CaCpphtB (10)
_ | | Z k,rp
3<r<k—1 (r=p+2)p+ 1)t Ao p—2la
2<p<r—1 BkFor—p+1-2ip
f € Map([k- — 1]1,la +1B)
with
— Py (L k1)
_lAfl
. —1(s _ .
= | IT B OD2G), 1Al o1 + b+ 3, Al + ey + 2,0, k5 +2)
j=1

R(azAHf—l(lA)l) (fil(lA),klA +2—ay, ki, Lk 1 e kg, +2) .

flg

HR(thf*l(lA—&-t)\) (f_l(lA + 1), | Blle—1 + kr + 2, .., | Blle + ke + 1,0,k _t+3) 1.
Lt=1

We observe the equality

~fAB _ D
“Synbywk+1phnp ——Synbwwk+1}{

(11)
with Ip :=14 + I and with D Fq k — 2Ip given by
aj+‘f_1(j)|) j:17"'7lA7
dj = (12)
bi—ia + 1O d=1la+1,... . lp.

We deduce that ék writes under the form claimed in the statement of the proposition 2.
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We denote by abuse of notations D — A — B > 0 when d; j=0forall j =0,...,l4 and
when d; —b;_;, >0forall j=14+1,...,Ip.

Given A, B, D as before we denote by MapiB([k—r—l]l, [p) the sub-set of Map([k—r—1]1,1p)
given by the elements f which satisfy condition (12). We denote also by

MZprr = |Mapdp(lk—r—11,1p)|
Using (10) and (11), we infer the recursive formula

Z')k—&-l—?“

(r+ D= D
Cp = CaCpM ,
b 2 (r—p+2)(p+1)! 2. AZBTA Bk
3<r<k—-1 AFop—2la
2<p<<r—1 BEor—p+1-—2Ip

la+l1lp=Ip
D-—A-B>0

We remind that in the case Ip = 1 hold the formula Cp = 2(—i)* for all k >

Remark 4 Let A Fy a with [4 = ¢ and consider the sub-set Map 4 (a, ¢) of Map(a, ¢) given by the
elements f such that |f~1(j)| = aj;, for all j =1,...,¢. Then

Mapataal = (5):

The fact that in our set-up |D| — |A| — |B| = k — r — 1, allows to apply the previous remark to
the set Mapg’B([k —r —1]1,Ip). We infer the formula

la 1 135) 1

M/?,B,k,?" = (k—’)"—l)!

We conclude the explicit recursive formula

Cp = Z (=)= (k —r — D)!(r +1)!ICACp
= ; ,
3<r<k—1 (’I“ —-p+ 2)!(17 + 1)' Hj:l( J a’j)! HjilAJrl(dj - bj—lA)!
2<p<r—1
A »=0pp —T21A
BEor—p+1-—2Ip
la+ip=Ip
D—A-B>0
which rewrites as (8). This concludes the proof of proposition 2. a

Example 1 In this example we set for simplicity R’ :== R(Y) and R” := R®. For k = 6 we have
the expression

0s(1,...,7) = —2®3(1,...,7)
+ C20R"(2,3,4,R(5,1,6),7) + Co2R(2, R"(3,4,5,1,6),7)
+ C11R(2,3,R(4,5,1,6),7) + Co00R(2, R(3, R(4,1,5),6),7),
Cao = 10,
Coo = 10,
Cin = 17,
32
Cooo = 3

3 Expliciting the recursive formula for Cp

Lemma 7 For any integer k > 3 and any D Fo k — 2lp with Ip > 1

I Cp-Cp:

C = —1 _ kj .
v P2 Coy, Z (105 1+ DI(ID; [+ 1)!

p € Supp D
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Proof In the case Ip = 1 we have Cy_o = —iCj_3, for k£ > 3 by definition. This coincides with
what provides the formula in the lemma under consideration. We consider now the case Ip > 2
and we use the identifications D = (dy,...,d;,), A = (a1,...,a;,). Using the recursive formula
(8) we write

-t Z Cp-1,
p € Supp D
dp —ap (D] —|A]
= — |D|—-|A| Zp — %p F
> o (B0 e
p € Supp D
0<ALD-1,
la=Ip
with
Ip—1 C
A+
Fy = JA|! .
Z (1A, H+1 (IIAZ||+1)!

Let I = (1,...,1) € Z'» and let Sp := |Supp D|. We denote by Ip € Z!» the vector such that
Supplp = Supp D and 0 < Ip < 1. Then

—-i > Cpo,

p € Supp D

_ ~|D|—|A d—ap |D| — |A]
ST YRS Ll D S =l (A I

0<ALD-1Ip 1<p<ip
la=Ip p € Supp D
(=0)!P=1Al 71D] — | A]
S P
DI —jA] \ D— 4
p € Supp D
D—-Ip<ALD-1,
la=Ip

|D| = Sp < |A]
We notice indeed that the conditions D —Ip < A< D —1,, |D| — Sp < |A|, when they are not
empty, imply a, = d, — 1. We infer

i > Cpo,

p € Supp D

~Dj—14) (1D] = 4]
= — Z (—i)!P! |A|< Fu
0<A<D-Ip D-A

la=Ip

(=0)!PI=141 7|D| — |A]
- > tay=dy — 1}~ F
ey =dp =UE—ar (p-a )F4
D-Ip<ALD
la=Ip

|D| — Sp < |A] < |D|

A D|—1a| (1D = [A]
- - Y |A|( i
0<ALD D-A
la=ip
|[A] < |D]

since {p : a, = d, — 1}| = |D| — |A|. Then the conclusion follows from the formula (8). O
Definition 5 Given t € R*>°, s € R and A € 7%y, B € Z%,, with p,q € Zxo we define the
concatenation product

(t47) % (tPs9) =t poethl g PR
and we extend it by linearity.
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Definition 6 Givent € R?>0, s c R, A€ Z’;O and j € Z~o we define the contraction product
ti=(ttsP) = tATligP,

where A+ 1; := A+ 1,;, if j < p, with 1,; the vector of length p with vanishing components
except the j-th one which has value 1 and where A+1; := A, if j > p. We extend the contraction
product by linearity.

Lemma 8 Lett € RZ>0, s € R, and x € R. Then the function
) = 3 CptPstn
u(x,t,s) = D —_—
P (I

is the unique solution of the Riccati-type ODE

jz1
with the initial condition u(0,-,-) = 0.
Proof We write first
D 212l
Ozu(z,t,s) = ZCDt s'r ;
P Bl
> ¢ bl o
= pt—s + C208
o> Bl 2
|ID| +2lp >3
1Dl
_ D p? 2
= Z CDt SD”D”' ST
D>0
|ID| +2lp >3
On the other hand
lAll+1 IB]l+1
T T
(u*u)(z,t,s) = ZC’AtA fa ZC’BtBl —_—
2 T+ | " | &, (31 + 1)
1A+ Bl
2 Al Bl T
= T CACB(t SA)*(t SB)
Py (AT + DI B] + 1)
Ip—1 B 1Dl
= 24Pl Dz: Cp, Cpy
536 = (1D, [+ )M Dy |1+ 1)
Ip—1 B 1Dl
_ 2 Z D o Z Ch C’D+x ’
o (1D, 1+ DHIDE T+ 1)
|ID| +2lp >3
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and

th —u| (x,t,8) = Z(tj—\u)(x,t,s)

j=1 Jjz1
1Dl +1
€T
= T3 eot e gy
= 5% (D[ +1)!
Ip ID]I+1
x
= T Yo
o (D] + 1!
D]l
T
- e > o
2" D] ’
Z p € Supp D
D]
x
- e > oo
D>0 ”D”' p € Supp D ’
|D| +2ip >3

Then lemma (7) implies that the function u satisfies the singular Riccati’s ODE. The uniqueness
statement follows from the following corollary. a

Corollary 4 Lett € R?>0, s € R, and x € R then the function

u(z,t,s) = Zul(x,tl, o t)s

>1
1DII+1
— p_%
Ul(x7t1,...7tl) = Z CDt W7
D>0
Ip=1

satisfies the recursive system of linear ODE’s

awul(m, tl) + itlul(l‘,tl) + i 0,

. l l—
Opug(,ty, o ty) +iug (@, ty, o t) Yyt + 22 Sy Up(@ bt U (T by, B) =
V> 2.

with initial conditions u;(0,ty,...,t) =0, for alll > 1 and all (t,...,t;) € R
Proof According to the proof of lemma 8 we can write

(u* u)(z,t,s)
ZlIAI+IB]

_ 1‘2 B AslA * BSZB
= ot 2 CaCaltts) = () e

A,B>0

-1 a ap b bip ||A|+]B
CACREte - gorgdy . pt=p gl AIHIBI
S 2L VD VRED Dl SV {7 T
122 p=1 A>0 B3>0 ’ ’
la=p Ip=Il-p

_ J =t Z Cat®t - tor gllAl+1 Z Cptll, - e IBI+
| |
il et (IIA]l + 1)! 550 (B[ + 1!
la=p Ip=1—-p
-1
= st Up(m, b1, tp)u—p(Ty tpgas oo, ).
1>2 p=1

19



On the other hand still according to the proof of lemma 8 we can write
ZIIPl+1

Ip
. D+1; Ip
th | (z,t,9) Z ZCDt s EIES]

Jjz1 D>0j=1

LDl

l
— Zs > ZCDtDt]-W

= ZS t | wilz,te,. .. ).

