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Abstract

Purpose: Point localisation is a critical aspect of many interven-
tional planning procedures, specifically representing anatomical regions
of interest or landmarks as individual points. This could be seen
as analogous to the problem of visual search in cognitive psychol-
ogy, in which this search is performed either: Bottom-Up, construct-
ing increasing abstract and coarse-resolution features over the entire
image; or Top-Down, using contextual cues from the entire image to
refine the scope of the region being investigated. Traditional convo-
lutional neural networks use the former, but it is not clear if this
is optimal. This article is a preliminary investigation as to how this
motivation affects 3D point localisation in neuro-interventional planning.
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Methods: Two neuro-imaging datasets were collected: one for corti-
cal point localisation for repetitive transcranial magnetic stimulation
and the other for sub-cortical anatomy localisation for deep-brain stim-
ulation. Four different frameworks were developed using Top-Down vs
Bottom-Up paradigms as well as representing points as co-ordinates or
heatmaps. These networks were applied to point localisation for transcra-
nial magnetic stimulation and subcortical anatomy localisation. These
networks were evaluated using cross-validation and a varying number of
training datasets to analyse their sensitivity to quantity of training data.
Results: Each network shows increasing performance as the
amount of available training data increases, with the co-ordinate-
based Top-Down network consistently outperforming the others.
Specifically, the Top-Down architectures tend to outperform the
Bottom-Up ones. An analysis of their memory consumption also
encourages the Top-Down co-ordinate based architecture as it
requires significantly less memory than either Bottom-Up archi-
tectures or those representing their predictions via heatmaps.
Conclusion: This paper is a preliminary foray into a fundamen-
tal aspect of machine learning architectural design: that of the
Top-Down / Bottom-Up divide from cognitive psychology. Although
there are additional considerations within the particular architec-
tures investigated that could affect these results and the num-
ber of architectures investigated is limited, our results do indi-
cate that the less commonly used Top-Down paradigm could
lead to more efficient and effective architectures in the future.

1 Introduction

As neural networks tend to grow deeper, often with better results, there seems

to be a limit to what degree of depth actually improves accuracy [1]. The

amount of RAM needed to store parameters but also feature maps from con-

volutional neural networks is greatly increased. Deep learning has reached a

much larger public in the last few years and there’s a demand for less resource-

consuming neural network architectures for both economical and ecological

reasons. These resources include annotated training data, but also computa-

tional resources, notably memory. For example, dead neurons are individual

artificial neurons which require memory, but are rarely if ever active, and thus

do not contribute to the model as a whole. This is even more of an issue for

ACCEPTED MANUSCRIPT / CLEAN COPY



Springer Nature 2021 LATEX template

Top-Down and Bottom-Up Deep-Learning Approaches to Localisation. 3

convolutional neural networks, in which individual neurons are replaced with

convolutions representing entire images [2].

Localisation problems are of particular interest due to their prevalence

throughout the different sub-fields of computer vision. In these problems, a

network is designed to identify a series of points or regions-of-interest in an

image that represent pre-determined objects of interest. This is different from

segmentation as only the position of the structure is needed rather than its

precise delineation. One of the first widely-used localisation methods in deep

learning was the Regions with CNN features (R-CNN) [3] , which first used an

object-agnostic region detector to suggest a large number of potential objects,

then resized them to a fixed size for a traditional convolutional neural network

to determine what object they represented, if any. FastR-CNN [4] extended this

method using a non-agnostic region detection method that, rather than using

object-agnostic features to determine if a region was of interest, trained a series

of object-specific features which can be directly used for the later network that

classifies the potential regions. This was motivated by a desire to save both

time and memory, allowing for convolutional features to be shared across the

multiple disparate tasks performed in the network as a whole. FasterR-CNN

[5] again changes the region detector to make it more time- and memory-

efficient. These frameworks are designed for not only localisation, but also

detecting a previously unknown number of regions of interest. For example,

these frameworks have been originally motivated by the problem of detecting

and localising cars in 2D images for autonomous driving applications. It could

well be that the image doesn’t feature any car at all, such as on a deserted

road. If there are cars, the network doesn’t know how many as this can vary

heavily from image to image. In addition, some of them would appear bigger

than others due to proximity and some others of them might not be fully
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visible, and these mixed localisation (i.e. region detection) and identification

algorithms have thus included bounding boxes to capture these notions.

The medical field is a particularly interesting field of application for vol-

umetric image analysis. Processing three-dimensional convolutional neural

networks can be prohibitively memory consuming even with a reduced depth

and width and therefore aren’t easy to implement in medical equipment such

as neuronavigation software. Therefore, it is unsurprising that there are far

fewer published methods for point localisation in neuro-imaging contexts, let

alone volumetric images. Sugimori et al. [6] used an R-CNN to identify the

anterior and posterior commissures, which are used to define a neurological

co-ordinate system. One notable aspect of this system was that it did not use

the full volumetric MRI, but instead the 2D slice containing the two com-

missures, which may limit its clinical utility. Yang et al. [7] also used specific

2D images for finding these points, although using a more traditional CNN

architecture. The issue with knowing these slices in advance was pointed out

by Gohel et al. [8] who developed a framework for estimating the commissure

locations in 3D using the axial, sagittal, and coronal localisers which do not

themselves contain said points. A different approach as well as different targets

were used by Baxter et al. [9] who developed a multi-resolution convolutional

neural network architecture taking its inspiration from the human psychologi-

cal active visual search Top-Down strategy [10]. This architecture was designed

for the localisation of cortical repetitive transcranial magnetic stimulation tar-

gets within volumetric MRI and may be applied to other localisation problems

within images which require a lot of memory. Li et al. [11] took a different

mixed approach in which a single network was used for rating whether or not

a sagittal slice might contain the points of interest (the right and left internal
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acoustic pores and posterior cavernous sinuses in their case) followed by a 2D

hour-glass network to find said points within the identified slice.

