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Highlight

Jasmonate dually impacts osmotic and ionic components of salt stress in rice. Jasmonate is
required for abscisic acid-mediated water deprivation responses, but inhibits Na* retention in

roots, promoting leaf damage.

Abstract

Plant responses to salt exposure involve large reconfiguration of hormonal pathways that
orchestrate physiological changes towards tolerance. Jasmonate (JA) hormones are €ssential to
withstand biotic and abiotic assaults, but their roles in'salt tolerance remain unclear. Here we
describe the dynamics of JA metabolism and signaling in root and leaf of rice, a plant species
that is highly exposed and sensitive to salt. Roots activate the JA pathway in an early pulse,
while 2" leaf displays a biphasic JA response with peaks at 1 hour and 3 days post-exposure.
Based on higher salt tolerance of a rice JA-deficient mutant (aoc), we examined through kinetic
transcriptome and physiological analysis the salt-triggered processes that are under JA control.
Profound genotype-differential features emerged that could underlie observed phenotypes.
ABA content and ABA-dependent water deprivation responses were impaired in aoc shoots.
Moreover, aoc accumulated more Na* in roots, and less in leaf, with reduced ion translocation
correlating with root derepression. of the HAK4 Na' transporter. Distinct reactive oxygen
species scavengers were also’ stronger in aoc leaf, along with reduced senescence and
chlorophyll catabolism markers. Collectively, the data identify contrasted contributions of JA

signaling to different sectors of the salt stress response in rice.

Keywords: jasmonate, rice, salt stress, signaling, tolerance, transcriptome
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1. INTRODUCTION

Upcoming global climate perturbations are imposing more frequent stressful conditions to
plants, including flood, drought, or extreme temperatures episodes. Soil salinization adds as an
increasing limiting factor to crop productivity in coastal agricultural areas, causing growth
retardation and yield losses. Rice (Oryza sativa), the major staple food crop for more than half
of the world’s population, is particularly exposed to stress and due to its uppermost importance
for food security, has been established as a model species for monocotyledonous and cereal
plants. As a semi-aquatic species partly cultivated in lowland, rice is increasingly exposed to
salt contaminated water, urging the need to breed and disseminate more salt tolerant varieties.
The physiological responses of rice to salt have been extensively analyzed and reviewed, based
on the study of a wide variety of sensitive and tolerant cultivars and wild relatives (Ponce et al.,

2021, van Zelm et al., 2020).

Salt uptake and sensing by plant roots triggers rapid osmotic stress due to a reduction in water
potential, followed by a slower ionic stress phase due to sodium toxicity in tissues (Yang and
Guo, 2018). Early salt-induced responses include phospholipid signaling at the plasma
membrane, initiation of specific calcium. waves decoded by calcium-binding proteins and
kinases followed by sodium channels activation like NHX7 involved in export of Na* out of
the cell (van Zelm et al., 2020). Salt stress rapidly induces reactive oxygen species (ROS) in
the apoplast through the activation of respiratory burst oxidase homologs (Rbohs) and ROS act
together with Ca®* signaling toaffect cellular pH and ion homeostasis (Hasanuzzaman et al.,
2021). Ion distribution is orchestrated by multiple families of transporters whose members
localize distinctly on the plasma membrane or endomembranes in cell specific patterns (Saddhe
et al., 2021) to exclude or sequester Na* ions. Continuous Na™ uptake perturbs K™ homeostasis,
nutrient acquisition and compromises efficiency of cellular processes including photosynthesis,
while inducing cell wall modifications (Liu et al., 2021) and starch metabolism (Thalmann and

Santelia, 2017).

Immediate salt responses further transduce into the complex reconfiguration of hormone
metabolism and signaling programs (Yu et al., 2020). Abscisic acid (ABA) is the dominant
hormone that governs cellular and metabolic responses to drought or salt exposure (Sah et al.,
2016, Vishwakarma et al., 2017). By promoting rapidly stomatal closure, ABA reduces

evapotranspiration and controls overall water transport, in addition to modulating the
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expression of arrays of genes involved in the adaptation response, including starch degrading
enzymes (Thalmann and Santelia, 2017). Additionally, salt triggers a decrease in osmotic
pressure and water loss, that is mostly compensated by the ABA-dependent accumulation of
various osmolytes such as amino acids or sugar alcohols, and the induction of water deprivation

responses.

More recent evidence indicates that several other plant hormones, acting in complex synergistic
or antagonistic signaling cross-talks, impact salt responses and tolerance (Choudhary et al.,
2021, Yuet al., 2020). Jasmonates (JAs) act as essential mediators of defense programs to biotic
attacks (Heitz, 2021), but have also been associated with responses to various forms of abiotic
stress (Kazan, 2015). In the case of salt tolerance, contrasting results and conclusions have been
reported using different experimental setups or plant species, so that JA functions under salt
stress are still debated (Delgado et al., 2021, Riemann ef al., 2015). External treatments with
JA were shown to attenuate salt-induced damage in some species like wheat (Qiu et al., 2014)
or barley (Walia et al., 2007), but in Arabidopsis, salt triggers JA-mediated root growth
inhibition (Valenzuela et al., 2016) and external methyl-JA supply aggravates salt-triggered
growth inhibition and senescence (Chen et al., 2017). Furthermore, in tomato, a JA-deficient
line exhibited enhanced oxidative stress and 'associated damage relative to wild-type
(Abouelsaad and Renault, 2018). However, in.rice, a growing body of evidence suggests that
endogenous JA accumulation and signaling is detrimental to salt tolerance, at least at the
seedling stage. Salt-induced inhibition of rice seminal root growth is mediated by ethylene-
jasmonate interaction (Zou et al., 2021). JA-deficient rice mutants cpm?2 and hebiba displayed
less Na* accumulation and increased ROS-scavenging activity in shoots, correlated with
attenuated damage upon salt exposure (Hazman et al., 2015). Genes encoding catabolic
enzymes acting on jasmonoyl-isoleucine (JA-Ile), the bioactive jasmonate hormone, have been
identified in rice and are upregulated by salinity (Hazman ef al., 2019). Interestingly, a rice
activation-tagging line overexpressing CYP94C2b, a cytochrome P450 oxidizing JA-Ile,
displays enhanced survival rate under salt conditions (Kurotani ef al., 2015a). In addition, upon
investigating a collection of extant rice accessions with various sensitivities, high salt-tolerance
was found correlated with elevated expression of this gene (Kurotani et al., 2015b). Among the
known physiological and molecular responses of rice to salt, very few have so far been linked
to JA signaling. Rice Salt Sensitive 3 (RSS3) is a nuclear factor that interacts with JAZ
repressors to modulate the expression of JA-responsive genes and root cell elongation during

adaptation to salinity (Toda et al, 2013). Suppression or overexpression of JAZ9
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antagonistically affects ion uptake with correlative impact on the expression of some ion
transporter genes (Wu et al,, 2015). Together, these data suggest that reduced JA-Ile

accumulation and/or signaling ameliorates the capacity of rice to withstand salinity.

Multiple transcriptome comparisons between sensitive and tolerant rice varieties have been
reported (Formentin et al., 2018, Kawasaki et al., 2001, Li et al., 2020, Mirdar Mansuri et al.,
2019, Razzaque et al., 2017), but the peculiar biological processes and molecular targets
regulated by JA signaling upon salt stress were not genetically addressed and remain largely
unknown. In the present study, we compared the phenotypic, ionic, transctiptomic and several
physiological characteristics of the Kitaake variety using the wild-type (WT) and a JA-deficient
mutant interrupted in ALLENE OXIDE CYCLASE (aoc), an essential JA biosynthetic gene
(Nguyen et al., 2020). Extensive genotype comparison of transcriptomes in roots and shoot
allow to pinpoint particular biological processes that are under JA regulation. We establish that
absence of JAs confers an apparent better salt tolerance phenotype in seedlings, based on a
optimized regulation of Na" distribution, and a delay in onset of senescence. However, JA
deficiency substantially reduces the ABA content and water deprivation responses in leaf,
resulting in impaired water management. Our study provides a rationale framework to

understand the specific impacts of endogenous JA signaling on rice responses to salt stress.

2. MATERIALS AND METHODS

2.1 Plant culture and treatments

Oryza sativa L. ssp. japonica cv. Kitaake was used as WT and aoc as jasmonate deficient mutant
(Nguyen et al.,, 2020). Jasmonate deficiency leading to male sterility, aoc homozygous
seedlings were isolated from the progeny of AOC/aoc plants. For salt stress experiments,
caryopses of a segregating population were first preciously rinsed, placed on Petri dishes
containing water imbibed Whatman paper, then placed for 4 days at 28°C in complete darkness
for germination. Skotomorphogenic development in JA-deficient mutants leads to very long
mesocotyl allowing the isolation of the aoc homozygous mutants. WT and aoc seedlings were
then transferred to a floating styrofoam for hydroponic culture (MS solution: 358 mg L! basal
MS buffered with MES 42 mg L-!, pH 5.8) and incubated under continuous light of ~125 pmol
m2 s at 28°C with 60% relative humidity. After 11 days growth, the MS solution was replaced
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by a saline solution (MS solution containing 100 mM NaCl) for the salt treatment and a new
MS solution for the mock treatment.

