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Introduction

Conformal inference is a general framework aiming at providing sharp uncertainty quantication guarantees for the output of machine learning algorithms used as "black boxes". A central tool of that eld is the construction of a "(non)-conformity score" S i for each sample point. The score functions can be learnt on a training set using various machine learning methods depending on the task at hand. The scores observed on a data sample called "calibration sample" D cal serve as references for the scores of a "test sample" D test (which may or may not be observed, depending on the setting). The central property of these scores is that they are an exchangeable family of random variables.

Motivating tasks

To be more concrete, we start with two specic settings serving both as motivation and as application.

(PI) Prediction intervals: we observe D cal = (X 1 , Y 1 ), . . . , (X n , Y n ) a sample of i.i.d. variables with unknown distribution P , where X i ∈ R d is a regression covariate and Y i ∈ R is the outcome. Given a new independent datum (X n+1 , Y n+1 ) generated from P , the task is to build a prediction interval for Y n+1 given X n+1 and D cal . More generally, in the transductive conformal setting [START_REF] Vovk | Transductive conformal predictors[END_REF], the task is repeated m ≥ 1 times: given m new data points D test = (X n+1 , Y n+1 ), . . . , (X n+m , Y n+m ) i.i.d from P , build m prediction intervals for Y n+1 , . . . , Y n+m given X n+1 , . . . , X n+m and D cal .

(ND) Novelty detection: we observe D cal = (X 1 , . . . , X n ), a sample of nominal data points in R d , drawn i.i.d. from an unknown (null) distribution P 0 , and a test sample D test = (X n+1 , . . . , X n+m ) of independent points in R d , each of which is distributed as P 0 or not. The task is to decide if each X n+i is distributed as the training sample (i.e., from P 0 ) or is a "novelty". Figure 1: Task (PI) with adaptive scores in a non-parametric regression setting with domain shift between train and calibration+test samples ( proof-of-concept model, see Section 3.5). Our contribution is both to propose adaptive scores and predictions relying on transfer learning (this gure), and uniform bounds on the false coverage proportion, see Figure 2.

For both inference tasks, the usual pipeline is based on the construction of non-conformity real-valued scores S 1 , . . . , S n+m for each member of D cal ∪ D test , which requires an additional independent training sample D train (in the so-called "split conformal" approach):

(PI) the scores are (for instance) the regression residuals

S i = |Y i -µ(X i ; D train )|, 1 ≤ i ≤ n + m,
where the function µ(x; D train ) is a point prediction of Y i given X i = x, learnt from the sample D train .

(ND) the scores are of the form S i = g(X i ; D train ), 1 ≤ i ≤ n + m, where the score function g(•; D train ) is learnt using the sample D train ; g(x) is meant to be large if x is fairly dierent from the members of D train (so that it is "not likely" to have been generated from P 0 ).

In both cases, inference is based on the so-called split conformal p-values [START_REF] Vovk | Algorithmic learning in a random world[END_REF]:

p i = (n + 1) -1  1 + n  j=1 1{S j ≥ S n+i }  , i ∈ JmK. (1) 
In other words, (n + 1)p i is equal to the rank of S n+i in the set of values {S 1 , . . . , S n , S n+i }, and a small p-value p i indicates that the test score S n+i is abnormally high within the set of reference scores. The link to the two above tasks is as follows: for (PI), the prediction interval C(α) for Y n+i with coverage probability (1α) is obtained by inverting the inequality p i > α w.r.t. Y n+i , see (13) below. For (ND), the members of the test sample declared as novelties are those with a p-value p i ≤ t for some threshold t.

Studying the behavior of the conformal p-value family is thus a cornerstone of conformal inference. Still, classical results only concern the marginal distribution of the p-values while the joint distribution remains largely unexplored in full generality.

Contributions and overview of the paper

In Section 2, we present new results for the joint distribution of the conformal p-values (1) for general exchangeable scores (for any sample sizes n and m). First, in Section 2.2, we show that the dependence structure involved only depends on n and m, and follows a Pólya urn model; this entails both explicit formula and useful characterizations. Second, we deduce a new nite sample DKWtype concentration inequality [START_REF] Massart | The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality[END_REF] for the empirical distribution function (ecdf) of the conformal p-values. We emphasize the following favorable features of our results for application of the conformal methodology:

(i) The weak assumption of exchangeable (rather than i.i.d.) scores allows to handle adaptive score training: the score functions can depend on the training sample, and on the calibra-tion+test sample (in a way that maintains exchangeability).

(ii) Simultaneous and uniform inference: since m decisions are taken simultaneously (transductive setting), the joint error distribution should be taken into account for global risk assessment. We provide error bounds with high probability and uniform validity over a family of possible decisions (allowing for user or data-driven choice).

These ndings are then applied in detail to (PI) in Section 3 and (ND) in Section 4. For (ND), we consider adaptive scores proposed by [START_REF] Marandon | Machine learning meets false discovery rate[END_REF] leveraging two-class classication. For (PI), we consider a setting of domain shift between training and calibration+test, and introduce a novel approach (to our knowledge) of transductive transfer for PI, leveraging transfer learning algorithms. In both cases, use of adaptive scores signicantly improves inference quality (see Figure 1 for our approach to transductive transfer PI). We give sharp bounds in probability for the false coverage proportion (FCP) (for PI) and the false discovery proportion (FDP) (for ND), with a possibly data-driven choice of the prediction intervals for (PI) and of the size of rejection threshold for (ND). This is in contrast to previous results only providing in-expectation guarantees of FCP/FDP. Our work hence brings more ne-grained reliability, which can be crucial when the practitioner faces sensible data.

Relation to previous work

For fundamentals on conformal prediction, see [START_REF] Vovk | Algorithmic learning in a random world[END_REF]; [START_REF] Balasubramanian | Conformal prediction for reliable machine learning: theory, adaptations and applications[END_REF].

We only consider the split conformal approach, also named inductive conformal approach in the seminal work of [START_REF] Papadopoulos | Inductive condence machines for regression[END_REF]. The split conformal approach uses a separate training set but is considered the most practically amenable approach for big data (in contrast to the "full conformal" approach which can be sharper but computationally intractable).

The most important consequence of score exchangeability is that the marginal distribution of a conformal p-value is a discrete uniform under the joint (calibration and test) data distribution. There has been signicant recent interest for the conditional distribution of a marginal p-value, conditional to the calibration sample, under the stronger assumption of i.i.d. scores. The corresponding results take the form of bounds on P(p 1 ≤ t | D cal ) holding with high probability over D cal [START_REF] Vovk | Conditional validity of inductive conformal predictors[END_REF][START_REF] Bian | Training-conditional coverage for distribution-free predictive inference[END_REF][START_REF] Sarkar | Post-selection inference for conformal prediction: Trading o coverage for precision[END_REF][START_REF] Bates | Testing for outliers with conformal p-values[END_REF], where in the two latter references the results are in addition uniformly valid in t). However, the i.i.d. scores assumption prevents handling adaptive scores (point (i) above), for which only exchangeability is guaranteed; moreover, these works are restricted to a single predictor, and do not address point (ii) either. Simultaneous inference for the (PI) task has been proposed by [START_REF] Vovk | Transductive conformal predictors[END_REF] (see also [START_REF] Saunders | Transduction with condence and credibility[END_REF] for an earlier occurrence for one p-value with multiple new examples), referred to as transductive conformal inference, and which includes a Bonferroni-type correction. Closest to our work, [START_REF] Marques | On the universal distribution of the coverage in split conformal prediction[END_REF] analyzes the false coverage proportion (FCP) of the usual prediction interval family C(α) repeated over m test points: the exact distribution of the FCP under data exchangeability is provided, and related to a Pòlya urn model with two colors. We show the more general result that the full joint distribution of (p 1 , . . . , p m ) follows a Pòlya urn model with (n + 1) colors, which entails the result of [START_REF] Marques | On the universal distribution of the coverage in split conformal prediction[END_REF] as a corollary (see Appendix A). This brings substantial innovations: our bounds on FCP are uniform in α, and we provide both the exact joint distribution and an explicit non-asymptotic approximation via a DKW-type concentration bound.

