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Nonlinear-wave mixing in optical microres-
onators offers new perspectives to generate
compact optical-frequency microcombs, which
enable an ever-growing number of applications.
Microcombs exhibit a spectral profile that is
primarily determined by their microresonator’s
dispersion; an example is the sech2 spectrum
of dissipative Kerr solitons under anomalous
group-velocity dispersion. Here, we introduce
an inverse-design approach to spectrally shape
microcombs, by optimizing an arbitrary meta-
dispersion in a resonator. By incorporating the
system’s governing equation into a genetic al-
gorithm, we are able to efficiently identify a
dispersion profile that produces a microcomb
closely matching a user-defined target spec-
trum, such as spectrally-flat combs or near-
Gaussian pulses. We show a concrete imple-
mentation of these intricate optimized disper-
sion profiles, using selective bidirectional-mode
hybridization in photonic-crystal resonators.
Moreover, we fabricate and explore several mi-
crocomb generators with such flexible ‘meta’
dispersion control. Their dispersion is not only
controlled by the waveguide composing the res-
onator, but also by a corrugation inside the res-
onator, which geometrically controls the spec-
tral distribution of the bidirectional coupling
in the resonator. This approach provides pro-
grammable mode-by-mode frequency splitting
and thus greatly increases the design space for
controlling the nonlinear dynamics of optical
states such as Kerr solitons.

Microcombs — optical-frequency combs generated
in driven Kerr resonators1 — are versatile light sources
that offer unique properties for applications and inte-
gration of frequency-comb systems on a chip. Through
experimentation and advances in the fabrication of in-
tegrated resonators, microcombs have progressed from
a theoretical framework for Kerr-nonlinear optics2,2

to the generation of octave spanning combs for accu-
rate and precise optical metrology4. The large mode
spacing and spectral width of microcombs have al-
ready found applications in parallel coherent commu-
nication5 distance measurement6,7,8, and phase stabi-
lization9 for photonic-integrated frequency synthesis4.

Microcomb generation often involves the formation
of dissipative Kerr solitons (DKS)10,11, which exist
by balancing losses through nonlinear gain, anomalous
group velocity dispersion (GVD), and pump laser de-
tuning, through nonlinear phase shifts. Dominated by
second-order dispersion, the resulting DKS pulses fea-
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ture a squared secant hyperbolic profile in time and
frequency domain; see fig. 1a. Owing to this equi-
librium with the Kerr-nonlinearity, the dispersion of
the resonator – or more generally mode-by-mode fre-
quency mismatch from the resonator’s free-spectral
range (FSR) – primarily determines the pulse shape
and spectrum of nonlinear states it supports.

Tailoring the comb spectral profile is desired in ap-
plications like telecommunications where high power
per mode and spectral flatness improve the perfor-
mance and efficiency of data links. However, there
is currently no direct relationship connecting the de-
sired microcomb spectrum with the required disper-
sion, material properties, or physical geometry of the
resonator. Additionally, achieving precise dispersion
control in resonators has historically been a signifi-
cant challenge, lacking a demonstrated technique for
imparting arbitrary dispersion properties. Neverthe-
less, recent advancements in numerical computation
and machine learning have introduced new capabilities
and tools for system design and optimization12,13,14,15.
Integrated photonics, on the other hand, not only of-
fers potential for miniaturization of large-scale sys-
tems but also enables greater control over guided
modes of light, particularly in photonic crystals16,
or topology-optimized elements17,18 which paved the
way for highly customizable inverse-designed microres-
onators19

Here, we propose and implement an inverse-design
process to shape the spectral envelope of microcombs.
Our approach numerically optimizes an arbitrary dis-
persion profile to tailor the associated nonlinear state
of the resonator toward a target pulse shape and spec-
trum. The resulting complex dispersion relation is
then implemented indirectly by means of Photonic
Crystal Resonators (PhCRs), where the resonance fre-
quencies can be controlled via multiple selective mode
splitting20,21,4 to create a meta-dispersion (fig. 1c).
We demonstrate a full iteration of the design process
and first experimental evidence of microcomb shaping.
The design steps followed in our work are summarised
in fig. 1d. First, we numerically solve the governing
equation of the resonator, and use a genetic algorithm
(GA) to iteratively optimize the dispersion and pump-
ing parameters to create a desired microcomb shape.
While a similar GA-based method was concurrently
developed23, our approach notably introduces an ana-
lytical model based on the target comb’s Kerr shift to
efficiently generate an initial dispersion. Second, we
determine the PhCR topology needed to achieve the
optimized dispersion. Finally, we demonstrate real-
izations of meta-dispersion in PhCR microresonators
and initial observations of comb generation in these
devices.
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Figure 1: Concept of microcomb inverse-design via meta-dispersion engineering (a) Microcomb gen-
eration in an optical microresonator. The resonator dispersion determines the comb spectral envelope, following
the Lugiato-Lefever Equation (LLE). Applying this nonlinear model, knowing the resonator parameters, can be
viewed as direct design. (b) The concept of inverse design consists in the reverse operation, i.e. assignment
of a desired comb envelope and determination of the optimal microresonator dispersion for which the resulting
comb shape is closest to the target. This ‘inverse LLE’ is accomplished here with a genetic algorithm (GA). The
optimized dispersion profiles are implemented using photonic crystal ring resonators (PhCR). (c) A PhCR is a
micro-ring resonator where the inner ring waveguide wall is patterned with a sub-wavelength modulation (λ/2).
This leads to a targeted and tunable single-mode splitting, with the formation of a red- and blue-shifted pair of
modes (resp. shifted to lower and higher frequency). The PhCR approach can be generalized to split multiple
modes simultaneously, by superposing several modulation patterns (bottom panel). The combined effects of
waveguide dispersion and the mode splitting create a composite dispersion, or meta-dispersion on the blue- and
red-shifted branches. (d) Our procedure for tailoring microcombs consists in several steps. A desired comb shape
is first defined. A GA calculates the optimized dispersion profile, which is then converted into meta-dispersion
parameters, determining the geometry of the PhCR. The devices are nano-fabricated and characterized, before
pumping the suitable resonators.

