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The heat transport by rapidly-rotating Rayleigh-Bénard convection is of fundamental importance
to many geophysical flows. Laboratory measurements are impeded by robust wall modes which
develop along vertical walls, significantly perturbing the heat flux. We show that narrow horizontal
fins along the vertical walls efficiently suppress wall modes ensuring that their contribution to the
global heat flux is negligible compared with bulk convection in the geostrophic regime, thereby paving
the way for new experimental studies of geophysically relevant regimes of rotating convection.

Geostrophic turbulence is of fundamental importance
to rapidly rotating flows satisfying geostrophic balance.
This state can be realized in laboratory experiments usu-
ally performed in tall (to reach high Rayleigh numbers)
and thin (to reduce the Froude number measuring cen-
trifugal effects) cylinders [1–5]. These experiments are
plagued by the presence of robust wall modes localized at
vertical boundaries [6–9]. In thin cylinders these modes
contaminate bulk heat flux measurements [10–15] de-
grading the ability to study geostrophic turbulence in
the laboratory.

The shape and roughness of the solid boundary are
often used in fluid mechanics [16] to control or delay
(resp. favor) undesirable (resp. desirable) bifurcations,
e.g. in Taylor-Couette flows [17–19] or Rayleigh-Bénard
convection [20–23]. Unfortunately, wall modes cannot be
eliminated by inserting vertical barriers into the flow [9],
a property reminiscent of topologically-protected edge
states [24–27]. In the present work we show that this
is not the case for horizontal barriers. Our detailed re-
sults indicate that the insertion of narrow horizontal fins
along the lateral boundary provides efficient wall mode
suppression, thereby enabling laboratory studies of a key
geophysical process.

We consider an incompressible fluid with constant
kinematic viscosity ν and thermal diffusivity κ inside a
rectangular box of dimension Lx × Ly ×H, heated from
below and cooled from above. The temperatures at the
bottom and top are fixed and the vertical walls perpen-
dicular to the x-axis are thermally insulating; all walls are
impenetrable and no-slip. The domain is periodic in the
y (or azimuthal) direction and the system rotates around
the z-axis at a constant rate Ω = Ωez. Gravity is down-
ward, g = −gez. Laboratory experiments employing
liquids are well described by the Boussinesq approxima-
tion with constant density except in the buoyancy term.
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FIG. 1. Transverse section of the domain in the (x, z)-plane,
focusing on one side of the domain. All boundaries are no-
slip with periodic boundary conditions in the y direction. (a)
Imposed temperature barrier: all vertical boundaries are ther-
mally insulating with imposed temperatures on the two hor-
izontal boundaries equal to those in the equilibrium back-
ground. (b) Conducting barrier: the exterior vertical bound-
ary is insulated but heat can diffuse through the barrier with
the same diffusivity as in the liquid.

Using 1/(2Ω) as the unit of time and the depth H as the
unit of length, the dimensionless equations are:

∂u

∂t
+ u · ∇u =−∇p− ez×u +

RaE2

Pr
Tez+E∇2u (1)

∇ · u = 0 (2)

∂T

∂t
+ u · ∇T =

E

Pr
∇2T, (3)

where u is the velocity, T the temperature and p the pres-
sure. Centrifugal effects are neglected [28]. The system
is characterized by three dimensionless parameters: the
Rayleigh number Ra = αg∆TH3/(νκ), the Ekman num-
ber E = ν/(2ΩH2) and the Prandtl number Pr = ν/κ.
Here α is the thermal expansion coefficient and ∆T is
the imposed temperature difference across the layer. In
the following we set Pr = 1.

We enrich this otherwise classical problem by introduc-
ing identical horizontal barriers or fins along both vertical
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walls. These barriers are invariant in the y direction and
of rectangular cross-section with horizontal width ε and
vertical extent h centered on the midheight z = 1/2. See
Fig. 1.