The (ND) setting is alternatively referred to as Conformal Anomaly Detection (see Chapter 4 of [START_REF] Balasubramanian | Conformal prediction for reliable machine learning: theory, adaptations and applications[END_REF]. We specically consider here the (transductive) setting of [START_REF] Bates | Testing for outliers with conformal p-values[END_REF] where the test sample contains novelties, and the corresponding p-values for 'novelty' entries are not discrete uniform but expected to be stochastically smaller. Due to strong connections to multiple testing, ideas and procedures stemming from that area can be adapted to address (ND), specically by controlling the false discovery rate (FDR, the expectation of the FDP), such as as the Benjamini-Hochberg (BH) procedure [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF]. Use of adaptive scores and corresponding FDR control has been investigated by [START_REF] Marandon | Machine learning meets false discovery rate[END_REF]. Our contribution with respect to that work comes from getting uniform and in-probability bounds for the FDP (rather than only in expectation, for the FDR).

Main results

Setting

We denote integer ranges using JiK = {1, . . . , i}, Ji, jK = {i, . . . , j}. Let (S i ) i∈Jn+mK be real random variables corresponding to non-conformity scores, for which (S j ) j∈JnK are the "reference" scores and (S n+i ) i∈JmK are the "test" scores. We assume The score vector (S i ) i∈Jn+mK is exchangeable.

(Exch) Under (Exch), the p-values (1) have super-uniform marginals (see, e.g., [START_REF] Romano | Exact and approximate stepdown methods for multiple hypothesis testing[END_REF]. In addition, the marginal distributions are all equal and uniformly distributed on {ℓ/(n + 1), ℓ ∈ Jn + 1K} under the additional mild assumption:

The score vector (S i ) i∈Jn+mK has no ties a.s.

(NoTies)

While the marginal distribution is well identied, the joint distribution of the p-values is not well studied yet. In particular, we will be interested in the empirical distribution function of the p-value family, dened as

 F m (t) := m -1 m  i=1 1{p i ≤ t}, t ∈ [0, 1].
(2)

Note that the p-values are not i.i.d. under (Exch), so that most classical concentration inequalities, such as DKW's inequality [START_REF] Massart | The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality[END_REF], or Bernstein's inequality, cannot be directly used. Instead, we should take into account the specic dependence structure underlying these p-values.

Key properties

We start with a straightforward result, under the stronger assumption

The variables S i , i ∈ Jn + mK, are i.i.d.

(IID)

For this, introduce, for any xed vector U = (U 1 , . . . , U n ) ∈ [0, 1] n , the discrete distribution P U on the set  ℓ n+1 , ℓ ∈ Jn + 1K  , dened as

P U ({ℓ/(n + 1)}) = U (ℓ) -U (ℓ-1) , ℓ ∈ Jn + 1K, (3) 
where 0 = U (0

) ≤ U (1) ≤ • • • ≤ U (n) ≤ U (n+1)
= 1 are the increasingly ordered values of U = (U 1 , . . . , U n ). In words, the n values of U divide the interval [0, 1] into (n+1) distinct cells (labeled ℓ n+1 , ℓ ∈ Jn + 1K), and P U is the probability distribution of the label of the cell a Unif[0, 1] variable would fall into. Note that P U has for c.d.f.

F U (x) = U (⌊(n+1)x⌋) , x ∈ [0, 1]. ( 4 
)
Proposition 2.1. Assume (IID) and (NoTies) and consider the p-values (p i , i ∈ JmK) given by (1). Then conditionally on D cal = (S 1 , . . . , S n ), the p-values are i.i.d. of common distribution given by

p 1 | D cal ∼ P U , where U = (U 1 , . . . , U n ) =  1 -F (S 1 ), . . . , 1 -F (S n ) 
are pseudo-scores and F is the common c.d.f. of the scores of D cal , that is, F (s) = P(S 1 ≤ s), s ∈ R. In addition the pseudo-score vector

U is i.i.d. Unif[0, 1] distributed.
Proof sketch. The conditional distribution of p i only depends on score ordering which is unambiguous due to (NoTies), and is thus invariant by monotone transformation of the scores by (1 -F ). Writing explicitly the cdf of p i from the uniformly distributed transformed scores yields (4). See Appendix C.1 for details.

In the literature, such a result is used to control the conditional failure probability P(p 1 ≤ α | D cal ) around its expectation (which is ensured to be smaller than, and close to, α) with concentration inequalities valid under an i.i.d. assumption [START_REF] Bates | Testing for outliers with conformal p-values[END_REF][START_REF] Sarkar | Post-selection inference for conformal prediction: Trading o coverage for precision[END_REF].

By integration over U , a direct consequence of Proposition 2.1 is that, under (IID) and (NoTies), and unconditionally on D cal , the family of conformal p-values (p i , i ∈ JmK) has the "universal" distribution P n,m on [0, 1] m dened as follows:

P n,m = D  q i , i ∈ JmK  , where (5)   q 1 , . . . , q m |U  i.i.d. ∼ P U ; and U = (U 1 , . . . , U n ) i.i.d. ∼ Unif([0, 1]). (6) 
Our rst result is to note that the latter holds beyond the i.i.d. assumption.

Proposition 2.2. Assume (Exch) and (NoTies), then the family of p-values (p i , i ∈ JmK) given by (1) has joint distribution P n,m , which is dened by (5)-( 6) and is independent of the specic score distribution.

Proof sketch. The joint distribution of the p-values only depends on the ranks of the (n + m) scores. Since the scores have exchangeable distribution and (NoTies) holds, their ranks form a random permutation of Jn + mK. Thus, the same rank distribution (and consequently joint pvalue distribution) is generated when the scores are i.i.d. Applying Proposition 2.1, the p-value distribution can be represented as ( 5)-( 6). See also Appendix C.2.

The next proposition is an alternative and useful characterization of the distribution P n,m .

Proposition 2.3. P n,m is the distribution of the colors of m successive draws in a standard Pólya urn model with n + 1 colors labeled

 ℓ n+1 , ℓ ∈ Jn + 1K  .
Proposition 2.3 is proved in Appendix A, where several explicit formulas for P n,m are also provided. We also show that this generalizes the previous work of [START_REF] Marques | On the universal distribution of the coverage in split conformal prediction[END_REF].

Comparing Proposition 2.1 and Proposition 2.2, we see that having i.i.d. scores is more favorable because guarantees are valid conditionally on D cal (with an explicit expression for U = U (D cal )). However, as we will see in Sections 3 and 4, the class of exchangeable scores is much more exible and includes adaptive scores, which can improve substantially inference sharpness in specic situations. For this reason, we work with the unconditional distribution as in Proposition 2.2 in the sequel.

Consequences

We now provide a DKW-type envelope for the empirical distribution function (2) of conformal p-values. Let us introduce the discretized identity function

I n (t) = ⌊(n + 1)t⌋/(n + 1) = E  F m (t), t ∈ [0, 1], (7) 
and the following bound:

B DKW (λ, n, m) := 1 {λ<1}  1 + 2 √ 2πλτ n,m (n + m) 1/2  e -2τn,mλ 2 , ( 8 
)
where

τ n,m := nm/(n + m) ∈ [(n ∧ m)/2, n ∧ m] is an "eective sample size".
Theorem 2.4. Let us consider the process  F m dened by (2), the discrete identity function I n (t) dened by (7), and assume (Exch) and (NoTies). Then we have for all λ > 0, n, m ≥ 1,

P  sup t∈[0,1] (  F m (t) -I n (t)) > λ  ≤ B DKW (λ, n, m). (9) 
In addition,

B DKW (λ DKW δ,n,m , n, m) ≤ δ for λ DKW δ,n,m = Ψ (r) (1); (10) Ψ(x) = 1 ∧  log(1/δ) + log  1 + √ 2π 2τn,mx (n+m) 1/2  2τ n,m  1/2 ,
where Ψ (r) denotes the function Ψ iterated r times (for an arbitrary integer r ≥ 1).

Proof sketch. Use the representation (6), apply the DKW inequality separately to (U 1 , . . . , U n ) and to (q 1 , . . . , q m ) conditional to U , and integrate over U . See Appendix C.4 for details (a slightly more accurate bound is also proposed).