For MeJA treatment, WT rice seeds were dehusked and surface-sterilized through successive
baths in 70% ethanol (1 min), distilled water (1 min) and in a sodium hypochlorite solution
containing ~3 % active chlorine (20 min) followed by 4 washing steps with distilled water under
sterile conditions. Seeds were then sown in magenta boxes containing 0.4% phytoagar medium
in MS as above and cultivated under same conditions as for the salt experiment. After 7 days,
a cotton wick with 20 uLL of pure MeJA was placed in each magenta box. All samples analyzed

are constituted of a pool of tissues from three plants.

2.2 Stomatal conductance and relative water content (RWC)

For stomatal conductance measurements, plants were raised in .a hydroponic system as
described above until the 5™ leaves were fully expanded. Leaf stomatal conductance to water
vapor (gsw) was measured with a LI-6800 portable photosynthesis system (LI-COR, Lincoln,
NE) on the 5" leaf. Measurements were taken in an alternating manner from WT, mutant,
control and stressed plants, respectively, from 1-7 h after day start (12 h days) to avoid bias
imposed by the diurnal rhythm.

For RWC determination, leaf sheaths were collected from plants and immediately weighed to
determine their fresh weight (FW). After4 h hydration in plastic bags containing distilled water,
the leaves were weighed again to measure the turgescent weight (TW). Then, leaves were dried
for 24 h at 60° C and their dry'weight (DW) was determined. RWC was calculated based on
the following formula: RWC (%) = [(FW-DW) / (TW-DW)] x 100 described by Barr and
Weatherley (Barrs and Weatherley, 1962).

2.3 Electrolyte leakage

Leaf blades were harvested and quickly rinsed in distilled water to remove ions on the leaf
surface. Leaves were then cut into small pieces (1-2 cm) and floated onto 15 ml distilled water
in 50 mL tube. After 1 h gentle shaking at room temperature, water electrical conductivity of
solution was determined to estimate ion leakage. Samples were then boiled for 30 min before
cooling for 1 h to room temperature. Solution conductivity was re-measured to estimate the
total released ions. Percentage of released ions from dead cells was calculated using the

following formula: [conductivity at TO / conductivity of boiled samples] x100.



204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

2.4 Ion content measurement

Samples were ground frozen before being dried for 48 h at 60°C. Samples were digested using
0.5 mL ultrapure water, 2 mL HNO3 (65% v/v, subboiled) and 0.5 mL H20; (30% v/v, p.a.) in
closed digestion tubes (Gerhardt, UK) in a heating block (DigiPrep jr, S-prep) system at 110°C
for 3 h. Samples were evaporated to near dryness and after cooling final volume of each sample
was adjusted to 20 mL with 1% v/v HNOs (subboiled). To check for the quality, we included
blank samples and different reference materials (NIST 1573a (Tomato leayes), NCS ZC” 73013
(Spinach), Spruce needles (ring test) into the digestion procedure. Potassium and sodium
content in the digest were measured by inductively coupled plasma optical emission
spectrometry (ICP-OES, radial mode, iCap 7000, Thermo Fisher) in the Laboratory for
Environmental and Raw Materials Analysis (LERA) at KIT. The accuracy of the reference
material was in a good range with + 5.9% (K) and +7.1% (Na) for the NIST 1573a, + 3.2% (K)
and £3.52% (Na) for the NCS ZC" 73013 and + 8.7% (K) for the spruce needles.

2.5 Chlorophyll quantification

Frozen leaf samples were ground with glass beads (10 s, 5500 rpm, Precellys tissue
homogenizer, Bertin Instruments, France) then homogenized with 80% cold acetone to extract
chlorophylls (2 x 307s, 5500 rpm). After sedimentation of cell debris by centrifugation,
supernatant absorbance at 647 and 663 nm were measured to calculate the chlorophylls content

based on the equations described in Porra et al. (1989).

2.6 RNA extraction and gene expression analysis

Frozen roots were ground manually in a mortar and total RNA was isolated using RNeasy Plant
Mini kit (Qiagen). Leaf samples were ground using the glass-bead homogenizer before RNA
isolation using Trizol Reagent according to manufacturer instructions. For the purpose of
RNAseq, total RNA integrity was controlled after DNAse treatment using a Bioanalyzer 2100
system with the RNA 6000 Nano Chip (Agilent Technologies, Santa Clara, USA). RNA with
RNA integrity Number (RIN) value above 6.2 were used to construct cDNA libraries. Library
construction and sequencing was performed at Novogene Europe (Cambridge, UK) on an

[llumina platform (paired-end reads, 150 nucleotides). After exclusion of low quality reads and
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reads with adaptors, clean reads were mapped to the reference genome Os-Nipponbare-
Reference-IRGSP-1.0 using HISAT2. The resulting read counts were processed through the
DIANE pipeline (Cassan et al., 2021) for global normalization (EdgeR package), filtering of
very low expressed genes (<480 total read counts) and differential expression analysis (DeSeq2
R package) for which only genes with an absolute log> Fold Change (log2FC) > 1 and an FDR
< 0.05 were considered as DEGs. GO enrichment analysis was performed with the PANTHER
classification system (geneontology.org; (Mi et al., 2019) and focused on biological processes
enriched with an FDR < 0.01.

For RT-qPCR analysis, cDNA was synthesized with Superscript IV Reverse Transcriptase
(Thermofisher) using 2 pg of RNA. qPCR was performed using 20 ng of cDNA on a
LightCycler 480 II instrument (Roche Applied Science, Penzberg, Germany) as described in
Berr et al. (2010). The expression levels of the different targets were normalized against the
expression level of the reference genes UBQS5 (0s01g0328400) and UBQ10 (0s02g0161900).

The sequences of all primers used are listed in supplemental Table S4.

2.7 Hydrogen peroxide staining

3,3’-diaminobenzidine (DAB) staining was performed as described by (Daudi and O'Brien,
2012). Leaves of 5 days salt- and mock-treated rice seedling were collected, submerged in the
DAB solution (1 mg mL! DAB, 10 mM Na,PO4, 0.05% Tween). Since DAB is light sensitive,
the preparation was covered with aluminum foil and incubated 4-5 h at room temperature under
constant shaking (100 rpm). Leaves were then transferred to a clearing solution (ethanol/acetic
acid/glycerol 3/1/1) and boiled for 20 min to bleach out the chlorophyll and reveal the H>O»

staining.

2.8 Hormone profiling

Jasmonate/ABA profiling was performed as described in Marquis et al. (2022)

2.9 Statistical Analysis

All statistical analysis was performed on Rstudio. Comparisons of sample means were

performed by one-way analysis of variance (P < 0.05) then Tukey’s HSD multiple comparisons
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tests. Significant differences of means were determined and represented using these following

significant codes: “*”: P < 0.05; “**”: P <0.01 and “***”: P <0.001).

3 RESULTS

3.1 Jasmonate deficient aoc mutant displays reduced symptoms upon salt stress

The Kitaake variety of rice was chosen for its short life cycle and the availability of a mutant
line obtained by CrisprCas9. This line bears a disruption of the single copy ALLENE OXIDE
CYCLASE (AOC) gene, encoding an essential activity for jasmonate biosynthesis (Nguyen et
al., 2020). Due to nearly full sterility, homozygous aoc plants were selected from a segregating
population based on skotomorphogenic development after 4 days germination in the dark
(Riemann, 2020), and then transferred for hydroponic cultivation for 7 days before exposure of
roots to control or salt-containing solution. Salt exposure resulted in shoot growth inhibition as
expected in both genotypes (Figure S1a), but reduction of seminal root length observed in WT
was absent in aoc (Figure S1b), in accordance with previous results (Zou et al., 2021). Among
different concentrations of NaCl tested, 100 mM salt resulted in a differential tolerance
phenotype visible from 4 days after onset of stress, and that was reminiscent of the observations
of Hazman et al. (Hazman et al., 2015) in the Nihonmasari cultivar. In WT Kitaake plants, the
second (2"9) leaf first displayed severe symptoms of browning and drying starting from the leaf
tip, whereas aoc 2" leaf remained essentially symptom-free (Figure 1a). After longer times of
incubation, the damage eventually spread to leaf 3 or even 4, while maintaining the genotype
differential phenotype. Electrolyte leakage was measured as a readout of tissue damage and
was found reduced in.aoc leaves 2 and 3 relative to their WT counterparts (Figure 1b),

confirming weaker disruption of tissue integrity in aoc.

3.2 Salt stress triggers jasmonate metabolism with distinct patterns in rice roots and

shoots

To investigate the time-resolved activation of jasmonate metabolism and signaling in WT
plants, we collected separately root and 2™ leaf samples in a kinetic salt stress experiment, and
submitted tissue extracts to quantitative jasmonate profiling by LC-MS/MS. Roots exhibited a
rapid drop in their content in the JA precursor oxo-phytodienoic acid (OPDA) in response to

salt, but JA levels remained stable throughout the experiment (Figure 2a). JA-Ile, the active
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hormonal compound, was only occasionally detected (at very low levels in some replicates) in
the early time points, whereas more significant increases were recorded at 3 and 5 days of stress.
The more stable JA-Ile catabolite 12COOH-JA-Ile (Heitz et al., 2012) was overaccumulated
from 6 h and later on, indicating elevated metabolic flux through the JA-Ile pathway in salt-
responding roots. In the second leaf, OPDA levels were low under control conditions and
increased in a biphasic manner with an early peak between 1 and 6 h and a later one at 3-5 days
post-salt exposure (Figure 2b), when visible tissue damage occurs. JA, JA-Ile and 12COOH-
JA-Ile essentially followed similar dynamic trends than OPDA upon time, with 12COOH-JA-
Ile being the highest accumulated compound. These results indicate the activation of complex
jasmonate metabolism in rice seedlings in response to salt stress, with organ-specific temporal

patterns and individual compound abundances in roots and in 2"4eaf.

