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Abstract

Purpose: Point localisation is a critical aspect of many interven-
tional planning procedures, specifically representing anatomical regions
of interest or landmarks as individual points. This could be seen
as analogous to the problem of wvisual search in cognitive psychol-
ogy, in which this search is performed either: Bottom-Up, construct-
ing increasing abstract and coarse-resolution features over the entire
image; or Top-Down, using contextual cues from the entire image to
refine the scope of the region being investigated. Traditional convo-
lutional neural networks use the former, but it is not clear if this
is optimal. This article is a preliminary investigation as to how this
motivation affects 3D point localisation in neuro-interventional planning.
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Methods: Two neuro-imaging datasets were collected: one for corti-
cal point localisation for repetitive transcranial magnetic stimulation
and the other for sub-cortical anatomy localisation for deep-brain stim-
ulation. Four different frameworks were developed using Top-Down vs
Bottom-Up paradigms as well as representing points as co-ordinates or
heatmaps. These networks were applied to point localisation for transcra-
nial magnetic stimulation and subcortical anatomy localisation. These
networks were evaluated using cross-validation and a varying number of
training datasets to analyse their sensitivity to quantity of training data.
Results: Each network shows increasing performance as the
amount of available training data increases, with the co-ordinate-
based Top-Down network consistently outperforming the others.
Specifically, the Top-Down architectures tend to outperform the
Bottom-Up ones. An analysis of their memory consumption also
encourages the Top-Down co-ordinate based architecture as it
requires significantly less memory than either Bottom-Up archi-
tectures or those representing their predictions via heatmaps.
Conclusion: This paper is a preliminary foray into a fundamen-
tal aspect of machine learning architectural design: that of the
Top-Down / Bottom-Up divide from cognitive psychology. Although
there are additional considerations within the particular architec-
tures investigated that could affect these results and the num-
ber of architectures investigated is limited, our results do indi-
cate that the less commonly wused Top-Down paradigm could
lead to more efficient and effective architectures in the future.

1 Introduction

As neural networks tend to grow deeper, often with better results, there seems
to be a limit to what degree of depth actually improves accuracy [1]. The
amount of RAM needed to store parameters but also feature maps from con-
volutional neural networks is greatly increased. Deep learning has reached a
much larger public in the last few years and there’s a demand for less resource-
consuming neural network architectures for both economical and ecological
reasons. These resources include annotated training data, but also computa-
tional resources, notably memory. For example, dead neurons are individual
artificial neurons which require memory, but are rarely if ever active, and thus

do not contribute to the model as a whole. This is even more of an issue for
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convolutional neural networks, in which individual neurons are replaced with
convolutions representing entire images [2].

Localisation problems are of particular interest due to their prevalence
throughout the different sub-fields of computer vision. In these problems, a
network is designed to identify a series of points or regions-of-interest in an
image that represent pre-determined objects of interest. This is different from
segmentation as only the position of the structure is needed rather than its
precise delineation. One of the first widely-used localisation methods in deep
learning was the Regions with CNN features (R-CNN) [3] , which first used an
object-agnostic region detector to suggest a large number of potential objects,
then resized them to a fixed size for a traditional convolutional neural network
to determine what object they represented, if any. FastR-CNN [4] extended this
method using a non-agnostic region detection method that, rather than using
object-agnostic features to determine if a region was of interest, trained a series
of object-specific features which can be directly used for the later network that
classifies the potential regions. This was motivated by a desire to save both
time and memory, allowing for convolutional features to be shared across the
multiple disparate tasks performed in the network as a whole. FasterR-CNN
[5] again changes the region detector to make it more time- and memory-
efficient. These frameworks are designed for not only localisation, but also
detecting a previously unknown number of regions of interest. For example,
these frameworks have been originally motivated by the problem of detecting
and localising cars in 2D images for autonomous driving applications. It could
well be that the image doesn’t feature any car at all, such as on a deserted
road. If there are cars, the network doesn’t know how many as this can vary
heavily from image to image. In addition, some of them would appear bigger

than others due to proximity and some others of them might not be fully
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visible, and these mixed localisation (i.e. region detection) and identification
algorithms have thus included bounding boxes to capture these notions.

The medical field is a particularly interesting field of application for vol-
umetric image analysis. Processing three-dimensional convolutional neural
networks can be prohibitively memory consuming even with a reduced depth
and width and therefore aren’t easy to implement in medical equipment such
as neuronavigation software. Therefore, it is unsurprising that there are far
fewer published methods for point localisation in neuro-imaging contexts, let
alone volumetric images. Sugimori et al. [6] used an R-CNN to identify the
anterior and posterior commissures, which are used to define a neurological
co-ordinate system. One notable aspect of this system was that it did not use
the full volumetric MRI, but instead the 2D slice containing the two com-
missures, which may limit its clinical utility. Yang et al. [7] also used specific
2D images for finding these points, although using a more traditional CNN
architecture. The issue with knowing these slices in advance was pointed out
by Gohel et al. [8] who developed a framework for estimating the commissure
locations in 3D using the axial, sagittal, and coronal localisers which do not
themselves contain said points. A different approach as well as different targets
were used by Baxter et al. [9] who developed a multi-resolution convolutional
neural network architecture taking its inspiration from the human psychologi-
cal active visual search Top-Down strategy [10]. This architecture was designed
for the localisation of cortical repetitive transcranial magnetic stimulation tar-
gets within volumetric MRI and may be applied to other localisation problems
within images which require a lot of memory. Li et al. [11] took a different
mixed approach in which a single network was used for rating whether or not

a sagittal slice might contain the points of interest (the right and left internal
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acoustic pores and posterior cavernous sinuses in their case) followed by a 2D
hour-glass network to find said points within the identified slice.