Remark 2.5. Since the distribution P n,m can be easily sampled from, λ DKW δ,n,m in (10) can be further improved by considering the sharper but implicit quantile

λ num-DKW (δ, n, m) = min  x ≥ 0 : π n,m,x ≤ δ  , with π n,m,x := P n,m  sup ℓ∈Jn+1K   F m  ℓ n + 1  - ℓ n + 1  > x  .
In addition, numerical condence envelopes for  F m with other shapes can be investigated. For instance, for any set K ⊂ JmK of size K, we can calibrate thresholds t 1 , . . . , t K > 0 such that

P p∼Pn,m (∀k ∈ K, p (k+1) > t k ) = P p∼Pn,m (∀k ∈ K,  F m (t k ) ≤ k/m) ≥ 1 -δ. ( 11 
)
A method is to start from a "template" one-parameter family (t k (λ)) k∈K and then adjust λ to obtain the desired control [START_REF] Blanchard | Post hoc condence bounds on false positives using reference families[END_REF][START_REF] Li | Simultaneous false discovery proportion bounds via knockos and closed testing[END_REF]. This approach is developed in detail in Appendix B.

Application to prediction intervals

In this section, we apply our results to build simultaneous conformal prediction intervals, with an angle towards adaptive scores and transfer learning.

Setting

Let us consider a conformal prediction framework for a regression task, see, e.g., [START_REF] Lei | Distribution-free predictive inference for regression[END_REF], with three independent samples of points (X i , Y i ), where X i ∈ R d is the covariable and Y i ∈ R is the outcome:

• Training sample D train : observed and used to build predictors;

• Calibration sample D cal = {(X i , Y i ), i ∈ JnK};
observed and used to calibrate the size(s) of the prediction intervals;

• Test sample D test = {(X n+i , Y n+i ), i ∈ JmK};
only the X i 's are observed and the aim is to provide prediction intervals for the labels.

In addition, we consider the following transfer learning setting: while the data points are i.i.d. within each sample and the distributions of D cal and D test are the same, the distribution of D train can be dierent. However, D train can still help to build a good predictor by using a transfer learning toolbox, considered here as a black box (see, e.g., [START_REF] Zhuang | A comprehensive survey on transfer learning[END_REF] for a survey on transfer learning). A typical situation of use is when the training labeled data D train is abundant but there is a domain shift for the test data, and we have a limited number of labeled data D cal from the new domain.

Adaptive scores and procedures

Formally, the aim is to build I = (I i ) i∈JmK , a family of m random intervals of R such that the amount of coverage errors (1{Y n+i / ∈ I i }) i∈JmK is controlled. The construction of a rule I is based on non-conformity scores S i , 1 ≤ i ≤ n + m, corresponding to residuals between Y i and the prediction at point X i :

S i := |Y i -μ(X i ; (D train , D X cal+test ))|, i ∈ Jn + mK, (12) 
where the predictor μ is learnt using D train and the calibration + test covariates D X cal+test = (X 1 , . . . , X n+m ). More sophisticated scores than the residuals have been proposed in earlier literature [START_REF] Romano | Conformalized quantile regression[END_REF], in particular allowing for conditinal variance or quantile prediction and resulting prediction intervals of varying length. Our theory extends to those as well and we consider here (12) for simplicity. We call the scores (12) adaptive because they can use the unlabeled data D X cal+test , which is particularly suitable in the transfer learning framework where the covariates of D train should be mapped to those of D X cal+test to build a good predictor. Classical scores can also be recovered via (12) if the predictor ignores D X cal+test . The predictor  µ can be any "black box" (an unspecied transfer learning algorithm) provided the following mild assumption is satised, ensuring score exchangeability:

∀x ∈ R d , μ x; (D train , D X cal+test )  is invariant by permutation of D X cal+test . (PermInv)
Since (X i , Y i ) i∈Jn+mK are i.i.d. and thus exchangeable, one can easily show that (Exch) holds for the adaptive scores (12) when the predictor satises (PermInv). Predictors based on transfer machine learning procedures typically satisfy (PermInv). In addition, (NoTies) is a mild assumption: add a negligible noise to the scores is an appropriate tie breaking that makes (NoTies) hold.

Given the scores (12), we build the conformal p-values via (1) and dene the specic conformal procedure C(α) = (C i (α)) i∈JmK obtained by inverting {p i > α} with respect to Y n+i , that is,

{p i > α} = {Y n+i ∈ C i (α)} almost surely with C i (α) :=  μ(X n+i ; (D train , D X cal+test )) ± S (⌈(n+1)(1-α)⌉)  , ( 13 
)
where S (1) ≤ • • • ≤ S (n) ≤ S (n+1) := +∞ denote the order statistics of the calibration scores (S 1 , . . . , S n ). Observe that the radius of the interval S (⌈(n+1)(1-α)⌉) can be equivalently described as the (1α)-quantile of the distribution

 n i=1 1 n+1 δ Si + 1 n+1 δ +∞ . Note also that C(α) = R m if α < 1/(n + 1)
, that is, if the desired coverage error is too small w.r.t. the size of the calibration sample.

Transductive error rates

By Proposition 2.2, the following marginal control holds for the conformal procedure C(α) (13):

P(Y n+i / ∈ C i (α)) ≤ α, i ∈ JmK. ( 14 
)
This is classical for non-adaptive scores and our result already brings an extension to adaptive scores in the transfer learning setting.

In addition, we take into account the prediction multiplicity by considering false coverage proportion (FCP) of some procedure I = (I i ) i∈JmK , given by

FCP(I) := m -1 m  i=1 1{Y n+i / ∈ I i }. ( 15 
)
It is clear from ( 14) that the procedure C(α) (13) controls the false coverage rate, that is,

FCR(C(α))) := E[FCP(C(α))] ≤ α.
However, the error FCP(C(α)) naturally uctuates around its mean and the event {FCP(C(α)) ≤ α} is not guaranteed. Hence, we aim at the following control in probability of the FCP:

P[FCP(C(α)) ≤ α] ≥ 1 -δ. ( 16 
)
Several scenarios can be considered: α is xed and we want to nd a suitable bound α = FCP α,δ for the "traditional" conformal procedure C(α); or conversely, α is xed and we want to adjust the parameter α = t α,δ of the procedure to ensure the probabilistic control at target level α. For α = 0, this reduces to

P[∀i ∈ JmK, Y n+i ∈ I i ] ≥ 1 -δ, i.e.
, no false coverage with high probability. By applying a union bound, the procedure C(δ/m) satises the latter control, as already proposed by [START_REF] Vovk | Transductive conformal predictors[END_REF]. However, in this case the predicted intervals can be trivial, that is, C(δ/m) = R m , if the test sample is too large, namely, m > δ(n + 1). Moreover, in a more general scenario the practitioner may want to adjust the parameter α =  α on their own depending on the data, for example based on some personal tradeo between the probabilistic control obtained and the length of the corresponding prediction intervals -this is the common practice of a "post-hoc" choice (made after looking at the data). This motivates us to aim at a uniform (in α) bound, that is, nd a family of random variables (FCP α,δ ) α∈(0,1) such that

P  ∀α ∈ (0, 1), FCP(C(α)) ≤ FCP α,δ  ≥ 1 -δ . ( 17 
)
Establishing such bounds is investigated in the next section. This gives a guarantee on the FCP in any of the above scenarios, in particular a post-hoc choice of the parameter  α. As a concrete example, one may want to choose a data-dependent  α to ensure prediction intervals C(α) of radius at most L, namely,

 α(L) = (n + 1) -1 n  i=1 1{S i ≤ L}. (18) 
Guarantee (17) yields a (1δ)-condence error bound FCP  α(L),δ for this choice. 

Controlling the error rates

To establish ( 16) and ( 17), we use that from (2), ( 13) and (15), FCP(C(t)) =  F m (t) and thus for all t ∈ [0, 1],

{FCP(C(t)) ≤ α} =   F m (t) ≤ α  =  m  F m (t) ≤ ⌊αm⌋  =  p (⌊αm⌋+1) > t  , where p (1) ≤ • • • ≤ p (m)
denote the ordered conformal p-values. We deduce the following result.