We consider two types of boundary conditions on this
obstacle. In the first case, the vertical side is insulating
while the horizontal sides are maintained at fixed tem-
peratures equal to those in the local equilibrium profile
T (z)=1−z. For a barrier of height h centered on z=1/2,
the imposed temperature is T = (1−h)/2 at the upper
surface and T =(1+h)/2 at the lower surface [Fig. 1(a)].
While unrealistic from an experimental point of view, this
is a well-posed problem that prevents the development
of baroclinic flows around the intrusion (which would de-
velop for a fully insulating barrier) and provides a consis-
tent stable equilibrium around which perturbations can
be studied. The second type of barrier conducts heat
and we impose an insulating boundary condition on the
original sidewall [Fig. 1(b)]. To prevent the emergence
of baroclinic flows, we assume that the thermal diffusiv-
ity inside of the barrier is the same as that of the fluid
flowing around it. The presence of baroclinic flows com-
plicates the analysis in either case but does not lead to
a qualitative change in our conclusions [29]. The simple
question we ask here is the following: for which values of
h and ε are wall modes suppressed for given E and Ra?

We solve Eqs. (1)-(3) using the spectral-element code
Nek5000[30] [31]. The mesh is composed of up to 17280
hexahedral elements and we use a polynomial order up
to N = 13 including dealiasing. The mesh is refined
close to the horizontal (resp. vertical) boundaries of the
domain in order to properly resolve Ekman layers (resp.
wall modes). Numerical convergence of the results has
been checked by gradually increasing the polynomial or-
der for a given number of elements. The equations are
solved as an initial value problem, even though some of
our results concern the exponential growth rate of per-
turbations. This approach is appropriate for complex
domains such as ours given that the same procedure al-
lows us to study the nonlinear and indeed turbulent state
of the system.

We first fix the Ekman number at E = 10−4, a small
enough value to clearly isolate wall modes from regu-
lar bulk convection. The Rayleigh number is fixed to
twice the critical value for the onset of wall modes,
Ra=6.8×105≈2Rawall

c where Rawall
c is the critical Ra at

which wall modes first set in [32, 33]. The period in the
y direction is chosen to be twice the most unstable wave-
length predicted by linear theory for the case without a
barrier, a trade-off between accuracy and numerical cost.
We have checked that increasing Lx did not significantly
affect the estimated growth rate. The distance between
the two lateral walls is chosen to be approximately 20
times the typical width of the wall modes [32], ensuring
that the two wall modes on either side do not interact.
Our simulation parameters are summarized in [29].

For a given barrier shape defined by h and ε, we start
the simulation from rest, adding an infinitesimal pertur-
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FIG. 2. (a) Critical barrier width εc as a function of its height
h for E = 10−4 and Ra = 2Rawall

c ≈ 6.8 × 105. The bottom
row shows side visualizations of the temperature field for (b)
the case without barrier, (c) h = 0.2 and ε = 0.02 and (d)
h = 0.2 and ε = 0.04. All three cases are indicated using
arrows in (a).

bation to the otherwise linear temperature background.
After a short transient, the kinetic energy grows expo-
nentially in time and we measure the associated growth
rate. We systematically check that the growing mode
does indeed correspond to a wall mode attached to each
sidewall. The simulations are repeated for many values
of h and ε in order to find the critical curve separating
growing from decaying solutions. The results are shown
in Fig. 2 for both barrier types. In both cases, we find
that wall modes can be stabilized for large enough ε. The
only exception is provided by very tall barriers, h → 1,
for which wall modes actually develop along the barrier
wall instead of the outer boundary of the domain. In-
terestingly, for both types of boundary conditions, the
critical width εc necessary to suppress wall modes tends
to a constant when h→ 0.

To simplify the system further, we consider an in-
finitely thin barrier h=0. This is achieved numerically by
imposing internal boundary conditions between spectral
elements within the fluid domain. In all cases we imposed
a no-slip boundary condition on this internal boundary.
For the temperature, we required the temperature to be
equal to the local equilibrium temperature T (z) = 1−z,
or imposed continuity of the temperature and its deriva-
tives as for any other internal spectral element, thereby
modeling a thermally conducting barrier. Following the
same approach as previously, we found that the critical
width of the barrier maintained at fixed temperature is
εc≈0.047, a result consistent with the limit observed for
finite barriers (empty square in Fig. 2), while for the con-
ducting barrier εc≈0.075 (empty circle), again consistent
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FIG. 3. Critical barrier width εc as a function of E for in-
finitely thin fixed-temperature or conducting barriers. The
Rayleigh number is fixed at twice its onset value, which itself
depends on E. The red diamond indicates the regime con-
sidered for the experimentally relevant simulations shown in
Fig. 6.

with the corresponding result for a finite barrier. Thus
the barrier height h is a secondary parameter and it is
the barrier width ε that is key to suppressing the wall
modes.