The two key differences between these neurosurgical localisation problems
and the types of localisation problems more generally addressed in computer
vision, which have been discussed previously, are that the identity of the points
is known ahead of time (i.e. there is a fixed number of them which are guaran-
teed to be present and should also be labelled or otherwise distinguished from
each other); and that their locations are much more highly dependent on global
context, specifically brain anatomy. There are other differences, for example,
because the images are 3D and always include the whole brain, there is no
problem of objects looking bigger than they are or being hidden behind other
objects. So if these problems are so different, why not use different methods to
address them? That’s what our brain is doing, studies of human active visual
search have shown. In the next section, we will get into more detail about the
two different strategies, Bottom-up and Top-down, our brain is using to solve
localisation problems and which one is more efficient for which kind of prob-
lem. We will see how these strategies of the human brain influence the way

artificial neural networks are designed.

1.1 Human visual search

Artificial neural networks first took their inspiration from their counterparts
in the human brain and it is thus interesting to look at cognitive strategies
our brains use when performing various tasks in order to implement new kinds
of artificial neural network architectures. When actively looking for a specific
object surrounded by distractors, the human brain has different strategies
regarding attention and gaze allocation, two of which being Bottom-Up and

Top-Down attentional selection [10].
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Bottom-Up attentional selection is feature-driven, using a parallel process-
ing of all the items laying in the subject’s field of view to locate the one they
are looking for, based on a few varying features. This strategy works best
when the number of features allowing the subject to differentiate distractors
from the target is small or when the target is very salient. The target also has
to be in the subject’s field of view in order for this strategy to be successful.
This has traditionally been the basis for localisation networks such as R-CNN
and its variants [3, 4, 5, 6], which process an entire image at its full resolution
then subsequently uses pooling or other forms of aggregation to merge these
bottom-up features together into region proposals in a method analogous to
how convolutional neural networks perform other separate tasks such as image
classification. Basic CNNs also can be used to perform localisation tasks and
use a bottom-up strategy to do so.

Top-Down attentional selection on the other hand tends to be favoured by
the human brain when the target isn’t in the subject’s immediate field of view,
isn’t very salient compared to the distractors, or when the context of the search
space itself provides information about the location (for example, knowing
what areas of the image are a road can lead to easier localisation of cars). This
strategy performs a serial allocation of attention, based on the subject’s prior
knowledge and cognition. The subject thus directs their gaze at a particular
zone because they think the target is likely to be located there, or analyses the
different dimensions of all items one after the other in a defined order. From an
optimisation perspective, this allows for local minima in the search process to
be avoided by first examining the whole problem at a coarse resolution, then
iteratively refining both the solution and the search space. An example of this
is deformable image registration which has long used a hierarchical approach

to use the solution to simple, more coarse-grained problems, to initialise and
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limit the search space for finer-grained refinements [12]This can also apply
to convolutional neural networks. Baxter et al. ’s [9] multi-resolution neural
network architecture was designed to mimic Top-Down attentional selection,
using low resolution images to determine what areas of the volume to continue
searching in at a higher resolution, conserving memory of, but not processing,
the whole image at a high resolution.

It is clear that human visual search can motivate different automatic point
localisation architectures, but it is unclear if, given a localisation problem of a
certain type, the strategy used by the human brain also is the best choice for

artificial neural networks.

Contributions

In this paper we compare two paradigmatic Top-Down architectures with two
paradigmatic Bottom-Up convolutional neural network architecture for 3D
point localisation in neuro-imaging. This comparison is made in terms of mem-
ory consumption, accuracy, and impact of the training dataset size. This is
done by using these architectures to solve two localisation tasks. The first one
is the localisation of 12 repetitive Transcranial Magnetic Stimulation treat-
ment points on 3D MR images and the second one is the localisation of 30
sub-cortical structures used in Deep Brain Stimulation preoperative planning

on another dataset of 3D MR images.

2 Neuro-interventional Pointing Tasks

Several neuro-interventions rely on pointing tasks during their planning, either
directly or as a part of a larger image processing pipeline. These tasks occur

when there is a specific anatomical landmark that needs to be identified (such
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as the anterior and posterior commissures which define the Talairach co-
ordinate space [6]) or neuro-anatomical regions that are sufficiently small to

represent as singular points.

2.1 Cortical Transcranial Magnetic Stimulation

Transcranial magnetic stimulation (TMS) is a relatively new treatment option
for a variety of neurological and psychological disorders varying from clinical
depression to chronic pain [13]. The key shared characteristic of these disor-
ders is that they imply abnormal cortical behaviour which can be corrected
through repeated disruption which is provided externally via the local applica-
tion of a varying magnetic field. The key task in repetitive TMS is therefore to
identify the cortical regions requiring stimulation based on the patient’s symp-
tomatology. For most treatment approaches, these target regions are specific
small neuro-anatomic regions in the frontal cortex, such as the dorsolateral
prefrontal for clinical depression [14], or particular subregions of the primary
motor cortex for chronic pain in the corresponding bodily region [15]. Although
these particular regions are unique, there may be some variability in terms of
which are actively being targeted, especially for psychiatric disorders which
are less clearly neurologically localised [14].