Corollary 3.1. Let n, m ≥ 1. Consider the setting of Section 3.1, the conformal procedure C(α) given by (13) and P n,m given by (5). Then the following holds:

(i) for any α ∈ [0, 1], δ ∈ (0, 1), C(α = t α,δ ) satises (16) provided that t α,δ is chosen s.t. P p∼Pn,m (p (⌊αm⌋+1) ≤ t α,δ ) ≤ δ. ( 19 
)
(ii) for any δ ∈ (0, 1),  FCP α,δ  α∈(0,1) satises (17) provided that

P p∼Pn,m  ∃α ∈ (0, 1) :  F m (α) > FCP α,δ  ≤ δ. (20) 
Applying Corollary 3.1 (i), for conformal prediction with guaranteed FCP, we obtain an adjusted level parameter which can be computed numerically (an explicit formula can also be given for α = 0, see Appendix D). Applying Corollary 3.1 (ii), and thanks to (9), the following family bound (FCP α,δ ) α∈(0,1) is valid for (17

) FCP DKW α,δ =  α + λ DKW δ,n,m  1{α ≥ 1/(n + 1)}, ( 21 
)
with λ DKW δ,n,m > 0 given by (10). Obviously, numerical bounds can also be developed according to Remark 2.5.

Numerical experiments

To illustrate the performance of the method, we consider the following proof-of-concept regression model:

(W i , Y i ) i.i.d. with Y i | W i ∼ N (µ(W i ), σ 2
) for some unknown function µ and parameter σ > 0. To accommodate the transfer learning setting, we assume that we observe

X i = f 1 (W i ) in D train and X i = f 2 (W i ) in D cal ∪ D test for some transformations f 1 and f 2 . Three conformal procedures 1 I = C(α) = (C i (α)
) i∈JmK are considered which dier only in the construction of the scores: rst, I naive consists in using a predictor of the usual form μ(•, D train ) hence ignoring the distribution dierence between D train and D cal ∪ D test (no transfer) with a RBF kernel ridge regression; the second procedure I split ignores completely D train and works by splitting D cal in two new samples of equal size to apply the usual approach with these new (reduced) samples (transfer not needed); the third approach I transfer is the proposed one, and uses the transfer predictor μ(•; (D train , D X cal+test )) based on optimal transport proposed by [START_REF] Courty | Joint distribution optimal transportation for domain adaptation[END_REF]. While all methods provide the correct (1α) marginal coverage, we see from Figure 1 that I transfer is much more accurate, which shows the benet of using transfer learning and adaptive scores. Here,

|D train | = 5000, n = m = 75, µ(x) = cos(x), W i ∼ U (0, 5), f 1 (x) = x, f 2 (x) = 0.6x + x 2 /25
and σ = 0.1. Next, for each of the three methods, the FCP and corresponding bounds (21) are displayed in Figure 2. This illustrates both that each bound is uniformly valid in L and that transfer learning reduces the FCP (and thus also the FCP bounds).

Application to novelty detection 4.1 Setting

In the novelty detection problem, we observe the two following independent samples:

• a training null sample D null of n 0 nominal data points in R d which are i.i.d. with common distribution P 0 ;

• a test sample D test = (X i , i ∈ JmK) of independent points in R d either distributed as P 0 or not.

The aim is to decide if each X i is distributed as the training sample (that is, as P 0 ) or not. This long standing problem in machine learning has been recently revisited with the aim of controlling the proportion of errors among the items declared as novelties [START_REF] Bates | Testing for outliers with conformal p-values[END_REF]; let H 0 = {i ∈ JmK : X i ∼ P 0 } corresponding to the set of non-novelty in the test sample and consider the false discovery proportion

FDP(R) = |R ∩ H 0 | |R| ∨ 1 , (22) 
for any (possibly random) subset R ⊂ JmK corresponding to the X i 's declared as novelties. The advantage of considering FDP(R) for measuring the errors has been widely recognized in the multiple testing literature since the fundamental work of [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF] 

Methods and FDP bounds

Let us consider any thresholding novelty procedure

R(t) := {i ∈ JmK : p i ≤ t}, t ∈ (0, 1). ( 23 
)
Then the following result holds true.

Corollary 4.1. In the above novelty detection setting and under Assumption NoTies, the family of thresholding novelty procedures (23) is such that, with probability at least 1δ, we have for all t ∈ (0, 1),

FDP(R(t)) ≤ m0 I n (t) + m0 λ DKW δ,n, m0 1 ∨ |R(t)| =: FDP DKW t,δ , (24) 
where λ DKW δ,n, m0 is given by (10) and m0 is any random variable such that

m0 ≥ max  r : inf t  m i=1 1{p i > t} + rλ DKW δ,n,r 1 -I n (t) ≥ r  , ( 25 
)
where r is in the range JmK and the maximum is equal to m if the set is empty.

The proof is provided in Appendix E. Remark 4.2. Among thresholding procedures (23), AdaDetect [START_REF] Marandon | Machine learning meets false discovery rate[END_REF] is obtained by applying the Benjamini-Hochberg (BH) procedure [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF] to the conformal p-values. It is proved to control the expectation of the FDP (that is, the false discovery rate, FDR) at level α. Applying Corollary 4.1 provides in addition an FDP bound for AdaDetect, uniform in α, see Appendix G.

Numerical experiments

We follow the numerical experiments on "Shuttle" datasets of [START_REF] Marandon | Machine learning meets false discovery rate[END_REF] 2 . In Figure 3, we displayed the true FDP and the corresponding bound (24) when computing p-values based on dierent scores: the non-adaptive scores of [START_REF] Bates | Testing for outliers with conformal p-values[END_REF] 

Conclusion

The main takeaway from this work is the characterization of a "universal" joint distribution P n,m for conformal p-values based on n calibration points and m test points. We derived as a consequence a non-asymptotic concentration inequality for the p-value empirical distribution function; numerical procedures can also be of use for calibration in practice. This entails uniform error bounds on the false coverage/false discovery proportion that hold with high probability, while standard results are only marginal or in expectation and not uniform in the decision. Since the results hold under the score exchangeability assumption only, they are applicable to adaptive score procedures using the calibration and test sets for training.

A Exact formulas for P n,m

In this section, we provide new formulas for the distribution P n,m given by ( 5). First let for j = (j 1 , . . . , j m ) ∈ Jn + 1K m , M (j) := (M k (j)) k∈Jn+1K where M k (j) := |{i ∈ JmK : j i = k}| is the number of coordinates of j equal to k, for k ∈ Jn + 1K, and M (j)! :=  n+1 k=1 (M k (j)!). Theorem A.1. P n,m corresponds to the distribution of the colors of m successive draws in a standard Pólya urn model with n + 1 colors labeled as  ℓ n+1 , ℓ ∈ Jn + 1K  (with an urn starting with 1 ball of each color). That is, for p ∼ P n,m in (5), we have (i) Sequential distribution: for all i ∈ J0, m -1K, the distribution of p i+1 conditionally on p 1 , . . . , p i does not depend on m and is given by

D(p i+1 | p 1 , . . . , p i ) = n+1  j=1 1 +  i k=1 1{p k = j/(n + 1)} n + 1 + i δ j/(n+1) . (26) 
(ii) Joint distribution: for all vectors j ∈ Jn + 1K m ,

P  p = j n + 1  = M (j)! n! (n + m)! , (27) 
(iii) Histogram distribution: the histogram of p is uniformly distributed on the set of histograms of m-sample into n + 1 bins, that is, for all m = (m 1 , . . . , m n+1 ) ∈ J0,

mK n+1 with m 1 + • • • + m n+1 = m, P  M  (n + 1)p  = m  =  n + m m  -1 . ( 28 
)
In particular, conditionally on M  (n + 1)p  , the variable p is uniformly distributed on the set of possible trajectories, that is, for all vectors j ∈ Jn + 1K m ,

P  p = j n + 1     M  (n + 1)p  = M  j   = M  j  ! m! . ( 29 
)
Theorem A.1 is proved in Section C.3 for completeness. Theorem A.1 (i) gives the mechanism of the Pólya urn model: Namely, the urn rst contains one ball of each of the n+1 colors, so p 1 has a uniform distributed on  ℓ n+1 , ℓ ∈ Jn + 1K  ; then, given p 1 = ℓ/(n + 1), we have drawn a ball of color ℓ and we put back this ball in the urn with another one of the same color ℓ, so p 2 is generated according to the distribution on

 ℓ n+1 , ℓ ∈ Jn + 1K
 with equal chance (= 1/(n + 2)) of generating k/(n + 1), k ̸ = ℓ, and twice more chance (= 2/(n + 2)) of generating ℓ/(n + 1). Recursively, given p 1 , . . . , p i , the random variable p i+1 is generated in  ℓ n+1 , ℓ ∈ Jn + 1K  according to the sizes of the histogram of the sample ((n + 1)p 1 , . . . , (n + 1)p i ), see Figure 4.

