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Abstract 23 

Over the last 70 years, extreme heat has been increasing at a disproportionate rate in 24 

Western Europe, compared to climate model simulations. This mismatch is not well 25 

understood. Here, we show that a substantial fraction (0.8°C [0.2°-1.4°C] of 3.4°C per 26 

global warming degree) of the heat extremes trend is induced by atmospheric circulation 27 

changes, through more frequent southerly flows over Western Europe. In the 170 28 

available simulations from 32 different models that we analyzed, including 3 large model 29 

ensembles, none have a circulation-induced heat trend as large as observed. This can be 30 



due to underestimated circulation response to external forcing, or to a systematic 31 

underestimation of low-frequency variability, or both. The former implies that future 32 

projections are too conservative, the latter that we are left with deep uncertainty 33 

regarding the pace of future summer heat in Europe. This calls for caution when 34 

interpreting climate projections of heat extremes over Western Europe, in view of 35 

adaptation to heat waves. 36 

 37 

Introduction 38 

 39 

Extreme heat has been increasing at global scale [1,2], with a rapid rate in several regions. In 40 

Western Europe [3], summer temperatures and heat extremes have warmed much faster than 41 

elsewhere in the mid-latitudes over the last two decades [3,4]. As a consequence, several 42 

unprecedented heatwaves took place in the last 20 years. In 2003, the full summer season mean 43 

temperature was unprecedented in Europe [5]. Northwestern Europe was hit by record 44 

temperatures in 2018 [6,7]. In 2019, two short (3-day) but intense heat waves saw all-time 45 

temperature records broken in many places, associated with a rapid northward advection of 46 

Saharan air [6]. All-time records were broken again in 2022, with temperatures above 40°C 47 

reaching far north (eg. Brittany, U.K.) [8]. Unprecedented, and even record-shattering extremes 48 

are plausible in climate projections [9], but the pace of their increasing magnitude in Western 49 

Europe is generally not predicted by these climate models, as well as trends in mean summer 50 

temperatures [4, 10-13].  51 

 52 

Here we focus on summer (JJA) maximum and mean of daily maximal temperatures (resp. 53 

denoted hereafter TXx and TXm for simplicity), and the regional amplification of their trends 54 

relative to the global temperature trend. Trends in TXx and TXm are calculated over the 73-55 

year 1950-2022 period using a linear regression with the Global mean Surface Air Temperature 56 

(GSAT, see methods section) from ERA5, and are expressed in °C per global warming degree 57 

(GWD). As shown in Figure 1 and Supplementary Fig. 1, both ERA5 reanalyses [14] and E-58 

OBS interpolated observations [15] exhibit trends reaching more than 5°C/GWD for TXx in 59 

northern France and Benelux. Over the limited area spanning 5W-15E; 45N-55N (blue box, 60 

called hereafter “Western Europe”), the land area-average TXx trend is 3.4°C/GWD  for ERA5 61 

and E-OBS [2.4 - 4.3°C/GWD]. It exceeds the more moderate TXm trends by about 40% for 62 

ERA5 (2.4°C/GWD [1.7 - 3.0°C/GWD] and 30% for E-OBS (2.6°C/GWD [1.9 - 63 

3.3°C/GWD]). These rapid warming trends are exceptional on a global scale: The 20°x10° 64 



Western Europe region has the highest TXx (all year round) trend of all regions of the same 65 

size around the globe between 75°S and 75°N shifted by steps of 5° (including sea points). 66 

 67 

A variety of processes have been proposed for explaining these overproportional warming 68 

trends with respect to global temperature change. For mean summer temperatures, changes in 69 

mean atmospheric circulation [16,17], changes in aerosol [18] and changes in early summer 70 

soil moisture [19] and related feedbacks were considered for explaining (part of) the trends. 71 

For extreme heat, the increase in the frequency and persistence of split midlatitude jet states 72 

over the last 40 years, possibly associated with the reported weakening of the mean summer 73 

zonal circulation [20], can explain about a third of the amplified trend in heatwave intensity 74 

[3]. Changes in atmospheric circulations around Europe that favor heat were also emphasized 75 

[21,22], in particular a positive trend in a dipole structure with a low pressure over the Eastern 76 

Atlantic [23,24] and a high pressure over the Mediterranean extended towards central Europe 77 