Thus, the primary goal for pre-operative TMS planning is the identification
of these points as to inform the operator of where to position the external
stimulator. This targeting was originally performed blindly, using landmarks
on the patient’s skull as well as finding a single calibration point associated
with the hand area of the primary motor cortex [16]. This has a relatively
low accuracy in terms of finding the precise anatomical area (on the order of
1-1.5 cm [16]). More recent structural MRI guided TMS interventions have

lowered that error although the human expert accuracy of delineating the
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functionally defined treatment points in MRI is still on the order of 5-10 mm
[9]. Despite these errors, the stimulation can still produce a clinically-relevant
effect as the stimulation region can be several square centimetres although
with diminishing strength further from the centre [17]. Thus, improvement in
these accuracies may lead to more visible improvements using a potentially

weaker field, although this has yet to be confirmed in clinical trials.

2.2 Small Subcortical Anatomy Localisation for Deep

Brain Stimulation

Deep brain stimulation (DBS) is a treatment for various neurological and neu-
rodegenerative disorders, notably Parkinson’s disease, in which an electrode
is placed at or within a particular structure in the basal ganglia to provide
continuous stimulation [18]. These structures tend to be very small, leading
to difficulties in their accurate segmentation especially with modern machine
learning approaches whose statistical nature favours larger, more well-defined
regions [19]. One way to alleviate this difficulty is by automatically cropping
the image to a smaller region-of-interest containing only the anatomical struc-
ture of interest. To do so, however, requires being able to estimate its position
within the entire volumetric image, a point localisation task. The amount of
cropping thus depends on the accuracy of the localisation, with better accu-
racies allowing for more aggressive cropping to be used which improves the
speed and accuracy of the downstream segmentation algorithm. Given the size
of these structures, accuracies on the order of 1 cm render this cropping proce-
dure feasible (i.e. cropping the image to approximately 1% of its original size)
however better accuracies are still desired to further inform the downstream

segmentation model and reduce cropped image sizes.
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3 Material and Methods

3.1 Imaging Data

Two datasets were used for the comparison of the top-down and bottom-up
architectures, each composed of a number of T1-weighted MR images and for
each of these images the coordinates of a list of points, which the networks

aimed at localising.

3.1.1 Cortical TMS Dataset

This dataset is the same as that used by Baxter et al. [9] for identifying corti-
cal points-of-interest for repetitive Transcranial Magnetic Stimulation (TMS).
It contains 26 T1-weighted MR images from 26 patients from various hospi-
tal centers. They were normalised, using approximate min-max normalisation
(95% percentiles used instead of absolute max and min), and resampled to
256x256x256 voxels with an isotropic voxel size of 1x1x1 mm using the Con-
vert3D tool'. 12 cortical points have been annotated by expert neurologists.
The hand region of the left primary motor cortex (LCM1) used for calibra-
tion and the five points used for the treatment of psychiatric disorders (i.e.
orbitofrontal cortex on both sides, or LOFC and ROFC, dorsolateral prefrontal
cortex on both sides, or LDLPFC and RDLPFC, and left Heschl gyrus, or
LHESCHL) have been annotated by a single expert. The 6 points used in the
treatment of chronic pain (face, upper limb and lower limb regions of the motor
cortex on both sides, or LFACEMC, RFACEMC, LULIMBMC, RULIMBMC,
LLLIMBMC and RLLIMBMC) have been annotated by three experts (Tab.
1). These multiple annotations allow to measure expert variability [9] and to

determine a consensus to improve the accuracy of the gold standard for each

1http://www.itksna,p.org/pmwiki/pmwiki.php?n:Conve]rt3D.Convert?)D, The specific com-
mands used were swapdim, -resample-mm, and -pad-to.
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point. Three patients have missing annotations for the left Heschl’s gyrus, with
two also missing annotations for the hand region of the left primary motor
cortex and the dorsolateral prefrontal cortices on both sides. The location of
these points for the left side of the brain of one patient of the dataset is shown

in Fig. 1a.

LLLvBMC LuLIMBMC

(a) Treatment points for the TMS (b) Sub-cortical anatomy centroids for
dataset the DBS dataset

Fig. 1: Location of targets in T1-weighted MR Images
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Point Annotation
Orbitofrontal cortices
(left and right)
a.k.a. LOFC and ROFC

Dorsolateral prefrontal cortices Annotations
(left and right) by a single
a.k.a. LDLPFC and RDLPFC expert.

Heschl’s gyrus
(left)
a.k.a. LHESCHL
Hand region of the primary motor cortex
(left)
a.k.a. LCM1
Face regions of the motor cortices
(left and right)
a.k.a. LFACEMC and RFACEMC
Upper limb regions of the motor cortices
(left and right)

Annotations
a.k.a. LULIMBMC and RULIMBMC
- - . by three
Lower limb regions of the motor cortices
experts.

(left and right)
a.k.a. LLLIMBMC and RLLIMBMC

Table 1: TMS target points annotated in TMS Database

3.1.2 Subcortical Anatomy DBS Dataset

The second database contains 216 T1-weighted MR images. They were
deformably registered to the versions 2 and 3 of a Parkinson’s disease spe-
cific atlas [20] in order to generate reference segmentations for the subcortical
anatomy. The centroids of 30 subcortical structures (Tab. 2) could then be
annotated for each image, constituting an approximate ground truth for our
experiment. The location of these points for the left side of the brain of one

patient of the dataset is shown in Fig. 1b.