The two key differences between these neurosurgical localisation problems

and the types of localisation problems more generally addressed in computer

vision, which have been discussed previously, are that the identity of the points

is known ahead of time (i.e. there is a fixed number of them which are guaran-

teed to be present and should also be labelled or otherwise distinguished from

each other); and that their locations are much more highly dependent on global

context, specifically brain anatomy. There are other differences, for example,

because the images are 3D and always include the whole brain, there is no

problem of objects looking bigger than they are or being hidden behind other

objects. So if these problems are so different, why not use different methods to

address them? That’s what our brain is doing, studies of human active visual

search have shown. In the next section, we will get into more detail about the

two different strategies, Bottom-up and Top-down, our brain is using to solve

localisation problems and which one is more efficient for which kind of prob-

lem. We will see how these strategies of the human brain influence the way

artificial neural networks are designed.

1.1 Human visual search

Artificial neural networks first took their inspiration from their counterparts

in the human brain and it is thus interesting to look at cognitive strategies

our brains use when performing various tasks in order to implement new kinds

of artificial neural network architectures. When actively looking for a specific

object surrounded by distractors, the human brain has different strategies

regarding attention and gaze allocation, two of which being Bottom-Up and

Top-Down attentional selection [10].
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Bottom-Up attentional selection is feature-driven, using a parallel process-

ing of all the items laying in the subject’s field of view to locate the one they

are looking for, based on a few varying features. This strategy works best

when the number of features allowing the subject to differentiate distractors

from the target is small or when the target is very salient. The target also has

to be in the subject’s field of view in order for this strategy to be successful.

This has traditionally been the basis for localisation networks such as R-CNN

and its variants [3, 4, 5, 6], which process an entire image at its full resolution

then subsequently uses pooling or other forms of aggregation to merge these

bottom-up features together into region proposals in a method analogous to

how convolutional neural networks perform other separate tasks such as image

classification. Basic CNNs also can be used to perform localisation tasks and

use a bottom-up strategy to do so.

Top-Down attentional selection on the other hand tends to be favoured by

the human brain when the target isn’t in the subject’s immediate field of view,

isn’t very salient compared to the distractors, or when the context of the search

space itself provides information about the location (for example, knowing

what areas of the image are a road can lead to easier localisation of cars). This

strategy performs a serial allocation of attention, based on the subject’s prior

knowledge and cognition. The subject thus directs their gaze at a particular

zone because they think the target is likely to be located there, or analyses the

different dimensions of all items one after the other in a defined order. From an

optimisation perspective, this allows for local minima in the search process to

be avoided by first examining the whole problem at a coarse resolution, then

iteratively refining both the solution and the search space. An example of this

is deformable image registration which has long used a hierarchical approach

to use the solution to simple, more coarse-grained problems, to initialise and
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limit the search space for finer-grained refinements [12]This can also apply

to convolutional neural networks. Baxter et al. ’s [9] multi-resolution neural

network architecture was designed to mimic Top-Down attentional selection,

using low resolution images to determine what areas of the volume to continue

searching in at a higher resolution, conserving memory of, but not processing,

the whole image at a high resolution.

It is clear that human visual search can motivate different automatic point

localisation architectures, but it is unclear if, given a localisation problem of a

certain type, the strategy used by the human brain also is the best choice for

artificial neural networks.

Contributions

In this paper we compare two paradigmatic Top-Down architectures with two

paradigmatic Bottom-Up convolutional neural network architecture for 3D

point localisation in neuro-imaging. This comparison is made in terms of mem-

ory consumption, accuracy, and impact of the training dataset size. This is

done by using these architectures to solve two localisation tasks. The first one

is the localisation of 12 repetitive Transcranial Magnetic Stimulation treat-

ment points on 3D MR images and the second one is the localisation of 30

sub-cortical structures used in Deep Brain Stimulation preoperative planning

on another dataset of 3D MR images.

2 Neuro-interventional Pointing Tasks

Several neuro-interventions rely on pointing tasks during their planning, either

directly or as a part of a larger image processing pipeline. These tasks occur

when there is a specific anatomical landmark that needs to be identified (such
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as the anterior and posterior commissures which define the Talairach co-

ordinate space [6]) or neuro-anatomical regions that are sufficiently small to

represent as singular points.