[25]. Yet, no increasing trend was found in blocking over Scandinavia that has led to the 2018 78 

heat wave [6,26]. Moreover, reported changes in Rossby waves are not robust and are sensitive 79 

to their exact definition [27]. In addition, variability of summer temperatures has been shown 80 

to be large in Central Europe [28]. Thus, while several studies have hinted at a potential role 81 

of dynamical changes in amplifying European heat waves, a systematic analysis is lacking, 82 

including also how models simulate these changes. 83 

 84 

Results and discussion 85 

 86 

Role of dynamical changes in the temperature trends 87 

We used a method based on circulation analogues to assess the role of dynamical changes in 88 

the TXx and TXm trends (see the methods section for a full description). Regional atmospheric 89 

circulation patterns are characterized by their 500 hPa streamfunction over the domain shown 90 

in Fig. 1a (black box). We identify circulation analogues for a given day by searching for other 91 

summer dates (JJA months) with similar anomaly structures, measured by the spatial anomaly 92 

correlation coefficient (ACC). A set of dates with circulation analogues allows us to calculate 93 

statistics conditionally to a given circulation [29-32], or to assess the role of dynamical changes 94 

in circulation-conditioned variables [33,34]. 95 

 96 

In order to estimate the contribution of dynamical changes to TXx and TXm trends (called 97 

hereafter the “dynamical TXx and TXm trends”), we replace each daily temperature field by 98 



the temperature field from a different day that had the best analogue circulation. In the absence 99 

of long-term trends in circulation, this is equivalent to shuffling the temperature time series 100 

while keeping the dynamics, thereby creating a trend-free “analogue temperature time series”. 101 

In the presence of long-term circulation trends, the trend in the analogue temperature time 102 

series comes from the changes in circulations (e.g. an increase in circulations favorable to heat, 103 

or vice versa). Replacement by analogues should in principle remove thermodynamical effects 104 

from global warming. As global warming is not homogeneous across the time period, and to 105 

ensure analogue regional temperatures represent a given global warming level, we further apply 106 

a correction by scaling all analogue temperatures to a reference year for global warming (2022) 107 

(see Methods). We verified that results were similar in both cases (with and without scaling). 108 

 109 

The dynamical TXx trend (Fig 1b) is generally positive over Western Europe and reaches about 110 

1.5°C/GWD in several  areas. The dynamical TXm trend is found to exceed 1°C/GWD over 111 

Southwestern Europe (Fig 1d). Over Western Europe, the average TXm and TXx dynamical 112 

trends are respectively 0.74°C/GWD [0.26-1.21°C/GWD] and 0.79°C/GWD [0.24-113 

1.35°C/GWD]. For E-OBS the dynamical trends are 0.78°C/GWD [0.27-1.29°C/GWD] and 114 

0.86°C/GWD [0.29-1.43°C/GWD] for TXm and TXx respectively. 115 

 116 

We verify these findings on the dynamical contributions to extreme temperatures trends with a 117 

second method, called “dynamical adjustment” [35]: The method uses a spatial circulation field 118 

(here: z500 for consistency with previous studies) as a proxy in order to estimate the 119 

contribution of circulation to temperature variability. Here, we use ridge regression, a linear 120 

regression technique that regularizes the coefficients of the high-dimensional circulation 121 

predictors [36], and we subsequently evaluate the dynamical contribution of z500 to the 122 

Western Europe TXx trends and averaged results over Western Europe (see method details in 123 

the Methods section). Results are consistent with the analogue approach (Supplementary 124 

Figure 2), although with a slightly weaker dynamical TXx trend of 0.56 °C/GWD. 125 

 126 

To test the sensitivity of our results to the analogue domain, we performed sensitivity 127 

experiments by extending and reducing the domain by 10° longitude and 5° latitude (leaving 128 

about ⅔ or more of the domain common with the reference one). The dynamical trend is 129 

significant and within 0.5°C/GWD and 0.9°C/GWD, except when reducing the domain towards 130 

the North-Eastern part (20W-20E;35N-60N), (dynamical tendency reduced to 0.38°C/GWD) a 131 

probable consequence of the key role of the upstream part of the pattern. 132 



 133 

Further, we investigate the specific streamfunction patterns associated with summer maximum 134 

extreme temperatures over central France [1.5E;46.5N] – i.e., a region where the TXx 135 

dynamical trend is large (see Fig. 1). We select the reference date (29/06/2019) for which the 136 

streamfunction pattern (Fig. 2a) has a maximal average ACC (0.59) with other streamfunction 137 

patterns occurring each year when maximal temperature (TXx) is reached at this grid point, so 138 

it is most representative of those “TXx days”. We find that about 15% of the summer days in 139 

total have an ACC larger than 0.5 with the 29/06/2019 pattern, and that 53 out of 72 other TXx 140 

patterns also correlate by more than 0.5. For the sake of simplification, we will refer this class 141 

of patterns as the “Southerly Flow” patterns (SF), since almost all of the patterns bear a positive 142 

west-east streamfunction gradient (eg. 99% of patterns when considering the gradient between 143 