3.2 Networks

We used four different artificial neural network architectures. Two of these are
designed to use a top-down strategy and the other two a bottom-up strategy.

They are all oriented towards the goal of localisation but render results in two
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Point Annotation
Subthalamic nucleus
(left and right)
Caudate
(left and right)
Putamen
(left and right)
Amygdala
(left and right)
Anterior thalamus
(left and right)
Medial thalamus
(left and right)
Lateral thalamus

(left and right) Riimrgt:ﬁl
Pulvinar thalamus 3; o% tvhe
(Il-;ft aél(i;gi? ParkMedAtlis
pp p [20]

(left and right)
Medial geniculate
(left and right)
Lateral geniculate
(left and right)

Red nucleus
(left and right)
Substantia nigra
(left and right)
Globus pallidus externus
(left and right)
Globus pallidus internus
(left and right)

Table 2: Subcortical structures annotated in Database DBS.

different ways. Two of the architectures express their outputs as coordinates
for each point. The other two use heatmaps to express their outputs as a spatial
probability distribution. For each type of output, one architecture is designed

to use a Top-Down strategy and the other a Bottom-Up strategy.

3.2.1 Co-ordinate-based Bottom-Up Architecture (Bc)

Our Co-ordinate-based bottom-up architecture, see Fig. 2, is a convolutional
neural network architecture, composed of 6 convolutional layers followed by a
512 units linear layer. The first convolutional layer counts 32 kernels, increasing
by two for each following convolutional layer. 2x2x2 Max-pooling is performed

between convolutional layers. This architecture allows networks to focus on
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individual features on the whole image, thus making it similar to bottom-up
attentional selection. We used 2 as a batch size for training, validation and
test. ReLU activation function was used between layers. The gradient descent
optimizer chosen for this architecture was ADAM. During training, our top-
down architecture used L2 loss function, while our top-down architecture used
its own custom loss function since the cropping operation it performs is not
differentiable (Baxter et al. , 2021). The mean error for a given patient and

point on all repetitions,

1
Y lgtipg = Prip;
ni,p j=1

Err;p, =

2 (1)

, with gt; , ; and pr; p ; ground truth and prediction respectively for patient 1,
point p and repetition j and n;, the number of repetitions for patient i and

point p, was used for comparison of the two architectures.

3.2.2 Co-ordinate-based Top-Down Architecture (Tc)

The multi-resolution architecture implemented by Baxter et al. [9] allows net-
works to resample and crop images, always analysing images containing 8x8x8
voxels of increasingly fine resolution, until the native image resolution (1 mm)
is achieved yielding the final position estimate. In this way, it resembles top-
down attentional selection. A batch size of 8 was used for training, validation

and test. The gradient descent optimizer chosen for this architecture was SGD.

3.2.3 Heatmap-based Bottom-Up Architecture (Bh)

To create a heatmap-based bottom-up architecture, we took inspiration from
fully-convolutional neural networks for image segmentation [21], see Fig. 3. In

order to maintain the output heatmap’s resolution to be the same as the input
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Conv+RelU
. 32 ernels
image kernel size 3x3x3

vuxel size Imm

Canv+ReLU

Max Pooling 34 kernels
size: 2x2x2 kernel size 3x3x3
voxel size 2Zmm

Conv+RelU

Max Pooling 36 kernels
size: 2x2x2 kernel size 3x3x3
voxel size 4mm

Conv+RelLU

Max Puolmg 38 kernels
size: 2x2x2 kernel size 3x3x3
voxel size 8mm

Conv+RelLU

Max Pooling 40 kernels
size: 2x2x2 kernel size 3x3x3
voxel size 16mm

Conv+RelU

Max Pooling 42 kernels
size: 2x2x2 kernel size 3x3x3
voxel size 32mm

H

Linear+ReLU Linear
512 units 3*nb_points units

Estimate

]

L2 Error

Ground
Truth

Fig. 2: Co-ordinate-based Bottom-Up network consisting of alternating
between convolution and max-pooling layers until flattening and final process-
ing with a series of linear layers.

images, convolution with spacing was used for the network to collect larger-
scale, more-abstract features. Similar to the previous network, the L2 loss was
used as the cost function and a batch size of 2 was used for training, validation,

and testing.

3.2.4 Heatmap-based Top-Down Architecture (Th)

In our last architecture, see Fig. 4, the network trained a series of feature

maps starting at a very coarse resolution. At each resolution level, the previous
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Conv#Rely Conv#Rell
gkenels | | 8kemels

kernel size 3x3:3 kernel size 3x3x3
v

Conv+RelU Conv+ReLU
12 kernels 12 kernels
kernel size 3:3x3 kernel size 3x3x3

Conv+RelU Conv+RelU
2kemels || 24kernels

kernel size 3x3x3 kernel size 3x3x3

ConvsRelU
24kernels | | softmax Heatmap

kernel size 3x3x3

1

Fig. 3: Fully convolutional Heatmap-based Bottom-Up network.

coarser feature maps were upsampled and then combined with information
extracted from the image at the same resolution level. This is analogous to
how U-Nets [22] operate except that, in order to maintain a purely Top-Down
approach, no convolutions were performed before any of the down-sampling,
which could be interpreted as a Bottom-Up search for features. Again, the L2
loss was used as the cost function and a batch size of 2 was used for training,

validation, and testing.