Results
Inverse-design dispersion optimization – We
first describe our precise formalism and notation. The
Lugiato–Lefever equation2 (LLE) accurately models
the driven nonlinear resonator and can be written as a
set of coupled mode equations in the spectral domain:

∂Ãµ

∂t
= −

[κ

2 + i (δω − Dint(µ))
]

Ãµ

+ i g0 F
[
|A|2 A

]
µ

+
√

κex
Pin
ℏω0

δµ=0

(1)

where µ is the azimuthal mode number relative to the
pumped mode,

∣∣Ãµ(t)
∣∣2 is the number of photons in

mode µ as a function of the ‘slow’ time t, Pin and
δω = ω0 −ωpump are respectively the pump power and
detuning terms11 (the detuning is positive if the laser
frequency is lower than the resonance frequency), κ is
the resonator FWHM linewidth, and κex is the cou-
pling rate. F [·]µ represents the Fourier series opera-
tor and g0 the per photon Kerr shift of the resonator
modes. Pth = ℏω0κ3/8g0κex is the threshold pump
power for initial four-wave mixing in resonators and is
useful to rescale the power quantities. The operator
Dint(µ) = (ωµ − ω0) − D1 µ represents the resonator
dispersion24 and measures the deviation of the reso-
nance frequencies from an equidistant FSR D1.
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Optimization problem: The dispersion plays a key role
in determining the temporal and spectral shape of lo-
calized structures emerging from nonlinear effects in a
resonator. One problem of interest is to find the dis-
persion Dint of the resonator that yields a comb with
desired properties, and is a steady-state solution of the
LLE; see fig. 1b.

To simplify the problem, we describe the dispersion
using a set of polynomial coefficients Dk such that
Dint(µ) =

∑8
k=2

Dk

k! µk + γ0
2 δµ=0 . The extra degree of

freedom γ0 corresponds to a discrete shift in the fre-
quency of the pump mode, which is known to favour
the formation of pulses, notably in the normal disper-
sion regime25,20,26. An additional constraint limits the
pump power within a specified budget of Pmax. Our
objective is to determine the values of Dk, γ0, δω, and
Pin that result in a stationary comb profile that best
satisfies our objective, as quantified by the error func-
tion E(Ãµ) (see the Methods section for details). To
solve this optimization problem, we use a genetic evo-
lutionary algorithm27,28,23.
Initialization: It is useful to leverage prior knowledge
to initialize the problem as close as possible to a po-
tential solution. An initial dispersion profile is first
derived based on a simple heuristic, inspired by the
essential principle of the soliton balance of dispersion
by the Kerr shift. Thus, in the frequency domain, the
dispersion Dinitial

int (µ) is initialized as the opposite of
the Kerr spectral shift δKerr

µ of the target comb state
Ãtarget

µ , according to20

Dinit
int (µ) = −δKerr

µ = −ℜ




F
[
|Atarget|2 Atarget

]
µ

Ãtarget
µ




(2)
Hence this relation is fitted with a polynomial to ob-
tain the initial dispersion coefficients. The pump laser
parameters (Pin, δω) are also initialized, below Pmax
for the former, and based on the maximum single-
mode Kerr-shift for the latter29. A population of dis-
persion candidates, with a typical size of Npop = 208,
is then generated from random variations around these
initial parameters.
Evolution step: The GA loop for finding the opti-
mal parameters consists of two steps, presented in
fig. 2a. First, the steady-state intra-resonator field
is computed for each member of the population by
integrating the LLE equation via split-step Fourier
transform. Next, the steady-state comb solutions are
ranked based on an error function E(Ãµ) that measures
their fitness for the optimization goal. This metric can
be the mean square error to a target comb shape or
a binary criterion that checks whether a given power
target is reached for certain lines. To ensure stable
and low noise combs, highly fluctuating states are pe-
nalized. If a solution meets a fitness threshold or a
maximum generation number is reached, the algorithm
stops. Otherwise, a new population is created by com-
bining two parents’ dispersion coefficients (crossover)
and adding a random variation (mutation) to generate

each new candidate, before the loop continues. The
GA is further detailed in the Methods section.
Optimization results: First, we show how the disper-
sion can be optimized to obtain a comb with nearly
Gaussian spectral profile in the resonator. Figure 2b
shows the target comb, the initial comb and the re-
sult after optimization. The initial dispersion profile,
shown in fig. 2c, is calculated from the target comb
Kerr shift using eq. (6). The optimized dispersion
appears almost identical to this initial profile. The
GA mainly modified the pumping conditions to fit the
spectral width to the target.

For applications, such as telecommunications, a flat
microcomb with high conversion efficiency and max-
imum power per line is typically required. Using a
rectangular comb target is problematic as the function
is discontinuous. A raised-cosine shape makes a more
realistic target for optimization as it has a smoother
decay outside the bandwidth of interest, as shown in
fig. 2d. Moreover, the regularity of the function makes
it possible to compute the Kerr shift, which again pro-
vides an excellent starting point (see fig. 2e). The
GA mainly modifies the pump mode shift γ0 and the
driving parameters. These examples demonstrate that
our method can perform a ‘fitting’ of a specific comb
target by changing the parameters of the LLE. Our
initialization technique also proves to be very effec-
tive in coarsely matching a desired comb shape, which
can speed up the convergence of the GA, especially if
it preferentially adjusts the pumping parameters. An
exhaustive search could even be conducted.