Theorem A.1 (ii) provides the exact dependency structure between the p-values: for instance, M (j)! = 1 when the coordinates of j = (j 1 , . . . , j m ) are all distinct, while M (j)! = m! when the coordinates of j = (j 1 , . . . , j m ) are the same. This means that the distribution slightly favors the j with repeated entries. This shows that the conformal p-values are not i.i.d. but have a positive structure of dependency. This is in accordance with the specic positive dependence property (called PRDS) already shown by [START_REF] Bates | Testing for outliers with conformal p-values[END_REF]; [START_REF] Marandon | Machine learning meets false discovery rate[END_REF].

Theorem A.1 (iii) shows an interesting non-concentration behavior of P n,m when n is kept small: if the p i 's were i.i.d. uniform on

 ℓ n+1 , ℓ ∈ Jn + 1K
 then the histogram M ((n + 1)p) would follow a multinomial distribution and the histogram would concentrate around the uniform histogram as m tends to innity. Rather, the p i 's are here only exchangeable, not i.i.d., and the histogram does not concentrate when m tends to innity while n is small. As a case in point, for n = 1, M 1 ((n + 1)p) is uniform on JmK, whatever m is, see ( 28). Nevertheless, we will show in the next section that a concentration occurs when both m and n tend to innity.

Remark A.2. Note that P U in (3) is the conditional distribution that one would get by applying the de Finetti theorem to the innite exchangeable sequence (p i ) i≥1 with (p 1 , . . . , p m ) ∼ P n,m for all m. Relation to [START_REF] Marques | On the universal distribution of the coverage in split conformal prediction[END_REF]. As a consequence of (26), given any

I ⊂  ℓ n+1 , ℓ ∈ Jn + 1K  , we have P(p i+1 ∈ I | p 1 , . . . , p i )= |I| + N i (I) n + 1 + i = P  p i+1 ∈ I   Ni(I)  ,
where N i (I) = |{k ∈ JiK : p k ∈ I)}|. In words, it means that the Pólya urn model continues to hold if we group (or "re-paint") the initial (n + 1) colors into only two colors, determined by whether the original color label belongs to I or not.

In particular, we recover the Pólya urn model put forward by Marques F. ( 2023): letting Z i = 1{p i > α}, we have that for all i ∈ J0, m -1K, the distribution of Z i+1 conditionally on Z 1 , . . . , Z i does not depend on m and is given by

D(Z i+1 | Z 1 , . . . , Z i ) = ⌊α(n + 1)⌋ +  i k=1 1{Z k = j} n + 1 + i δ 0 + ⌈(1 -α)(n + 1)⌉ +  i k=1 1{Z k = j} n + 1 + i δ 1 .
(30) Hence, the distribution of (Z 1 , . . . , Z m ) corresponds to the distribution of the colors of m successive draws in a standard Pólya urn model with 2 colors labeled as {0, 1} (with an urn starting with ⌊α(n + 1)⌋ balls 0 and ⌈(1α)(n + 1)⌉ balls 1).

In particular, we recover Theorem 1 of Marques F. ( 2023).

Corollary A.3 (Theorem 1 in Marques F. ( 2023)). In the setting of Theorem A.1, we have for all α ∈ (0, 1) and k ∈ JmK, by denoting k 0 = ⌈α(n + 1)⌉,

P   F m (α) = k m  =  m k  (n -k 0 + 1) . . . (n -k 0 + m -k) × k 0 . . . (k 0 + k -1) (n + 1) . . . (n + m) . (31) 
Proof. By Proposition 2.2, (6) and the notation of (4), we have

P   F m (α) = k m  =  m k  E  (U (k0) ) k (1 -U (k0) ) m-k  =  m k  n! (k 0 -1)!(n -k 0 )!  1 0 u k+k0-1 (1 -u) m-k+n-k0 du =  m k  n! (k 0 -1)!(n -k 0 )! (k + k 0 -1)!(m + n -k -k 0 )! (m + n)! ,
by using that U (k0) follows a beta distribution with parameter (k 0 , n + 1 -k 0 ) and by using the beta distribution with parameter (k + k 0 , m + n + 1 -k -k 0 ). This shows the result.

B Numerical bounds and templates

The bound proposed in Theorem 2.3 are explicit and elegant, but can be conservative in some cases and we develop here the numerical approach mentioned in Remark 2.5. We rely on showing (11), which immediately implies a condence envelope on 

F m because  ∀k ∈ K :  F m (t k ) ≤ k m  =  ∀k ∈ K :  F m (t k ) < k + 1 m  = {∀k ∈ K : p (k+1) > t k }.
To establish (11), we use the notion of template introduced by [START_REF] Blanchard | Post hoc condence bounds on false positives using reference families[END_REF], see also [START_REF] Li | Simultaneous false discovery proportion bounds via knockos and closed testing[END_REF]. A template is a one-parameter family

t k (λ), λ ∈ [0, 1], k ∈ K ⊂ JmK, such that t k (0) = 0 and t k (•) is continuous increasing on [0, 1].
From above, we have for all λ,

{∀k ∈ K :  F m (t k (λ)) ≤ k/m} = {∀k ∈ K : p (k+1) > t k (λ)} =  min k∈K {t -1 k (p (k+1) )} > λ  .
Hence, let us consider

λ(δ, n, m) = max  λ ∈ Λ : P p∼Pn,m  min k∈K {t -1 k (p (k) )} > λ  ≥ 1 -δ  , ( 32 
)
where Λ is the nite set {t -1 k (ℓ/(n + 1)), k ∈ K, ℓ ∈ Jn + 1K}. Then by Proposition 2.2 we have the following result.

Theorem B.1. Let us consider the process  F m dened by (2), the distribution P n,m given by (5), a template t k (λ), λ ∈ [0, 1], k ∈ K as above, and assume (Exch) and (NoTies). Then we have for all δ ∈ (0, 1), n, m ≥ 1,

P  ∀k ∈ K :  F m  t k  λ(δ, n, m)   ≤ k m  ≥ 1 -δ, (33) 
for λ(δ, n, m) given by (32).

Here are two template choices:

• The linear template t k (λ) = kλ/m, K = JmK, which leads to the inequality

P  ∃t ∈ (0, 1) :  F m (t) > ⌈tm/λ(δ, n, m)⌉ m  ≤ δ,
which recovers the Simes inequality ( 43) with an adjusted scaling parameter.

• The "beta template" [START_REF] Blanchard | Post hoc condence bounds on false positives using reference families[END_REF], for which

t k (λ) is the λ-quantile of the distri- bution Beta(k, m + 1 -k) and thus Λ = {F Beta(k,m+1-k) (ℓ/(n + 1)), k ∈ K, ℓ ∈ Jn + 1K}. For instance, it can be used with K = {1 + k⌈log(m)⌉, k ∈ JKK}.

C Proofs

C.1 Proof of Proposition 2.1

Assumption (NoTies) implies that marginal score distribution is atomless, so that F is continuous and 1 -

F (S i ) has Unif[0, 1] distribution. Therefore, (U 1 , . . . , U n+m ) = (1 -F (S 1 ), . . . , 1 - F (S n+m )) are i.i.d. ∼ Unif[0, 1]. Recall p i = (n + 1) -1  1 + n  j=1 1{S j ≥ S n+i }  , i ∈ JmK,
since p i is a function of S n+i and D cal only, it follows that conditionally on D cal , the variables p 1 , . . . , p m are independent (and identically distributed). Since F is continuous, it holds

F † (F (S i )) = S i almost surely, where F † is the generalized inverse of F . Therefore 1{S j ≥ S n+i } = 1{U j ≤ U n+i } almost surely. Hence, p 1 is distributed as (n + 1) -1  1 + n  j=1 1{U j ≤ U n+1 }  = (n + 1) -1  1 + n  j=1 1  U (j) ≤ U n+1   ,
where

U (1) ≤ • • • ≤ U (n)
denotes the order statistics of (U 1 , . . . , U n ). Therefore, we have for all x ∈ [0, 1],

P(p 1 ≤ x | D cal ) = P  1 + n  j=1 1  U (j) ≤ U n+1  ≤ x(n + 1)   Dcal  = P  1 + n  j=1 1  U (j) ≤ U n+1  ≤ ⌊x(n + 1)⌋   Dcal  = P(U n+1 < U (⌊x(n+1)⌋) |D cal ) = U (⌊x(n+1)⌋) ,
which nishes the proof.