Conv+Padding
4 kernels Heatmap
kernel size 3x3x3

i

n Conv+RelU Conv+Padding
image 4 kernels L. 4 kernels | Upsampling
7 kernel size 3x3x3 kernel size 3x3x3 size: 2x2x2
- Conv+RelU Conv+Padding
Avg Pooling 8 kernels L. 8 kernels Upsampling
size: 222 kernel size 3x3x3 kernel size 3x3x3 size: 2x2x2
{ Conv+RelU Conv+Padding
Avg Pooling 16kernels | | 16 kernels Upsampling
size: 2202 kernel size 3x3x3 kernel size 3x3x3 size: 2x2x2
Conv+RelU Conv+Padding
Avg Pooling 32kernels | | 32kernels Upsampling
size: 2x2x2 kernel size 3x3x3 kernel size 3x3x3 size: 2x2x2
Conv+RelU Linear Linear
Avg Pooling | | 32 kernels — + — +
size: 2x2x2 kernel size 3x3x3 RelU RelU

Fig. 4: Heatmap-based Top-Down network inspired by U-nets without convo-
lution in the down-sampling.
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nb of folds Val. size | Training size Test size

16 6

TMS db 26 4 11 11
n =26 6 16
162 45

126 81
DBS db 24 9 90 117
n = 216 45 162
7 200

Table 3: Number of samples ¢, validation set size v, training set size, test set
size k and total number of patients n for the TMS and the DBS datasets.

3.3 Experiments

The experiment described in this section was performed on the TMS dataset
for all architectures. It was performed on the DBS dataset for the two co-
ordinate-based architectures for they were the best performing in the first

experiment.

3.3.1 Cross-validation

We used repeated leave-k-out cross-validation, consisting in the creation of ¢
different sets of training, validation and test samples. For a total number of
n patients in the whole dataset, a size of v patients was chosen for validation
samples, whereas test and training samples respectively contained k and n -
v - k patients. To create each test sample, k patients were randomly selected
from the groups of patients who had been included the least in previously
created test samples. The n - k patients who were not selected in a particular
test sample were randomly divided into corresponding validation and training
samples. As a result, each patient was included % 4 1 times in a test sample.

In order to measure the way the number of patients available for training
affects each of the two architectures, the aforementioned cross-validation was
performed several times for different values of k. Tab. 3 shows the values of
n, v and k for each dataset. The size of the DBS dataset allowed us to try 5

values for k instead of 3.
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3.3.2 Data augmentation

Data augmentation was performed in validation and training samples in the
form of left-right flipping and random rotations within the axial plane and

translations.

4 Results

4.1 Memory usage

A convolutional neural network’s memory usage depends on both parame-
ters and feature maps. All parameters have to be saved in RAM in order
to perform gradient descent. Our Bottom-up architecture is using approxi-
mately 1.1 x 107 parameters, which represent 45 MB, while our more complex
Top-Down architecture is one order of magnitude larger with approximately
1.1 x 10® parameters, which represent 427 MB. As for feature maps, the total
of their sizes doesn’t matter as much as bottlenecks, as they don’t need to be
saved all the way through the network. For any given layer, networks need to
store both its input data and output data simultaneously. Any other data a
network needs to store through the whole learning process has to be added

and a bottleneck is found when the need for storage reaches a maximum. This

Tc Bc Th Bh
Number of parameters 1.1%10% | 1.1%107 | 1.1% 107 | 4.7+ 10%
Feature map storage bottleneck 1.2s 36s 12s 48s
Total RAM usage bottleneck 504 MB 2.5 GB 5.1 GB 3.2 GB

Table 4: RAM usage for co-ordinate-based Top-Down Tc, co-ordinate-based
Bottom-Up Bc, heatmap-based Top-Down Th and heatmap-based Bottom-
Up Bh architectures. The number of parameters is for a whole network. As
for feature maps storage, only the bottleneck (max. simultaneous memory
usage) is expressed as a function of s, which is the memory usage for one
input image. Total RAM usage bottleneck is computed using an input image
size of 256x256x256 voxels and 4-Byte float numbers for both voxel values and
parameters.
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bottleneck is thus the minimum amount of memory necessary to run these
architectures on a single testing set image, and can even be achieved in prac-
tice by deallocating tensors once they are no longer useful. Despite its need
to store every input image resolution during learning, our Co-ordinate-based
Top-Down architecture is far more efficient regarding memory usage by fea-
ture maps. Indeed, instead of using a whole image, the cropping step allows
networks to use constant size images 8° times smaller than the original image.
This way, its bottleneck regarding feature maps is only 1.2 times the size of
an original input image, against 36 times for our Co-ordinate-based Bottom-
up architecture. For the heatmap-based architectures, the bottlenecks were
similar, occurring relatively close to the end of the network just before the
high resolution heatmaps were created and used 12 times and 48 times the
size of the image, respectively.. Using 4-Byte float numbers for voxel values
and parameters and an input image size of 256x256x256 voxels, total memory
usage for bottlenecks, adding feature maps and total parameters, was com-
puted and weighs approximately 504 MB for our Top-Down co-ordinate based
architecture, 2.5 GB for our Bottom-Up co-ordinate based architecture, 5.1 GB
for the Top-Down heatmap-based architecture, and 3.2 GB for the Bottom-
Up heatmap-based architecture (Tab. 4). The memory differences are most
pronounced for the co-ordinate based architectures, largely because the Top-
Down approach can effectively avoid doing any processing on feature maps
with the same size and resolution as the entire image. This is unavoidable for
heatmap-based methods, regardless of if they are Top-Down or Bottom-Up,
as the output heatmaps themselves are feature maps with the same size and
resolution as the entire image. In addition, the fully-connected layer in the
Top-Down heatmap approach uses the vast majority of its parameters and

contributes much to the memory required.
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4.2 Cortical TMS Dataset