An alternative approach to obtain efficient flat comb
generation, is to modify the fitness metric to enforce
a comb line power of at least Pmin over a given band-
width (see methods). We initialize the dispersion from
the Kerr shift of a flat-top comb model (see the method
section), which does not satisfy the power criterion, al-
though we sought to obtain the highest possible power.
After the optimization, the power criterion is met by
the resulting comb, as shown in fig. 2f. Interestingly,
the associated dispersion profile, shown in fig. 2g, is
dominantly normal for higher relative mode number,
and turns locally anomalous near the pump mode.
The general comb shape resembles the typical ‘plati-
con’ spectrum obtained in normal dispersion32,25,26,
i.e. a strong central lobe surrounded by two pro-
nounced wings, which is known to have high conver-
sion efficiency33. However, the center lobe here has a
flattened sech-like profile11. In this optimization prob-
lem, where the target comb is not provided, the GA
plays a prominent role since it extensively explores the
parameter space and converge to a radically different
solution from the initialization. Overall, the heuris-
tic approach and the GA are complementary tools in
the inverse-design process. The former can be used
to quickly obtain a rough estimate of the optimal pa-
rameters in specific problems, while the latter can re-
fine the parameters and explore a broader range of
solutions. Finally, it should be noted that the algo-
rithm does not guarantee to find a global optimum to
the problem. However, we tested the convergence ro-
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Figure 2: Dispersion optimization for comb shaping (a) Flowchart of the evolutionary algorithm used to
optimize the dispersion and driving parameters to match a given comb spectral profile. (b) Comb spectra of a
targeted Gaussian comb envelope (red), initial comb profile computed from the Kerr shift initialization (black
dashed), and the evolutionary algorithm result (blue). The driving parameters {2δω/κ, Pin/Pth} are initially
{4.4, 13} and {5, 8.6} after optimization. (c) Computed the Kerr shift-based initialization (black cross), and the
integrated dispersion profile after evolutionary optimization (blue). (d) Set of comb spectra for a targeted raised
cosine shape (β = 0.8, see methods). Initial driving: {4.4, 13}, and optimized set: {6.5, 11.7}. (e) Corresponding
dispersion for the spectra shown in (d). (f) Optimization with the objective of reaching a minimum power per
line requirement over a given bandwidth. Initial driving: {3.5, 7}, and optimized set: {1.2, 7}. (g) Corresponding
dispersion for the spectra shown in (f). While the initial dispersion is in the anomalous regime, the optimized
dispersion is mainly normal.

bustness by repeating this optimization problem three
times, and obtained similar dispersion profiles for all
iterations.

An additional scenario, targeting enhanced
dispersive-wave emission is discussed in the sup-
plementary information (SI). Before finalizing the
meta-dispersion design, bidirectional LLE simula-
tions34 are performed, with sweeps of δω, Pin and
γ0 to ensure that the desired nonlinear state can
be achieved in the resonator, under realistic driving
conditions (see the SI for details).
Meta-dispersion – The complex dispersion ob-
tained with the GA is realized by means of engineered
mode splittings in a PhCR (see fig. 1c). A distributed
corrugated grating is fabricated on the inner wall of
a ring resonator, introducing a clockwise – counter-
clockwise coupling and hence a mode hybridization.
The corrugation’s period and amplitude respectively

control the impacted longitudinal mode and the split-
ting amplitude. By appropriately superposing mul-
tiple corrugations, we generalize this concept to si-
multaneously control multiple dozens of modes, while
faithfully retaining a designed spectral distribution of
mode splitting γµ. The combined ring waveguide dis-
persion and mode splitting distribution define an ef-
fective synthetic dispersion, or meta-dispersion, on the
blue and red shifted branches corresponding to the up-
and down-frequency-shifted split modes.

PhCR design: Figure 3a shows the implementation of
the optimization result using meta-dispersion. The
dispersion is decomposed into two components. First,
the ring’s dispersion is chosen to match the general
sign of the optimized dispersion at high mode numbers,
which allows us to set the waveguide’s cross-section.
The mode splitting spectral distribution γµ near the
central modes is then taken as twice the difference be-
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Figure 3: Meta-dispersion in PhCR (a) Design principle of the meta-dispersion PhCRs. First, the resonator
dispersion is chosen to match the dominant sign of the targeted dispersion returned by the GA, which sets the
waveguide cross-section. The spectral distribution of mode splitting is then set equal to twice the deviation
between the target dispersion and that of the waveguide near the central modes. Finally, the required grating
profile is generated by Fourier synthesis. The various components of the grating are superposed with a chirp
in order to distribute the grating modulation more evenly along the ring. (b) SEM image of a meta-dispersion
PhCR. The inset on the right highlights a section of the chirped corrugation. (c) Measured integrated dispersion
of a PhCR (rw=2.3 µm, th=570 nm). The designed splitting profile follows a Gaussian curve. (d) Fitting of the
split resonance of the mode µ = 0. The asymmetric lineshape30 originates from interference with the chip Fabry
Perot (facets reflections) fitted on the top panel. A mode splitting model31 is then fitted to the PhCR resonance
to extract the loaded and intrinsic quality factors (QL, Qi) and splitting parameters. (e) Distribution of mode
splitting retrieved from fitting the resonances of several PhCR devices. The splitting distributions are designed
with the same Gaussian profile, where only the splitting of the zeroth mode is varied from device to device. Single
mode control of the splitting is maintained.

tween the target dispersion and that of the waveguide,
so that one of the shifted branches coincides with the
target dispersion. Finally, the corrugation’s azimuthal
profile ρ(ϕ) is calculated by use of Fourier synthesis of
this distribution:

ρ(ϕ) =
∑

µ∈Z

ρ̃µ

2 cos
(
2(m0 + µ) ϕ + ξµ2)

, (3)

where the modulation amplitude ρ̃µ is determined
based on an experimental calibration of the frequency
splitting vs PhC amplitude relation γ(ρ) (see meth-
ods). m0 is the ‘carrier’ modulation which sets the
azimuthal mode index of the central mode µ = 0.