The required conclusion follows from the Riccati-type equation in the statement of lemma 8.

In general we introduce the concatenation product for functions of the type

u(x,t,s) = Zul(x,tl, L t)s

1>1

U(]J,t,S) = Zvl(‘xatla"'atl)sla

>1
as
(u*v)(x,t,s) Zleup (z,t1,. . tp)vi—p(T, tpg1, .- Tr).
1>2 p=1

The concatenation product is associative.

Lemma 9 The solution u of the system (13) is equivalent to the solution

U(l'7t78) = Zvl(xatlv"'atl)slv

1>1

of the Riccati-type ODE

Oy — —v kv + ix2e!® g = (),

22
via the identification
w(x,ty,...,t) = —je ) LYog(a,te,. .. t).
Proof We write
Opui(z,ty, ... 1) = —ie ™ i1ty Ozvi(,t1, ..., t)
l
— e_mzéﬁtfvl(m,tl,...,tl) tj

and

Zup(matla'-'7tp)ul7p(xatp+17"'atl)
) . -1
= —e ®Xinl Z vp(@,t, .. ) U—p (@, tpya, .-, ).
p=1

20
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We infer that the system (13) rewrites as
vy (w,t1) + iz2et™ =0,

8$U[($,t1, s atl) - 1% i)_:ll Up(xatla s ,tp)’l]l_p(ﬂj,tp_t,_l, s atl)

vi> 2,

which is equivalent to the equation (14).

3.1 General facts about Riccati-type equations

In this subsection we denote for notational simplicity §(z,t, s) = 0,y(z,t,s).

Lemma 10 A solution

y(z,t,8) = Zy(x,tl, o ty)st

11
of the Ricati-type equation
¥y = a2)y*y+ai(z)y+ao(z,t,s),

with as non zero and once differentiable and with

ap(z,t,s) = Zao,z(ﬂc,h, )8

1>1

18 equivalent to a solution

u(a,t,s) = > ulw, by, t)s,

1>1
of the linear second order ODE
t—R(x)i+H*xu = 0,
R = a1+ %,
a2
H = asag,

via the identification @ + asy * u = 0, with uy (z,t1) = f(t1), for some non vanishing function and

St +1)

yi(z,ty, ...
= az(x) f(tx +1)

F@ap+1)

Jj=2

for all 1 =1, with |\; =37 _, A

p=1""P"
Proof The function v := asy satisfies Riccati-type equation
v = vxv+ R(x)v+ H(x,t,s).
Indeed

U= a2y + axy

as
= a—v+a2[a0—|—a1y+a2y*y]
2
a2
= a0a2+<a1+)v+v*v.
ag

21
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We now show that if @ + v * u = 0 then the function u satisfies the second order linear ODE in the
statement. Indeed

U = —0V*uU—vV*U

—Oxu+vx*(vku)
= (—0+vxv)*u
—[R(x)v+ H] xu
R(z)4 — H * u.

We notice now that the identification @ + v * u = 0 implies @; = 0, i.e. uy(z,t1) = f(¢1) and

U1z, te, .- tig) U1 —p( Ty bpt1s -+ Lig
wl@ s t) = = +CL(Q() tl+1+ Zypmtl,..., 2 8 f(;):i-l) +), {an

for all I > 1, which implies the explicit formula (16). Indeed if we set

A(z,t,s) = ZAl(m,tl, o)t

I>1
B(x,t,s) := ZBl(x,tl,...,tl)sl,
1>1
U1 .’E,tl,...,tl 1
Al(l’,tl,...,tl) = + ( f(tl+1) + )7
’lll+1($,t1,...,tl+1)
Bl(mvtlw"vtl) ClQ(.’E)f(tH_l)

(notice that the definitions are well posed) then the relation (17) writes as y = —B — y * A. Thus

y = —B*Z(—l)kA*’k,

k>0

where we denote by A** the k-th power with respect to the concatenation product *. (By con-
vention A*C := 1.) In other terms

Ix

yl(.’lﬁ7t1, R ,tl) = Z(—l)lAB)\l (.%‘,tl, e ,t)\l) H A)\]- (l’,t|)\\_j_1+1a cee 7t|)\\_,»)a
AEL j=2

which is precisely formula (16). O

Notice that y; is given directly by the solution of the ODE 91 (z,t1) = a1 (z)y(x, 1) +ao1 (2, t1).
In this paper we will always consider the case u(0,t, s) = ¢1s. In the Riccati-type equation (14)
we have az(z) = iz 2, ay = 0, ag(x,t,s) = —iz?e'®15. Therefore the corresponding second order

linear ODE writes as 5
U+ 5U + (eh15) « U = 0. (18)

with U(0,t,s) = t;5 and U(0,t,s) = 0. Then according to formula (16) we infer the expression

I
- _mzz UA1+1 Tty ta41) H Ung+1(®, tia ;o415 - -5 g +1)

v(z,t1,...,t) , (19)

AEL RYES! j=2 bal+1

for all [ > 1, for the solution v of the equation (14).
In order to compute the solution U we need an other elementary lemma.

Lemma 11 In the set up of the previous lemma, any ODE

i+a(z)u+agxu = f(z,t,5),
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s equivalent to the ODE
w— 3(2(11 +a? —4dag)xw = ezJaoiy,
via the identification
u = e zlay,,
Proof We write u = A(xz)w and we observe the elementary equalities @ = Aw + Aw,
i = Aw+ 24w+ Aw.

Then the ODE on u in the statement is equivalent to the ODE

At + 240w + Aw + a1 A + a1 Aw + Aag xw = f,
ie.

At + (2A + a1 A + (A + ay A + Aag) xw = f.

We seek for A solution of the ODE 24 4+ a;4 = 0, ie. A= e~zJ a1 We infer in particular the
identity

.1 1 .
A + 5&114 + 5&114 = 0.
Using this we write
.. . 1. 1 .
A+a1A+ Agy = —§a1A+§a1A+AaO

-q@m+ﬁ—m@
which implies the required conclusion. a

We infer that if we set U = 2w, then the equation (18) is equivalent to the equation
W+ (e s) xw =0, (20)

with the initial conditions w(0,¢,s) = 0 and w(0,¢,s) = u(0,¢,s) = t1s. (The later condition
follows deriving the equality w = xU). Then formula (19) implies the expression

Ix
a1 (@t 1) T WAL (T 1 A1)
(z,t = —ix E H
1 'a - =
NEL YS! =2 T +1
Ix
iz Y (- T] W41 (T, A1 Ea )
)
AEL j=1 Th) 41

for all [ > 1, for the solution v of the equation (14).

3.2 Expression for the solution of the equation (20)
We notice first the equalities w(0,¢,s) = w(0,¢,5) = 0, w1(0,t1) = t1, W1 = 0. We set

1
wpi(ty, ... ) = > w0, t1,. .., 1)

Differentiating the equation (20) with respect to the variable z and evaluating at x = 0 we infer
foralll > 2

k=1 ..
1 (-
Weto,1(t1,. .. 1) = _7(k+2)(k+1) E ﬁtlwkfr,lfl(t%'--atl)y
r=0
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which we rewrite as

1 RS
Wy (ty, ... b)) = o );)Ttlwp o1 1(tay . t)
1 =l L,
= =T ; 3 )t Wy—r—1(tay .., t1).
We deduce
wya(ty,ts) = P~ 1pp P=2p-3y

for all p > 3 and zero otherwise. We deduce also

—1
1% ir )
Wp,3 t1,t2 t3 = tr Wp—r, 2 t27t3
P(a ’ ) p(p—l)rz;(r—Q) PT( )
-3
1% ir
= > 2w, o (te, t3)
— — 11 p—r,2\t2,03 ),
pp—1) 2 r—2)
since wp_r2 = 0 for p —r > 3. Thus
(t t t ) Z'Pfl p_S( 2) t?"—Qtp_T_g t
wp,3(l1,1t2,13) = —F—— P—T—2) (i3
? p(p—1) = (r=2)!(p—n)!
We compute now
1 = )
wpa(ty, .. ta) = 't{_ Wp—r3(ta, ... t1)
pp—1) 2 (r—2)
-5
1 X i,
= t7_2wp—7'3(t27"'7t4)7
oo —1) 2 (r—2)
since wp_p3 =0 for p —r > 5. Thus
_ p—5 p—r1—3 r1—2,r9—2,p—1T1—T2—3
—7“1—7“2—2)t1 t2 t
Wy alty, ... ty) = — ty.
palts 2 p(p—1) le: Z: p—r)p—ri— 1) — 2 (ra —2)lp—r — )

We compute now

1 R
wp75(t1,...,t5) = p(p—l) (7"—2) t;_pr r4(t2> ,t5)
r=2
-7
15 ir
= tr 2 tv 7t )
oD 2Tyt el

since wp_p4 = 0 for p —r > 7. Thus

wp5(t1,.. t5)
p—7 p—r1—5p—r1i—r2—3

_ 71 Z Z Z p—r1—T2—1T3—2 y

= s s el =D - ) - - —1)

tql Qtr2 2t7“3 2tp r1—ro—r3—3

(Tl — 2)( To — 2)( rs3 — 2)( — 71 —T9 — 1"3)!