We present mean and standard deviation of the patient-point error Err;,, for
k = 6 and a training sample size of 16 in Tab. 5. For the points which have been
annotated by three experts, expert variability is also specified. A multifactorial

ANOVA was performed fitting the functions f;(-) in the following model:

E(P,D,T,C) = E+ fi(P)+ f2(D) + fs(T) + fa(C) + fs(T.C) +€  (2)

where P is the patient, D is the dataset size, T is either “Top-Down” or
“Bottom-Up”, C is either “Coordinate-based” or “Heatmap-based”, F is the
error for a particular configuration of these variables, F is the average error,
and € is the residual. A series of null hypotheses are then tested against in
order to distinguish the parameters of each of the f;(-) functions from 0. The
patient and the training dataset size were used as additional factors (f; and
f2 respectively) to account for patient variability and the amount of data,
both of which easily overwhelms the differences between methods. The p-
values in Table 6 show the significance of the effects of the approach, Top-
Down or Bottom-Up, the output type, co-ordinates or heatmap based, and the
interaction between the two. All results are significant except for the effect of
the Top-Down or Bottom-Up approach for Heschl’s gyrus and the interaction
between the effect of the approach and the effect of the output type for the
right upper and lower limb areas. Qualitative results for all 4 methods are
shown in Figure 5. This indicates that amongst the methods we investigated,
Top-Down generally outperforms Bottom-Up although the degree depends on

the specifics of the architectures used, hence the interaction effect.
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Fig. 5: Qualitative results showing the ground truth points for the left pri-
mary motor cortex in red, the Coordinate-based Top-Down results in blue, the
Heatmap-based Top-Down results in magenta, the Coordinate-based Bottom-
Up results in , and the Heatmap-based Bottom-Up results in cyan.

4.3 DBS Dataset

The mean and standard deviation of the patient-point Error Err;, for k = 45
and a 162 training sample size are listed in Tab. 7. A Wilcoxon signed rank
test was performed following by Bonferroni correction for the 30 points and 5
subexperiments. All p-values are significant for all subexperiments, that is for
all points at each training data set size. Since the mean error is consistently

lower for the co-ordinate-based Top-Down architecture, we can safely conclude
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Point E.V. (mm) Tc (mm) Bc (mm) Th (mm) Bh (mm)

LOFC 5.99 +4.95 11.37+5.34 | 13.24+£7.05 | 13.33 £5.83
ROFC 6.54 + 4.95 11.36 +£4.91 | 12.37 £5.57 | 12.45+4.93
LDLPFC 9.20 +9.05 11.03 +£5.34 | 13.15+£6.27 | 14.13£6.81
RDLPFC 7.24 £4.38 11.07 £5.54 | 12.60+£5.75 | 12.53 £+ 6.66
LHESCHL 6.11 +3.75 10.39 £4.10 | 12.944+9.41 | 10.93 +5.10
LFACEMC 7.12 4+ 4.54 6.45 + 4.06 12.00 £5.30 | 13.06 £6.09 | 12.80 £5.14
RFACEMC 8.84 + 5.45 8.30 + 5.53 13.96 +£6.15 | 13.80+£6.42 | 14.10£6.14
LLLIMBMC 5.65 £ 3.95 8.77+£5.63 14.72+£6.40 | 14.80+7.63 | 16.44 + 7.62
RLLIMBMC 6.73 £ 6.30 10.02+7.71 | 15.22+£7.71 | 1531 £8.40 | 17.03 +8.85
LULIMBMC 6.85 + 4.70 10.10 £5.47 | 13.84+6.84 | 13.16 £5.92 | 15.55 +£7.29
RULIMBMC 6.35 +4.79 9.63 + 5.54 14.90 £6.26 | 15.25£6.91 | 16.59£7.94
LCM1 7.78 £ 3.62 13.15+6.15 | 14.09+£7.05 | 17.49+9.95

Table 5: TMS database: Mean and standard deviation for patient-point Errors
Err;p, by point for Co-ordinates-based Top-Down Tec, Co-ordinates-based
Bottom-Up Bc, Heatmap-based Top-Down Th and Heatmap-based Bottom-
Up Bh networks, in mm. Experiment test sample size £k = 6 and training
sample size of 22 — k = 16. Expert Variability (E.V.) as computed by Baxter
et al. [9] for points for which three experts annotations are available.

Factors Interaction
Point TD vs BU Co vs Hm (TD vs BU):(Co vs Hm)
LOFC p<167x103% | p<443x10 154 | p <1.06 x 10~ 13
ROFC p<171x10 2 [ p<111x10 ™ | p<1.90x 10 08
LDLPFC p<130x1079% | p<217x10"7° p<411x10-9%
RDLPFC p<450x1072% | p<254x10 80 p <5.35x10703
LHESCHL p<1 p <246 x10-10% | p <514 x 1017
LFACEMC pP<265x10-39 | p<9.65x10-9° p < 3.24 x 10701
RFACEMC p<438x10°0 [ p<824x10 93 p <5.08x10°05
LLLIMBMC | p<981x10~% | p<743x10~ 133 [ p<291x10-10
RLLIMBMC | p<262x10-% | p<1.20x1092 p<l1
LULIMBMC | p<1.53x10~% | p <4.06 x 10~ %8 p < 2.04 x 10701
RULIMBMC | p<813x107%T | p<215x10° 3 | p<1
LCM1 p<203x102%7 [ p<3.92x10 59 p<264x1018