Importantly, the various frequency components of
the grating are superposed with a phase offset (chirp ξ)
to distribute the corrugation’s amplitude evenly across
the ring perimeter. This minimizes the corrugation
peak amplitude and preserves the shape of the desired
splitting distribution. Indeed, since we use the fun-
damental transverse electric mode of the waveguide,
which has the highest Q factor, the relationship γ(ρ) is
non-monotonic. A similar dispersion control approach
was developed concurrently in ref.4, using the trans-
verse magnetic mode, for which γ(ρ) is monotonic.

Characterization: We fabricate the designed devices in
a 570 nm-thick Ta2O5 (tantala) layer on thermal sili-
con oxide, without top-cladding (see35 for fabrication
details). The ring resonator baseline dispersion is con-
trolled by changing the width of the waveguide (rw).
The resonator FSR are selected as 200 or 400 GHz.
Figure 3b shows a scanning electron microscope (SEM)
image of a completed PhCR, revealing the corrugation
pattern.

The dispersion and quality factors are character-
ized by use of a scanning laser spectroscopy method36,
and the resonances frequencies are detected and the
integrated dispersion Dint is retrieved. We first per-
form a meta-dispersion demonstration with a Gaussian
splitting profile in a normal dispersion ring, shown in
fig. 3c. The integrated dispersion Dint illustrates the
deviation of each frequency splitting branch from the
continuous resonator dispersion. The resonance pair
for each longitudinal split mode is fit with a model to
recover the characteristics of the resonances. Thus, we
found that adding the corrugation does not degrade
the quality factor for modulation depths under 10 %
of the ring width. The splitting spectral profile γµ is
also retrieved and shows a Gaussian shape in excellent
agreement with the design.
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Figure 4: Examples of meta-dispersion in
PhCR (a) Normal dispersion ring with flattening of
the blue-shifted (upper) branch. The impact of the
avoided mode crossings with higher order mode fami-
lies are causing the disruptions near µ = 10. (b) Corre-
sponding mode splitting distribution. (c) Anomalous
dispersion ring (rw = 1.3 µm) and engineering the red-
shifted branch to replicate the profile in fig. 2c, and
(d) Corresponding mode splitting distribution.

This characterization is repeated for several res-
onators, in which only the zeroth mode splitting is
changed. Their respective splitting distribution is re-
ported in fig. 3e, which shows first the excellent re-
production of the global Gaussian profile across the
devices. Second, we observe that single mode split-
ting control is accurately retained, in spite of splitting
multiple tens of adjacent modes.

Figure 4 shows further examples of meta-dispersion
demonstrations, with various configurations of base
ring dispersion (normal and anomalous) and to tailor
the dispersion of the red- or blue-shifted branch. The
principle works remarkably well in all cases, such as
flattening the blue-shifted branch or carve a localized
stronger dispersion. Deviations from the measured
profiles are nevertheless observed, which are caused
by avoided mode crossing. These are due to the pres-
ence of higher order modes in the resonator and can
be problematic for the formation of DKS37.

Comb generation – We conducted comb gener-
ation experiments in PhCR structures with meta-
dispersion profiles for two configurations of target
comb spectra. To initiate comb generation, the laser
power is increased, and its frequency is swept through
the red-shifted resonance of the split mode µ = 0,
starting from the center of the split and increasing the
laser wavelength.

The first configuration, targets a comb with a min-
imum comb line power. The measured dispersion,
shown in fig. 5a, corresponds to that of a normal-
dispersion ring resonator (rw = 2.3 µm, radius 109 µm)

with a slight anomalous meta-dispersion near the
pump, to reproduce the optimized design shown in
fig. 2g. The device was pumped with 55 mW on-
chip. The detuning was first increased to trigger the
formation of an initial comb state and then reduced
(backward tuning), to induce switching into the state
shown in fig. 5b. The spectrum is analogous to a plati-
con comb25, but with a flattened center lobe, com-
pared to a single PhC device (shown in red in fig. 5b),
and a wider bandwidth for the same pump power and
base ring dispersion. The number of consecutive teeth
within the 5-dB bandwidth is increased from ∼ 20
to ∼ 50. Notably, the power per line in the central
lobe is lower than in the wings, as featured in the pre-
dicted inverse-design comb in fig. 2f. We confirmed
that this comb is a low-noise state, by recording its
intensity noise, which coincides with the instrument’s
noise floor (fig. 5c). Several comb state transitions and
breathing stages were observed by changing the power
and detuning (see SI), revealing complex dynamics.

The second configuration aims at generating
Gaussian-shaped combs. The ring features anomalous
base dispersion (rw = 1.55 µm, radius 53 µm), and the
meta-dispersion is chosen to replicate the computed
optimized dispersion in fig. 2c over a limited range
of the red-shifted branch, as shown in fig. 5d. This
meta-dispersion PhCR device is compared to a regu-
lar ring resonator with the same geometry to provide
a baseline for comparison. Figure 5e shows the combs
produced in each resonator in the unstable modulation
instability (MI) regime, when pumping with ∼90 mW
on-chip. We also ensured that the comb states have
comparable intensity noise properties and are in the
same stage of MI (subcomb merging38). The regular
ring produces a typical MI comb, with powerful comb
lines surrounding the pump (corresponding to primary
lines) and a dip in comb line power near the pump.
The meta-dispersion resonator exhibits a markedly dif-
ferent comb envelope, with a smoother decrease in
power from pump to wings. The MI comb bandwidth
is also largely reduced, highlighting the impact of the
PhCR in shaping the microcomb. Unfortunately, sta-
ble mode-locked soliton sates38 could not be obtained
in this meta-dispersion device, nor in the regular ring,
likely due to the photothermal effect in the cavity39,40,
which is particularly strong in Ta2O5. The presence of
an avoided mode crossing near the pumped mode can
also hinder soliton formation37. Therefore, the PhCR
comb envelope does not match the expected Gaussian
shape, which is obtained in the soliton state, as shown
below. Nevertheless, we believe that these limitations
are not fundamental, but of technical nature, and that
the desired states can be achieved on a more mature
technology platform.
Comb simulation: We have compared these experimen-
tal observations with bidirectional LLE simulations34,
detailed in the SI.