ts.
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We deduce the general formula

p=Irlj—1—2(-j)+1

i
wpi(ty,. . t) = —— p—|rli—2 —2) X
ri =2
1<j<l-2
-3 =2 ,rj—2 p—lrlm—?)
t.’ t_
X J ti,
1;[ — Ir15) ( rly =D | |52 O =2 (0= [rhi-2)!
for all [ > 3. Performing the change of variables 7" =r; — 2 we infer
/Z:p71 pf\r|j,172l+1
wy(te,... ) = —— (p—Irli—2 =20 +2) x
b plp—1) WZ%
1<i<i—2
-3 -2 ,7j p— |7‘|l 2—21+1
1 tj’ t_
X . : g
]1;[1(P—|7“|j—2j)(29—\7“|j—2]—1) Jl;[lrj! (p— \le TR

If we set rj_1 :=p — |r|j—2 — 2l + 1, then we can rewrite the previous sum as

P!
pr(tl,...,tl) = — Z (’I“l_1—|—1)><
plp—1) ¢
rF:O p—20+1

-3 -2 47j Ti—1

1 e
X - . | ol
Ue=m=—me-m-z-o| |15 e

_ -2 1 ;
“ w2 |\e=m=me-mem—n| |15

rEg tp—2l4+1 [J=1

where 7 |:6—1 p — 20 + 1 denotes the compositions of length { — 1 and |r| =p — 2] + 1.
We notice that the previous formula hold also for [ = 2. In conclusion

Uh(x,tl) = thl,
wl(x,tl,...,tl) = Z wp,l(tl,...,tl).’bp,
p=20—1

foralll > 2

3.3 The explicit expression of the coefficients C'p

By the result of the previous subsection, we infer the expression

Wx+1 (T, GAL 1o UAL+1) Z wp,Aj+1(t|A\j_1+17~~~,t|A\j+1)xp
- )
bixl;+1 P24l bial+1
with
Wy +1 (AL 1415 -+ -5 LA +1)
x4+t

A—1 by

_ B 1 trilj—l'*'s
- plp-1) 2 1 (p—Irls —2s) (p—|r[s —2s = 1) 1 rs!

A = =
ey p—2x;—1 L=t s=1
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Thus

Wx;+1 (Tt 415 B 1)
Al +1
. Aj—1 A R
-y 2y 1 [] e
_ . — . — 25— ! ’
o1 PP l)rbgjp_%_l o =Irls=2s)(p—lrfs =2s = 1) | | 5 7!
and
W, +1(@s -t 1)
t/\1+1

SIS SR : e
2 -1 =1 —25) (s —2s—1) | [LLo]-

p=2X1+1 T’:31P72>\171 s=1

We infer in conclusion

Ul(xatla 7tl)
(_1) A ij :L'pj
= —i) a1 > (p1—1)Hp‘(p‘_1)
AFL p; =20 +1 j=14I\7
rj F:gj pj —2A; —1
j=1 Y
5N /\j—l 1 I )\j tr;\r]
« i—1+58;
-H 11 (pj — Irsls; — 2s5) (pj — Irjls, — 255 — 1) Hsgl s |

for all { > 1. Thus

Ul(x,tl,...,tl)
(71)l+12‘ Z Z(il)lx(u{b\l+2/\1)i\H|x\H|+2l+l «
Hezl o AFL
I IAl—1 1 +H

< (111 X,

Alj 7!7
32 amly o [ e 200 = )+ 1] [P e+ 200, - )] |

for all [ > 1, which we rewrite as

Ul(x,th...,tl)
tH
— (—1)l+1i Z Z-\H\Z,\H\Jr2l+1ﬁ (_1)lk(|H|)\1+2/\1) >
HezZl, TR
I IAL—1 1

< 1T 1I AL

Alj
S am by [0 e+ 2010 = )+ 1] [ e+ 200 - )]

We now recall that thanks to lemma 9 the solution u of the Riccati-type equation in lemma 8 is

given by
w(z,t1,...,t) = —iefmzézltfvl(ac,th...,tl).

Then using the expansion



we deduce the formula

ul(x7t1,...7tl)
|H]|
- Y P S D S, + 20
DEZl2 0<HLD AFL

I IAl=1

< (I 11 1

Al Al
s amily 1 | e+ 2005 = ) + 1] [ ke + 20 - 9)]

for all [ > 1. We conclude the explicit expression

_ o 1y+1 |D| )
Co = ()DL S H,Z M (Hlx, +20) x
0<HLD AFL

I [Al—=1

1
X H H I\, Al

51 s [ b+ 20705 = 8) + 1] [ b 4200 = )]

for all D € Z . We write now Cp = —(—4)IPIl(|D|| + 1)!Cp. We obtain the expression of the
coefficients C'1 D 1n the statement of theorem 2.
4 Expliciting the integrability equations
In this section we provide some basic tools for a general expression of the integrability equations
CircSymg 41 G)kv = 0,
for k > 4. We notice in particular that the equation Circ Symy 4 5 OY = 0 writes as
Cmﬁw%AJMYWRWQ—ﬂWAJW =0,
with RY := Sym, 5 RY. Tts vanishing has been proved in [Pali2] by using a direct computation.
4.1 Expliciting the powers of the 1-differential. Part II
From now on let py, ; := (R.R(’”l*j))(j_m and notice that
pr; € C% (M, TH2U"D @ ATy @, THEH D) o AT @ T ®, cCTM) :
satisfies the circular identity with respect to its last three entries and in the case j < k the tensor

Pk,j - v satisfies the circular identity with respect to its last three entries for any vector v € Thy.
We remind the identity

REV(2  k+31,k+4) = RFUGE . k+22k+31k+4)
k+1
+ Y (3201, k3, Lk + 4),

obtained in the proof of the identity (7) in proposition 1. We rewrite it in the more general form

RV b, ... ,¢,2,d) = R0, .. c—1,1,¢2,d)

+ Z pc—b,h—b+3(b7"'7h71ah+17"'7Ca25d>7
h=b—1
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for any 3 < b < ¢. Differentiating we obtain the general commutation formula

R W(a,....b=1,1b,....¢,2,d) = RC(a,....c-11,c2.4d)

c—2
+ Y pean-ars(@,... b1 h+ 1,0, 6,2,d),(21)
h=b—1

for all 3 < a < b < ¢ < d. We now show two key elementary lemmas.

Lemma 12 In the set up of proposition 1, for all integers k > 1,

CircSymg  pysTe = CircSymy 44 fk,
with
N k+1
Tp(1,...,k+4) = Z(j—1)pk)j(4,...,j—|—1,3,j+2,...,I<:—|—3,1,2,k:+4).
j=2

Proof We notice first that for any tensor § = 0(1,...,k + 4), the tensor

k+4
01, k+4) = Y 0(1,2,4,...,5,3,5+1,....k+4),
j=3
satisfies the identity
Symg,.,.,k+49 = Symy 40

Applying the previous definition to our tensor T we obtain the expression

k+3
Te(l,... k+4) = > R®DMA 53 j+1,.. k+3,1,2,k+4)
§=3
+ R¥FDU4, . k+4,1,2,3).
Using the commutation identity (21) we infer

R(k+1)(4a"'aj737j+13-"ak+371’2’k+4)

k+2
ROV, k43,3, 1,2, k+4)+ Y pea-s(... h3h+1,... k+31,2Fk+4).
h=j
We infer the equality
To(1,... k+4)
= (k+DR® V4, k+3,3,1,2k+4) + (1) R*D (4, .. k+4,1,2,3)
k42 k+2
+ Y ks 3 h+ 1k + 3,12,k 4 4).
j=3 h=j
Using the elementary equality
b b b
BT SURIERICE
s=a h=s h=a
we obtain the identity
Te(1,... k+4)
= (k+1D)R* V4, . k+3,3,1,2,k+4) + (—1)*RFD U ... k+4,1,2,3)
k+2
+ Y (h=pen-s@.. . h3h+ 1, k+3,1,2,k +4).
h=3
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Using the algebraic and differential Bianchi identities and performing the change of variable h =

j + 1, we infer the required conclusion.

Lemma 13 In the set up of proposition 1, for all integers k > 1,

Circ Sym3,.4.,k+4 [(dY)k(VRV)Z]

with

Tk}j(l,...,k-‘rﬁl)

Qrj(1,... . k+4)

k+3
+
s=j+1

Proof In the computation that will follow we will denote by py ;(...)

(= 2)pri(4, ...

Z pk,j(47 ce

k+1
(=)%Y CireSymy g 4(Thj — Aty Qx ),

=2

J+1L35+2,00.,k+3,1,2,k+4),

J
D ki@ 83541520+ 1, k43,1 k+4)
s=3

GA1L,2. 542, 83,5+ 1. k+3,1,k+4).

P

d

with p = 0,1, the terms

that summed-up together annihilate the operator Circ Sym, ;4. Forall 2 < j < k+1, we define

Thj(1,... k+4) =

Qri(1,... . k+4)

k+3

s=j+1
prald ..

Vk,j(l,...,k+4)

k+3

s=j+1

and we notice the equalities

(G —Dpr,;4,...