3.3 Comparative analysis of differential transcriptome in WT and JA-deficient seedlings

upon salt stress

To generate a global overview of the influence of jasmonate signaling on salt-triggered
processes, we undertook a comparative transcriptome analysis in both roots and 2" leaf of WT
and aoc plants, in a kinetic study collecting samples at 0, 1 h, 6 h and 3 d after salt exposure.
RNAseq was conducted on 3 independent bielogical replicates, and the distribution of samples
in a two-dimensional Principal Component Analysis (PCA) was established. Root and shoot
samples were largely separated, illustrating their unique transcriptomes (Figure S2a). When
datasets from each plant organ were processed separately, additional time dispersions were
visible. In roots, 1 h and 6 h time points were well separated from 0 h and 72 h (Figure S2b),
whereas in leaf, 1 h samples remained close to 0 h (Figure S2c). After normalizing the full
dataset, we extracted from WT data the expression patterns of genes involved in JA metabolism
and signaling (Table S1) relative to 0 h. This analysis revealed early upregulation of several
genes at 1 and 6 h in roots such as those encoding JA-Ile catabolic CYP94 enzymes (Hazman
etal.,2019) or JAZ proteins, and a biphasic induction in leaf at 1 h and 72 h (Figure 3a). These
transcriptional behaviors closely mirror the distinct patterns of hormone/catabolite variations
(Figure 2) and further illustrate that salt stress activates distinct JA signaling dynamics in

below-ground and aerial parts of the plant.

We next filtered differentially expressed genes (DEGs) within each organ, with respect to time

and genotype comparisons, using a logz Fold Change (logFC) of -1< logFC <1 and a false

10
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discovery rate (FDR) < 0.05. Before salt stress application, a significant number of DEGs (179
in roots, 964 in 2" leaf) were revealed between aoc and WT (Figure 3b, 0 h). In time
comparisons relative to their respective 0 h (Figure 3¢), DEGs were most abundant at early (1
h and 6 h) time points after salt exposure in roots, whereas their rise in leaf occurred later at 6
h and 72 h (Figure 3c). In direct genotype comparisons (Figure 3b), except at 0 h, expression
of a majority of DEGs were found reduced (labelled as down) in aoc mutant relative to WT at
all time points. This suggests that jasmonate signaling contributes significantly to the massive

gene expression reprogramming under salt stress conditions.

3.3.1 Transcription factor gene dynamics and JA-dependence

To globally estimate the extent of transcriptional changes that are under JA control, we set out
to determine the dynamics of transcription factor (7Fs) gene expression upon salt response, in
particular with regards to their differential expression.in both genotypes. Expression data were
analyzed in time comparisons (-1< logFC <1; EDR < 0.05), and organized as UpSet diagrams
(Lex et al., 2014), that allow to intersect distinct expression patterns at one or several time
points and visualize common or diverging behaviors in WT or aoc. In roots, both genotypes
show about the same number of deregulated TFs at all time points after salt exposure, with the
largest set of TF genes upregulated at 1 h, and their number then declined (Figure 4a left panel).
Few TFs were specifically upregulated in @oc or WT (21 and 19 at 1 and 6 h in WT respectively)
compared to the many (71 at 1 h, 23 at 6'h and 39 at 1 and 6 h) found similarly affected by salt
in both genotypes. For salt-downregulated TFs in roots, genotype-specific behaviors were more
common, mostly at 1 h and 72/h, indicating a stronger influence of JA signaling. In 2" leaf,
WT shows much motre up-regulated TF genes at 1 h and 72 h than aoc but, in contrast, less
down-regulated TF genes at all time points after salt exposure. These differences reflect
particularly in large sets of TF genes specifically responsive in WT at 1 h (35 TFs) and 72 h
(56 TFs) after salt exposure. The analysis indicates a significant influence of JA signaling on
regulators of the leaf salt response, with mostly positive and few negative impacts of this
hormone on TF gene expression. Finally, we crossed the lists of genotype-differential (aoc vs
WT) TF genes in root with those in shoot (Figure S3). This highlighted the low proportion of
shared TFs, suggesting that distinct JA-controlled regulators are driving transcriptional changes

in below and above-ground parts of rice plants under salt.

11
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As a case study, we next extracted the TF genes that are exclusively deregulated on one hand
at 1 hand 6 h in WT root, and on the other hand at 1 h and 72 h in leaf, which are the materials
where JA accumulation (Figure 2) and signaling (Figure 3a) was demonstrated. These genes
are unresponsive in aoc and therefore likely to be activated in a JA-dependent manner and
control JA-mediated processes. By doing so, we identified genes -mostly in leaf- that were
previously associated to various extents with drought, dehydration, ABA, or abiotic stress
responses but whose JA-dependence was largely unknown (Table 1). In addition, the filtering
retrieved TF genes of the zinc finger, MYB, AP2, bHLH or WRKY families that were not
previously linked to JA-dependent salt responses. This finding suggests a significant
contribution of JA signaling to the water deprivation component of salt stress. Additional TF
expression intersections can be filtered from Table S2 to investigate specific dynamic

behaviors.

3.3.2 Gene ontology analysis reveals biological processes impacted by jasmonate signaling

upon salt stress

To sort out the biological processes affected with regard to organ, time and genotype, general
DEG lists were submitted to gene ontology (GO) analysis, and GO terms were displayed as
kinetic heatmaps. Two types of comparisons were utilized to extract biological information: on
the one hand, were plotted time comparisons with enrichment of terms in salt-exposed samples
relative to 0 h of respective genotype (Figure 5), and on the other hand genotype comparisons
where aoc and WT enrichments were directly compared at each time point (Figure S4). Major
known' JA-dependent responses including genes involved in defense to biotic stress or
wounding, as well as many genes encoding JAZ repressors were enriched throughout the whole
kinetic in WT leaf, meaning their loss in aoc (Figure S4c right panel), whereas such a
differential pattern was only recorded at 1 h and 6 h in roots (Figure S4a). Before stress (0 h),
specific behaviors emerged for oxidative stress- and cell wall-related genes. For example, 5
class III peroxidase genes were less expressed in aoc roots (Figure S4a), whereas in aoc leaf,
nearly 20 peroxidase (Figure S5b) and 5 laccase genes were stronger expressed at 0 h, along
with genes involved in secondary cell wall biogenesis, encoding cellulose synthases, expansins,
pectin-methylesterases or hybrid prolin-rich proteins (HyPRPs) (for individual genes, see Table
S3). This illustrates a significant and contrasted impact of JA signaling on the transcriptome

under optimal growth conditions.
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After exposure of roots to salt, numerous changes in GO term enrichment were recorded relative
to non-stressed controls. Many of them had similar trends in the two genotypes, such as protein
folding responses or response to heat that were shortly down at 1 h (Figure 5a bottom panel).
Unexpectedly, several terms related to nitrate homeostasis, including NRT transporters and
nitrate response genes, were downregulated at 72 h in aoc roots only. Among up-regulated
terms, different terms related to ABA biosynthesis/responses, or water deprivation/osmotic
responses showed various enrichment patterns: some transiently up in aoc at 1 h, related terms
enriched only later in WT (Figure 5a, Table S3) (see paragraph below). Consistently, a number
of known JA-regulated responses to biotic stress were enriched in WT (Figure S4a right panel).
More surprisingly, several photosynthesis-related terms were found enriched in WT roots at 72
h only. This may result from the hydroponic culture that favors greening of roots.(Figure S4b);
however, expression magnitude of these genes remained marginal in roots compared to shoots.
Conversely, other terms were enriched at 72 h in aoc roots, such as some defense-related genes
including several chitinases (also in ‘cell wall catabolic process’ term), SUCROSE SYNTHASE
7, and SWEET sugar transporters. These may represent JA-repressed components of

carbohydrate metabolism and transport in roots.