Let us now discuss the effect of the two main con-
trol parameters of the problem, namely E and Ra, for
an infinitely thin and conducting barrier. We systemati-
cally vary the Ekman number while keeping the Rayleigh
number equal to twice its critical value (which itself de-
pends on E, thus keeping the supercriticality of the sys-
tem fixed). For each Ekman number, we vary the barrier
width ε and measure the growth rate in order to approxi-
mate its critical value εc. The results are shown in Fig. 3,
where we find that the barrier width required to stabi-
lize wall modes follows a E1/3 scaling for both types of
temperature boundary conditions, with a prefactor that
is slightly larger for the conducting barrier, as already
found for E = 10−4. The E1/3 scaling is consistent with
the wall mode width at onset [32].

Increasing the Rayleigh number leads to more surpris-
ing results. For a conducting barrier of width ε = 0.2
at E = 10−4 the wall modes are suppressed when Ra =
2Rawall

c (Fig. 4). However, the growth rate increases with
Ra so that the wall mode starts to grow at a larger value
of Ra, which happens at Ra ≈ 4Rawall

c . Thus the inclu-
sion of the barrier alters the linear stability of the wall
mode by increasing its critical Rayleigh number. Note
that to avoid any potential effect of the barrier width on
these results, we have used an unnecessarily wide barrier
with ε = 0.2. Once the Rayleigh number passes beyond
the secondary transition at Ra ≈ 4Rac, the growing wall
mode cannot be suppressed by a further increase in ε.
This is because the wall mode develops on both sides of
the barrier (see the insets in Fig. 4), so that ε becomes
irrelevant. This observation leads to the derivation of a
simple model explaining why the wall mode reappears
once the Rayleigh number is four times critical. The
regions above and below the barrier are controlled by
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the exponential growth phase.
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FIG. 5. Effective Rayleigh number Rae versus the effec-
tive Ekman number Ee. The symbols indicate the num-
ber of barriers starting from N = 0 where Rae = Ra and
Ee = E. Filled (empty) symbols indicate growing (decaying)
wall modes. The thick red line is the critical curve for the
onset of wall modes predicted by linear theory [33] while the
thin grey lines show the Rae ∼ E−2

e scaling.

different effective parameters than the bulk: the effec-
tive height is reduced by a factor 2 and so is the effective
temperature drop. The effective Rayleigh number is thus
decreased by a factor 16 while the effective Ekman num-
ber is increased by a factor 4. Since the critical Rayleigh
number for the wall modes follows a E−1 scaling [32, 34],
this means that the effective critical number of the two
wall modes developing on either side of the barrier is now
increased by a factor 4, as found in Fig. 4.

One possible solution to the emergence of secondary
wall modes as Ra increases is to add more barriers. As-
suming that barriers are distributed uniformly along the
vertical wall, i.e., that the N barriers are located at
zi = i/(N + 1) with i = 1, . . . , N , we can derive a simple
model to predict the minimum number of barriers nec-
essary to stabilize the modes for a given set of (E,Ra).
The effective Ekman and Rayleigh numbers for the gap
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FIG. 6. (a) Nusselt number as a function of the number N of barriers for Ra = 3 × 109 and E = 10−6. The horizontal line
indicates the Nusselt number in the periodic case (the shaded area indicates the 95% confidence interval). (b) Heat flux at
z = 1 averaged over y and time as a function of the normalized distance from the wall. The vertical line indicates the barrier
width. (c) Vertical velocity in the (x, y) plane at z = 1/2 for the periodic case (left), with vertical walls but no barriers (middle)
and with two barriers (right). The same color scale is used in all cases. Black dashed lines indicate periodic boundaries while
continuous black lines correspond to rigid walls; the white dashed lines in the interior of the domain show the barrier width.
The domain size is Lx = 0.3 and Ly = 1.1 [29].