C.2 Proof of Proposition 2.2

If there are no tied scores, which by assumption (NoTies) happens with probability 1, the ranks R i of the ordered scores are well-dened and the vector (p 1 , . . . , p m ) is only a function of the rank vector (R 1 , . . . , R n+m ). Namely, R i ≤ R j if and only if S i ≤ S j , and the conformal p-values (1) can be written as

p i = (n + 1) -1  1 + n  j=1 1{R j ≥ R n+i }  , i ∈ JmK.
Now, by (Exch), the vector (R 1 , . . . , R n+m ) is uniformly distributed on the permutations of Jn+mK.

Any score distribution satisfying (NoTies) and (Exch) therefore gives rise to the same rank distribution, and thus the same joint p-value distribution. This joint distribution has been identied as ( 5)-( 6) from the result of Proposition 2.1 in the particular case of i.i.d. scores. (Thus the i.i.d. assumption turns out to be unnecessary for what concerns the joint, unconditional distribution of the p-values, but provides a convenient representation.)

C.3 Proof of Theorem A.1

Proof of (ii) By (Exch),(NoTies) the permutation that orders the scores (S 1 , . . . , S n+m ) that is σ such that

S () = (S σ(1) > • • • > S σ(n+m) ),
is uniformly distributed in the set of permutations of Jn + mK. In addition, σ is independent of the order statistics S () and we seek for identifying the distribution of (p 1 , . . . , p m ) conditionally on S () . Next, using again (Exch), we can assume without loss of generality that j 1 ≤ • • • ≤ j m when computing the probability in ( 27). Now, due to the denition (1), the event {(p 1 , . . . , p m ) = (j 1 /(n + 1), . . . , j m /(n + 1)} corresponds to a specic event on σ. Namely, by denoting (a 1 , . . . , a ℓ ) the vector of unique values of the set {j 1 , . . . , j m } with 1 ≤ a 1 < • • • < a ℓ ≤ n, and M k =  m i=1 1{j i = a k }, 1 ≤ k ≤ ℓ, the corresponding multiplicities, the above event corresponds to the situation

S σ(1) > • • • > S σ(a1-1)    a1-1 null scores > S σ(a1) > • • • > S σ(a1+M1-1)    M1 test scores in {Sn+1, . . . , S n+M 1 } > S σ(a1+M1) > • • • > S σ(a2+M1-1)    a2 -a1 null scores > S σ(a2+M1) > • • • > S σ1(a2+M1+M2-1)    M2 test scores in {S n+M 1 +1 , . . . , S n+M 1 +M 2 } > • • • S σ(a ℓ-1 +M1+•••+M ℓ-1 ) > • • • > S σ(a ℓ +M1+•••+M ℓ-1 -1)    a ℓ -a ℓ-1 null scores > S σ(a ℓ +M1+•••+M ℓ-1 ) > • • • > S σ(a ℓ +m-1)    M ℓ test scores in {S n+M 1 +•••+M ℓ-1 +1 , . . . , Sn+m} > S (a ℓ +m) > • • • > S (n+m)    n-a ℓ +1 null scores .
This event can be formally described as follows:

 ∀k ∈ JℓK : σ  {a ℓ + M 1 + • • • + M k-1 , . . . , a ℓ + M 1 + • • • + M k -1}  = {n + M 1 + • • • + M k-1 + 1, . . . , n + M 1 + • • • + M k }  .
Since σ is uniformly distributed in the set of permutations of Jn + mK, the probability of this event (conditionally on S ()

) is equal to n!   ℓ k=1 (M k !)  /(n + m)!, which yields (27).
Proof of (i) By using ( 27) of (ii), we have

P(p i+1 = j i+1 /(n + 1) | (p 1 , . . . , p i ) = (j 1 /(n + 1), . . . , j i /(n + 1))) = M (j 1 , . . . , j i+1 )! n! (n+i+1)! M (j 1 , . . . , j i )! n! (n+i)!
. Now, we have

M (j 1 , . . . , j i+1 )! = n+1  j=1  i+1  k=1 1{j k = j}  !  = n+1  j=1  i  k=1 1{j k = j} + 1{j i+1 = j}  !  = n+1  j=1  i  k=1 1{j k = j}  !  1 + 1{j i+1 = j} i  k=1 1{j k = j}  = M (j 1 , . . . , j i )!  1 + 1{j i+1 = j} i  k=1 1{j k = j}  .
This proves (26).

Proof of (iii) For all m = (m 1 , . . . , m n+1 ) ∈ J0, mK n+1 with m 1 + • • • + m n+1 = m, we have

P  M ((n + 1)p) = m  =  j∈Jn+1K m 1{M (j) = m}P  (n + 1)p = j  = m! n! (n + m)!  j∈Jn+1K m 1{M (j) = m} = m! n! (n + m)! m! m! = n!m! (n + m)! ,
where we have used (ii) and the multinomial coecient.

C.4 Proof of Theorem 2.4

First observe that the LHS of ( 9) is 0 if λ ≥ 1 so that we can assume λ < 1.

Let us prove (9) with the more complex bound

B DKWfull (λ, n, m) := n n + m e -2mλ 2 + m n + m e -2nλ 2 + C λ,n,m 2 √ 2πλnm (n + m) 3/2 e -2nm n+m λ 2 , (34) 
where C λ,n,m = P(N (λµ, σ 2 ) ∈ [0, λ]) < 1, for σ 2 = (4(n + m)) -1 and µ = n(n + m) -1 . Let us comment the expression (34) of B DKWfull (λ, n, m). As we can see, the role of n and m are symmetric (except in C λ,n,m , that we can always further upper-bound by 1), and the two rst terms are a convex combination of the usual DKW bounds for m and n i.i.d. variables, respectively. The third term is a "crossed" term between n and m, which becomes negligible if n ≫ m or n ≪ m but should be taken into account otherwise. Below, we establish

P  sup t∈[0,1]   F m (t) -I n (t)  > λ  ≤ B DKWfull (λ, n, m); ( 35 
) P  sup t∈[0,1]  - F m (t) + I n (t)  > λ  ≤ B DKWfull (λ, n, m); (36) 
P     F m -I n   ∞ > λ  ≤ 2B DKW (λ, n, m). (37) 
The result will be proved from (35) because B DKWfull (λ, n, m) ≤ B DKW (λ, n, m) since n ∨ m ≥ nm/(n + m) and C λ,n,m ≤ 1. The proof relies on Proposition 2.2 and the representation (6). Let U = (U 1 , . . . , U n ) i.i.d. ∼ U (0, 1), and denote

F U (x) = U (⌊(n+1)x⌋) , x ∈ [0, 1]. Conditionally on U , draw (q i (U ), i ∈ JmK) i.i.d. of common c.d.f. F U and let  G m (t) = m -1 m  i=1 1{q i (U ) ≤ t}, t ∈ [0, 1],
the empirical c.d.f. of (q i (U ), i ∈ JmK). By Proposition 2.2, we have that  F m has the same distribution as  G m (unconditionally on U ), so that for any xed n, m ≥ 1 and λ > 0,

P  sup t∈[0,1]   F m (t) -I n (t)  > λ  = E  P  sup t∈[0,1]   G m (t) -I n (t)  > λ    U   . ( 38 
)
We now prove the bound (35) (the proof for (36) is analogous). Denote

Z = sup t∈[0,1]  F U (t) - I n (t)  ∈ [0, 1].
We write by ( 38) and the triangle inequality