First, we set out to reproduce the comb states in
noisy MI, in order to validate our model. The param-
eters used are taken from the experimental measure-
ments of the resonators shown in fig. 5d. The detuning
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Figure 5: Comb generation in meta-dispersion PhCR (a) Measured integrated dispersion. The meta-
dispersion resonator (in blue) features a flattened and slightly anomalous dispersion near the centre modes (on
the down-shifted branch), in an overall normal dispersion ring. A normal dispersion ring with a single mode
splitting at µ = 0 that allows comb generation, is shown in red. (b) Optical frequency comb measured on an
optical spectrum analyser, obtained in the meta-dispersion resonator (blue) and regular PhCR (red). The on-chip
pump power is 55 mW and 56 mW respectively. (c) The intensity noise of the combs shown in (b) (blue, red)
coincides with the electrical spectrum analyzer’s noise floor (black), confirming a coherent mode-locked state.
(d) Integrated dispersion of a PhCR microresonator for Gaussian shaped comb generation (blue), compared with
a regular ring with anomalous GVD (red). (e) Comb states generated in each ring, (PhCr in blue, regular in
red) in the noisy modulation instability regime. Pump powers are 91 mW and 89 mW respectively. (f) Intensity
noise of the combs shown in (e). The peaks indicate MI instabilities.

is the only adjusted parameter, to recover the unstable
modulation instability regime in each resonator. The
averaged spectra shown in fig. 6a are in good agree-
ment with our experimental observations.

Second, since numerical simulations are not subject
to thermal effects, they allow us to extrapolate the
shape of the stationary ‘mode locked’ pulsed states in
each resonator, which are reached at higher detuning
(see SI). The corresponding comb spectra are over-
laid in fig. 6b. The PhCR comb clearly deviates from
the usual DKS sech2 profile formed in the standard
resonator, and follows a Gaussian shape within the
meta-dispersion bandwidth. These projections further
show that the nonlinear cavity field state is governed
by the meta-dispersion.

The results presented here show only the combs co-
propagating with the pump. Since the combs are sup-
ported by hybrid modes, whose splitting amplitude is
significantly larger than the Kerr shift20,26, they are
typically generated with near equal power in the clock-
wise and counterclockwise direction. However, transi-
tions to a dominant direction have been observed, es-

pecially when the dispersion is predominantly normal.

Discussion
In summary, we have demonstrated the spectral

shaping of microcombs by inverse design, using an
optimization layer on the LLE, and we have demon-
strated the scalable use of PhCRs for effective meta-
dispersion engineering. This flexible approach enables
mode-by-mode selectivity and control of nonlinear fre-
quency shifts that are critical in Kerr microcombs. We
also showed that meta-dispersion can be used in the
nonlinear regime to perform spectral shaping of micro-
combs.

Further fundamental studies are still needed to fully
understand the nonlinear dynamics in hybrid modes,
to help control comb formation in these new devices,
and to refine our inverse design approach. More-
over, we are considering several ways to enhance our
method. The optimization algorithm could occur di-
rectly on the meta-dispersion parameters, using the
bidirectional LLE within the evolution loop. This re-
quires nonetheless a robust method of seeding the cav-
ity field in both directions. In this respect, machine
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Figure 6: Numerical simulation of comb states
(a) Simulated microcombs in the noisy MI regime, for
the PhCR (blue) and regular anomalous GVD ring
(red) presented in fig. 5d. The spectra are averaged
over ∼130 000 roundtrips. (b) Simulation of micro-
combs in the low-noise pulsed (soliton) regime, for the
PhCR (blue) and regular anomalous GVD ring (red).
Over the meta-dispersion bandwidth, the PhCR comb
features a Gaussian shape (green), as designed.

learning could contribute to speed up the computation,
and robustly find the soliton or related nonlinear eigen-
states. Other implementations of the optimised dis-
persion can be conceived, based on coupled resonator
chains41,33, through engineered avoided mode cross-
ing with higher-order modes42, or by using discrete
inverse-designed reflectors19.

We believe that our comb customization procedure
is promising to fully unlock the application potential
of microcombs. First, in optical telecommunications,
where it can maximize the conversion efficiency and
the power per line in the bandwidth of interest. In
spectroscopy, our concept can help open access to new
wavelength ranges, or shape combs that target spe-
cific chemical species. Additionally, one could try to
optimize the control of the comb parameters (repeti-
tion frequency, offset), to improve its intrinsic stabil-
ity. Finally, the presented method offers new avenues
for nonlinear physics, making previously unrealistic
dispersion profiles accessible, while contra-propagative
coupling promises to produce a myriad of complex dy-
namics that remain to be explored.
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Methods
Genetic algorithm – Our goal is to find the param-
eters Dk, γ0, δω, Pin that yield a stationary comb pro-
file (for the LLE) Ãµ that minimizes an error function
E(Ãµ), which quantifies our objective. The optimiza-
tion problem can be formalized as follows:




minimize
Dk,γ0,δω,Pin

E(Ãµ)

subject to
{eq. (1) = 0

Pin ≤ Pmax

(4)

The latter term contrains the pump power within a
limited power budget. Based on the available power
and our resonator’s properties, we set Pmax = 13 Pth.