15°W and 5°E at 50°N), inducing southerly flows over the Western margin of Europe. This 144 

pattern also includes a strong anticyclonic component over Central Europe, which induces 145 

increased radiation and potential land-atmosphere feedbacks if persistent. As another example, 146 

the outstanding temperatures in London on 19/07/2022 were also obtained with a similar 147 

circulation pattern (ACC=0.81 with 29/06/2019). To assess sensitivity to the reference pattern 148 

we also repeat all calculations with the 10 most representative TXx patterns (Supplementary 149 

Figure 3) in the above sense. In these other cases, the frequency of associated correlated flows 150 

is within the 10-20% range. 151 

 152 

To check how the SF days contribute to the dynamical trend, we recalculated the dynamical 153 

trend excluding the SF days: we removed SF days from the time series, calculated the analogue 154 

temperatures of remaining days, the resulting yearly TXx, and recalculated the dynamical 155 

trend. We also did the opposite operation by keeping only SF days in the time series. On 156 

average over Western Europe (Figure 2b), the dynamical TXx trend without SF patterns 157 

becomes insignificant over Western Europe (0.08°C/GWD on average over Western Europe), 158 

while the SF-only TXx dynamical trend is both high and statistically significant (1.3°C/GWD).  159 

Similar results are found when using a different reference date among the 10 most 160 

representative patterns. Dynamical TXx trends over Western Europe can therefore largely be 161 

explained by changes in the characteristics of SF patterns. First, their frequency has increased 162 

by 43% [10%;76%] per GWD (52% with time between 1950 and 2022) (see Supplementary 163 

Table 1). Second, the number of “events” (one event is defined here as a set of consecutive 164 

days) per year and their mean persistence have increased (see Supplementary Figure 4). The 165 

persistence of SF patterns has increased by about 24% along the period [-1%, +50%] as a 166 



function o f GWD. Such changes all give more chance, within a season, to reach the high end 167 

of the conditional temperature distribution. Other characteristics may also have changed (eg. 168 

amplitude) but were not investigated here. Significant frequency increases are also found for 169 

at least the 10 most representative patterns of Supplementary Figure 3, with rates in the range 170 

of 35% to 55%. 171 

 172 

Note that SF is not the only flow pattern changing, and not all patterns associated with TXx 173 

days have an increasing frequency or persistence. For instance, the 23/07/2021 pattern, 174 

corresponding with summer TXx in central France for 2021, shows no particular evolution 175 

(Supplementary Fig. 4). Our results are also consistent with the increase in occurrence and 176 

persistence of the specific class of double jet circulations explaining a large fraction of 177 

European heat extremes [3], and about half (i.e., much more than the mean probability, 15%) 178 

of double-jet days are found within the SF days. 179 

 180 

Simulated temperature trends and their dynamical contributions 181 

 182 

The representation of summer TXx and TXm trends has also been analyzed for a large number 183 

of CMIP6 model simulations (273 simulations in total for 36 models) (see Methods section for 184 

data processing). Over Western Europe, almost all CMIP6 simulations fail to simulate the 185 

observed strong TXx trends, as seen in Figure 3a, plotting the percentage of simulations with 186 

larger trends than observed, for each grid point. These differences are less pronounced for TXm 187 

(Fig. 3b) but the number of runs reaching the ERA5 trend remains small here too (10-20% in 188 

large parts of South-Western Europe). There are also other land areas outside Western Europe 189 

where the CMIP6 simulations are mostly above the observed warming TXx trend (i.e. Sahara, 190 

Northern Scandinavia, Southern Balkans). This suggests that there is no general 191 

underestimation of extreme heat trends over all regions (or land regions). However, 192 

understanding these regional discrepancies across the globe is beyond the scope of this article. 193 

 194 

When averaging TXx trends over the Western Europe region above defined, only 4 of the 273 195 

individual runs analyzed (members of 3 models out of 36, ACCESS-ESM1, NorESM2-LM and 196 