Table 6: p-values after Bonferroni correction are shown for multifactorial
ANOVA. T.D. vs B.U. is Top-Down vs Bottom-Up. Co vs Hm is Co-ordinates-
based vs Heatmap-based. Statistically significant results are shown in bold.

the co-ordinate-based Top-Down architecture performed better than the co-

ordinate-based Bottom-Up architecture.
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4.4 Training sample size effect on accuracy

4.4.1 TMS Dataset

As expected, the number of patients in the training sample seems to have an
effect on accuracy for every architecture (Fig. 6). As this number increases,
accuracy for our co-ordinate based Top-Down architecture seems to be getting
closer to expert variability scores. We expect that as more data becomes avail-

able, our co-ordinate based Top-Down architecture network will perform as

Tc (mm) | Bc (mm) Tc vs Be
Amygdala (L) 3.95+3.03 | 8.83+6.38 [ p<23x10-33
Amygdala (R) 3.624+2.76 | 8.98+6.58 | p<1.5x 1033

Anterior thalamus (L) | 4.134+2.70 | 9.36 £6.95 | p < 1.7 x 10~ 32
Anterior thalamus (R)| 4.19+3.01 | 9.34+6.81 | p < 3.8 x 1031

Caudate (L) 5.094+3.04 | 9.814+7.07 | p<4.5x 1028
Caudate (R) 4.584+2.85 | 9.73+£6.90 | p<6.0 x 10~30
Putamen (L) 4484317 | 953 +£7.07 | p<9.9 x 1032
Putamen (R) 423+336 | 9.70+7.70 | p<3.8x 1033
GPE (L) 4354275 [ 9.34+6.92 | p<7.2x10°30
GPE (R) 424+296 | 945+832 | p< 7.5 x 1032
GPI (L) 427+265 | 9.17+6.69 | p<3.2x 1030
GPI (R) 4224277 [ 9194+7.23 | p<5.0x10-2°
Hippocampus (L) 464+3.28 | 8.87+7.96 | p<3.0x10-30
Hippocampus (R) 412+3.18 | 8.96+6.80 | p<5.4x 1032

Lateral thalamus (L) 448 +2.66 | 925+ 7.44 | p<24x 102
Lateral thalamus (R) | 4454340 | 9.13£6.68 | p < 5.7 x 10729
Medial thalamus (L) 3.81+£2.70 | 9.13+6.89 | p < 8.9 x 1032
Medial thalamus (R) 3.56 £2.45 | 9.224+6.72 | p<9.9x 1033
Pulvinar thalamus (L) | 4.724+3.06 | 9.27+£7.42 | p<3.0 x 10~ 2%
Pulvinar thalamus (R)| 4.28+2.96 | 9.07£7.00 | p< 7.2 x 10733
Medial geniculate (L) | 4.334+2.89 | 879+6.46 | p< 8.9 x 10~ 31
Medial geniculate (R) | 5.034+3.39 | 9.04+6.85 | p<8.0x 1023
Lateral geniculate (L) | 4.16+2.95 | 897+£6.79 | p< 1.7 x 10~30
Lateral geniculate (R) | 4414292 | 9.16+6.86 | p < 1.8 x 10— 29

Red nucleus (L) 4.04+269 | 835+6.65 | p<9.2x 1028
Red nucleus (R) 4314264 | 871+7.10 | p<4.3x 1027
STN (L) 420+2.44 [ 837+6.32 | p<9.5x 10 22
STN (R) 3.914+269 | 849+6.71 | p< 5.3 x 10-32

Substantia nigra (L) 416+2.75 | 832+6.41 | p< 2.6 x10-28
Substantia nigra (R) | 3.79+£2.69 | 838+6.46 | p<4.8x 1033
Table 7: DBS database: Wilcoxon signed ranks test results on patient errors
Err;p, by point for Co-ordinates-based Top-Down and Co-ordinates-based
Bottom-Up networks. All p-values are shown after Bonferroni correction for
multiple comparisons and are significant. The architecture which gets the low-
est error is always the Top-Down one. Experiment test sample size k = 45 and
training sample size of 162.
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Fig. 6: TMS experiment - Evolution of all points mean error with respect
to number of patients in training sample for all architectures. Mean Expert
Variability on points for which three expert annotations are available is a
constant and can be used for comparison.

well as experts on this task. The remaining architectures also improve with an
increasing number of training datasets, indicating that significantly improved

performance can be achieved through the acquisition of more data.

4.4.2 DBS Dataset

The first jump in training sample size seems to have an effect on accuracy
for both architectures. However, past 45 patients in the training sample, the
training sample size doesn’t seem to make any significant difference. There
seems to be a limit in how much the size of the training sample can improve

accuracy for this problem.
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Fig. 7: DBS experiment - Evolution of all points mean error with respect to
number of patients in training sample for both co-ordinate-based architectures.

5 Discussion

The concepts of “Top-Down” and “Bottom-Up” are only heuristics from the
domain of cognitive psychology and don’t have a simple one-to-one relationship
with different computer vision architectures, let alone explain the differences
between the plethora of architectures widely used in computer vision research
today. For image segmentation, more modern architectures such as those
derived from U-Nets [22] or vision transformers [23, 24] have distinctly Top-
Down and Bottom-Up components working in tandem, demonstrating that
the computer vision community is moving away from the purely Bottom-
Up approaches it started with. Point localisation, being a less commonly
researched problem, has yet to experience this.