The LLE steady state field for each member of the
population, is estimated using split step Fourier trans-
form integration1 of eq. (1). An initial pulse consisting
in an approximate soliton profile2, is seeded in the sim-
ulation and its evolution through the LLE is computed
for 100 photon lifetimes; the pump power and detun-
ing are kept constant. Though the stationary state
of the LLE can be found using a Newton–Raphson
method2, we found that its convergence was slower
and less systematic than the split step approach, es-
pecially in complex dispersion profiles.

The steady-state solution of each member of the
population is then ranked according to a metric
E(Ã, Dk), which measures each comb’s ‘fitness’ with
respect to the optimization goal. The smaller the er-
ror, the more fit the candidate. This metric can be
the squared Euclidean distance to a target comb shape
Ãtarget

µ :

E(Ã) =
∑

µ ̸=0

(
|Ãµ| − |Ãtarget

µ |
)2

(5)

This metric can be complemented to favour stable low-
noise states, by adding the standard deviation of the
mean comb power, estimated during the second half
of the split-step evolution.

The raised cosine comb spectrum shape is defined
with the following expression:

Ãtarget
µ =





1, |µ|
∆ ≤ (1 − β)

cos2
[

π
4β

(
|µ|
∆ − (1 − β)

)]
,

∣∣∣ |µ|
∆ − 1

∣∣∣ ≤ β

0, otherwise
(6)

where ∆ is the comb’s 3-dB bandwidth and β is the
roll-off factor, which controls the slope of the power
decay in the outer lines of the comb.

Another metric can be used to ensure a minimum
comb line power Pmin over a given bandwidth ∆:

E(Ã) =
∑

µ∈∆
max

(
0, Pmin − ℏωµ D1

2π
|Ãµ|2

)
(7)

This way, comb lines exceeding the criterion are not
penalized. A soft threshold function can also be used
to force the power to be within a given range. The
flat-top comb initial model follows the equation Aµ =

A0/(1 + µ/B)8, where B sets the bandwidth and A0
the comb line magnitude. A0 was set to the maximum
value authorizing convergence to a stable comb state.

In general, engineering the error function is a key as-
pect of inverse design problems, and it requires careful
consideration of the optimization goals, constraints,
and trade-offs. The two functions in eqs. (5) and (7)
are two extreme cases when is come to evaluating the
combs shape over a bandwidth of interest, as the for-
mer gives equal weights to all comb lines, while the
latter only accounts for the lines within a spectral re-
gion and disregards the lines outside. A more general
approach is to introduce weight factors that reflect the
importance of certain comb lines or regions of the spec-
trum. Alternatively, one could also use a weighting
function that assigns higher importance to certain dy-
namics of the comb, to identify phenomena such as
breathing.

Note that if the targeted problem is frequency-
symmetric with respect to the pump, all odd disper-
sion coefficients can be set to zero and the optimization
can be performed only on the even terms, reducing the
number of variables while ensuring the symmetry of
the solution.

At each iteration of the GA loop, a new population
is created. First the two best individuals from the
last generation are carried over unchanged (elitism),
which guarantees that the current optimum is pre-
served. Then, each new offspring is generated by se-
lecting two (or more) parents at random, with a prob-
ability inversely proportional to their residual error,
so that the fittest to the problem are selected more
frequently (roulette wheel selection). The dispersion
coefficients (genes) of the offspring are randomly se-
lected from its parents (uniform crossover). The bet-
ter the fitness of a parent, the more likely its genes
will be selected. Finally, the offspring’s genes are mu-
tated by adding a random value drawn using a normal
distribution with standard deviation σ. As the num-
ber of generation increases, σ is gradually decreased
to favour the convergence of the algorithm.

Our genetic evolutionary algorithm was developed
in MATLAB, without the use of existing optimization
libraries. To speed up the steady-state intra-resonator
field calculation, we implemented parallelization of the
split-step Fourier transform computations. This al-
lowed us to significantly reduce the computation time,
making the optimization process feasible within a few
hours.
Mode splitting calibration – The relation be-
tween PhC amplitude and mode splitting was cal-
ibrated experimentally on a series of single period
PhCR with identical base geometry (ring radius
109.5 µm, width 2 µm, height 570 nm), while the PhC
amplitude ρPhC is swept. The results are shown in
fig. S1. Note that the reported amplitude corresponds
to the design value and not the measured geometry.

While the relation is linear at small corrugation am-
plitudes, it reaches a maximum around ρPhC ∼ 200 nm
for γ/2π ∼ 35 GHz and the tuning direction reverses.
We found that a near null splitting can be obtained
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Extended Data Figure S1: PhC and mode split-
ting calibration. Measured mode splitting of the
target mode as a function of corrugation amplitude
ρPhC (single frequency PhC), measured across 114 res-
onators. The inset shown an extended range of ρPhC.

for ρPhC ∼ 420 nm, before γ increases again for larger
amplitude values (see inset of fig. S1). This counter-
intuitive bandgap closing was observed and explained
by Gnan et al. in photonic wire Bragg gratings and is
related to Brewster angle incidence3 and is also stud-
ied in ref.4.

We did not observe any significant deviation from
this calibration, upon splitting multiple modes. Chirp-
ing the frequency components of the corrugation, in
order to reduce amplitude variations, allows us to stay
within the linear segment of this relationship and en-
sures a good replication of the splitting profile, as
shown in fig. S2. Limiting the amplitude variations
in the corrugation also avoids the need for high aspect
ratio etching, which thus simplifies the nanofabrication
of the PhCR.
Data availability statement

The data and code used to produce the figures of
this manuscript are available on Zenodo: https://
doi.org/10.5281/zenodo.7998103.
Code availability statement

The code for the genetic algorithm implementa-
tion used to perform the dispersion optimization
is available at: https://github.com/ErwanLucas/
inverseLLE.
References
1. Hansson, T., Modotto, D. & Wabnitz, S. On the

Numerical Simulation of Kerr Frequency Combs
Using Coupled Mode Equations. Optics Commu-
nications 312, 134–136 (2014).