The transcriptional landscape in 2" leaf appeared largely different. Few (147) genes were
downregulated by salt relativeto 0 h at 1 'h in. WT, in contrast to aoc (765) (Figure 3c). In aoc,
genes associated with lignin polymerization (7 laccases) dropped transiently. As well, most GO
terms linked to cell wall biogenesis and oxidant detoxication, response to oxidative stress
(mostly peroxidases) that were found enriched in aoc leaf at 0 h (Figure S4c left panel) were
downregulated from 1 h to 72 h (Figure 5b bottom panel; Figure S5b). In addition, numerous
terms related to water deprivation and ABA response were enriched in the up-response at 1 h
and 72 h in WT but barely in aoc. These comprised for example genes encoding dehydrins,
trehalose biosynthesis and cell wall biogenesis functions (Figure 4b right panel top, see
paragraph below) and suggests that several processes are absent in aoc leaf at early time points
of the salt response. In the genotype comparison, an enrichment in photosynthesis terms (‘light
harvesting, pigment biosynthesis process’) in aoc is prominent (Figure S4c), indicating that the
mutant may be prone to better maintain photosynthetic capacity under salt stress. At 6 h salt
exposure, the response amplified in leaf, with a bulky group of terms that is shared between
genotypes but with extended expression in aoc, and which relates to RNA processes, such as
exosome complex components, mRNA surveillance and processing, and ribosome assembly

(Figure 5b). This could be interpreted as a recovery/compensatory response of the leaf to the
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initial rapid osmotic stress. Consistent with higher expression of photosynthesis components at
1 h, aoc leaves exhibited an enrichment in genes related to starch synthesis, recorded at 72 h
(Figure 5b, top panel ‘glycogen biosynthetic process’), which is reflective of a better energetic
status of aoc leaf. A persistent anabolic activity is also illustrated by enrichment of primary
cellular functions in aoc at 72 h such as protein translation or amino acid biosynthetic processes.
This was accompanied by the upregulation of a large set of glutathione S-transferase genes at
72 h (Table S3).

The global analysis therefore disclosed a significant impact of JA signaling, on root but more
substantially on leaf transcriptome. Specific processes are altered in nonsstressed conditions,
but differential features were more prevalent upon salt stress, where JA deficiency seems to
impair full induction of leaf ABA responses and oxidative stress related genes, and conversely

allows for sustained maintenance of photosynthetic and carbohydrate storage components.

3.4 JA signaling is required in leaves but not in roots for ABA biosynthesis and water

deprivation management under salt stress

Given their genotype-specific GO term enrichment and importance in salt tolerance, ABA
metabolism and water deficiency responses were further investigated. Genes encoding ABA
biosynthetic or catabolic activities were examined, and their expression was found similarly
salt-induced in roots of both genotypes (Figure 6a; Table S3). In contrast, their bi-phasic
expression recorded at 1 h'and 72 h in WT leaves, in particular for the induction of the rate-
limiting NCED genes in ABA biosynthesis, was lost in aoc. Consistently, ABA contents in both
organs supported these distinct expression patterns. In roots, ABA levels peaked similarly at 1
h in WT and aoc and declined thereafter, whereas in leaf, ABA build-up was weaker in aoc
compared to WT at 3 time points (Figure 6b). Concerning water deprivation response genes
that are largely under ABA control, their root response remained essentially unaffected by JA
deficiency, butin leaf, two groups of genes with distinct behaviors were revealed: the largest
group including a number of signaling genes encoding PYL receptors, TFs or a MAP kinase
and behaved similarly in aoc and WT (Figure 6¢). This was in contrast with a smaller group of
genes including RAB and dehydrin genes that were co-induced with JA pulses at 1 h and 72 h
in WT, but were downregulated or unresponsive in aoc. Of note, expression of OSCAI.1
(Os01g0534900), encoding a hyperosmolality-gated calcium channel (Zhai et al., 2021) was
slightly reduced in both aoc organs (Table S3). Following our observation of accelerated rolling

of aoc detached leaf material upon symptom imaging, we determined that stomatal conductance
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to water (gsw) dropped dramatically upon salt stress, reflecting stomatal closure, but
significantly less in aoc (Figure 6d). Consistently, relative water content (RWC) was
significantly reduced in aoc compared to WT upon salt stress (Figure 6d). Altogether, our
results indicate that while the ABA transcriptional response remains largely functional in roots,
in leaves, disrupted JA pathway prevents the full activation of ABA biosynthesis and optimal
induction of osmotic stress/water deprivation responses, which in turn impinges on proper

water management.

3.5 JA signaling contributes to ion homeostasis and root-to-shoot sodium translocation

Sodium uptake by roots upon salt exposure imposes ionic stress throughout the plant that
negatively affects cellular processes (Yang and Guo, 2018). Ion homeostasis that is maintained
by various ion transporters is perturbed by Na* influx, and adaptation mechanisms are required,
for example, to sequester Na in vacuoles or exclude it from cells to lower cytoplasmic
concentrations (Saddhe et al., 2021). Very little is known to which extent JA signaling is
involved in modulating ion transporter gene expression, or how it impacts long-distance Na*
transport. OsJAZ9 misexpression was reported to modulate a few transporters (Wu et al., 2015),
but no systematic analysis has been conducted so far. Individual ion transporters within
multigene families have particular expression patterns and may encode distinct specificities,
making it difficult to infer profiles from general GO analysis. Hence we undertook a more
specific examination of JA impact on ion transporter expression by inspecting the profiles of
about 70 rice genes (Table S1) that encode confirmed or putative Na* or K* transporters. Genes
for which expression was. differential in at least one time comparison (Table S3) in either
genotype (-1 < logFC <1, FDR <0.05) were compiled in a heatmap. This retrieved 26 and 41
transporter genes from root and leaf analysis respectively (Figure S6). Contrasted expression
patterns were revealed, with both down- and up-regulation of various members; most of these
perturbations were comparable in parallel time-analysis of aoc and WT in roots and shoot,
indicating that these regulations were largely JA-independent. When expression was compared
on a genotype basis at each time point, more specific features emerged: in 2™ leaf, most
differentially expressed transporter genes were downregulated in aoc, including several
members of the cation/proton exchanger family (CHX) of which some were associated
positively or negatively to salt tolerance (Jia ef al., 2021). In roots, two transporter genes were
strongly differential: HAK4 and HAK 16 were found significantly more expressed at 72 h in aoc
roots relative to WT (Figure 7a and Figure S8b). HAK16 is a plasma membrane-localized
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transporter involved in K™ uptake and translocation to shoots (Feng et al., 2019). HAK16
belongs to cluster I of HAK transporters that are involved in K" uptake and translocation to
shoots (Feng et al., 2019, Véry et al., 2014). HAK4 belongs to the cluster IV which groups
HAK transporters closely related to PpHAK 13, a Na* permease identified in Physcomitrium
patens (Véry et al., 2014). Specificity of the rice HAK4 for Na* rather than K" transport has
been recently established in a report of ZmHAK4 that was characterized in maize as conferring
natural variation of shoot salt tolerance owing to its role in Na* exclusion from xylem sap
(Zhang et al., 2019). In the same study, the rice ortholog (OsHAK4) was found similarly
expressed in the root stele and exhibited comparable ion transport properties. Consistent with
its elevated expression in JA-deficient aoc roots, OsHAK4 expression in WT was progressively

repressed by external JA treatment experiment (Figure 7b).

To examine how such differential expression patterns of transporter genes relate to actual ion
accumulation, we determined Na* and K* contents in.roots and leaves before and 5 days after
salt exposure. In our conditions, K* content was not affected by JA deficiency (Figure 7¢). In
roots, salt exposure reduced K* content by half with.no JA-dependence, but salt had essentially
no influence on K* content in 2" and 3™ leaves. Na™ content increased significantly to higher
levels in aoc compared to WT roots upon stress. In contrast, Na* accumulation was reduced by
44% in 2" goc leaf relative to WT whereas no difference was recorded in 3" leaf. This indicates
that higher HAK4 expression levels correlate with enhanced Na* retention in aoc roots and
lower Na" translocation to 2"¢ leaf; a relationship that could sustain the better salt tolerance of

aoc leaf.

3.6 JA signaling controls discrete ROS detoxifying genes

Salt stress comes along with oxidative stress whose degree of management is an important
parameter affecting tissue survival (Hasanuzzaman et al., 2021, Liu et al., 2020). We previously
analyzed the activity of the enzymatic ROS in cpm?2 and hebiba mutant lines in leaves at 72 h
post salt exposure and found that total glutathione S-transferase (GST), peroxidase (POD) and
superoxide dismutase (SOD) activities were elevated in JA-deficient leaves compared to WT
(Hazman et al., 2015). Similar to the Nihonmasari cultivar used in that study, here DAB staining
of ROS in Kitaake 2™ leaf visualized stronger signal in WT relative to aoc in response to salt,
confirming reduced H>O» accumulation in absence of JAs (Figure 8a). Concerning

transcriptome data, we screened the behavior of nearly 200 genes (Table S1) encoding ROS-
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scavenging or -consuming activities, including ascorbate (APX) and class III peroxidases,
catalases, GST, POD, RBOH and SOD. A majority of salt-triggered changes were similar in
both genotypes, and are thus largely JA-independent (Figure S7a). Several GST genes appeared
however less stimulated, or downregulated by salt in aoc, indicating a partial JA-dependence.
The genotype comparison highlighted several GST genes that were more expressed in aoc
leaves at 0 h (along with many POD genes, see Figure S5b), possibly protecting tissues even in
non-salty conditions, but only GSTU16 remained upregulated at 72 h in_aoc (Figure 8b). In
addition, this comparison disclosed the sustained expression in aoc leaf of three SOD genes:
the Cu/Zn-dependent SOD2 at 1 h, and FSDI.I and FSDI.2, encoding Fe-dependent
chloroplastic SODs. Normalized counts of these candidate targets were plotted in Figure S8a
and illustrate lower expression in WT. FSD activity may -sustain  strongersuperoxide
dismutation into less toxic hydrogen peroxide in sodium-challenged chloroplasts and alleviate
salt-induced damage. Consistently, exogenous JA treatment repressed FSD expression in WT
plants, confirming their negative regulation by JA.signaling (Figure 8c). Altogether, JA
deficiency better maintains or derepresses specific genes that could underlie the amelioration

of distinct ROS scavenging activities.