J
> ok
s=3

Z pk,j (4, P

J

= o4,
s=3

> o4,

J+1,3.5+2,...,k+3,1,2, k4 4),

$,3,s+1,...,5,2,5+1,....,k+3,1,k+4)

J+1L,2,5+2,...,83,s+1,...,k+3,1,k+4)

7j+172’j+27"'7k+4’1’3)27

83s+ 1, 0,05+, . k+3,2,k+4)

i+ 1L L 5+2.0..83,s+1,... k+3,2,k+4)

pr4, . i+ 1,1, 5+2,...,k+4,2,3),,

k+1
Symy giaAlo Q= > Symy 4y (Qkj+ Vi),
j=2
Then proposition 1 and lemma 12 imply
k+1 R R
CireSymy 4y [(dY)F(VRY)2] = (=1)F > CireSymy g4 (Thj — Qi — Viy)-
j=2
We write
Thj(lk+4) = (G—pes,. . j+1,3,5+2,.. ., k+3,1,2,k+4)
pei(4, . 7 +1,3,5+2,...,k+4,1,2)
P4y f+ 13,542, k+3,2,k+4,1)
= (GG=prs4 .. i +1,3,542,... k+3,1,2k+4)
pei(4, .., +1,3,5+2,...,k+4,1,2),
+ pr(4, i+ 13,542, k+4,2,1),.
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We infer the identity
CireSymy, g a(Thy — Qrj — Vi)
= Circ Sym4,...,k+4(Tk,j — Alty Qx5),

which combined with the identity (22) implies the required statement.

Lemma 14 In the set up of proposition 1, for all integers k > 1,

k+1
CireSymy__ gpq [(dY)"(VRY)2] = (=1)F Y CireSymy_jpa [ = 2) Ty — Alta Qi)

j=2
with

Te;(L,... k+4)
= > RUD(13,j+2, REFTHUIDECT 5 +3, . k+3,1,2,k+4))

IC{4,....j+1}
- > R34 (1 543 . RICD(CL, 3,5+ 2,h),...,k+3,1,2,k+4)
IC{4,...,5+1}
j+3<h<k+3
- S RN G+, k+ 3, RIPD(CI,3,5 +2,1),2,k + 4)
IC{4,...j+1}
- S RERIHINT 43, k+3,1,RI¥D(CL3, 5 +2,2), k+4)
IC{4,....j+1}
- > RN 43, k+3,1,2,RIUD(CL3, 5 + 2,k + 4)),
IC{4,....j+1}
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= > RUD(1, 2,5 4+1, RF1=FCINCT j+2 .. k+3,1,k+4))

- > RUHI=G+ID (1 542 . RICID(CI, 2,5+ 1,h),...,k+3,1,k+4)
3<s<j

IC{4,...,83,s+1,...,5}
j+2<h<k+3

- > R+ (1 542, k+3 RISD(CI, 2,5 +1,1),k +4)

- > R+ (1 542, k43,1, RIEDCI 2,5+ 1,k + 4))

3<s<
ITC{4...,53s+1,...,4}

+ RUID(1, 2,3 R*+1=3+CIN(CT 54+ 2 ... k+3,1,k+4))

- > RUHI=G+ID (1 542 RICD(CI, 2,3,h),... . k+3,1,k+4)

- > RO+ (1 543 . RICID(CI, 2,5+ 2,h),...,83,5+1,....k+3,1,k+4)

— Z R4 (1 543 . s RIBD(CI, 2,5 +2,3),s+1,....,k+3,1,k+4)

- > RUHI=HIN(r 543 63, s+1,...,RICDCI,2,5+2,h),....k+3,1,k+4)

- > RUHI=GHIN (1 543 . 53, s+1,....k+3 RIEDCI, 2,5 +2,1),k+4)

- > RGN (1 543, . 53,5+1,...,k+3,1, RICDCI 2, + 2,k + 4)),

where the symbol I C {4,...,s,3,s+1,...,j} means a subset of the elements4,...,s,3,s+1,....j
written in this order and CI C {4,...,5,3,s+1,...,j} denotes its complementary set respecting
the same order.

Proof We recall first the definition

R(laQ,R(p)(37’p+5))

p+5

— Y RW(3,...,R(1,2,h),....p+5),
h=3

(R.RP)Y(1,...,p+5)
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which writes in the case

(RR* =G —1,. . k+4) = R(G—1,5,R*1D(G+1,... k+4))
k+4
— > RETIG 41, R = 1,5,h), . R+ 4).
h=j+1

We infer the expression

le‘(l, ok +4)
= > RUDL =1, REFIHOINCL 41,k + 4))
k+4

- > S REHTHI(T j+1, RIMDEL,j—1,5,h),.. .k +4).
IC{1,....j—2} h=j+1

Performing the change of variables

1 ... j—=2 j—1 § ... k+1 k+2 k+3 k+4
4 { { { { { { o,
4 j+1 3  j+2 ... k+3 1 2 k+4

we infer the expression

pr(4y o+ 1,35 +2,. . k+3,1,2,k+4)
= S RUDI3,j+2, REHEIDECL G 43, k+3,1,2,k +4))
IC{4,....5+1}

k+3
- > > R 43, RIMDECLS, 5 +2,h),. .. k+3,1,2,k+4)
IC{4,...,j4+1} h=3+3

- S RMHIHINI G438,k +3,RID(CL3,5 +2,1),2,k +4)

IC{4,....5+1}
- S RMHIHINI G438,k +3,1,RISD(CL,3,5 +2,2), k +4)
IC{4,....j+1}
- > BRI 54+3, .k +3,1,2, RID(CL, 3,5+ 2,k +4)).
IC{4,....j+1}

Performing now the change of variables

1 ... §s—=3 s—2 s—1 ... j—2 j5-1 J oo k+2 k43 k+4
1 A \ A \: \ \J \ \ Lo
4 ... s 3 s+1 ... j 2 j+1 ... k+3 1 kE+4

we infer the expression

Pei(4,...,83,s+1,...,5,2,7+1,...,k+3,1,k+4)

= > RUD(1, 2,5+ 1, RF1I+HBINCT j 42 . k+3,1,k+4))
IC{4,...,5,3,54+1,...,5}

k+3
- > > RO G2, ROODEL2, 4 1R,k 3,1k 4 4)
IC{4,...,8,3,54+1,....,j} h=5+2
- > RUEHI=GHID (1 542, k+3 RISD(CI, 2,5 +1,1),k +4)
IC{4,...,5,3,5+1,....5}
- > RUHI=IHIN(r iy 2 . k+3,1, RICDCI, 2,5+ 1,k +4)).

IC{4,...,5,3,5+1,....5}

32



We perform finally the change of variables

1 ... j—=2 j—1 j ... s=2 s—1 s ... k+2 k+3 k+4
4 I \ I \ b \ \ i\ U
4 .0 i+l 2 42 s 3 s+1 ... k+3 1  k+4

We distinguish two cases. In the first case, when s = j + 1, we have

pei(4, ., +1,2,3,5+2,... . k+3,1,k+4)

= So RUN(12,3, REFTHENCL 42,k 43,1,k +4))
IC{4,....j+1}

— > R+ (1 542 RUCID(CI,2,3,h),... k+3,1,k+4)

- ST REFIHIN( 42,k + 3, RIFD(CL,2,3,1), k + 4)
IC{4,...5+1}

- So RERIHINL 2, k+3,1,RIMD(CL, 2,3,k +4)),
IC{4,....j+1}

and in the second case, when j + 2 < s < k + 3, we have

pei(4, . 7 +1,2,5+2,...,83,s+1,....k+3,1,k+4)
= > RUD(I,2, 542 REHIVEINCT 5 +3,. 53,5 +1,... k+3,1,k+4))

IC{4,..j+1}

- > RUHI=G+ID (1 543 . RICID(CI, 2,5+ 2,h),...,83,s+1,....k+3,1,k+4)
IC{4,...,j+1}
j+3<h<s

- > RUHIHIN( 43, s RIMD(CL,2,5+2,3),s+1,... . k+3,1,k+4)
IC{4,...,j7+1}

- > RGN (1 543, .. s3,s+1,...,RICIDCI, 2,5 +2,h),..., k+3,1,k+4)
IC{4,..., j+1}
s+1<h<k+3

- > RN 43, 58,5+ 1,k + 3, RIFD(CI 2,5 +2,1), k +4)

IC{4,....,5+1}
- > RN 43, 53,5+ 1,k +3,1, RIMD(CL 2,5 + 2,k + 4)).
IC{4,..j+1}
Then the conclusion follows from lemma 13. O

4.2 Expliciting the 1-exterior product of the lower order term of S;

Given asubset S C Z>1 and I C S we denote below by abuse of notation CI C S the complementary
set of I inside S. We show now the following key result.