2.1 Cortical Transcranial Magnetic Stimulation

Transcranial magnetic stimulation (TMS) is a relatively new treatment option

for a variety of neurological and psychological disorders varying from clinical

depression to chronic pain [13]. The key shared characteristic of these disor-

ders is that they imply abnormal cortical behaviour which can be corrected

through repeated disruption which is provided externally via the local applica-

tion of a varying magnetic field. The key task in repetitive TMS is therefore to

identify the cortical regions requiring stimulation based on the patient’s symp-

tomatology. For most treatment approaches, these target regions are specific

small neuro-anatomic regions in the frontal cortex, such as the dorsolateral

prefrontal for clinical depression [14], or particular subregions of the primary

motor cortex for chronic pain in the corresponding bodily region [15]. Although

these particular regions are unique, there may be some variability in terms of

which are actively being targeted, especially for psychiatric disorders which

are less clearly neurologically localised [14].

Thus, the primary goal for pre-operative TMS planning is the identification

of these points as to inform the operator of where to position the external

stimulator. This targeting was originally performed blindly, using landmarks

on the patient’s skull as well as finding a single calibration point associated

with the hand area of the primary motor cortex [16]. This has a relatively

low accuracy in terms of finding the precise anatomical area (on the order of

1-1.5 cm [16]). More recent structural MRI guided TMS interventions have

lowered that error although the human expert accuracy of delineating the
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functionally defined treatment points in MRI is still on the order of 5-10 mm

[9]. Despite these errors, the stimulation can still produce a clinically-relevant

effect as the stimulation region can be several square centimetres although

with diminishing strength further from the centre [17]. Thus, improvement in

these accuracies may lead to more visible improvements using a potentially

weaker field, although this has yet to be confirmed in clinical trials.

2.2 Small Subcortical Anatomy Localisation for Deep

Brain Stimulation

Deep brain stimulation (DBS) is a treatment for various neurological and neu-

rodegenerative disorders, notably Parkinson’s disease, in which an electrode

is placed at or within a particular structure in the basal ganglia to provide

continuous stimulation [18]. These structures tend to be very small, leading

to difficulties in their accurate segmentation especially with modern machine

learning approaches whose statistical nature favours larger, more well-defined

regions [19]. One way to alleviate this difficulty is by automatically cropping

the image to a smaller region-of-interest containing only the anatomical struc-

ture of interest. To do so, however, requires being able to estimate its position

within the entire volumetric image, a point localisation task. The amount of

cropping thus depends on the accuracy of the localisation, with better accu-

racies allowing for more aggressive cropping to be used which improves the

speed and accuracy of the downstream segmentation algorithm. Given the size

of these structures, accuracies on the order of 1 cm render this cropping proce-

dure feasible (i.e. cropping the image to approximately 1% of its original size)

however better accuracies are still desired to further inform the downstream

segmentation model and reduce cropped image sizes.
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3 Material and Methods

3.1 Imaging Data

Two datasets were used for the comparison of the top-down and bottom-up

architectures, each composed of a number of T1-weighted MR images and for

each of these images the coordinates of a list of points, which the networks

aimed at localising.

3.1.1 Cortical TMS Dataset

This dataset is the same as that used by Baxter et al. [9] for identifying corti-

cal points-of-interest for repetitive Transcranial Magnetic Stimulation (TMS).

It contains 26 T1-weighted MR images from 26 patients from various hospi-

tal centers. They were normalised, using approximate min-max normalisation

(95% percentiles used instead of absolute max and min), and resampled to

256x256x256 voxels with an isotropic voxel size of 1x1x1 mm using the Con-

vert3D tool1. 12 cortical points have been annotated by expert neurologists.

The hand region of the left primary motor cortex (LCM1) used for calibra-

tion and the five points used for the treatment of psychiatric disorders (i.e.

orbitofrontal cortex on both sides, or LOFC and ROFC, dorsolateral prefrontal

cortex on both sides, or LDLPFC and RDLPFC, and left Heschl gyrus, or

LHESCHL) have been annotated by a single expert. The 6 points used in the

treatment of chronic pain (face, upper limb and lower limb regions of the motor

cortex on both sides, or LFACEMC, RFACEMC, LULIMBMC, RULIMBMC,

LLLIMBMC and RLLIMBMC) have been annotated by three experts (Tab.

1). These multiple annotations allow to measure expert variability [9] and to

determine a consensus to improve the accuracy of the gold standard for each

1http://www.itksnap.org/pmwiki/pmwiki.php?n=Convert3D.Convert3D, The specific com-
mands used were swapdim, -resample-mm, and -pad-to.
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point. Three patients have missing annotations for the left Heschl’s gyrus, with

two also missing annotations for the hand region of the left primary motor

cortex and the dorsolateral prefrontal cortices on both sides. The location of

these points for the left side of the brain of one patient of the dataset is shown

in Fig. 1a.

(a) Treatment points for the TMS
dataset

(b) Sub-cortical anatomy centroids for
the DBS dataset

Fig. 1: Location of targets in T1-weighted MR Images
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Point Annotation
Orbitofrontal cortices

Annotations
by a single
expert.

(left and right)
a.k.a. LOFC and ROFC

Dorsolateral prefrontal cortices
(left and right)

a.k.a. LDLPFC and RDLPFC
Heschl’s gyrus

(left)
a.k.a. LHESCHL

Hand region of the primary motor cortex
(left)

a.k.a. LCM1
Face regions of the motor cortices

Annotations
by three
experts.