3.7 JA deficiency delays salt-induced senescence and chlorophyll degradation

Salt intoxication along with oxidative stress are known to result in accelerated leaf senescence
(Figure 1) involving mainly ABA-mediated responses, but the specific contribution of JA
signaling 1s less characterized (Lee and Masclaux-Daubresse, 2021). We therefore examined
27 rice genes (Table S1), annotated as Senescence Associated (SAG), for their transcriptional
behavior in leaf. Many SAGs were salt-induced in WT, particularly at 72 h (Figure S7b),
including those encoding known transcription factors acting as positive regulators of
senescence, such as ERF101 (Lim et al., 2020) or NAP (Liang et al., 2014). Both time- (Figure
S7b) and genotype-comparisons (Figure 9a) showed that their expression was lower in aoc leaf,
in terms of intensity or timeframe, along with reduced expression of senescence execution
genes such as Chloroplast vesiculation CV (Sade et al., 2018), chlorophyll degrading genes
including StayGreen (SGR) or NYC1, consistent with the phenotypically delayed senescence in
aoc. Furthermore, the SAGs Os/43 and NAP were confirmed to be JA-inducible upon
exogenous treatment (Figure 9b). The impaired induction of genes promoting chlorophyll

degradation is consistent with the stress-resilient expression of chlorophyll and other pigment
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biosynthesis genes in aoc leaf when those decline in WT (Figure S4c). Consistently, VTE3,
encoding a methyltransferase (Os07g0179300) in the biosynthesis of the chloroplastic
antioxidant a-tocopherol (Mufioz and Munné-Bosch, 2019) was higher expressed in aoc leaf in
control and early stages of the response (Table S3). Inhibition of senescence-associated
catabolic processes in aoc leaves was supported by the stability of chlorophyll content under
salt stress (Figure 9¢). In contrast, WT damaged 2" leaf reduced by 39% its chlorophyll content
while content remained stable in 3™ leaves that were symptomless in this experiment. These
differential expression data provide a molecular basis for a delayed salt-induced senescence in

JA-deficient rice.

4. DISCUSSION

Plant exposure to excessive salt affects a myriad of biological processes and triggers complex
adaptive changes to maintain physiological functions. Responses to salt stress have been
extensively addressed in numerous model and non-model plant species at the physiological,
cellular and molecular levels, and a number of tolerance-associated genes have been identified
(Arif et al., 2020, Ponce et al., 2021, van Zelm et al., 2020, Yang and Guo, 2018). Central to
adaptation responses, hormonal interactions orchestrate complex reconfigurations (Choudhary
et al., 2021, Yu et al., 2020). Most hormonal pathways are perturbed upon plant exposure to
salt, typically abscisic acid is increased and directs many beneficial responses, but negative
effects on tolerance have also been reported as for cytokinins or ethylene (Yang et al., 2015).
Jasmonate positive impacts in adaptation to some abiotic stresses such as cold or drought are
being consolidated (Kazan, 2015, Marquis et al., 2022, Riemann et al., 2015). In contrast,
understanding JA functions in salt tolerance is still blurred by contradictory reports between
exogenous JAapplication -which may ameliorate tolerance-, and genetic data in rice from either
JA biosynthetic mutants (Hazman ef al., 2015) or high catabolic lines (Kurotani et al., 2015a,
Kurotani et al., 2015b), which suggest detrimental impacts of JA on salt tolerance. To solve
this paradox, a side-by-side kinetic comparison was undertaken between a recently-established
mutant that is fully devoid of JAs (Nguyen et al., 2020) and its wild-type in the rapidly-growing
cultivar Kitaake. Our goal was less to exhaustively describe transcriptional changes triggered
by salt, that are widely documented in rice (Formentin et al., 2018, Kong et al., 2019, Li et al.,
2020, Zhang et al., 2022), than to map biological processes -and when possible individual

genes- whose activity vary in presence or in absence of a functional JA biosynthetic pathway.
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We analyzed simultaneously roots and first emerged leaves (2" and 3™) as salt is sensed first
in roots and tissue damage was recorded primarily in leaf, and also because whole plant Na*
management is critical to aerial organ tolerance. Under the conditions used, that impose a
limited osmotic constraint before Na* toxicity builds-up, a clear differential phenotype was
obtained with WT 2" leaf undergoing extensive damage from day 4-5 while aoc remained
essentially symptomless, a trend that later extends to new emerging leaves. These observations
comfort a previous report in Nihonmasari cultivar (Hazman et al., 2015) and demonstrate that
interrupted JA biosynthesis mitigates damage in rice response to salt at the seedling stage. They

further suggest that some JA-controlled processes translate into suboptimal resilience to salt.

To establish a comprehensive picture of jasmonate accumulation dynamics upon salt stress,
detailed hormone profiling was performed in WT rice plants, revealing distinct patterns in each
organ (Figure 2). In roots, early consumption of pre-existing precursor OPDA seemed to be at
the basis of JA-Ile synthesis and catabolism with low amplitude. In 2" leaf, all four analyzed
compounds exhibited bi-phasic accumulation by 1 h and later by 3-5 days, the late increase
being concomitant to leaf symptom appearance. The rapid pulses recorded here were frequently
missed in previous studies. These hormonal patterns were consistently matched by JA pathway
gene expression dynamics and together, the data highlight the organ-specific timeframes of
activation of JA metabolism and signaling: within the first hours of salt exposure in roots,
whereas the leaf response expresses as an immediate pulse by 1 h followed by a longer lasting
activation starting by day 3. Tt 1s tempting to interpret that the early JAs accumulation may be
due to the rapid osmotic stress component of salt exposure, and the second wave to

consequences of the slower Na" accumulation in tissues.

Differential expression (DEGs) was mined for each organ in two dimensions: time-resolved
comparisons allowed to assess dynamics relative to untreated controls, but such readouts are
impacted by expression levels at 0 h which may vary for some genes between aoc and WT.
Data were thus also compared directly between genotypes at each time point. Overall, DEGs
number was highest at 1 and 6 h in roots and more delayed in leaf, reflecting long-distance
spread of signaling and organ-specific responses. TF genes could be readily filtered for peculiar
behaviors throughout the kinetic. For example, a number of TFs regulated only in WT were
identified, and are thus JA-dependent; a few have previously been associated with drought or
ABA responses, but others are of unknown function. In a global investigation, DEG lists were

submitted to GO term enrichment analysis, of which only the most prominent outcomes can be
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discussed here. The study should be taken as a resource that can be mined for many more
processes than could be addressed presently. For example, many cell wall-related terms were
perturbed by JA-deficiency in various ways before or after stress. The constitutive upregulation
of expansins or HyPRPs in aoc leaf relates to two recent findings: ectopic overexpression of
EXP7 increases salt tolerance by promoting antioxidant activity, cell elongation and ion
homeostasis (Jadamba et al., 2020); as well, HyPRPO06 regulates salt tolerance via apoplastic
ROS homeostasis (Zhao et al., 2022). By extension, the elevated expression of many class III
peroxidases in aoc leaf may alter the redox status of the apoplast and facilitate cell wall integrity

maintenance under salt (Liu ez al., 2021).

At least four major differential features emerged from the comparative transcriptome analysis,

even though additional processes in the dataset deserve attention in the future:

1. The ABA pathway, whose activation is essential.to the rapid response to abiotic stresses
(Raghavendra et al., 2010), was selectively impaired in JA-deficient aoc mutant. Global
assessment indicated an enrichment in ABA-related GO terms in WT leaves, meaning their
under-representation in aoc. Upon closer examination, a contrasted picture emerged: only a few
ABA-induced targets, including the TF ZFP36 controlling antioxidant defense (Zhang et al.,
2014) were depressed in aoc roots, consistent with their near-WT ABA content (Figure 6). In
contrast, ABA biosynthetic gene expression and ABA hormone build-up were much lower in
the early phase of the response in aoc leaf, correlated with a strongly reduced expression of
some -but not all- targets such as several RAB or DHN genes. This impaired ABA response was
reflected physiologically by an incomplete drop in stomatal conductance in aoc leaf in response
to salt, resulting in a reduced water content due to excessive transpiration in these tissues. The
importance of ABA-JA interactions under drought was recognized previously in Arabidopsis
(de Ollas and Dodd, 2016). Our findings highlight a distinct hormone interaction in under- and
above-ground organs: roots deploy a proper ABA response in absence of JA, while adaptation
to water deprivation in rice leaves relies on a positive ABA-JA crosstalk, at least for a peculiar
sub-branch of the response. This also coincides with the independent observation that JA

signaling is required in rice to withstand osmotic stress (Tang et al., 2020).