KIOST-ESM) have a larger trend than the observations. The strong TXx trends observed 197 

correspond to the ~98-99th percentile of the overall CMIP6 distribution and could, from a 198 

statistical standpoint, be interpreted as consistent with Western Europe witnessing a very 199 

unlikely phase of low-frequency internal variability. However, in the five large model 200 



ensembles that were at our disposal (eg. ACCESS-ESM1-5, CanESM5, IPSL-CM6-LR, 201 

MIROC6, MPI-ESM1-2-LR), only ACCESS-ESM1-5 has a few members for which TXx 202 

warms as rapidly as observed (Figure 3c), but this ensemble strongly overestimates the TXm 203 

trend (Figure 3d). Hence, this ensemble does not correctly estimate the daily maximum 204 

temperature distribution as observed in ERA5. 205 

 206 

Our results are qualitatively robust to the way trends are calculated. We estimated trends 207 

relative to time instead of GWD, and to each model initial-condition ensemble mean GWD 208 

instead of individual member GWD. In the first (resp. second) case, 9 (resp. 5) simulations 209 

(from 4 different models) slightly exceed the ERA5 TXx trend. Trends relative to time allowed 210 

in particular two members of CanESM5 to reach observations thanks to the strong global 211 

warming (about 1.7°C since 1950), while the regional response to global warming (the regional 212 

trend as a function of GWD is about twice weaker than in ERA5. 213 

 214 

We also implemented a multiple testing procedure, the False Discovery Rate [37-39], to test 215 

the significance of the result in Western Europe. Under the hypothesis that "models are 216 

indistinguishable from reality", the rank of the observed TXx and TXm trends in the 217 

distribution of members is uniform and there can be regions over which the observation falls 218 

outside the model range only by chance. Supplementary Figure 5 shows that even taking into 219 

account the multiple nature of the test, Western Europe is among the regions where the 220 

mismatch between observed and simulated TXx trends is significant at the 95% confidence 221 

level in the sense of the FDR procedure, while no significant mismatch is found in this region 222 

for TXm trends. 223 

 224 

Climate simulations do not capture the dynamical changes underlying these temperature 225 

extreme changes. We applied the analogue analysis to all available realizations for each model 226 

for which 500 hPa wind fields were available (170 simulations in total). This set was found to 227 

be rather representative to the overall simulation distributions, albeit with more weight on 228 

faster-warming simulations (see Figure 3a-b histograms) regarding TXx trends. None of their 229 

dynamical TXx trends reach the amplitude of the observed one over Western Europe (Figure 230 

4a). This shows that there is less than 1% chance that the observed trend estimate is drawn from 231 

the same population as simulation estimates, accounting for all uncertainties. Remarkably, all 232 

members of the three available large ensembles (ACCESS-ESM1-5 [40 members], IPSL-233 

CM6A-LR [31 members] and MPI-ESM1-LR [30 members]) exhibit values lower than 234 



observed, despite a few members exceeding the overall TXx trend. Also, on average over 235 

Western Europe, for TXm, a handful of models do have dynamical trends comparable to or 236 

larger than observations, but all others exhibit lower trends (Supplementary Figure 6).   237 

 238 

We also calculated the thermodynamical trend obtained as a residual by subtracting the 239 

dynamical trend from the total trend and reported the result in Figure 4b. This shows that 240 

climate models exhibit thermodynamical contributions that are broadly consistent with ERA5, 241 

but there is a tendency for an underestimation of TXx thermodynamical trends, and a general 242 

agreement for TXm trends (see Supplementary Figure 6). This analysis clearly shows that 243 

dynamical changes are largely responsible for the mismatch between modeled and observed 244 

TXx trends. 245 

 246 

All 170 climate simulations realistically simulate the climatological mean frequency of the SF 247 

patterns (range from 12.5% to 18%). However, the rapid observed increase in frequency of this 248 

flow field (+43%/GWD [10%-76%]) is only roughly captured by one among the 170 249 

simulations (NorESM2-LM, and weaker in the others (Supplementary Table 1).  250 

 251 

Discussion and conclusion 252 

 253 

Overall, our results show that, except for a very few of them, CMIP6 simulations do not capture 254 

the rapid observed warming of extreme heat over Western Europe. The analysis of atmospheric 255 

circulation changes shows that there is a large dynamical contribution to this observed trend, 256 

which is underestimated in all the 170 climate simulations analyzed, explaining a large part of 257 

the discrepancy in trend between models and observations. By contrast, models and 258 

observational trends are broadly consistent in terms of the thermodynamic contribution to the 259 