(left and right)
a.k.a. LFACEMC and RFACEMC

Upper limb regions of the motor cortices
(left and right)

a.k.a. LULIMBMC and RULIMBMC
Lower limb regions of the motor cortices

(left and right)
a.k.a. LLLIMBMC and RLLIMBMC

Table 1: TMS target points annotated in TMS Database

3.1.2 Subcortical Anatomy DBS Dataset

The second database contains 216 T1-weighted MR images. They were

deformably registered to the versions 2 and 3 of a Parkinson’s disease spe-

cific atlas [20] in order to generate reference segmentations for the subcortical

anatomy. The centroids of 30 subcortical structures (Tab. 2) could then be

annotated for each image, constituting an approximate ground truth for our

experiment. The location of these points for the left side of the brain of one

patient of the dataset is shown in Fig. 1b.

3.2 Networks

We used four different artificial neural network architectures. Two of these are

designed to use a top-down strategy and the other two a bottom-up strategy.

They are all oriented towards the goal of localisation but render results in two
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Point Annotation
Subthalamic nucleus

Registration
using v2 and
v3 of the
ParkMedAtlis
[20]

(left and right)
Caudate

(left and right)
Putamen

(left and right)
Amygdala

(left and right)
Anterior thalamus
(left and right)
Medial thalamus
(left and right)
Lateral thalamus
(left and right)

Pulvinar thalamus
(left and right)
Hippocampus
(left and right)

Medial geniculate
(left and right)

Lateral geniculate
(left and right)
Red nucleus

(left and right)
Substantia nigra
(left and right)

Globus pallidus externus
(left and right)

Globus pallidus internus
(left and right)

Table 2: Subcortical structures annotated in Database DBS.

different ways. Two of the architectures express their outputs as coordinates

for each point. The other two use heatmaps to express their outputs as a spatial

probability distribution. For each type of output, one architecture is designed

to use a Top-Down strategy and the other a Bottom-Up strategy.

3.2.1 Co-ordinate-based Bottom-Up Architecture (Bc)

Our Co-ordinate-based bottom-up architecture, see Fig. 2, is a convolutional

neural network architecture, composed of 6 convolutional layers followed by a

512 units linear layer. The first convolutional layer counts 32 kernels, increasing

by two for each following convolutional layer. 2x2x2 Max-pooling is performed

between convolutional layers. This architecture allows networks to focus on
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individual features on the whole image, thus making it similar to bottom-up

attentional selection. We used 2 as a batch size for training, validation and

test. ReLU activation function was used between layers. The gradient descent

optimizer chosen for this architecture was ADAM. During training, our top-

down architecture used L2 loss function, while our top-down architecture used

its own custom loss function since the cropping operation it performs is not

differentiable (Baxter et al. , 2021). The mean error for a given patient and

point on all repetitions,

Erri,p =
1

ni,p

ni,p∑
j=1

∥gti,p,j − pri,p,j∥2 (1)

, with gti,p,j and pri,p,j ground truth and prediction respectively for patient i,

point p and repetition j and ni,p the number of repetitions for patient i and

point p, was used for comparison of the two architectures.

3.2.2 Co-ordinate-based Top-Down Architecture (Tc)

The multi-resolution architecture implemented by Baxter et al. [9] allows net-

works to resample and crop images, always analysing images containing 8x8x8

voxels of increasingly fine resolution, until the native image resolution (1 mm)

is achieved yielding the final position estimate. In this way, it resembles top-

down attentional selection. A batch size of 8 was used for training, validation

and test. The gradient descent optimizer chosen for this architecture was SGD.

3.2.3 Heatmap-based Bottom-Up Architecture (Bh)

To create a heatmap-based bottom-up architecture, we took inspiration from

fully-convolutional neural networks for image segmentation [21], see Fig. 3. In

order to maintain the output heatmap’s resolution to be the same as the input
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Fig. 2: Co-ordinate-based Bottom-Up network consisting of alternating
between convolution and max-pooling layers until flattening and final process-
ing with a series of linear layers.

images, convolution with spacing was used for the network to collect larger-

scale, more-abstract features. Similar to the previous network, the L2 loss was

used as the cost function and a batch size of 2 was used for training, validation,

and testing.

3.2.4 Heatmap-based Top-Down Architecture (Th)

In our last architecture, see Fig. 4, the network trained a series of feature

maps starting at a very coarse resolution. At each resolution level, the previous
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Fig. 3: Fully convolutional Heatmap-based Bottom-Up network.

coarser feature maps were upsampled and then combined with information

extracted from the image at the same resolution level. This is analogous to

how U-Nets [22] operate except that, in order to maintain a purely Top-Down

approach, no convolutions were performed before any of the down-sampling,

which could be interpreted as a Bottom-Up search for features. Again, the L2

loss was used as the cost function and a batch size of 2 was used for training,

validation, and testing.

Fig. 4: Heatmap-based Top-Down network inspired by U-nets without convo-
lution in the down-sampling.
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nb of folds Val. size Training size Test size
16 6

TMS db 26 4 11 11
n = 26 6 16

162 45
126 81

DBS db 24 9 90 117
n = 216 45 162

7 200

Table 3: Number of samples q, validation set size v, training set size, test set
size k and total number of patients n for the TMS and the DBS datasets.