2. A second major aspect affecting salt tolerance is linked to variations in management of Na*
that floods the successive cell layers. Global expression survey illustrated the very diverse

expression changes of ion transporters, even within a given gene family. Probably various
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subcellular, cellular, tissue and organ-specific ion transporters show distinct reactivities to the
massive influx of Na*. Most of these dynamics, irrespective of their importance under normal
or stress conditions, were found unaffected by the status of JA signaling (Figure S6). Because
Na" management and tissue content are critical parameters for salt tolerance (Ganie et al., 2021,
Ponce et al., 2021), and JA-deficient rice mutants were reported to accumulate less Na* in
leaves (Hazman et al., 2015), we sought to identify candidate ion transporter genes that were
impacted by JA signaling and that could account for differential Na* homeostasis in aoc. By
filtering the genotype comparison, a low number of aoc leaf-downregulated genes popped-up
from the CHX and HAK families (Figure 7) and could be at the basis of distorted ion
homeostasis. More specifically, H4K4 and HAK16 were salt-repressed in WT but not.in aoc
roots. This is in contrast to HAK12, 17 and 24 that were salt-induced, irrespective of the JA
biosynthetic capacity (Figure S6). HAK16 functions in K™ uptake and translocation to shoots
(Feng et al., 2019), and its root derepression correlates with unaltered K content in aoc leaf
under salt conditions (Figure 7c). HAK4 was only recently characterized as a root transporter
in rice and in maize where it confers natural variation of salt tolerance. In both species, it is
believed to exclude Na* from xylem sap (Zhang et al., 2019). Here, its upregulation in rice aoc
roots, indicative of a JA-repression in WT, is fully consistent with more Na* being retained in
aoc roots and less being translocated to shoots (Figure 7c¢), possibly contributing to attenuate
leaf damage. This result constitutes a rationale basis to investigate genetically the potentially

unique function of OsHAK4 in the JA-dependent control of root-to-shoot Na* translocation.

3. ROS production and subsequent activation of detoxication systems are integral to the build-
up of salt stress. JA deficiency resulted in genotype differential expression of a number of genes
encoding ROS-metabolizing activities or affecting redox status. A large number of genes
encoding apoplastic H>O»-consuming class III peroxidases were stronger expressed in non-
stressed aoc leaf, which may contribute to lower resting ROS levels and better buffering of
subsequent salt-induced ROS burst. In particular, a repression by JA signaling in WT of the Fe-
dependent F'SD1.1 and FSD1.2 was uncovered and point to a better superoxide ion scavenging
in chloroplasts of aoc leaves (Figure 8). This reinforces chloroplasts as important sites for cell

death initiation under salt stress in rice (Ambastha et al., 2017).

4. More directly linked to the visual leaf damage phenotype are the processes related to
senescence. While the developmental senescence-promoting activity of JAs along with other

stress hormones including ABA and ethylene is well-described (Wojciechowska et al., 2018),
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the extent to which JA signaling activates salt-induced senescence pathways was largely
unknown. Here, the combined analysis of SAG expression, leaf tissue integrity and chlorophyll
content establishes that JA signaling is a major mediator for the execution of senescence
processes under salt stress in rice. Suppressing JA biosynthesis in aoc impaired or delayed most
of these programs, resulting in extended viability of vegetative tissue. This is in full accordance
with the delayed salt-induced senescence observed in a rice line overexpressing a JA-Ile
catabolic gene (Kurotani et al., 2015a). Moreover, the partial impairment of ABA signaling in

aoc leaves could also underlie delayed senescence.

In conclusion, the extensive transcriptome and physiological analysis performed in this study
have disentangled some of the contradictory results reported as to negative or positive impact
of JA signaling on salt tolerance (summarized in Figure 10). Salt concentrations and timing
applied are important parameters as to the relative strengths and dynamics of osmotic and ionic
components of the stress. While it is difficult to establish a precise timeline of JA-dependent
events because many components occur simultaneously in a given organ, a common starting
feature is the early (1 h) hormonal response that translates into distinct transcriptional changes
in root and shoot. We demonstrate that JA is required for ABA to co-regulate positively
responses limiting water loss and that JA signaling triggers several pathways leading later on
to salt-triggered leaf senescence. These JA-stimulated biological processes are coordinated and
converge to accelerate tissue damage when ionic toxicity culminates. Within cell wall-related
perturbations, some JA-dependent upregulated pectin methyl esterases in WT could trigger a
reported MeOH-JA cascade that promotes senescence (Fang et al., 2016). Conversely in aoc,
increased expression of H4K4, a transporter gene under negative JA regulation, correlates with
higher Na* retention inroots, protecting leaves where less toxic Na* is accumulated, senescence
machinery remains silent, along with increased ROS scavenging capacity in chloroplasts. These
different physiological features are in accordance with similar traits recorded in a recent study
with JA-defective maize seedlings (Ahmad et al., 2019). The present transcriptome dataset
needs to be further explored to decipher the deeper consequences of JA signaling onto responses
to salt; as an example mineral nutrition would be an important target to follow throughout the
plant’s lifecycle. With such dual impacts, JA signaling cannot be associated strictly anymore

to either salt sensitivity or tolerance.
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SUPPLEMENTAL DATA

FIGURE S1. Developmental phenotypes of rice wild-type (WT) and jasmonate-deficient (aoc)

seedlings exposed to control or 100 mM NacCl (salt) solutions.

FIGURE S2. Principal component analysis (PCA) of RNAseq data distribution.

FIGURE S3. Overlap of deregulated transcription factor genes in shoots and roots

FIGURE S4. Gene ontology (GO) analysis of differentially expressed genes (DEGS).
FIGURE S5. Kinetic expression profile of rice class III peroxidase genes displayed as

heatmaps in root (a) and 2" leaf (b).

FIGURE S6. Kinetic expression profile of rice ion transporter genes displayed as heatmaps in

root and 2" leaf.

FIGURE S7. Kinetic expression profile’ of rice genes encoding ROS-scavenging or —

consuming activities displayed as heatmaps in root and 2"¢ leaf of aoc and WT plants.

FIGURE S8. Kinetic expression profile of rice genes identified as probable targets of JA

signaling upon salt stress.

TABLE S1. Lists of selected pathway genes that were screened for salt- and JA-regulated

expression.

TABLE S2. Matrix of differential expression for genes encoding rice transcription factors.

TABLE S3. Global gene expression table in WT and aoc rice seedlings upon salt stress.

TABLE S4. Primers used for RT-qPCR experiments.
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Table 1

Organ Gene ID TFs name TF family Regulation Stresf?l-::tsi(:)c;ated Reference (DOI)
Os08g0481400 HOX20 HALZ down drought tolerance
Os01g0738400 C3H10 Zinc Finger up drought tolerance 10.3390/plants9101298
050320264600 - - up
050320820300 ZFP182 Zinc Finger up salt tolerance 10.1016/j.bbaexp.2007.02.006
0s05g0541400 bHLHI19/LF bHLH up 10.1093/mp/sss096
0s02g0764700 ERF103 AP2 up drought responsive

2 Leat 0s06g0127100 DREBIC AP2 up
0s08g0474000 ERF104 AP2 up drought responsive
0s01g0859300 ABI5/ABF1 bZIP_1 up promotes salt sensitivity ~ 10.1007/s11103-008-9298-4
0s01g0192300 MYBIRI1 Myb_DNA-binding up
Os01g0874300 DLN31 Myb_DNA-binding up
0s02g0187700 MYBI1 Myb_DNA-binding up
0s502g0618400 MPS Myb_DNA-binding up cell wall remodelling 10.1111/tpj.12286
0502g0462800 WRKY42 WRKY up promotes leaf senescence  10.14348/molcells.2014.0128
0s02g0654700 ERF91/AP59 AP2 up drought/salt tolerance 10.1104/pp.109.137554
050920572000 ERF87 AP2 up
Os11g0168500 ERF118 AP2 up
0s01g0108600 - bHLH up.

Roots | 50550163900 bHLHO036 HLH up
Os01g0274800 CSA Myb_DNA-binding up
Os01g0305900 - Myb_DNA-binding up
0s06g0649000 WRKY28 WRKY up reprf::;;i‘;““r‘e 10.1007/s11103-013-0032-5

FIGURE LEGENDS

FIGURE 1. JA-deficient young rice plants exhibit milder symptoms than their wild-type (WT)
counterparts. Seven-day old hydroponically-grown WT and aoc seedlings were exposed to
either control or 100 mM NaCl (salt) solutions. After 5 days, representative second (2°¢) and
third (3") leaves were photographed (a). Scale bar: 1 cm. (b) Second and 3" leaves were
detached from control and salt-exposed plants and submitted to electrolyte leakage assay.
Histograms show means = SEM (n=5). Asterisks indicate a significant difference as determined

by ANOVA plus Tukey’s HSD tests (*P < 0.05).

FIGURE 2. Kinetic analysis of jasmonate profile in rice seedlings submitted to 100 mM NaCl
stress for 5 days. Seven-day old hydroponically-grown WT and aoc seedlings were exposed to
either control (Control) or 100 mM NacCl (Salt) and sampled at the time points indicated. Roots

(a) and second leaf (b) were collected separately and JAs were extracted and quantified by LC-
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MS. The precursor OPDA, JA, the bioactive hormone JA-Ile and its catabolite 12COOH-JA
were quantified by LC-TQMS/MS and expressed as pmol g fresh weight (FW). Histograms
represent the mean + SEM of three biological replicates. For JA-Ile, hatched bars indicate signal
has been detected only in one replicate. Asterisks indicate a significant difference (ANOVA

plus Tukey’s HSD tests *P < 0.05; **P < 0.01). LOQ: limit of quantification.