Given this, this study should be interpreted as a preliminary exploration in
this field. It is by no means an exhaustive exploration of all possible point local-
isation architectures, especially given their prevalence in 2D computer vision

and the difficulty of translating them into a volumetric medical context. It is
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possible in the future for a mostly Bottom-Up architecture to completely out-
perform all others, using some form of novel architecture or network component
that has not yet been explored or developed.

The main limitation to our study is the selection and optimisation of
our architectures. The plethora of CNN architectures proposed over the past
decade for point localisation problems offers a large amount of choice within
the Bottom-Up paradigm. The more traditional alternating convolution-plus-
max-pooling approach was used, largely because it tends to involve fewer
parameters and a lower memory usage than more recent 3D networks, which
is a large design limitation. We also did not use any hyperparameter opti-
misation framework as learning a large number of networks (to investigate
training dataset size dependence) is already quite time-consuming. Therefore,
we cannot be certain that either architecture is fully optimized, although the
prevalence of Bottom-Up architectures and the wide gap between models that
we observed does suggest that Top-Down architectures are under-utilised.

Because of the difference in memory consumption, we had to use a smaller
batch size for the Heatmap-based architecture and the co-ordinates-based
Bottom-Up architecture (batch size of 2 volumes) than for the co-ordinates-
based Top-Down architecture (batch size of 8 volumes), which may have
affected training. If anything, it does further indicate the need we have for
more memory-efficient architectures, which allow for bigger batch sizes as well
as more complexity. Memory consumption is a pressing issue for point locali-
sation in volumetric images as the task is not easily partitioned into patches
which can be processed independently, which can facilitate the use of deep-
learning for other types of volumetric image processing, notably segmentation.
Architectures designed for natural images often cannot be used without sig-
nificant re-parameterisation due to the memory constraints of current graphic

cards.
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It would be interesting to expand our work to other 3D point localisation
problems to confirm it can be applied to various localisation problems beyond
localisation of anatomical structures in brain MRI. Because of the focus on
fully three-dimensional images, without simplifying assumptions that might
not be clinically valid (such as being given the exact slice with the point of
interest, as in Sugimori et al. [6]) the constraints on memory consumption
remain a significant factor.

One last observation is that methods in the literature as well as in this study
seem to take on two approaches based on how they represent points either via
their coordinates [8, 9] or via heatmaps [6, 7, 11]. Our results suggest that
the benefit of a Top-Down approach is more pronounced for coordinate-based
frameworks moreso than heatmap based ones, especially in terms of reduced
memory consumption. This is because for any heatmap based approach using
volumetric images, a large amount of memory will have to be used to simply
represent several heatmaps spanning the entire image volume. Heatmaps how-
ever could be used to leverage other architectures outside of point localisation,
notably those for image segmentation which has received much more attention
from the research community and provides a plethora of tools that blend both

Top-Down and Bottom-Up types of image processing.

Future work

One immediate area of future work is to integrate these localisation frameworks
into those designed for the segmentation of smaller anatomical structures. The
motivation behind this would be to use more memory and time-efficient local-
isation networks to roughly estimate the location and extent of the anatomy,
allowing for the image to be heavily cropped to only this region (plus a margin

in case of error) [25]. This would allow for separate segmentation frameworks
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to be orders of magnitude more efficient in terms of time and memory by pro-
cessing images that are reduced in size by these orders of magnitude. Recent
work has also suggested that such an approach can also be beneficial in terms
of reducing the influence of high signal and contrast in other, unrelated regions
of the image, which may “distract” the network from the specific segmentation

task given limited data.

6 Conclusions

The distinction between Top-Down and Bottom-Up processing is a useful con-
ceptual tool in cognitive psychology for explaining visual search which itself
affects how one can structure machine learning architectures for performing
the similar task of point localisation. This is particularly important for volu-
metric images, such as in neuro-interventional planning, which are subject to
both technical limitations in terms of memory as well as accuracy requirements.
This preliminary study takes motivation from this distinction and investigates
in a quantitative manner the possibility for the less widely used Top-Down
paradigm to improve performance with respect to these two considerations.
Our co-ordinate-based Top-Down network achieved a significantly bet-
ter accuracy with a significantly lower memory bottleneck compared to its
Bottom-Up counterpart on two neuro-interventional planning tasks involving
both subcortical (DBS Dataset) and cortical (TMS Dataset) anatomy. We also
have evidence that this improvement is robust to training dataset size at least
in the small-to-middle range (i.e. 6 to 162 image volumes) which characterise
many medical volumetric datasets. All of our networks’ accuracy improve with
the size of the training sample for small numbers of patients. However, it does
seem that the improvement in accuracy than comes with increasing the number

of patients is likely to reach a plateau and, based on our results, it is unclear
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if given enough data the Bottom-Up method could begin to rival Top-Down
performance. This is particularly important as other changes to the design of
these networks, such as the representation of their output, also has a signif-
icant effect on their performance which can counter-balance the investigated
design decision.

Although preliminary, we have found evidence for a critical re-appreciation
of point localisation architectures specific to medical imaging that differs from
computer vision and encourages Top-Down processing. These results may be
potentially interesting to those developing new models for point localisation,
encouraging a different paradigm from the one traditionally applied towards

2D images.
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