Proposition 3 For all h > 2, let

. 2Z'h+1
Sy = m Syms  pi1 Pr-s.
Then for allk > 1,
k42 r—1
Syms  pia Z(T +1)! (idlv)k+27r(p*§p A1 g?”—p+l) = Sym3,...,k+4 L(k),
r=3 p=2
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with
k+2r— 1

- Y i)+ 1)
(r=p+2)p+1! "

r=3 p=2
and with
Lgrp(l,...,

- ¥

I1C{1,3,...,k—r+3}
RPFHI=D(T k), +2,...,

k+4)

IC{2,....k—r+3}

RPHHI=D(T k,+2,...,

with k, :=k —p+4, in the case k+2 —r > 1 and with
Ligsop(l,.... k+4)
k+3
= > RO(k,+2,.. 5, REPIVE Lk, 2k, + 1), 4+ 1, k43, 1k +4)
j=kp+1
+ RPD(k,+2,... k+4,1,REPH(3 k2K, +1))
k+3
= Y RPNk +2,.. 5, REPIVE, Lk, Lk + 1), 41, k4 3,2,k + 4)
j=kp+1
— RPD(k,+2,.. . k+4,2, REPTVE Lk 1k, + 1)).
Proof We notice that in the case k +2 —r > 1,
Syms  pi4 [(idY)kH_r(pgp A1 ST—P+1):| = (=)t Syms g a(Prrp — Vhrp)s
with
Crrp(l,. o k+4) = V2T S AL S )2 k43— L k4 —r, . k4 4),
Vkrp(1, ... k4 4) V2T (pS, AL Sy pi1)(1,3, . k43— 2k +4 -7 k4 4).
We notice now that
Syms  gtaPkep = SyMs  gia Pkrp
SymS,..‘,k+4 Ukrp SymB,...7k+4 Virps
with
Prrp(ly .. k+4) = V2N (2 k33— L k+4—r,. . k+4),
Vrrp(L, .,k+4) VAN (1,3, k+ 3 =1 2 k4 -1, k4 4),
with
Arp(Lik+4—7,...  k+4)
= —pSpk+4—1,8 pi1(Lk+5—r ... k+5—p)k+6—p,....k+4).
Therefore
(Nk,rp ﬂ’krp)( k+4)
= p 3 S(”‘ (Lkr, SUOD) (C1, 2,k 4+ 1,k + 1), kp + 2, k4 4)
IC{1,3,....k—r+3}
— Y Sk, SID L ke Lk 1)y 2, K ),

IC{2,....k—r+3}
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We notice now that for any tensor ® = ®(1,...,p + 1), the tensor

1
®(1,...,p+1) = %@(1,3,...,]‘,2,]‘+1,...,p+1),
j=2
satisfies the identity
Sym2,...,p+1 ¢ = Sym3,...,p+1 .
Thus
(Sym,, p+1 q’)(h) = Symh+3 ,,,,, h+p+1 o),
We infer
(Brrp = Crrp) (L k£ 4)
4ir+3
T DD —p+ 2 —p+ 1) 12{1732_%}
(Symy 713, |1]+p+1 ‘i’;()‘flg))(fa Ky, (Symygri4a, ... C1|4+r—p+2 ‘I’rlcﬂ D) (CL, 2,k + 1,0k + 1)y + 2,
4373
(p+DUp = Dir —p+ 2 —p+ 1! ) Zk_r+3}
(Sym|1|+3,...,|1|+p+1 ‘i’;()‘flg))(fa kr, (Sym\BIHQ,‘..,\BIHrﬁDJrQ ‘I’glcﬂ 2)(EI Lke+1,.. 0k +1),kp+2,..,
and thus
(—i)kH*T Syms,”.,kﬂ(@k,r,p - q/;k.,r,p) (r i(p i_)’;)r(;cj_l 1)! Syms,...,k+4 Ekaﬂpv
with

Lirp(l, ... k+4)
(ICr
= Z ;' Lk, @20 L2,k + 1,y + 1) ey + 2, 4 4)
IC{1,3,...,k—r+3}

p r—p— 2
I1C{2,....,k—r+3}

G DY

IC{1,3,....k—r+3}
(i)m (I, by, REPHEI=D(CT ke 41, ke, 2,k + 1), kp + 2, K+ 4)

-yt Y

IC{2,....k—r+3}
U, ke, ROPHEI=D(CL ey 41, ke Lok + 1), K 42, K+ 4).

Using the expression

®, 3(1,...,p+1)

p
P> RW(3,...,5,2,5+1,...,p,1,p+1)

+ (1)PRP(3,...,p+1,1,2), (23)
we deduce the formula
A(=a)r
(r—p+2)lp+

(_i)k+2—7" Sym37__47k+4(¢k,r,p - &k,r,p) 1)' SYm3,44,7k+4 ]Lk,r,p7
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with

Le,rp(1,

POEEDD

Lk +4)
k+3

IC{1,3,....k—r+3} j=k,+1
RPHI=2(1 oy 2 5 ROPHEIDCL k1, k2, ky +1),5 + 1,0 k4 3,k b+ 4)

> RPHI=2(T |42 k4 4,k ROPHCI-DCT k1, Ky, 2,k + 1))
IC{1,3,...

Jk—r+3}
k43

)RS

k—r+3} j=kp+1

RPHI=2(r 2 5 ROTPHEI=DCT ko1, Lky+1),5 + 1,k + 3, Ky b+ 4)

S RNk, 42,k Ak, ROTPHEIEDCL 41,k 1k, + 1)),

IC{2,....k—r+3}

The fact that in the case under consideration k 4+ 2 —r > 1, i.e k. > 3, implies

Symg,‘..,k+4 {(idlv)kJrzir(PSp A1 S'Tfp+1)

4( ')k+1
(r—=p+2)l(p+1)!

Symg k44 Lirp-

We consider now the case r = k + 2. We consider the expansion

We infer

with

(pSy A1 S pis)(1,... k+4)
S, (1, Sk prs(2, k—|—1) kp42,... k+4)
pSp(Q,Sk_p+3(1,3,...,kp+1),kp—|-2,...,k+4)
4ik+5
P+ D! —Di(k—p+ Dk —p+3)
(Symy i1 Ppos)(1,(Symy g @k p)(2,. . kp+ 1), kp + 2, k+4)
Aik+5
b+ D~ Dk —p+ Dk —p+3)
(Symy i1 Ppoa)(2, (Symyp @k p)(1,3,. .k + 1),k + 2,k +4).

4,L'k+5
(p+ DIk —p+4)!

kaa(PSp AL Sr—pi1) Symg iy Lisrop,

.....

L et2p(L,. .. k+4)
= &, 3(1»‘1)19717(,...,kp+1),l<:p+27...,k+4)
— B, 3(2, 0 (1,3, ..k + 1),k 2, k4 4)
= (D), (1 Rt POk 20k + 1),k + 2, K+ 4)

(- )k p+1i)p_3(2’R(k p+1) (3’._' kp,Lkp+1),kp+2,....k+4).

Using (23), we obtain

SymS,“.,k+4(p‘§p A1 Sr—pﬂ)

4(—i)k+1
(p+ DIk —p+4)!

SymS,...,k+4 Lk k+2.ps

which shows the required formula. a
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5 Vanishing of the integrability conditions in the cases k =
4,5

We recall the notation R’ := R(Y). In this section we show the identity

k+2 r—1
CireSymg _yyy [2i(id)" (R )2 =Y _(r+ D! (id) > (pS, A Spprn)| = 0,
r=3 p=2

for all integers k = 1,2. We notice that S’p =S, for p = 2,3. This corresponds to the cases k = 4,5
in the main integrability conditions Circ Symg ;.4 oy =0.

5.1 Alternative proof of the vanishing of the integrability conditions in
the case k =4

We set for simplicity ab, cde := R(a,b, R(c,d, e)) and a similar definition for abe, de or a, bed, e.
We observe first that lemma 14 implies the identity

Circ Symy 4 5[d(R)2] = CircSym, 5 Alt, Qi
Qi2(1,...,5) = 23,415 — 234,15 — 41,235
+ 24,315 — 243,15 — 3,241, 5 — 31, 245.

We notice that Circ Q2 = Circ (@1,2, with

Q12(1,...,5) = 12,435 — 124,35, — 43,125,
+ 34,125, — 142,35, — 3,241,5, — 12,345,
= —2.12,345+ 234,125 — 124,35 — 142,35 — 421,35
= —2.12,345+2-34,125 — 124,35 + 214,35
= —2.12,345+2-34,125 — 2 - 124, 35.

(We denote by a subscript j = 1,2, 3, the terms that we combine together). Using the fact that all
the operators Circ, Sym, 5, Alta commute we infer the formula

CircSymyg 4 5 [d(R/)Q] = —4CircSym, ; Q,
Q,(1,...,5) = 12,345—3,124,5 — 34,125.

On the other hand using proposition 3, we infer the formula

Z‘S
Sy = ~% Sym, 3 R,
8
412 Sym37415(5'2 AN Sg) = 7§ Sym3’4y5 Altg L17372,
Li3o(1,...,5) := 324,15+ 15,234
We show now the identity
Circ Symy , 5 [zaz(R’)2 +412Symy 4 5(S A S)| = 0,
i.e.
12 Circ Symy 5 Q1 — 4 Circ Symg 4 5 Alta Ly 32 = 0. (24)
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Using the identity [Symy 4 5, Alta] = 0, the equalities

Symg,sLize = Symys[324,15 + 423,15 + 425,13 + 14,235 + 13,245 + 14, 253]

= Sym,;[324,15 + 423,15 + 425,13 + 14,235 + 31,425 + 14, 253],
Circ Sym,  [324, 15 + 423, 15 + 425, 13 + 14, 235 + 23,415 + 14, 253

= CircSym, 5 [214, 35 + 412, 35 + 435,21 + 34, 125 + 12,435 + 34, 152]

= CircSymy 5 [214, 35 + 412,35 — 345,21 + 34,125 — 12,345 + 34,152],
Alty [214, 35 + 412,35 — 345,21 + 34,125 — 12, 345 + 34, 152]

= 214,35+ 412,35 — 345,21 + 34,125 — 12,345 + 34, 152

— 124,35 — 421,35 + 345,12 — 34, 215 + 21, 345 — 34,251

= —2.124,35+ 214,35 — 12,345 + 2 - 34,125 + 2 - 21,345 + 34,125

= —3.124,35—3-12,345+3-34,125
3.3,124,5 — 312,345+ 3 - 34, 125.