FIGURE 3. Transcriptome analysis of WT and aoc seedlings before and after salt stress. Plant
samples generated as described in Figure 1 (three independent biological replicates) were used
for RNA extraction and submitted to RNAseq analysis. Expression data (log> fold change) of
selected genes involved in jasmonate metabolism or signaling were extracted and plotted as a
heatmap for roots and 2" leaf (a). Differentially expressed genes(-1<log,FC <1; FDR < 0.05)
were filtered in both organs and displayed as histograms with numbers of down- and up-

regulated genes displayed in genotype (b) or time comparisons (c).

FIGURE 4. Comparative analysis of expression dynamics of genes encoding transcription
factors (TFs) in WT and aoc roots (a) and 2" leaf (b). Left panels: upregulated genes; right
panels: downregulated genes. To screen for particular temporal behaviors, UpSet diagrams (Lex
et al., 2014) were utilized to display shared and genotype specific expression at different time
points following salt application. Total number of TFs deregulated at a given time point in each
genotype are indicated by horizontal bars. Numbers of differentially expressed TF genes (-1<
logoFC <1; FDR < 0.05) relative to 0 h-are visualized as vertical bars for individual (dots) or

multiple (connected dots) time points.

FIGURE 5. Kinetic Gene Ontology (GO) analysis of DEGs in roots (a) and 2™ leaf (b) upon
salt stress. DEGs lists established in Figure 3¢ from each time point relative to 0 h were
submitted to GO analysis on Panther classification system to retrieve Biological processes
significantly enriched within each DEGs list (FDR <0.01). GO terms for upregulated DEGs:

upper panels, red scale; GO terms for downregulated DEGs: lower panels, blue scale)

FIGURE 6. Analysis of ABA pathway genes, hormone content and water management
responses upon salt stress in rice. Expression heatmap of described rice ABA metabolic genes
is shown for aoc and WT roots and 2" leaf (a). ABA content in roots and 3" leaf. Histograms
show the mean of 3 independent biological replicates £ SEM; *P < 0.05 (b). Expression

heatmap of genes associated with GO term “response to water deprivation”. Only genes whose
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expression was changed at least at one time point in aoc or WT (-1< log2FC <1; FDR < 0.05)
are represented (c). Stomatal conductance to water vapor (gsw) was determined in leaf 5 of WT
and aoc plants (d, left panel). Relative water content (RWC) was determined in 3™ leaf of WT
and aoc plants submitted to salt stress for 4 days (d; right panel). Histograms represent the mean
of 3 (gsw) or 4 (RWC) biological replicates = SEM. Asterisks indicate a significant difference
(ANOVA plus Tukey’s HSD tests, *P < 0.05; **P < 0.01; ***P<0.001).

FIGURE 7. Analysis of differential ion transporter gene expression and ion accumulation in
roots and leaves upon salt stress. Expression profiles of ion transporter genes in aoc.vs WT are
represented as kinetic heatmaps (a). Only transporter genes whose expression was changed at
least at one time point in aoc or WT (-1<1og2FC <1; FDR < 0.05) are represented. Expression
of HAK4 transporter gene in roots of WT plants exposed to MeJA. Data are taken from
RiceXpro database (b). Quantification of Na* and K" ion accumulation in roots, 2"¢ and 3™
leaves: means = SEM from 6 independent biological replicates are represented (c). Asterisks
indicate a significant difference (ANOVA plus Tukey’s HSD tests, *P <0.05; **P <0.01; ***P
<0.001).

FIGURE 8. Analysis of reactive oxygen species-scavenging systems in leaves under salt stress.
Second leaves of aoc or WT seedlings were submitted to DAB staining to visualize extent of
H>0, accumulation (a). Genotype comparison (aoc vs WT) of differentially-expressed genes
encoding ROS-scavenging activities. /APX: ascorbate peroxidase; FSD: iron-dependent
superoxide dismutase; GST: ‘glutathione S-transferase; SOD: superoxide dismutase (b).
Expression of FSDI.1 and FSDI.2 in leaves of WT plants exposed to MeJA (c). Asterisks
indicate a significant difference (ANOV A plus Tukey’s HSD tests, *P <0.05; **P <(.01; ***P
<0.001).

FIGURE 9. Jasmonate deficiency delays induction of senescence-promoting genes upon salt
stress. Expression of genes associated with senescence (SAGs) was compared in 2" leaf
between aoc and WT genotypes at four time points and genes whose expression was changed
at least at one time point in either genotype (-1< logoFC <1; FDR < 0.05) are represented as a
kinetic heatmap (a). Expression of Os/43 and OsNAP, two SAGs that are strongly differential
in (a), was monitored upon response to MeJA exposure (b). Histograms display means = SEM

from 3 biological replicates. Chlorophyll contents was determined in WT and aoc 2™ or 3
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leaves after 4 days of salt stress (c). Asterisks indicate a significant difference in means

(ANOVA plus Tukey’s HSD tests, *P < 0.05; **P < 0.01; ***P <0.001).

FIGURE 10. Proposed model of JA-regulated functions in the rice response to salt stress. The
study links newly-defined JAs gene targets to specific impacts of JA signaling on the salinity
response physiology. Salt stress through its successive osmotic and ionic components
stimulates JA metabolism which leads to waves of transcriptional changes with organ-specific
temporal patterns. Root response is immediate-early while in shoot a bi-phasic response is
discerned at hormonal and transcriptional levels. ABA responses are largely JA-independent in
root, but JA signaling is critical for full induction of ABA biosynthetic genes and ABA
accumulation in shoot. Both hormones synergistically activate ABA-regulated responses
including dehydrins and RAB genes to boost water retention, including reduction of stomatal
conductance and water loss in rice leaves. On the other hand, JA ‘signaling, through
transcriptional repression of HAK4 in roots and FSD-genes in leaves, impairs Na" exclusion
from root xylem and ROS detoxification in leayes respectively, which aggravates Na* toxicity
in photosynthetic tissues. This set of responses, associated with the induction by JAs of NAP, a
transcriptional activator of leaf senescence, can explain the severe necrotic symptoms observed
in WT leaves after salt stress. The findings establish JAs as multifaceted regulators of the rice
salt stress response, where JA signaling can no longer be uniformly associated with salt
sensitivity or tolerance. Black arrows and red lines indicate transcriptional activation and
repression of JA-target genes respectively; compiled “greater than” symbols indicate positive

regulation of key pathways involved in rice salt stress response. h: hours. d: days.

TABLE 1: List of transcription factor (TF) genes coregulated with JA pathway genes in rice
salt stress response. Genes were selected from data in Figure 4 on the basis of their exclusive
regulation in WT at 1 h and 6 h for roots, or 1 h and 72 h for shoot, and their absence of response

in aoc (-1<log2FC <1; FDR < 0.05).
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FIGURE 1. JA-deficient young rice plants exhibit milder symptoms than their wild-type (WT)
counterparts. Seven-day old hydroponically-grown WT and aoc seedlings were exposed to either
control or 100 mM NaCl (salt) solutions. After 5 days, representative second (2"¥) and third (3')
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second leaf (b) were collected separately and JAs were extracted and quantified. The precursor
OPDA, JA, the bioactive hormone JA-lle and its catabolite 12COOH-JA were quantified by LC-
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< 0.01). LOQ : limit of quantification.
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FIGURE 4. Comparative analysis of expression dynamics of genes encoding transcription
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(Lex et al., 2014) were utilized to display shared and genotype specific expression at different
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Table 1

Stress-associated

Organ Gene ID TFs name TF family Regulation function Reference (DOI)
0s08g0481400 HOX20 HALZ down drought tolerance
0s01g0738400 C3H10 Zinc Finger up drought tolerance 10.3390/plants9101298
050390264600 - - up
050390820300 |  ZFP182 Zinc Finger up salttolerance  10-1016/j.bbaexp.2007.02.006
050590541400 | bHLH119/LF bHLH up 10.1093/mp/sss096
0s02g0764700 |  ERF103 AP2 up drought responsive
0s06g0127100 | DREBIC AP2 up

2Leaf | 550890474000 | ERF104 AP2 up drought responsive
050190859300 | ABIS/ABF1 bZIP_1 up prsoggit;’;tfla" 10.1007/511103-008-9298-4
050190192300 |  MYB1R1 Myb_DNA-binding up
0s01g0874300 DLN31 Myb_DNA-binding up
050290187700 MYB1 Myb_DNA-binding up
050290618400 MPS Myb_DNA-binding up cell wall remodelling 10.1111/tpj.12286
050290462800 |  WRKY42 WRKY up ‘;r;’:;‘;tceesnf:f 10.14348/molcells.2014.0128
050290654700 | ERF91/AP59 AP2 up drought/salt tolerance  10.1104/pp.109.137554
0s09g0572000 ERF87 AP2 up
Os11g0168500 |  ERF118 AP2 up
0s01g0108600 - bHLH up