trend in mean temperatures. Although it cannot be completely ruled out, the systematic 260 

mismatch between dynamical trends of 170 simulations and the observations, suggest that it is 261 

unlikely due to pure chance under the assumption of perfect models. We cannot either rule out 262 

other sources of systematic uncertainties such as lack of homogeneity of reanalyses, in 263 

particular for circulation patterns, or inaccuracies in the aerosol and land use forcing changes 264 

that would translate in systematic model/observation trend mismatches. 265 

 266 

Determining the cause of model-observations dynamical trends mismatch is critical to assess 267 

whether the large observed warming TXx trend is likely or unlikely to continue. If due to a 268 



wrong forced dynamical regional response – models underestimate the forced response to 269 

greenhouse gases – then this mismatch is expected to remain and even strengthen in the future, 270 

as global warming increases. If related to unforced internal variability [40,41] – internal 271 

variability simulated by models is too small [42] – then the mismatch is expected to decrease 272 

in the future, but the term of this decrease is unknown and could be years or decades, leaving 273 

the fate of Western Europe heatwaves in large uncertainty.  274 

 275 

Here we have shown that the observed extreme temperature trends for Western Europe are 276 

weaker in CMIP6 simulations than in observations, largely due to model dynamical trends 277 

systematically weaker than the observed ones. Similar conclusions were found for wintertime 278 

weather over Europe [43]. Note that there are also other regions on Earth where model TXx 279 

trends have large excursions from ERA5, but our study focused on Western Europe. Further 280 

research is needed to determine the causes of the mismatch between simulated and observed 281 

heat trends, whether this is due to uncaptured internal variability or missing (dynamical) 282 

forcing/processes. Either way, our results call for caution when using climate model projections 283 

for adaptation and resilience plans. 284 

 285 

  286 



Methods 287 

Calculation of dynamical contributions to mean and extreme summer temperature 288 

trends: The method used to estimate dynamical contribution to the change in one variable 289 

follows the conceptual framework developed in Vautard et al. (2016), with a different 290 

implementation here. It is based on the estimation of the change in the variable solely due to 291 

the changes in regional upper-air circulations. For instance, even without extra heating from 292 

radiative and diabatic processes, an increase in the frequency of southerly flows in Western 293 

Europe would induce a mean regional warming. An increase in anticyclonic conditions would 294 

similarly lead to increased radiation and thus temperature. This can also lead to a cooling if 295 

increasingly frequent circulations are linked to cooler temperatures (eg. in Northerly winds). 296 

To estimate this dynamical effect of changing circulations on temperatures, we need to 297 

carefully remove any thermodynamical effect of climate change.  298 

 299 

We assume that daily temperature T (which can be mean, minimum or maximum daily 300 

temperature, and in the current article will be maximum temperature) has a distribution at a 301 

given location or grid point which depends on the atmospheric circulation and on other 302 

processes, including global warming. We then assume a decomposition into: 303 

 304 

𝑇 = 〈𝑇|𝑋〉𝐺𝑊𝐷 + 𝑇′         (1) 305 

 306 

where X is the 500 hPa streamfunction anomaly, characterizing the atmospheric circulation 307 

(simultaneous to the temperature), GWD stands for the global warming degree, <T|X>GWD is 308 

the average daily maximum temperature conditioned to the circulation, assumed to be 309 

dependent on GWD, and T’ is a fluctuation. This circulation-conditioned temperature includes 310 

not only advection effects (i.e. from cooler/warmer regions), but also all processes linked to 311 

the circulation (subsidence in anticyclone, increased radiation, surface-atmosphere feedbacks, 312 

…), so the overall dynamical trend includes all underlying processes tied to the dynamical 313 

conditions. In order to remove thermodynamical effects due to climate change, we scale all 314 

temperatures to a reference warming level. For this, we assume that the circulation-conditioned 315 

mean temperature depends linearly on the global warming level, so the decomposition can be 316 

written: 317 

 318 

𝑇 = 〈𝑇|𝑋〉𝑟𝑒𝑓 + 𝑏(𝑋). (𝐺𝑊𝐷 − 𝐺𝑊𝐷𝑟𝑒𝑓) + 𝑇′     (2) 319 



 320 

where ref refers to a reference global warming level, taken here as that of 2022, so all changes 321 

are expressed relative to 2022. The coefficient b(X) represents the mean warming rate 322 

conditioned to the circulation X, which includes thermodynamical effects of the climate change 323 

response – it is therefore assumed that the amount of warming depends on the circulation type. 324 