We infer
Circ Sym3)4’5 AltoLy 32 = —3-Circ Sym4)5 Q.
and thus (24).

5.2 Vanishing of the integrability conditions in the case k =5
We want to show the identity

4 r—1
CireSymg g [2id*(R )2+ > (r+ D> _(id)* " (pSp A Sr—ps1)| = 0.
r=3 =2

P
We set for simplicity ab(cdef) := R(a,b, R'(¢c,d, e, f)) and a similar definition for abc(def). Using
lemma 14 we infer the identities

CircSyms ¢ [d*(R')2] = CircSym, s ¢[Ta,3 — Alta(Q22 + Qa3)],
Tos(1,...,6) = 35(4126), + 435(126),
(4351)26, — 4(351)26,
+ (4352)16, + 4(352)16,
12(4356), — 412(356),,,
Q2,2(1,...,6) = 23(4516), — (234)516, — 4(235)16, — 451(236),
+ 24(3516), + 24(5316), — (245)316, — (243)516,
— 5(243)16, — 3(245)16,, — 35(241)6,, — 53(241)6,
351(246), — 531(246),,
Q2,3(1,...,6) = 24(3516), + 324(516), — (3245)16, — 3(245)16,,
5(3241)6,, — 35(241)6,, — 51(3246), — 351(246),
+ 23(4516), + 423(516), — (4235)16, — 4(235)16,
— 51(4236), — 451(236), + 25(4316), + 425(316),
— (4253)16, — 4(253)16, — 3(4251)6, — 43(251)6,
—  31(4256), — 431(256),,
where we denote by a subscript j = 1,...,12, the terms that we combine together inside the
expression CircSym, ¢[Ta3 — Alt2(Q22 + Q23)]. (j = 12 is combined with itself). Indeed
combining:
for j =1,
Symy 5 6 [35(4126) — 24(5316) + 14(5326) — 25(4316) + 15(4326)]
= Symy ;¢ [34(5126) —2-24(5316) + 2 - 14(5326)],

38



and thus

CircSymy 5 ¢ [35(4126) — 24(5316) + 14(5326) — 25(4316) + 15(4326)]
= CircSymy 5 ¢ [34(5126) — 2 - 34(5126) + 2 - 34(5216)]
= —3CircSymy 5 4 [34(5126)],
for j = 2,
435(126) + 2 - 451(236) — 2 - 452(136) — 425(316) + 415(326)
= 435(126) + 2 -451(236) — 2 - 452(136) — 452(136) + 451(236)
= —453(126) + 3-451(236) — 3 - 452(136),

and thus

Circ [435(126) + 2 - 451(236) — 2 - 452(136) — 425(316) + 415(326)]
=  Circ[—453(126) + 3 - 453(126) — 3 - 453(216)]
= 5Circ[453(126)]

for 5 =3,

Circ [(4352)16 — (4351)26 + (3245)16 — (3145)26
(4235)16 — (4135)26 + (4253)16 — (4153)26 + 3(4251)6 — 3(4152)6]
Circ [(4352)16 — (4351)26 + (2145)36 — (1245)36
(4235)16 — (4325)16 + (4253)16 + (4513)26 — (4251)36 + (4152)36]
= Circ[(4352)16 — (4351)26 — (2415)36 — (1245)36
(4235)16 + (4235)16 + (4253)16 + (4532)16 — (4352)16 + (4351)26]
= Circ[2- (4235)16 + (4125)36 + (4253)16 + (4532)16]
— Circ[2-(4235)16 + (4125)36 — (4325)16]
= Circ[3(4235)16 + (4125)36]

4 Circ [(4125)36] ,

+

_|_

+

for j =4,

Circ [4(352)16 — 4(351)26 + 2 - 4(235)16 — 2 - 4(135)26
4(253)16 — 4(153)26 + 43(251)6 — 43(152)6]

Circ [4(251)36 — 4(152)36 + 2 - 4(125)36 — 2 - 4(215)36
4(152)36 — 4(251)36 — 4(251)36 + 4(152)36]

= Circ[4-4(125)36 + 4(521)36 + 4(152)36]

Circ[4 - 4(125)36 — 4(215)36]

= 5Circ[4(125)36].

+

+

Moreover for the remaining terms we use the equalities

Sym, 5  [5(243)16 — 5(143)26 + 53(241)6 — 53(142)6]
Sym, 5. [5(243)16 — 5(143)26 — 5(241)36 + 5(142)36]
—  Symy s [4(253)16 — 4(153)26 — 4(251)36 + 4(152)36]
and
(243)16 — 5(143)26 + 53(241)6 — 53(142)6]
= CireSymy 5 6 [4(152)36 — 4(251)36 — 4(251)36 + 4(152)36]
—  2CireSym, 5 ¢ [4(152)36 + 4(521)36]
—  2CircSymy 5 5 [4(215)36]
= 2CircSym, 5 ¢ [4(125)36] .

CircSymy 5 5[5
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Thus for j = 4 we have
Circ Symy 5 ¢ [4(352)16 — 4(351)26 + 2 - 4(235)16 — 2 - 4(135)26 + 4(253)16 — 4(153)26
+ 43(251)6 — 43(152)6 + 5(243)16 — 5(143)26 + 53(241)6 — 53(142)6]
= 7CircSymy 5 ¢ [4(125)36] .

For j =5,
Circ [—12(4356) — 2 - 23(4516) + 2 - 13(4526) + 31(4256) — 32(4156)]
= Circ[—12(4356) — 2 - 12(4536) + 2 - 21(4536) + 12(4356) — 21(4356)]
= Circ[—4-12(4536) + 12(4356)]
= 5Circ[12(4356)].
For 7 =6,

Circ [~412(356) + 351(246) + 531(246) — 324(516) — 423(516) + 431(256) + 351(246)]
= Circ[—412(356) + 152(346) + 512(346) — 214(536) — 412(536) + 412(356) + 152(346)] ,

and

Cire Symy 5 ¢ [~412(356) + 351(246) + 531(246) — 324(516) — 423(516) + 431(256) + 351(246)]
412(356) + 142(356) + 412(356) — 214(536) — 412(536) + 412(356) + 142(356)]

[—412(356)

Circ Symy 5 ¢ [~412(356)

Circ Sym475’6 [—412(356) + 2 - 142(356) + 3 - 412(356) + 214(356)]
[—412(356)
[—412(356)

412(356) + 142(356) — 421(356) + 3 - 412(356)]
412(356) + 142(356) + 4 - 412(356)] .

CircSymy 5 ¢
CircSymy 5 ¢

Moreover

Circ Symy 5 ¢ [-412(356) + 142(356) — 241(356) + 4 - 412(356) — 4 - 421(356)]
= CircSymy 56 [7-412(356) + 142(356) + 214(356)]
= CircSymy 54 [7 - 412(356) — 421(356)]
= 8CircSym, 5 ¢ [412(356)] .
For j =7,
Circ [(234)516 — (134)526 + (243)516 — (143)526]
= Circ[(124)536 — (214)536 + (142)536 — (241)536]
Circ[2 - (124)536 — (412)536 — (241)536]
= 3Circ[(124)536] .

For j =8,

Symy 5. [<2 - 24(3516) + 2 - 14(3526) + 51(3246) — 52(3146) + 51(4236) — 52(4136))]
—  Symy56[—2 - 24(3516) + 2 14(3526) + 41(3256) — 42(3156) + 41(5236) — 42(5136)]
= Symys[3- 24(3156) — 3 14(3256) — 14(5236) + 24(5136)]
and
Cire Sym, 5 ¢ [~2 - 24(3516) + 2 - 14(3526) + 51(3246) — 52(3146) + 51(4236) — 52(4136)]
—  CireSym, 54 [3- 34(1256) — 3 - 34(2156) — 34(5126) + 34(5216)]
CircSymy 5 6 [3 - 34(1256) + 3 - 34(2516) — 2 - 34(5126)]
—  —5CircSym, 5  [34(5126)]

For j =9,
Circ[(245)316] = Circ[(345)126],
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and thus
Circ[(245)316 — (145)326] = 2 Circ [(345)126].
For j = 10,
2 Circ [3(245)16 — 3(145)26] = 2Circ[1(345)26 — 2(345)16]
2 Circ [1(345)26 + 21(345)6]
= —2Circ[(345)216]
= 2Circ|[(345)126].

For 57 =11,
2-35(241)6 — 2-35(142)6 = 2-35(241)6 4 2-35(412)6
—2-35(124)6.
For j =12,
5(3241)6 — 5(3142)6 = 5(3241)6 + 5(3412)6
= —5(3124)6.
We infer the formula
Circ Symy 4 [dQ(R’)z} Circ Symy 5  To,
To(1,...,6) = —3-34(5126), +5-453(126) + 4 - (4125)36
+ 7-4(125)36 +5-12(4356) + 8 - 412(356)
+ 3-(124)536 — 5 - 34(5126), +4 - (345)126
—  2-35(124)6 — 5(3124)6.