Roots | 050550163900 |  bHLHO36 HLH up
0s01g0274800 CSA Myb_DNA-binding up
050190305900 - Myb_DNA-binding up
0s06g0649000 |  WRKY28 WRKY up represses IMmune 44 1607/511103-013-0032-5

responses

TABLE 1: List of transcription factor (TF) genes coregulated with JA pathway genes in rice
salt stress response. Genes were selected from data in Figure 4 on the basis of their
exclusive regulation in WT at 1 h and 6 h for roots, or 1 h and 72 h for shoot, and their

absence of response in aoc (-1< log2FC <1; FDR < 0.05).
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FIGURE 5. Kinetic Gene Ontology
(GO) display of DEGs in roots (a) and
2nd |eaf (b) upon salt stress. DEGs
lists established in Figure 3c from
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FIGURE 6. Analysis of ABA pathway genes, hormone content and water management responses
upon salt stress in rice. Expression heatmap of described rice ABA metabolic genes is shown for aoc
and WT roots and 2™ leaf (a). ABA content in roots and 3 leaf. Histograms show the mean of 3
independent biological replicates + SEM; *P < 0.05 (b). Expression heatmap of genes associated
with GO term “response to water deprivation”. Only genes whose expression was changed at least at
one time point in aoc or WT (-1< log,FC <1; FDR < 0.05) are represented (c). Stomatal conductance
to water vapor (gsw) was determined in leaf 5 of WT and aoc plants (d, left panel). Relative water
content (RWC) was determined in 3 leaf of WT and aoc plants submitted to salt stress for 4 days (d;
right panel). Histograms represent the mean of 3 (gsw) or 4 (RWC) biological replicates + SEM.
Asterisks indicate a significant difference (ANOVA plus Tukey’s HSD tests, *P < 0.05; **P < 0.01;

***P<0.001).
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FIGURE 7. Analysis of differential ion transporter gene expression and ion accumulation in
roots and leaves upon salt stress. Expression profiles of ion transporter genes in aoc vs WT
are represented as kinetic heatmaps (a). Only transporter genes whose expression was
changed at least at one time point in aoc or WT (-1< log,FC <1; FDR < 0.05) are represented.
Expression of HAK4 transporter gene in roots of WT plants exposed to MeJA. Data are taken
from RiceXpro database (b). Quantification of Na* and K* ion accumulation in roots, 2" and
3 leaves : means + SEM from 6 independent biological replicates are represented (c).
Asterisks indicate a significant difference (ANOVA plus Tukey’s HSD tests, *P < 0.05; **P <
0.01; ***P < 0.001).
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FIGURE 8. Analysis of reactive oxygen species-scavenging systems in leaves under salt
stress. Second leaves of aoc or WT seedlings were submitted to DAB staining to visualize
extent of H,O, accumulation. Scale bar: 1 cm (a). Genotype comparison (aoc vs WT) of
differentially-expressed genes encoding ROS-scavenging activities. APX : ascorbate
peroxidase; FSD: iron-dependent superoxide dismutase; GST: glutathione S-transferase; SOD:
superoxide dismutase (b). Expression of FSD1.1 and FSD1.2 in leaves of WT plants exposed
to MeJA (c). Asterisks indicate a significant difference (ANOVA plus Tukey’s HSD tests, *P <
0.05; **P < 0.01; ***P < 0.001).
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FIGURE 9. Jasmonate deficiency delays induction of senescence-promoting genes upon salt
stress. Expression of genes associated with senescence (SAGs) was compared in 2 |eaf
between aoc and WT genotypes at four time points and genes whose expression was changed at
least at one time point in either genotype (-1< log,FC <1; FDR < 0.05) are represented as a
kinetic heatmap (a). Expression of Os/43 and OsNAP, two SAGs that are strongly differential in
(a), was monitored upon response to MeJA exposure (b). Histograms display means + SEM from
3 biological replicates. Chlorophyll contents was determined in WT and aoc 2" or 3" leaves after
4 days of salt stress (c). Asterisks indicate a significant difference in means (ANOVA plus Tukey’s
HSD tests, *P < 0.05; **P < 0.01; ***P < 0.001).



Figure 10

Shoot Vs -
DHNs

NCED)) ABA TSA  RaBs Y)Y water retention

T
/@ @ ————» NAP ))) leaf senescence
/V \ FSD1.1

FSD1.2

Osmotic stress lonic stress
early phase (h) late phase (d)

Q" @ — | HAK4
Osmotic + ionic J
stress ,_<
early and late ABA

phases (h-d) — P maintained ABA responses in aoc

Root

FIGURE 10. Proposed model of JA-regulated functions in the rice response to salt
stress. The study links newly-defined JAs gene targets to specific impacts of JA signaling on
the salinity response physiology. Salt stress through its successive osmotic and ionic
components stimulates JA metabolism which leads to waves of transcriptional changes with
organ-specific temporal patterns. Root response is immediate-early while in shoot a bi-phasic
response is discerned at hormonal and transcriptional levels. ABA responses are largely JA-
independent in root, but JA signaling is critical for full induction of ABA biosynthetic genes and
ABA accumulation in shoot. Both hormones synergistically activate ABA-regulated responses
including dehydrins and RAB genes to boost water retention, including reduction of stomatal
conductance and water loss in rice leaves. On the other hand, JA signaling, through
transcriptional repression of HAK4 in roots and FSD genes in leaves, impairs Na* exclusion
from root xylem and ROS detoxification in leaves respectively, which aggravates Na* toxicity
in photosynthetic tissues. This set of responses, associated with the induction by JAs of NAP,
a transcriptional activator of leaf senescence, can explain the severe necrotic symptoms
observed in WT leaves after salt stress. The findings establish JAs as multifaceted regulators
of the rice salt stress response, where JA signaling can no longer be uniformly associated
with salt sensitivity or tolerance. Black arrows and red lines indicate transcriptional activation
and repression of JA-target genes respectively; compiled “greater than” symbols indicate
positive regulation of key pathways involved in rice salt stress response. h: hours. d: days.
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Figure S$1
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FIGURE S1. Developmental phenotypes of rice wild-type (WT) and jasmonate-deficient (aoc)
seedlings exposed to control or 100 mM NaCl (salt) solutions. Two representative plants from
each condition were photographed 5 days after exposure. Arrows on control plants designate
second (lower) and third leaves (a). Seminal root length was measured and represented in
boxplots with n = 20 (except aoc-control, n = 17) (b). Asterisk * indicates significant difference
(ANOVA plus Tukey’s HSD tests, *P < 0.05p<0.05).
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FIGURE S2. Principal component analysis (PCA) of RNAseq data distribution. Global normalization
was applied to root and 2" |eaf samples (Total of 48 samples with each biological condition in 3
independent replicates (a). Sample designation: R or S = Root or Shoot; W or a = WT or aoc; Rx =
replicate number. Root samples only (24) were normalized and analyzed in (b). 2" leaf samples
only (24) were normalized and analyzed in (c).



Figure S3

Venn Diagrams of deregulated TFs - aoc/WT
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RPBF (0s02g0252400) is the only TF less expressed in WT in both root and shoot
ZFP36 (0s03g0437200) is the only TF more expressed in WT at all times in both root and shoot

FIGURE S3. Analysis of extent of overlap between deregulated transcription factor (TF) genes in shoot and root.
Lists of genes showing differential expression in each organ in the aoc/WT comparison were crossed for each of

the 4 timepoints (h) of salt response. Number of genes in common between the two organs comparisons are
represented in Venn diagrams.
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FIGURE S4. Gene ontology (GO) analysis of differentially expressed genes (DEGs). DEG lists at each
time point relative to 0 h were submitted to GO analysis and enrichment of biological processes (FDR
< 0.01) in aoc or WT was displayed as heatmaps for roots (a) and 2" leaf (c). Roots were
photographed at 6 days after exposure (b).
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FIGURE S6. Kinetic expression profile of rice ion transporter genes displayed as
heatmaps in root (a) and 2™ leaf (b).
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(a) ROS detoxification genes (b)  senescence associated genes (SAG)
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FIGURE S7. Kinetic expression profile of rice genes encoding ROS-scavenging or —consuming activities
displayed as heatmaps in root (a) and 2" leaf (b) of aoc and WT plants.
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(@)  Expression profile of shoot targets in RNAseq data
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(b)  Expression profile of Roots targets in RNAseq data
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FIGURE S8. Kinetic expression profile of rice genes identified as probable targets of JA
signaling in shoots (a) and roots (b) upon salt stress. Asterisks indicate a significant difference
in means (ANOVA plus Tukey’s HSD tests, *P < 0.05; **P < 0.01; ***P < 0.001Student’s t test
***P < 0.001).



Target Gene ID Forward primer Reverse primer

uBQS 0Os01g0328400 ACCACTTCGACCGCCACTACT ACGCCTAAGCCTGCTGGTT
uBQ10 0s02g0161900 GAGCCTCTGTTCGTCAAGTA ACTCGATGGTCCATTAAACC
FSD1.1 0s06g0115400 TCACGTGTACTCCAGTGTGC GCATCGGAAGCGGTTTCATC
FSD1.2 0Os06g0143000 ACAACGGCAACCCATTACCA TGGCTGCATTGATTCCCAGA
NAP 0s03g0327800 AGTTCCGCAACACCTCCA CTGCTCGTGGTCGGAGAG
Osl43 0s01g0348900 AGGCGTGACAATCTACAG GGTTCCAGAAATCTCCTTGA

Table S4: Primers used for RT-gPCR experiments.