P  sup t∈[0,1]   F m (t) -I n (t)  > λ  ≤ E  P  sup t∈[0,1] (  F m (t) -F U (t)) + Z > λ    U   ≤ E  P  sup t∈[0,1] (  F m (t) -F U (t)) ≥  λ -Z  +    U   ≤ E  e -2m(λ-Z) 2 +  .
The last inequality above is the DKW inequality [START_REF] Massart | The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality[END_REF] applied to control the inner conditional probability, since conditionally to U ,  F m is the e.c.d.f. of (q i (U ), ∈ JmK), which are i.i.d. ∼ F U ; and Z conditional to U is a constant. Now the last bound can be rewritten as

 1 0 P  e -2m(λ-Z) 2 + > v  dv = e -2mλ 2 +  1 e -2mλ 2 P  (λ -Z) + <  log(1/v)/(2m)  dv = e -2mλ 2 +  1 e -2mλ 2 P  λ -Z <  log(1/v)/(2m)  dv = e -2mλ 2 +  1 e -2mλ 2 P  Z >  λ -  log(1/v)/(2m)   dv. (39) 
To upper bound the integrand above, denote  H n the ecdf of (U 1 , . . . , U n ); it holds for any x ∈ [0, 1]:

P(Z > x) = P  sup t∈[0,1]  U (⌊(n+1)t⌋) -⌊(n + 1)t⌋/(n + 1)  > x  = P  ∃k ∈ JnK : U (k) > x + k/(n + 1)  = P  ∃k ∈ JnK : n  i=1 1{U i ≤ x + k/(n + 1)} ≤ k -1  = P  ∃k ∈ JnK :  H n  x + k/(n + 1)  -[x + k/(n + 1)] ≤ (k -1)/n -[x + k/(n + 1)]  . ≤ P  ∃k ∈ JnK :  H n  x + k/(n + 1)  -[x + k/(n + 1)] ≤ -x  ≤ e -2nx 2 ,
where we used (k -1)/n ≤ k/(n + 1) in the rst inequality, and the left-tail DKW inequality for the last one. Plugging this into (39) yields

 1 0 P(e -2m(λ-Z) 2 + > v)dv ≤ e -2mλ 2 +  1 e -2mλ 2 e -2n(λ- √ log(1/v)/(2m)) 2 dv. Now letting u =  log(1/v)/(2m) (hence v = e -2mu 2 , dv = -4mue -2mu 2 du), we obtain P  sup t∈[0,1]   F m (t) -I n (t)  > λ  ≤ e -2mλ 2 + 4m  λ 0 ue -2n(λ-u) 2 e -2mu 2 du. Now, by denoting σ 2 =  4(n + m)  -1 and µ = n(n + m) -1 , we get e 2nm n+m λ 2  λ 0 ue -2n(λ-u) 2 e -2mu 2 du =  λ 0 ue -2(n+m)(u-nλ n+m ) 2 du =  λ 0 ue -1 2σ 2 (u-λµ) 2 du =  λ 0 (u -λµ)e -1 2σ 2 (u-λµ) 2 du +  λ 0 λµe -1 2σ 2 (u-λµ) 2 du = σ 2 e -2λ 2 n 2 m+n -σ 2 e -2λ 2 m 2 m+n + λµ √ 2πσC λ,n,m .
where

C λ,n,m = P  N (λµ, σ 2 ) ∈ [0, λ]  . Hence,  λ 0 ue -2n(λ-u) 2 e -2mu 2 du = e -2nm n+m λ 2  σ 2 e -2λ 2 n 2 m+n -σ 2 e -2λ 2 m 2 m+n + λµ √ 2πσC λ,n,m  = σ 2 e -2nλ 2 -σ 2 e -2mλ 2 + λµ √ 2πσC λ,n,m e -2nm n+m λ 2 .
This leads to e -2mλ 2 + 4m

 λ 0 ue -2n(λ-u) 2 e -2mu 2 du = n n + m e -2mλ 2 + m n + m e -2nλ 2 + λ √ 2π nm (n + m) 3/2 2C λ,n,m e -2nm n+m λ 2 ,
which nishes the proof of (35).

Finally, let us prove B DKW (λ DKW δ,n,m , n, m) ≤ δ for λ DKW δ,n,m = Ψ (r) (1) where Ψ (r) denotes the function Ψ iterated r times (for an arbitrary integer r ≥ 1), where r) (1) = 1 for all r and the announced claim holds since B DKW (1, n, m) = 0 by denition. We therefore assume Ψ(1) < 1 from now on. Since Ψ is non-decreasing, by an immediate recursion we have Ψ (r+1) (1) ≤ Ψ (r) (1) < 1, for all integers r.

Ψ(x) = 1 ∧  Ψ(x);  Ψ(x) :=  log(1/δ) + log  1 + √ 2π 2τn,mx (n+m) 1/2  2τ n,m 1/2 . If Ψ(1) = 1, then Ψ (
On the other hand, note that for any x ∈ (0, 1) satisfying

Ψ(x) ≤ x < 1, it holds Ψ(x) =  Ψ(x) and thus B DKW (Ψ(x), n, m) =  1 + 2 √ 2πΨ(x)τ n,m (n + m) 1/2  1 + 2 √ 2πxτ n,m (n + m) 1/2  -1 δ ≤ δ.
Since we established that x = Ψ (r) (1) satises Ψ(x) ≤ x for any integer r the claim follows.

D Explicit control of (16) for α = 0 By applying (31) with k = 0, the control (16) for α = 0 is satised by choosing

t 0,δ = max  k/(n + 1) : (n -k + 1) . . . (n -k + m) (n + 1) . . . (n + m) ≥ 1 -δ, k ∈ Jn + 1K
 .

E Proof of Corollary 4.1

Let m 0 = |H 0 |. We establish the following more general result. 

m 0 ≤ max  r ∈ JmK : inf t   m i=1 1{p i > t} + rλ DKW δ,n,r 1 -I n (t)  ≥ r  . (41) 
Lemma E.1 implies Corollary 4.1 because if m0 is as in ( 25), with probability at least 1δ, m0 ≥ m 0 by (41), and by ( 40)

∀t ∈ (0, 1), FDP(R(t)) ≤ min r∈J m0,mK  rI n (t) + rλ DKW δ,n,r  1 ∨ |R(t)| ≤ m0 I n (t) + m0 λ DKW δ,n, m0 1 ∨ |R(t)| .
Now, let us prove Lemma E.1. First, in the work of [START_REF] Marandon | Machine learning meets false discovery rate[END_REF], it is proved that (S 1 , . . . , S n , S n+i , i ∈ H 0 ) is exchangeable conditionally on (S n+i , i ∈ H 1 ) (see Lemma 3.2 therein). Hence, the vector (S 1 , . . . , S n , S n+i , i ∈ H 0 ), of size n + m 0 , and the p-value vector (p i , i ∈ H 0 ), of size m 0 , fall into the setting described in Section 2.1 with calibration scores being (S i ) i∈JnK and test scores being (S n+i ) i∈H0 . By Proposition 2.2, this means (p i , i ∈ H 0 ) ∼ P n,m0 .

Second, for m0 dened as in the statement, let  F m0 (t) = ( m0 ) -1  m0 i=1 1{q i ≤ t}, t ∈ [0, 1], with (q 1 , . . . , q m0 ) ∼ P n, m0 and (q i , i ∈ Jm 0 K) = (p i , i ∈ H 0 ) (this construction is possible because the restriction of P n, m0 to the m 0 rst coordinates is the distribution P n,m0 thanks to Theorem A.1 (i)) and consider the event Let us now turn to prove (41) on Ω. For this, let us observe that on this event, we have for all t ∈ (0, 1),

m  i=1 1{p i > t} ≥ m0  i=1 1{q i > t} = m0 (1 - F m0 (t)) ≥ m0 (1 -I n (t)) -m0 λ DKW δ,n, m0
Hence, m0 is an integer r ∈ JmK such that inf t   m i=1 1{pi>t}+rλ DKW δ,n,r 1-In(t)  ≥ r, which gives (41).