Moreover
CircSymy 54 To = CircSymy ;¢ T,
To(1,...,6) = —8-34(5126) + 5-453(126) + 4 - (4125)36

+ 7-5(124)36, +5-12(4356) + 8 - 412(356)

+ 3-(124)536, +4-(345)126 — 2 - 35(124)6,.
For j =1, we have

7-5(124)36 — 3 - (124)356 — 2-35(124)6 = 7-5(124)36 — (124)356 + 2 - 5(124)36
= 9.5(124)36 — (124)356.
We conclude
Circ Symy 4 I:dQ(R/)Q} = CircSym, 54 T>,
Ty(1,...,6) = —8-34(5126) +5-453(126) + 4 - (4125)36

+ 9-4(125)36 4 5 - 12(4356) + 8 - 412(356)

9
(124)356 + 4 - (345)126.

On the other hand using proposition 3, we infer the identity

4 r—1
Symg g Z r+1) 'Z (id) 4= "(pSp A Sr—pt1)
r=3 p=2

21
= g Symg’m’ﬁ Altg (4L232 + 5]14242 + 5L243) 5

Losa(1,...,6) = (1425)36 + 1(425)36,
Loga(1,...,6) = (3425)16 + 61(3425),
Logs(1,...,6) = (324)516 + 5(324)16 + 561(324).
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We write

Symg,’m’g Altg (4LLoge + 5liogo + 5logs) = Sym4’5’6 Alts Lo,

Ly(1,...,6) - (1425)36 + 4 - (1325)46 + 4 - (1423)56 + 4 - (1425)63
-1(425)36 + 4 - 1(325)46 + 4 - 1(423)56 + 4 - 1(425)63
- (3425)16 + 5 - (4325)16 + 5 - (5423)16 + 5 - (6425)13
-61(3425) + 5 - 61(4325) + 5 - 61(5423) + 5 - 31(6425)
- (324)516 + 5 - (423)516 + 5 - (524)316 + 5 - (624)513
-5(324)16 + 5 - 5(423)16 + 5 - 3(524)16 + 5 - 5(624)13
-561(324) + 5 - 561(423) + 5 - 361(524) + 5 - 531(624).

+ o+ o+
Tt Ot Ot Ot Ot =

+

We notice that CirclLy = Circ ]]:2, with

- (1425)36 + 4 - (1423)56 + 4 - (1425)63

- 2(435)16 + 4 - 3(215)46 + 4 - 3(412)56 + 4 - 2(435)61
- (2415)36 + 5 - (4215)36 + 5 - (5412)36 + 5 - (6435)21
-63(2415) + 5 - 63(4215) + 5 - 63(5412) + 5 - 12(6435)
- (214)536 + 5 - (412)536 + 5 - (534)126 + 5 - (634)521
-5(214)36 + 5 - 5(412)36 + 5 - 1(534)26 + 5 - 5(634)21
-563(214) + 5 - 563(412) + 5 - 162(534) + 5 - 512(634),

Ot Ot Ot Ot Ot s

and Symy 5 ¢ Ly, = Symy 5 ¢ L2, with

Ly(1,...,6) - (1425)36 + 4 - (1423)56 + 4 - (1425)63

- 2(435)16 + 4 - 3(214)56 + 4 - 3(412)56 + 4 - 2(435)61
- (2415)36 4 5 - (4215)36 + 5 - (4512)36 + 5 - (6435)21
-63(2415) + 5 - 63(4215) + 5 - 63(4512) + 5 - 12(6435)
- (214)536 + 5 - (412)536 + 5 - (435)126 + 5 - (435)621
-5(214)36 + 5 - 5(412)36 + 5 - 1(435)26 + 5 - 5(435)21
-563(214) 4 5 - 563(412) + 5 - 162(435) + 5 - 612(435).

o+ o+t
Ot Ot Ot Ot Ot =

We write now

(Alty Ly)(1,...,6) = 4-(1425)36, +4 - (1423)56, + 4 - (14

( ) 63,
- (2415)36, — 4 - (2413)56, — 4 - (2415

(=)

) ) 25)

)36, )56, )63,
-2(435)16, + 4 - 3(214)56, + 4 - 3(412)56,, + 4 - 2(435)61,
-1(435)26, — 4 - 3(124)56, — 4 - 3(421)56, — 4 - 1(435)62,
- (2415)36, 4 5 - (4215)36, + 5 - ( 512)36, + 5 - (6435)21,
- (1425)36, — 5 - (4125)36, — 5 - (4521)36, — 5 - (6435)12,
-63(2415),, + 5 - 63(4215),, + 5 - 63(4512),, + 5 - 12(6435),
- 63(1425),, — 5 - 63(4125),, — 5 - 63(4521),, — 5 - 21(6435),
- (214)536,, + 5 - (412)536,, 4 5 - (435)126, + 5 - (435)621,
- (124)536,, — 5 - (421)536,, — 5 - (435)216, — 5 - (435)612,
-5(214)36,, + 5 - 5(412)36,, + 5 - 1(435)26, + 5 - 6(435)21,
-5(124)36,, — 5 - 5(421)36,, — 5 - 2(435)16, — 5 - 6(435)12,
.563(214),, + 5 - 563(412) , + 5 - 162(435), + 5 - 612(435).
.563(124),, — 5- 563(421),, — 5 - 261(435), — 5 - 621(435), .

+
Ot Ot Ot Ot Ot Ot Ot Ot Ot Tt xR e
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We need to explain the details for the case j = 7. In this case we sum

4-2(435)61 + 5 - (435)621 + 5 - 6(435)21, + 5 - 162(435), + 5 - 612(435),
4.1(435)62 — 5 - (435)612 — 5 - 6(435)12, — 5 - 261(435), — 5 - 621(435),
4-2(435)61, + 4 - (435)621, + (435)621, + 5 - 612(435), + 15 - 612(435),
4-1(435)62, — 4 - (435)612, — (435)612,

= —4-62(435)1, +4-61(435)2, + (435)126, + 20 - 612(435)

24 - 612(435) + (435)126.

The result is (we keep the indices according to the sums on j =1,...,13.)

(Alty Lo)(1,...,6) = —(4125)36, +4- (4123)56, + 4 - (4125)63,
4+ 11-(435)126, — 12 3(124)56, + 24 - 612(435), + (435)126,
— 15-(4125)36, + 15 - 12(6435), — 20 - 63(4125),, — 15 - (124)536,,
— 15-5(124)36,, — 15 - 563(124),,

We recombine now the terms of the previous sum under the form

(Alty Ly)(1,...,6) = —16-(4125)36, + 4 - (4123)56 + 4 - (4125)63,
+ 12-(435)126 — 12 - 3(124)56, + 24 - 612(435)
+ 15-12(6435) — 20 - 63(4125), — 15 - (124)536,
— 15-5(124)36, — 15 - 563(124).

Indeed for j =1,

—16 - (4125)36 + 4 - (4125)63 — 20 - 63(4125)

- (4125)36 — 4 - (4125)36 + 4 - (4125)63 — 20 - 63(4125)
- (4125)36 + 4 - 3(4125)6 + 4 - (4125)63 — 20 - 63(4125)
- (4125)36 — 24 - 63(4125),

and for j = 2,
—12-3(124)56 — 15 - (124)536 — 15 - 5(124)36

12-53(124)5 — 3 - (124)536 — 15 - 5(124)36
—27-5(124)36 — 3 - (124)536.

In conclusion

4 r—1

2 -
CircSyms 4 Z(r +1)! Z(id)‘l_r(pSp ASr—pi1)| = 32 CircSymy 5 ¢ Az,

r=3 p=2
with

Ax(1,...,6) = —12-(4125)36 + 24 -36(4125) + 12 - (435)126 + 24 - 612(435)
+ 15-12(6435) — 27 - 5(124)36 — 3 - (124)536 — 15 - 563(124).

We notice that Sym, 5 ¢ Ay = Symy 5 6 A2, with

As(1,...,6) = —12-(4125)36 + 24 - 34(5126) + 12 - (435)126 + 24 - 412(536)
+ 15-12(4536) — 27 - 4(125)36 — 3 - (124)536 — 15 - 453(126).

We deduce Az = —3T'2, which implies the required conclusion in the case k = 2.
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6 Proof of Corollaries 1, 2 and 3

We recall first the following very elementary lemmas. The arguments below can be found in [Pali2].

Lemma 15 Let M be a smooth manifold, let also V be a covariant derivative operator acting on
the smooth sections of Th; and consider the vector field over Ty

n € Ty We denote by ®Y the corresponding 1-parameter subgroup of transformations of Ths.
Then for any n € Ty the curve ¢; == mr,, o ®Y (n) is the V-geodesic with initial speed ég =1 and
& =Y ().

Proof The flow line 7, := ® (1) satisfies the identity

= Hy -np. (26)
We deduce
¢t = dp Ty
= dp, Ty .HZ Ty
= N
and ¢, = H, C.Vt - ¢4, which is the V-geodesic equation. a

Corollary 5 Let M be a smooth manifold, let also V be a covariant derivative operator acting
on the smooth sections of Ty; and let U be an open neighborhood U of M inside Thr. A complex
structure J over U satisfies the conditions

J|M = Jon (27)
JHY =T, n, (28)

for any n € U if and only if for any n € U, the smooth map v, : t + is — s®Y(n), defined in a
neighborhood of 0 € C, is J-holomorphic.