3.3 Experiments

The experiment described in this section was performed on the TMS dataset

for all architectures. It was performed on the DBS dataset for the two co-

ordinate-based architectures for they were the best performing in the first

experiment.

3.3.1 Cross-validation

We used repeated leave-k-out cross-validation, consisting in the creation of q

different sets of training, validation and test samples. For a total number of

n patients in the whole dataset, a size of v patients was chosen for validation

samples, whereas test and training samples respectively contained k and n -

v - k patients. To create each test sample, k patients were randomly selected

from the groups of patients who had been included the least in previously

created test samples. The n - k patients who were not selected in a particular

test sample were randomly divided into corresponding validation and training

samples. As a result, each patient was included kq
n ± 1 times in a test sample.

In order to measure the way the number of patients available for training

affects each of the two architectures, the aforementioned cross-validation was

performed several times for different values of k. Tab. 3 shows the values of

n, v and k for each dataset. The size of the DBS dataset allowed us to try 5

values for k instead of 3.
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3.3.2 Data augmentation

Data augmentation was performed in validation and training samples in the

form of left-right flipping and random rotations within the axial plane and

translations.

4 Results

4.1 Memory usage

A convolutional neural network’s memory usage depends on both parame-

ters and feature maps. All parameters have to be saved in RAM in order

to perform gradient descent. Our Bottom-up architecture is using approxi-

mately 1.1× 107 parameters, which represent 45 MB, while our more complex

Top-Down architecture is one order of magnitude larger with approximately

1.1× 108 parameters, which represent 427 MB. As for feature maps, the total

of their sizes doesn’t matter as much as bottlenecks, as they don’t need to be

saved all the way through the network. For any given layer, networks need to

store both its input data and output data simultaneously. Any other data a

network needs to store through the whole learning process has to be added

and a bottleneck is found when the need for storage reaches a maximum. This

Tc Bc Th Bh
Number of parameters 1.1 ∗ 108 1.1 ∗ 107 1.1 ∗ 109 4.7 ∗ 104

Feature map storage bottleneck 1.2s 36s 12s 48s
Total RAM usage bottleneck 504 MB 2.5 GB 5.1 GB 3.2 GB

Table 4: RAM usage for co-ordinate-based Top-Down Tc, co-ordinate-based
Bottom-Up Bc, heatmap-based Top-Down Th and heatmap-based Bottom-
Up Bh architectures. The number of parameters is for a whole network. As
for feature maps storage, only the bottleneck (max. simultaneous memory
usage) is expressed as a function of s, which is the memory usage for one
input image. Total RAM usage bottleneck is computed using an input image
size of 256x256x256 voxels and 4-Byte float numbers for both voxel values and
parameters.
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bottleneck is thus the minimum amount of memory necessary to run these

architectures on a single testing set image, and can even be achieved in prac-

tice by deallocating tensors once they are no longer useful. Despite its need

to store every input image resolution during learning, our Co-ordinate-based

Top-Down architecture is far more efficient regarding memory usage by fea-

ture maps. Indeed, instead of using a whole image, the cropping step allows

networks to use constant size images 85 times smaller than the original image.

This way, its bottleneck regarding feature maps is only 1.2 times the size of

an original input image, against 36 times for our Co-ordinate-based Bottom-

up architecture. For the heatmap-based architectures, the bottlenecks were

similar, occurring relatively close to the end of the network just before the

high resolution heatmaps were created and used 12 times and 48 times the

size of the image, respectively.. Using 4-Byte float numbers for voxel values

and parameters and an input image size of 256x256x256 voxels, total memory

usage for bottlenecks, adding feature maps and total parameters, was com-

puted and weighs approximately 504 MB for our Top-Down co-ordinate based

architecture, 2.5 GB for our Bottom-Up co-ordinate based architecture, 5.1 GB

for the Top-Down heatmap-based architecture, and 3.2 GB for the Bottom-

Up heatmap-based architecture (Tab. 4). The memory differences are most

pronounced for the co-ordinate based architectures, largely because the Top-

Down approach can effectively avoid doing any processing on feature maps

with the same size and resolution as the entire image. This is unavoidable for

heatmap-based methods, regardless of if they are Top-Down or Bottom-Up,

as the output heatmaps themselves are feature maps with the same size and

resolution as the entire image. In addition, the fully-connected layer in the

Top-Down heatmap approach uses the vast majority of its parameters and

contributes much to the memory required.
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4.2 Cortical TMS Dataset

We present mean and standard deviation of the patient-point error Erri,p for

k = 6 and a training sample size of 16 in Tab. 5. For the points which have been

annotated by three experts, expert variability is also specified. A multifactorial

ANOVA was performed fitting the functions fi(·) in the following model:

E(P,D, T,C) = Ẽ + f1(P ) + f2(D) + f3(T ) + f4(C) + f5(T,C) + ϵ (2)

where P is the patient, D is the dataset size, T is either “Top-Down” or

“Bottom-Up”, C is either “Coordinate-based” or “Heatmap-based”, E is the

error for a particular configuration of these variables, Ẽ is the average error,

and ϵ is the residual. A series of null hypotheses are then tested against in

order to distinguish the parameters of each of the fi(·) functions from 0. The

patient and the training dataset size were used as additional factors (f1 and

f2 respectively) to account for patient variability and the amount of data,

both of which easily overwhelms the differences between methods. The p-

values in Table 6 show the significance of the effects of the approach, Top-

Down or Bottom-Up, the output type, co-ordinates or heatmap based, and the

interaction between the two. All results are significant except for the effect of

the Top-Down or Bottom-Up approach for Heschl’s gyrus and the interaction

between the effect of the approach and the effect of the output type for the

right upper and lower limb areas. Qualitative results for all 4 methods are

shown in Figure 5. This indicates that amongst the methods we investigated,

Top-Down generally outperforms Bottom-Up although the degree depends on

the specifics of the architectures used, hence the interaction effect.
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Fig. 5: Qualitative results showing the ground truth points for the left pri-
mary motor cortex in red, the Coordinate-based Top-Down results in blue, the
Heatmap-based Top-Down results in magenta, the Coordinate-based Bottom-
Up results in yellow, and the Heatmap-based Bottom-Up results in cyan.

4.3 DBS Dataset

The mean and standard deviation of the patient-point Error Erri,p for k = 45

and a 162 training sample size are listed in Tab. 7. A Wilcoxon signed rank

test was performed following by Bonferroni correction for the 30 points and 5

subexperiments. All p-values are significant for all subexperiments, that is for

all points at each training data set size. Since the mean error is consistently

lower for the co-ordinate-based Top-Down architecture, we can safely conclude
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Point E.V. (mm) Tc (mm) Bc (mm) Th (mm) Bh (mm)
LOFC 5.99± 4.95 11.37± 5.34 13.24± 7.05 13.33± 5.83
ROFC 6.54± 4.95 11.36± 4.91 12.37± 5.57 12.45± 4.93
LDLPFC 9.20± 9.05 11.03± 5.34 13.15± 6.27 14.13± 6.81
RDLPFC 7.24± 4.38 11.07± 5.54 12.60± 5.75 12.53± 6.66
LHESCHL 6.11± 3.75 10.39± 4.10 12.94± 9.41 10.93± 5.10
LFACEMC 7.12± 4.54 6.45± 4.06 12.00± 5.30 13.06± 6.09 12.80± 5.14
RFACEMC 8.84± 5.45 8.30± 5.53 13.96± 6.15 13.80± 6.42 14.10± 6.14
LLLIMBMC 5.65± 3.95 8.77± 5.63 14.72± 6.40 14.80± 7.63 16.44± 7.62
RLLIMBMC 6.73± 6.30 10.02± 7.71 15.22± 7.71 15.31± 8.40 17.03± 8.85
LULIMBMC 6.85± 4.70 10.10± 5.47 13.84± 6.84 13.16± 5.92 15.55± 7.29
RULIMBMC 6.35± 4.79 9.63± 5.54 14.90± 6.26 15.25± 6.91 16.59± 7.94
LCM1 7.78± 3.62 13.15± 6.15 14.09± 7.05 17.49± 9.95

Table 5: TMS database: Mean and standard deviation for patient-point Errors
Erri,p, by point for Co-ordinates-based Top-Down Tc, Co-ordinates-based
Bottom-Up Bc, Heatmap-based Top-Down Th and Heatmap-based Bottom-
Up Bh networks, in mm. Experiment test sample size k = 6 and training
sample size of 22− k = 16. Expert Variability (E.V.) as computed by Baxter
et al. [9] for points for which three experts annotations are available.

Factors Interaction
Point TD vs BU Co vs Hm (TD vs BU):(Co vs Hm)
LOFC p < 1.67× 10−35 p < 4.43× 10−154 p < 1.06× 10−13

ROFC p < 1.71× 10−23 p < 1.11× 10−119 p < 1.90× 10−08

LDLPFC p < 1.30× 10−05 p < 2.17× 10−75 p < 4.11× 10−05

RDLPFC p < 4.50× 10−26 p < 2.54× 10−80 p < 5.35× 10−03

LHESCHL p < 1 p < 2.46× 10−103 p < 5.14× 10−17

LFACEMC p < 2.65× 10−39 p < 9.65× 10−99 p < 3.24× 10−01

RFACEMC p < 4.38× 10−50 p < 8.24× 10−93 p < 5.08× 10−05

LLLIMBMC p < 9.81× 10−43 p < 7.43× 10−133 p < 2.91× 10−10

RLLIMBMC p < 2.62× 10−65 p < 1.20× 10−92 p < 1
LULIMBMC p < 1.53× 10−49 p < 4.06× 10−68 p < 2.04× 10−01

RULIMBMC p < 8.13× 10−61 p < 2.15× 10−85 p < 1
LCM1 p < 2.03× 10−27 p < 3.92× 10−89 p < 2.64× 10−18

Table 6: p-values after Bonferroni correction are shown for multifactorial
ANOVA. T.D. vs B.U. is Top-Down vs Bottom-Up. Co vs Hm is Co-ordinates-
based vs Heatmap-based. Statistically significant results are shown in bold.

the co-ordinate-based Top-Down architecture performed better than the co-

ordinate-based Bottom-Up architecture.
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4.4 Training sample size effect on accuracy