F The Simes inequality

As proved in [START_REF] Marandon | Machine learning meets false discovery rate[END_REF], and since the joint distribution of the conformal p-values does not change from one context to another (Proposition 2.2), the conformal p-values are positively regressively dependent on each one of a subset (PRDS) under (Exch) and (NoTies), see [START_REF] Benjamini | The control of the false discovery rate in multiple testing under dependency[END_REF] for a formal denition of the latter. Hence, by [START_REF] Benjamini | The control of the false discovery rate in multiple testing under dependency[END_REF], the Simes inequality [START_REF] Simes | An improved Bonferroni procedure for multiple tests of signicance[END_REF] is valid, that is, for all λ > 0, we have

P  sup t∈(0,1] (  F m (t)/t) ≥ λ  ≤ 1/λ. ( 43 
)
This envelope can be applied in the two applications of the paper as follows:

(PI) Under the condition of Corollary 3.1, the bound G Uniform FDP bound for AdaDetect

AdaDetect [START_REF] Marandon | Machine learning meets false discovery rate[END_REF] is obtained by applying the Benjamini-Hochberg (BH) procedure [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF] kα ∨ 1

 1  kα > 0  , ( 50 
)
where kα is the rejection number (48) of AD α and m0 satises (25).

In addition, we consider FDP Simes α,δ := m0 α mδ 1

 kα > 0  , (51) 
for any estimator m0 given by (47).

H Additional experiments

In this section, we provide experiments to illustrate the FDP condence bounds for AdaDetect, as mentioned in Remark 4.2 and Section G.

The two procedures used are of the AdaDetect type (48) but with two dierent score functions: the Random Forest classier from [START_REF] Marandon | Machine learning meets false discovery rate[END_REF] (adaptive score), and the one class classier Isolation Forest as in Bates et al., 2023 (non adaptive score). The hyperparameters of these two machine learning algorithms are those given by [START_REF] Marandon | Machine learning meets FDR[END_REF].

The FDP and the corresponding bounds are computed for the two procedures. The true discovery proportion is dened by

TDP(R) = |R ∩ H 1 | |H 1 | ∨ 1 , (52) 
where H 1 = JmK \ H 0 ; this criterion will be considered in addition to the FDP to evaluate the detection power of the procedures. Following the numerical experiments of [START_REF] Marandon | Machine learning meets false discovery rate[END_REF] and [START_REF] Bates | Testing for outliers with conformal p-values[END_REF], we consider the three dierent real data from OpenML dataset [START_REF] Vanschoren | Openml: networked science in machine learning[END_REF] given in Table 1.

The results are displayed in Figure 6 for comparison of adaptive versus non-adaptive scores for the dierent FDP condence bounds and the TDP. On Figure 7, we focus on the adaptive scores and corresponding FDP bounds only; we compare the eect (on the bounds) of demanding a more conservative error guarantee (δ = 0.05 versus δ = 0.2), as well as the eect of estimating m 0 via (25) instead of just using the inequality (24) with m0 = m.

The high-level conclusions are the following:

Figure 2 :

 2 Figure 2: Plot of FCP(I) (15) (dashed) and bound FCP DKW α(L),δ (21) (18) (solid, δ = 0.2) in function of interval length 2L in the same setting and procedures as in Figure 1.

Figure 3 :

 3 Figure 3: Plot of FDP(R(t)) (22)(23) (dashed) and bound FDP DKW t,δ (24) (solid, δ = 0.2) in function of the threshold t for R(t) (23) with a score obtained either with a one-class classication (non-adaptive) or a two-class classication (adaptive).

  Figure 4: Illustration of the sequential realization of P n,m as proved in Theorem A.1 (ii) for n = 5 and m = 6.

  2.4 and the explicit bound (10), we haveP(Ω) ≥ 1δ. Next, |R(t) ∩ H 0 | = m 0  F m0 (t) ≤ m0  F m0 (t), which is at most m0 I n (t) + m0 λ DKW δ,n, m0 on Ω. This gives (40) because m0 I n (t) + m0 λ DKW δ,n, m0 1 ∨ |R(t)| = m0 I n (t) + min r∈J m0,mK  rλ DKW δ,n,r  1 ∨ |R(t)| = min r∈J m0,mK  rI n (t) + rλ DKW δ,n,r  1 ∨ |R(t)| .

  : TwoClass (This work) FDP(R(t)) : TwoClass (Adaptive score) FDP DKW t,δ : OneClass FDP(R(t)) : OneClass (No-Adaptive score)

Figure 5 :

 5 Figure 5: Same as Figure 3 with in addition Simes bound FDP Simes t,δ (46) (transparent dashed, δ = 0.2).

  the condition of Corollary 4.1 the following control is valid P  ∀t ∈ (0, 1), FDP(R(t)) ≤ FDP Simes

  to the conformal p-values, that is, AD α := R(α kα /mthere to control the false discovery rate (FDR), dened as the mean of the FDP:FDR(AD α ) := E[FDP(AD α )] ≤ αm 0 /m. (49)Applying Corollary 24, we obtain on the top of the in-expectation guarantee (49) the following uniform FDP bound for AD α : with probability at least 1δ, we have ∀α ∈ (0, 1), FDP(AD α ) ≤ FDP DKW

  and its popularity is nowadays increasing in large scale machine learning theory, see[START_REF] Bates | Testing for outliers with conformal p-values[END_REF]; Following[START_REF] Bates | Testing for outliers with conformal p-values[END_REF];[START_REF] Marandon | Machine learning meets false discovery rate[END_REF], we assume that scores are computed as follows:1. Split the null sample D null into D train and D cal = (X i , i ∈ JnK) for some chosen n ∈ (1, n 0 ); 2. Compute novelty scores S i = g(X i ), i ∈ Jn + mK, for some score function g : R d → R (discussed below);3. Compute conformal p-values as in (1).In the work of Bates et al. (2023), the score function is built from D train only, using a one-class classication method (classier solely based on null examples), which makes the scores independent conditional to D train . The follow-up work Marandon et al. (2022) considers a score function depending both on D train and D cal ∪D test (in a permutation-invariant way of the sample D cal ∪D test ), which allows to use a two-class classication method including test examples. Doing so, the scores are adaptive to the form of the novelties present in the test sample, which signicantly improves novelty detection (in a nutshell: it is much easier to detect an object when we have some examples of it). While the independence of the scores is lost, an appropriate exchangeability property is maintained so that we can apply our theory in that case, by assuming in addition (NoTies).

[START_REF] Marandon | Machine learning meets false discovery rate[END_REF]

;

[START_REF] Candès | Model-free selective inference under covariate shift via weighted conformal p-values[END_REF]

;

[START_REF] Bashari | Derandomized novelty detection with FDR control via conformal E-values[END_REF]

, among others. The main advantage of FDP(R) is that the number of errors |R ∩ H 0 | is rescaled by the number of declared novelties |R|, which makes it scale invariant with respect to the size m of the test sample, so that novelty detection can still be possible in large scale setting.

4.2 Adaptive scores

  obtained with isolation forest oneclass classier; and the adaptive scores of[START_REF] Marandon | Machine learning meets false discovery rate[END_REF] obtained with random forest two-class classier. While the advantage of considering adaptive scores is clear (smaller FDP and bound) , it illustrates that the bound is correct simultaneously on t. Additional experiments are provided in Appendix H.

  Lemma E.1. Let m0 achieving min r∈Jm0,mK

				
	both	rλ DKW δ,n,r	. With probability at least 1 -δ, we have
				
	∀t ∈ (0, 1), FDP(R(t)) ≤	min r∈J m0,mK 1 ∨ |R(t)| rI n (t) + rλ DKW δ,n,r	;	(40)

Python code for (PI) based on implementation of[START_REF] Boyer | Tutorial on conformal prediction[END_REF].

The Python code uses the implementation of the procedure AdaDetect of[START_REF] Marandon | Machine learning meets FDR[END_REF].
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• using adaptive scores rather that non-adaptive ones results in a performance improvement (better true discovery proportion for the same target FDR level)

• for small target FDR level α, the Simes upper bounds FDP Simes α,δ are sharper than the DKW bound, elsewhere the new DKW bound is sharper than Simes. Furthermore, the relevant region for the Simes bound having the advantage becomes all the more tenuous as the error guarantee for the bound becomes more stringent (smaller δ). The reason is that the Simes upper bound is linear in δ -1 , while the DKW is only (square root) logarithmic.

• estimating the estimator m0 from ( 25