Proof We observe first that the differential of the maps 1), is given by

0 0 .
dt0+i80w77 (a’at + bas> = a’d(SOHTM)cI)tVO (77) + stoth) (n) (btvo (77)
But
o) = ¢Vody(n)
= Hgyo N ‘I>Z(77),

thanks to (25). Then using the property, HY, = d,(Ar,,) - Hy, of the linear connection V (see
the identity 8.5 in [Pali2]), we infer

0 0
dt0+i80wn (aat + bag) = (aHsvoftiO (71) + bTSU‘i’X) (77)) . @tvo (’I]) (29)

The smooth map v, is J-holomorphic if and only if

0 0 0 0
dertiso¥r (_bat * a> = Jdris¥n (815 * bas) 7
thus, if and only if

v v _ Y v
(7bHsO<I’FO(n) . aTsmPZ)(n)) () = J (GHSO@X)(U) + sto‘P,Z)(n)) <@y (n).
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For s¢ # 0 this is equivalent to (28). For sg = 0 this is equivalent to (27). We deduce the required
conclusion. 0

The condition (27) implies that J is an M-totally real complex structure. We provide now the
proof of corollary 1.
Proof If we write A=a +iTB and « = HY — TT, then S := T~! (Hv — Z) =1 +41:B. We set
S = 'y, + iBj. From the proof of corollary 5 we know that in the case J is integrable over U, the
smooth map ¢, is J-holomorphic if and only if hold (28). The later rewrites as

an n o= =J,T-n.
Using the property
Jn|KerdT,ﬂ' = _anB;1T77_17

(see the identity 1.7 in [Pali2]), we infer that the previous identity is equivalent to

HY -n=ayBy" . (30)

Taking d,,m on both sides of (30) we deduce n = B,! -n. Therefore (30) is equivalent to the system

Bn'n :777 ( )
31

HUV no= ay-n.
Then the system (31) rewrites as

Ses1 Bt =0,

Sk Dr(*) = 0.

and thus as S,(n**!) =0 for all k£ > 1. We remind now that, according to the main theorem
in [Pali2], the integrability of the structure J implies the condition S; € C* (M7 S2T3, @, (CTM).
We infer S; = 0.

We notice that, with the notations of the statement of the main theorem in [Pali2] the equation
Circ B = 0 hold for all £ > 1. This combined with the identity [Circ,Sym, ;o] = 0, implies

k2 Bk =0, (32)

for all k > 1. So if we apply the Circ operator to both sides of the definition of S5 in the statement
of the main theorem in [Pali2], we infer Circ Sy = Circoy = 303. If we evaluate this equality to
n3 we infer Sa(n®) = 02(n?), which implies o5 = 0. We show now by induction that o = 0 for all
k > 2. Indeed by the inductive assumption

.

i

e

Sk+1 k+2 Br + ki1

.....

Applying the Circ operator to both sides of this identity and using the equation (32), we infer
Circ Sp41 = Circopy1 = 30k41, which evaluated at 72 gives S 1(n**2) = opr1(n*+2). We
deduce oj+1 = 0. Using the identity

Sym2,...,k+1 Syms,...,k+1 = (k—-1)! Sym2,...,k+17 (33)
we deduce from the statement of the main theorem in [Pali2] and with the notations there

7

Sk = m Sym2,...,k+1 Oe—1,
for k > 2, with 6; := 2RY and
k+1 r—2
Op = —2i(idY )" 2(VRY )2 + > 11> (idY )" (pS, A1 Spp),
r=4 p=2
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for all £ > 2. Moreover the equation Circ 8y = 0, k > 3 rewrites as CircSymy ;.00 = 0. If we
set @kv := 0;_1, for all £ > 2 we obtain the required expansion.

On the other hand if the expansion in the statement of the lemma under consideration hold
then J is integrable thanks to the main theorem in [Pali2] and Circ Sy = 0 for all £ > 2 (S; = 0).
Indeed for k = 2,3 this equality follows from the identities Circ ©Y = 0 and

[Circ,Symy _j41] = 0. (34)

For k > 4 we use the identities (34), (33) and the integrability equations satisfied by the covariant
derivative operator V. We deduce Si(n*T1) =0, for all k > 1, which is equivalent to (30) and so
to the fact that the curves 1), are J-holomorphic. a

We provide now the proof of Corollary 2.
Proof We use first the notations in the main Theorem of [Pali2]. Then we have

A = HY-TS,

HY? = HY TS,

Replacing in the statement of the main Theorem in [Pali2], the torsion free covariant derivative
operator V1 with the arbitrary torsion free complex covariant derivative V in the statements
of Corollary 2 and Conjecture 1, replacing the sum Zk>2 S with S and setting o} = 0, for all
k > 2, we deduce the expression of Si in the statement of Conjecture 1. (We use here the identity
(33)). Then the integrability equations in the statement of the main theorem [Pali2] reduce to the
identities I, = 0, for all k£ > 4 in the statement of Conjecture 1. On the other hand by Theorem
2, an M-totally real structure has a fiberwise Taylor expansion with Sy under the form in the
statement of Conjecture 1 if and only if Sy is the one in the statement of Corollary 2.

We show now the convergence of the Taylor expansion in the statement of Corollary 2. We fix
a Riemannian metric g over M. Then the analytic assumption on the covariant derivative operator
V implies that for any relatively compact open set W C X there exist a constant Ky > 0 such
that

IR, < By,
Then using the explicit expression of Sj in the statement of Corollary 2 we obtain the inequality

1Sk Dl < Pr(Ew)lInllg™,

Pi(z) = |Cp|D!z!P!.
» (k+1)! l};k b

We recall here the identity Cp = —(—4)IIPI(||D|| + 1)!Cp, observed at the very end of section 3.
We have the estimates (the technical details will appear elsewhere)

|Pe(z)] < [k/2] CmaX(Pk)|x|k_27
where the maximal coefficient Cyax(Px) of the polynomial Py, satisfies the asymptotic expansion

2 6(2y —3)+ 12In(k) 1
B Iz To\r )

Omax (Pk)

where 7 is Euler’s constant. We infer the convergence of the fiberwise Taylor expansion over a
sufficiently small neighborhood of the image of the zero section inside Ty . a

It is straightforward to see that the condition (28) is equivalent to say that the vector §nv is of
type (1,0) for J. System (31) shows that (28) is equivalent to the identity

(HV*Z)n'n:iTn'n
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which rewrites also as £Y = A, - 1. Using the identity (29) we can see that the vector field ¢V is
n n

related to the J-holomorphic curves 1, by the equation
a0, i
ézn - ng °¥n,
with Lo
aan a ’ 8
—— = |d ¢, - — =dy, - —,
0z ¥n 0z], Y 0z

since 1, is J-holomorphic.
In general we have the following result.

Lemma 16 Let M be a smooth manifold equipped with a covariant derivative operator V acting
on the smooth sections of the complexified tangent bundle CTy; and let J = Ja be an M-totally
real almost complex structure over an open neighborhood U C Ty of the image of the zero section.
Then the vector field €V is of type (1,0) for J over U if and only if {,,V = A, -1, for all points
nel.

Proof The “if” direction is obvious. We show the “only if” direction. We assume thus & = ¢V is
of type (1,0) for J over U. This is equivalent to the equality £ = 5?0 over U, which writes as

¢ = —iJE. (35)

We decompose

HY = H —iTK,
with H € C°(Ty, 7*T3; @, Tr,,) and K € C*° (T, 7* End(Thy)) such that dn- H = I-7,,. Here
as usual we denote (T'K -v), = T,K(v,n). Then (35) writes as

[H—z'T(K+]ITM)} = [uH+ JT(KJrHTM)L-n.

n

In its turn this identity is equivalent to
H77 == [JT(K+HTN1):| -1,
n
which thanks to the identity 1.7 in [Pal], is equivalent to

H, 1= [aB*I(KHITM)Lw, (36)

where A = a +4iT'B. By taking d,m on both sides of (36) we deduce the identity

n=[B"n +K)] -

We deduce that (36) is equivalent to the system
(B=K)y-n =n,
Hy-n = ay-n,
which in its turn is equivalent to the identity
(HY —A), -0 =T, -, (37)

for all points n € U. We deduce the required conclusion. |

We can show now Corollary 3.
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Proof For any M-totally real almost complex structure over U, real analytic along the fibers of
U, we consider the fiber-wise Taylor expansion at the origin

TN HY - A) -6 = if+ ) Sul&n"),

E>1

with 1 € Ths in a sufficiently small neighborhood of the zero section, with § € Ty r(,) arbitrary
with
Sy € C® (M, Ty ®, S*Ty; ®, CTy),

and with n* := n** ¢ Tj‘flf‘;(n). Then the identity (37) hold over U if and only if Sy (n**!) = 0,
for all £ > 1 and all  in an arbitrarily small neighborhood of the image of the zero section of T,
inside U. (This is because A is real analytic along the fibers of U). Thus by lemma 16, the vector
field ¢V is of type (1,0) for J over U if and only if the above vanishing conditions are satisfied.

By the argument in the proof of Corollary 1 (see also the proofs of Corollary 1 in [Pali]) we see
that J is integrable over U and the above vanishing conditions are satisfied if and only if J has a
fiberwise Taylor expansion with S under the form in the statement of Conjecture 1. By Theorem
2 this hold true if and only if J is the canonical M-totally real complex structure associated to V
over U. O
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