2. Coen, S., Randle, H. G., Sylvestre, T. & Erkintalo,
M. Modeling of Octave-Spanning Kerr Frequency
Combs Using a Generalized Mean-Field Lugiato-
Lefever Model. Optics letters 38, 37–9 (2013).

3. Gnan, M. et al. Closure of the Stop-Band in Pho-
tonic Wire Bragg Gratings. Optics Express 17,
8830 (2009).

/

(
) 

(n
m

)

-30 -20 -10 0 10 20 30 40

Mode number 

0

2

4

S
p

lit
ti
n

g
 

/2
 (

G
H

z
)

-1 0 1

-200

0

200

No chirp

-1 0 1

Medium chirp

-1 0 1

Strong chirp

Design target
No chirp
Medium chirp
Strong chirp

Extended Data Figure S2: Effect of distribut-
ing the PhC pattern along the ring perimeter.
(a) Measured mode splitting distribution with various
amount of chirping applied to the corrugation pattern.
The design target is the Gaussian distribution shown
in black. (b-c) Spatial profiles of the designed corru-
gations. (a) Without chirp, the splitting distribution
is distorted and even inverted. The effect is avoided
by chirping the pattern.

4. Moille, G., Lu, X., Stone, J., Westly, D. & Srini-
vasan, K. Fourier Synthesis Dispersion Engineer-
ing of Photonic Crystal Microrings for Broad-
band Frequency Combs. Communications Physics
6, 1–11 (2023).

11

https://doi.org/10.5281/zenodo.7998103
https://doi.org/10.5281/zenodo.7998103
https://github.com/ErwanLucas/inverseLLE
https://github.com/ErwanLucas/inverseLLE
https://doi.org/10.1016/j.optcom.2013.09.017
https://doi.org/10.1016/j.optcom.2013.09.017
https://doi.org/10.1016/j.optcom.2013.09.017
https://doi.org/10.1016/j.optcom.2013.09.017
https://doi.org/10.1364/OL.38.000037
https://doi.org/10.1364/OL.38.000037
https://doi.org/10.1364/OL.38.000037
https://doi.org/10.1364/OL.38.000037
https://doi.org/10.1364/OE.17.008830
https://doi.org/10.1364/OE.17.008830
https://doi.org/10.1364/OE.17.008830
https://doi.org/10.1038/s42005-023-01253-6
https://doi.org/10.1038/s42005-023-01253-6
https://doi.org/10.1038/s42005-023-01253-6
https://doi.org/10.1038/s42005-023-01253-6
https://doi.org/10.1038/s42005-023-01253-6


Supplementary information to: Tailoring microcombs with inverse-designed,
meta-dispersion microresonators

Erwan Lucas∗1,2,4, Su-Peng Yu1,2, Travis C. Briles1, David R. Carlson1,3, and Scott B. Papp†1,2

1Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO USA
2Department of Physics, University of Colorado, Boulder, CO 80309, USA

3Octave Photonics, Louisville, CO 80027, USA
4Current affiliation: Laboratoire ICB, UMR CNRS 6303, 21078 Dijon, France

Contents

1 Octave-spaced dispersive wave optimization 1

2 Bidirectional, coupled Lugiato-Lefever simulations 2

3 Fine tuning the mode splitting spectral distribution 2

4 Unusual comb states and dynamics in meta-dispersion PhCR 3

Octave-spaced dispersive wave optimization
We consider the case of optimizing the dispersion and pump driving parameters to maximize the power at a

frequency located an octave above the pump, similarly to the scenario presented in ref. [1].
This configuration can facilitate Kerr comb self-referencing, as the high power pump can be more easily

frequency doubled by second harmonic generation and compared to the comb line located one octave away. An
elegant way to enhance the comb line power is to use dispersion engineering to create a phase-matched condition
near the desired frequency to trigger the emission of a dispersive wave (DW) by a DKS [2]. However, finding
the appropriate dispersion and driving conditions to optimize the power at a specific wavelength target is not
an easy task, and we use our optimization algorithm to fine tune these conditions. Note that similar approaches
were applied to supercontinuum generation [3, 4].

We assume here a comb line spacing of 200 GHz, pumped at 1550 nm, leading to an octave relation of the
pump with the mode µ = 969, and use 4 orders of dispersion. We limit the pump power to Pin/Pthresh ≤ 50. The
initial dispersion is set by placing a root of Dint at the desired mode position, which in first order, should yield
a phase matching condition at that point [5]. We can see in fig. 1 that this initial dispersion yields a wrong DW
position, since the complex non-linear phase shift is not taken into account. Our optimization metric follows eq.
(6) in the main text, but a term based on the standard deviation of the temporal waveform was added. It favors
pulsed localized states over extended chaotic patterns in the cavity. After optimization, the power at one octave
is enhanced by ∼49 dB compared to the initial guess.
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Figure 1: Dispersive wave power optimization. (a) Optimization of the power in a dispersive wave at an
octave above the pump (vertical dotted line on mode µ = 969), the dashed black line shows the initial guess. The
blue comb is resulting from the optimization. The normalized pump power is Pin/Pthresh = 43.1 and detuning
2∆ω/κ = 43.8 (b) Initial (black, dashed) and optimized (blue) dispersion curves.