4.4.1 TMS Dataset

As expected, the number of patients in the training sample seems to have an

effect on accuracy for every architecture (Fig. 6). As this number increases,

accuracy for our co-ordinate based Top-Down architecture seems to be getting

closer to expert variability scores. We expect that as more data becomes avail-

able, our co-ordinate based Top-Down architecture network will perform as

Tc (mm) Bc (mm) Tc vs Bc
Amygdala (L) 3.95± 3.03 8.83± 6.38 p < 2.3× 10−33

Amygdala (R) 3.62± 2.76 8.98± 6.58 p < 1.5× 10−33

Anterior thalamus (L) 4.13± 2.70 9.36± 6.95 p < 1.7× 10−32

Anterior thalamus (R) 4.19± 3.01 9.34± 6.81 p < 3.8× 10−31

Caudate (L) 5.09± 3.04 9.81± 7.07 p < 4.5× 10−26

Caudate (R) 4.58± 2.85 9.73± 6.90 p < 6.0× 10−30

Putamen (L) 4.48± 3.17 9.53± 7.07 p < 9.9× 10−32

Putamen (R) 4.23± 3.36 9.70± 7.70 p < 3.8× 10−33

GPE (L) 4.35± 2.75 9.34± 6.92 p < 7.2× 10−30

GPE (R) 4.24± 2.96 9.45± 8.32 p < 7.5× 10−32

GPI (L) 4.27± 2.65 9.17± 6.69 p < 3.2× 10−30

GPI (R) 4.22± 2.77 9.19± 7.23 p < 5.0× 10−29

Hippocampus (L) 4.64± 3.28 8.87± 7.96 p < 3.0× 10−30

Hippocampus (R) 4.12± 3.18 8.96± 6.80 p < 5.4× 10−32

Lateral thalamus (L) 4.48± 2.66 9.25± 7.44 p < 2.4× 10−29

Lateral thalamus (R) 4.45± 3.40 9.13± 6.68 p < 5.7× 10−29

Medial thalamus (L) 3.81± 2.70 9.13± 6.89 p < 8.9× 10−32

Medial thalamus (R) 3.56± 2.45 9.22± 6.72 p < 9.9× 10−33

Pulvinar thalamus (L) 4.72± 3.06 9.27± 7.42 p < 3.0× 10−28

Pulvinar thalamus (R) 4.28± 2.96 9.07± 7.00 p < 7.2× 10−33

Medial geniculate (L) 4.33± 2.89 8.79± 6.46 p < 8.9× 10−31

Medial geniculate (R) 5.03± 3.39 9.04± 6.85 p < 8.0× 10−23

Lateral geniculate (L) 4.16± 2.95 8.97± 6.79 p < 1.7× 10−30

Lateral geniculate (R) 4.41± 2.92 9.16± 6.86 p < 1.8× 10−29

Red nucleus (L) 4.04± 2.69 8.35± 6.65 p < 9.2× 10−28

Red nucleus (R) 4.31± 2.64 8.71± 7.10 p < 4.3× 10−27

STN (L) 4.29± 2.44 8.37± 6.32 p < 9.5× 10−24

STN (R) 3.91± 2.69 8.49± 6.71 p < 5.3× 10−32

Substantia nigra (L) 4.16± 2.75 8.32± 6.41 p < 2.6× 10−28

Substantia nigra (R) 3.79± 2.69 8.38± 6.46 p < 4.8× 10−33

Table 7: DBS database: Wilcoxon signed ranks test results on patient errors
Erri,p, by point for Co-ordinates-based Top-Down and Co-ordinates-based
Bottom-Up networks. All p-values are shown after Bonferroni correction for
multiple comparisons and are significant. The architecture which gets the low-
est error is always the Top-Down one. Experiment test sample size k = 45 and
training sample size of 162.
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Fig. 6: TMS experiment - Evolution of all points mean error with respect
to number of patients in training sample for all architectures. Mean Expert
Variability on points for which three expert annotations are available is a
constant and can be used for comparison.

well as experts on this task. The remaining architectures also improve with an

increasing number of training datasets, indicating that significantly improved

performance can be achieved through the acquisition of more data.

4.4.2 DBS Dataset

The first jump in training sample size seems to have an effect on accuracy

for both architectures. However, past 45 patients in the training sample, the

training sample size doesn’t seem to make any significant difference. There

seems to be a limit in how much the size of the training sample can improve

accuracy for this problem.
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Fig. 7: DBS experiment - Evolution of all points mean error with respect to
number of patients in training sample for both co-ordinate-based architectures.

5 Discussion

The concepts of “Top-Down” and “Bottom-Up” are only heuristics from the

domain of cognitive psychology and don’t have a simple one-to-one relationship

with different computer vision architectures, let alone explain the differences

between the plethora of architectures widely used in computer vision research

today. For image segmentation, more modern architectures such as those

derived from U-Nets [22] or vision transformers [23, 24] have distinctly Top-

Down and Bottom-Up components working in tandem, demonstrating that

the computer vision community is moving away from the purely Bottom-

Up approaches it started with. Point localisation, being a less commonly

researched problem, has yet to experience this.