between barriers, with d the distance between two suc-
cessive barriers and N the number of barriers are

Ee =Ed−2 =E(N+1)2, Rae =Rad4 =Ra(N+1)−4. (4)

Thus as more barriers are introduced, Rae ∼ E−2e . In
order to confirm this simple model, we consider various
pairs of control parameters (, Ra). For each case, we
ran simulations with a variable number of barriers and
fixed ε = 0.2. The results are shown in Fig. 5 where
full (empty) symbols indicate growing (decaying) wall
modes. The wall modes disappear when the number of
barriers is sufficient to push the effective control param-
eters (Ee, Rae) below the critical curve. Evidently, for
E = 10−4, Ra= 6×105 one barrier is enough, while for
E = 4×10−6, Ra = 108 three barriers are necessary in
order for each gap to be subcritical.

We now assess the ability of the barriers to damp
the wall modes in a fully turbulent environment by re-
ducing the Ekman number to E = 10−6 while fixing
Ra = 3 × 109 ≈ 4Rabulkc , where Rabulkc is the criti-
cal Rayleigh number for bulk convection [35]. This is
much closer to the regime relevant to most experimental
settings [13, 14]. Three types of simulations were per-
formed. In the first periodic boundary conditions were
used in both lateral directions to reproduce the geophysi-
cal configuration with no walls. The second was a simple
channel with sidewalls but no barriers to replicate the
experimental configuration. The third included different
numbers of barriers. In order to ensure that the barri-
ers were wide enough to affect the wall modes, we chose
ε = 0.025 (red diamond in Fig. 3), which is well above
the critical value εc. We ran each simulation until a sta-
tistically stationary state was reached and computed the
Nusselt number by time-averaging the heat flux across
the top boundary, typically over 104 rotation periods or
more than 500 free-fall times for our parameters.

The Nusselt number in the confined domain with
no barriers is 54% higher than in the periodic domain
[Fig. 6(a)], illustrating the dramatic effect of the pres-
ence of the wall modes. Note that the homogeneous flux
is not even recovered in the bulk of the domain [see the
averaged heat flux as a function of the distance from
the wall in Fig. 6(b)]. When a single barrier is added,
the heat flux decreases drastically, but the Nusselt num-
ber for the periodic case is only recovered with two or
more barriers. In fact the Nusselt number falls below
the periodic case by approximately 7%, likely a result of
the invasive nature of the barrier, although the homo-
geneous heat flux is recovered far enough from the wall
[Fig. 6(b)]. This slight decrease in the total heat flux
is smaller than the horizontal surface ratio occupied by
the two barriers (2ε/Lx ≈ 17%) and should decrease as
the Ekman number decreases and the wall modes become
thinner. While the wall modes are clearly visible in the
middle panel of Fig. 6(c), the right panel corresponding
to the case with two conducting barriers is virtually in-
distinguishable from the left panel showing the reference
homogeneous case. Further details are provided in the
Supplemental Material [29] where it is shown that the
boundary zonal flow is also stabilized while the turbu-
lent fluctuations in the bulk of the homogeneous case are
recovered with two or more barriers. It is of interest that
our simple estimate predicts that 8 barriers are required
to fully stabilize the wall mode while only two are neces-
sary to recover the effective heat flux in the bulk state,
indicating that two barriers reduce the supercriticality of
the wall modes sufficiently to render their contribution to
the total heat flux negligible even though the wall modes
are still presumably present.

We have shown that the dominant effect of wall modes
on convective heat transport in rotating convection ex-
periments can be eliminated by the introduction of one
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or more thin horizontal fins along the lateral boundary,
of order E1/3 in width and hence much smaller than the
domain radius. This recipe is experimentally realizable
and will potentially allow existing and future experiments
to realize the state of homogeneous geostrophic turbu-
lence even in the presence of lateral confinement. Exten-
sive modeling for the proposed experimental parameters
along the lines presented here will optimize the required
number of barriers and assess the role of the Prandtl
number.
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