This optimization approach can be generalized and refined. The dispersion can be derived from real waveg-
uides, instead of using polynomials [1]. Moreover, if the Raman self frequency shift [6, 7] of the underlying
material is taken into account, the dispersion optimization can adapt accordingly.
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Bidirectional, coupled Lugiato-Lefever simulations
We developed numerical simulations of a bidirectional LLE model, based on ref [8]:
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where the terms are introduced in the main text. The +/− superscript refers to the fields in the clockwise /
counter-clockwise directions. The numerical simulations of this system are based on split-step Fourier method.

Fine tuning the mode splitting spectral distribution
The above model is used to finalize the inverse design stage. After the genetic algorithm has converged, and

the optimal dispersion profile has been decomposed into the baseline dispersion of the waveguide and a spectral
splitting distribution γµ, we map the space of achievable solutions using our numerical model, as shown in fig. 2.
To that end, multiple detuning scans across resonance are simulated under varying pump power conditions, while
the cavity is only seeded with vacuum noise. This ‘soft excitation’ scheme is close to the experimental generation
method, but thermal effects are excluded.
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Figure 2: Additional pump shift design. (a) Meta-dispersion for the Gaussian-shaped comb, without
increased splitting of the pumped mode γ0. (b) Detuning – normalized pump power phase diagram, showing
the normalized comb power. The regions with Turing rolls (T), unstable modulation instability (U) and multi-
pulse formation (M) are marked. Only the forward field (+) is shown throughout the figure. (c) Intracavity
field as detuning is increased for a normalized pump F 2 = 45 showing the transition through the various states.
(d) Individual spectrum in the M state shown in (c). (e) Meta-dispersion for the Gaussian-shaped comb, where
γ0 is specifically increased by 1.87 κ (arrow), and (f) corresponding phase diagram, showing “steps” features
where a single pulse is formed (S). (g) Intracavity field as detuning is increased for a normalized pump F 2 = 25,
showing the transition from Turing rolls into a single pulse state. (h) Individual spectrum in the S state shown
in the previous inset.

In our optimization algorithm, the field is initialized from a pulse, which does not guarantee that the resulting
steady-state localized pattern can be obtained through soft excitation. However, shifting the pump mode can
help displace the modulation instability (MI) region [9] to the point where it overlaps with the region of existence
of the targeted localized pattern, which can nucleate spontaneously during the soft-excitation.

Thus, the mapping against detuning and power is repeated for several small variations of the pumped mode
splitting γ0, as illustrated in figs. 2a and 2e. We found that increasing γ0 relative to the adjacent modes can
help ensure single pulse state generation, as was observed for dissipative Kerr solitons [10]. Figure 2a shows that
a small increase of γ0 leads to a significant change in the phase diagram of the solution and promotes direct

2



transitions to the single pulse state at lower power. Since γ0 is the only parameter that is changed, an exhaustive
simulation is rather fast. This mapping of the parameter space allows us to narrow down the parameter variations
needed in the PhCR design. Note that when the dispersion is globally normal, this additional shift gets necessary
to establish a comb [11].

Unusual comb states and dynamics in meta-dispersion PhCR
We provide here additional evidence for the singular comb dynamics in the resonator presented in fig. 5d of

the main text. Figure 3 shows several comb states recorded experimentally for different values of detuning and
pump power. The observed evolution does not correspond to a classical platicon. In the following, we describe
the evolution of several states, labelled in Figure 3a, as the detuning is decreased.

State (i): This initial comb state state appears after tuning the laser across the red-shifted mode for soft ex-
citation. It is broadband but appears to be noisy and breathing, as evidenced by the intensity noise
measurement on the RF spectrum analyser (see fig. 3b).

State (ii): When the detuning is decreased, the comb shape changes drastically and takes a slanted flat-top
profile. This spectrum shape approaches those obtained in “photonic molecules” [12]. However, the comb
state is unstable (likely breathing instability) at low power, but gains stability at higher power (v-vi), which
is in contradiction with the usual behaviours of Kerr combs that tend to be destabilized with stronger
driving [13].

State (iii): As the detuning is further reduced, the comb switches to a spectrally modulated envelope, which
is reminiscent of the spectra obtained in the case of normal, but near-zero GVD [14], but over a smaller
spectral width in our case. This behaviour is not entirely surprising, since within the meta-dispersion region
the effective dispersion is nearly zero, as can be seem in fig. 3c.

State (iv): Finally, at the minimal detuning the spectrum assumes this platicon-like shape, which was shown in
the main text. Strikingly, the most resembling platicon state in a usual normal-dispersion resonator would
be expected for a maximal detuning [11].

At present, a complete understanding of the dynamics of combs under meta-dispersion is lacking, and a
full study dedicated to these mechanisms is still needed. Nonetheless, we performed bidirectional simulations
of the experimentally-measured parameters, which allowed us to qualitatively reproduce some of the observed
behaviour, especially for the states (i), (iii) and (iv), as shown in figs. 3d to 3f.
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Figure 3: Extended comb characterization in meta-dispersion resonator. (a) Experimentally-measured
combs in different conditions of detuning and pump power in the resonator presented in fig. 5d of the main text.
The state (i) is the first comb state produced upon soft excitation (pump power 95.5 mW on chip). (i-iv) show
the comb evolution while reducing the detuning for the same pump power. The state (iv) is shown in the main
text, but at lower power. The states (v-vi) are obtained upon increasing the pump power and for a detuning
similar to that of state (ii). (b) Measured intensity noise of the combs shown in (a). (c) Meta-dispersion profile
used for comb simulation, which was retrieved from the measured dispersion. (d) Simulated comb for driving
parameters {2δω/κ, Pin/Pth} = {3.45, 17}, resembling the comb state (i) (e) Simulated comb for lower detuning
{−1, 17}, which reproduces the modulated spectrum of (iii) (f) Simulated comb for lowest detuning {−1.4, 17},
whose shape matches the state (iv).
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