Given this, this study should be interpreted as a preliminary exploration in

this field. It is by no means an exhaustive exploration of all possible point local-

isation architectures, especially given their prevalence in 2D computer vision

and the difficulty of translating them into a volumetric medical context. It is
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possible in the future for a mostly Bottom-Up architecture to completely out-

perform all others, using some form of novel architecture or network component

that has not yet been explored or developed.

The main limitation to our study is the selection and optimisation of

our architectures. The plethora of CNN architectures proposed over the past

decade for point localisation problems offers a large amount of choice within

the Bottom-Up paradigm. The more traditional alternating convolution-plus-

max-pooling approach was used, largely because it tends to involve fewer

parameters and a lower memory usage than more recent 3D networks, which

is a large design limitation. We also did not use any hyperparameter opti-

misation framework as learning a large number of networks (to investigate

training dataset size dependence) is already quite time-consuming. Therefore,

we cannot be certain that either architecture is fully optimized, although the

prevalence of Bottom-Up architectures and the wide gap between models that

we observed does suggest that Top-Down architectures are under-utilised.

Because of the difference in memory consumption, we had to use a smaller

batch size for the Heatmap-based architecture and the co-ordinates-based

Bottom-Up architecture (batch size of 2 volumes) than for the co-ordinates-

based Top-Down architecture (batch size of 8 volumes), which may have

affected training. If anything, it does further indicate the need we have for

more memory-efficient architectures, which allow for bigger batch sizes as well

as more complexity. Memory consumption is a pressing issue for point locali-

sation in volumetric images as the task is not easily partitioned into patches

which can be processed independently, which can facilitate the use of deep-

learning for other types of volumetric image processing, notably segmentation.

Architectures designed for natural images often cannot be used without sig-

nificant re-parameterisation due to the memory constraints of current graphic

cards.
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It would be interesting to expand our work to other 3D point localisation

problems to confirm it can be applied to various localisation problems beyond

localisation of anatomical structures in brain MRI. Because of the focus on

fully three-dimensional images, without simplifying assumptions that might

not be clinically valid (such as being given the exact slice with the point of

interest, as in Sugimori et al. [6]) the constraints on memory consumption

remain a significant factor.

One last observation is that methods in the literature as well as in this study

seem to take on two approaches based on how they represent points either via

their coordinates [8, 9] or via heatmaps [6, 7, 11]. Our results suggest that

the benefit of a Top-Down approach is more pronounced for coordinate-based

frameworks moreso than heatmap based ones, especially in terms of reduced

memory consumption. This is because for any heatmap based approach using

volumetric images, a large amount of memory will have to be used to simply

represent several heatmaps spanning the entire image volume. Heatmaps how-

ever could be used to leverage other architectures outside of point localisation,

notably those for image segmentation which has received much more attention

from the research community and provides a plethora of tools that blend both

Top-Down and Bottom-Up types of image processing.

Future work

One immediate area of future work is to integrate these localisation frameworks

into those designed for the segmentation of smaller anatomical structures. The

motivation behind this would be to use more memory and time-efficient local-

isation networks to roughly estimate the location and extent of the anatomy,

allowing for the image to be heavily cropped to only this region (plus a margin

in case of error) [25]. This would allow for separate segmentation frameworks
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to be orders of magnitude more efficient in terms of time and memory by pro-

cessing images that are reduced in size by these orders of magnitude. Recent

work has also suggested that such an approach can also be beneficial in terms

of reducing the influence of high signal and contrast in other, unrelated regions

of the image, which may “distract” the network from the specific segmentation

task given limited data.

6 Conclusions

The distinction between Top-Down and Bottom-Up processing is a useful con-

ceptual tool in cognitive psychology for explaining visual search which itself

affects how one can structure machine learning architectures for performing

the similar task of point localisation. This is particularly important for volu-

metric images, such as in neuro-interventional planning, which are subject to

both technical limitations in terms of memory as well as accuracy requirements.

This preliminary study takes motivation from this distinction and investigates

in a quantitative manner the possibility for the less widely used Top-Down

paradigm to improve performance with respect to these two considerations.

Our co-ordinate-based Top-Down network achieved a significantly bet-

ter accuracy with a significantly lower memory bottleneck compared to its

Bottom-Up counterpart on two neuro-interventional planning tasks involving

both subcortical (DBS Dataset) and cortical (TMS Dataset) anatomy. We also

have evidence that this improvement is robust to training dataset size at least

in the small-to-middle range (i.e. 6 to 162 image volumes) which characterise

many medical volumetric datasets. All of our networks’ accuracy improve with

the size of the training sample for small numbers of patients. However, it does

seem that the improvement in accuracy than comes with increasing the number

of patients is likely to reach a plateau and, based on our results, it is unclear
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if given enough data the Bottom-Up method could begin to rival Top-Down

performance. This is particularly important as other changes to the design of

these networks, such as the representation of their output, also has a signif-

icant effect on their performance which can counter-balance the investigated

design decision.

Although preliminary, we have found evidence for a critical re-appreciation

of point localisation architectures specific to medical imaging that differs from

computer vision and encourages Top-Down processing. These results may be

potentially interesting to those developing new models for point localisation,

encouraging a different paradigm from the one traditionally applied towards

2D images.
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