Assuming one can calculate b(X) and GWD, all daily temperatures are then scaled to the 325 

reference level with the following thermodynamical correction: 326 

 327 

𝑇𝑠 = 𝑇 − 𝑏(𝑋). (𝐺𝑊𝐷 − 𝐺𝑊𝐷𝑟𝑒𝑓)       (3) 328 

 329 

The dynamical contribution to any temperature trend constructed from daily temperatures (eg. 330 

here TXm, TXx) can then be calculated from the Ts time series, because changes with GWD 331 

are only through the changes in the frequency of occurrences of X for given GWDs. Trends 332 

should also not depend on the particular time Ts values are drawn as long as they occur 333 

simultaneously to a streamfunction anomaly which is similar to that encountered in the same 334 

sequence order as that of the series. Hence to increase statistical robustness and remove any 335 

residual link to the specific order of temperatures, we replace Ts temperatures by those 336 

occurring in circulations X along the time series. This has the advantage of “randomizing” the 337 

timing of analogues and providing multiple realizations to calculate dynamical trends. A new 338 

temperature analogue series is created by replacing each daily with that of the best circulation 339 

analogue, then another new series is made with the second best analogue, etc… (see below for 340 

practical analogue calculation). From each of these analogue time series, TXm and TXx are 341 

recalculated for each year, then averaged across analogues, and a regression with GWD is 342 

calculated at each grid point, together with its confidence interval, (plus or minus twice the 343 

standard error of the regression coefficient). To keep analogue quality high, we limit the 344 

number of time series to 3. To calculate time series of averages over Western Europe land, we 345 

apply the 0.5°x0.5° land mask of E-OBS and average over the grid points included in [-5W - 346 

15E ; 45N - 55N] 347 

 348 

Estimation of yearly GWD : In practice, GWD is calculated as a moving centered 5-year 349 

average of the global temperature with available data, for reanalyses and models, accounting 350 

for series ends in ERA5 (i.e. for 1950, taking into account an average only over 1950 to 1952, 351 



and for 2022 an average over 2020 and 2021). The 2022 value is then subtracted to all values, 352 

so GWD is 0 in 2022, and generally negative before. 353 

 354 

Selection of circulation analogues : In practice, circulations are characterized by the 500 hPa 355 

streamfunction over the [-30 +20°E ; 30 60°N] domain. Analogs of a given circulation are 356 

characterized by anomaly correlation coefficient (ACC) between streamfunction fields. For 357 

each summer day, we collect the best analogues (highest ACCs), and impose that they remain 358 

spaced by 6 days or more within a season, and self-analogues are not considered. This is done 359 

by successively testing fields in descending order of the ACC, and skipping days not respecting 360 

the separation with previously selected fields. 361 

 362 

Calculation of the circulation-conditioned thermodynamical trend b(X) : To calculate 363 

b(X), we also use analogue circulations, in a different way than above: For each summer day d 364 

of the 1950-2022 period, we estimate b(X(d)) using a regression of each raw temperature T(d) 365 

(before thermodynamical correction) associated with a large set of best analogue circulations 366 

of X(d) found between 1950 and 2022 with the GWD values of their respective year. We use 367 

the best 1% summer analogues (67 days) with the same spacing of at least 6 days. 99% of the 368 

worst of these 67 analogues across all summer days have ACC > 0.5, 65% have ACC > 0.7. 369 

Imposing a quality criterion on analogues such as ACC>0.7 or more would leave days with an 370 

insufficient number of analogues for regression. 371 

 372 

Dynamical adjustment: Dynamical adjustment is used as a second, alternative technique to 373 

estimate the influence of circulation-induced temperature trends. This method relies on the idea 374 

that temperature variability can be decomposed into a component that is driven by circulation-375 

induced variability, and a residual, thermodynamical component. The “thermodynamical” 376 

component is expect to contain a forced signal as well as any other unexplained variability or 377 

feedbacks [44]. Most applications of this technique characterize circulation-induced 378 

temperature variability using a proxy variable such as geopotential height  [35,36,45,46]. 379 

Dynamical adjustment techniques typically rely on linear methods such as variants of linear 380 

regression or circulation analogue techniques. 381 

 382 

Here, we use the spatial pattern of z500 in a relatively large circulation domain over Europe 383 

and the North Atlantic (-30 to 20°E, 30 to 60°N, similar to Fig. 1), following the method 384 

outlined in [47]. However, we introduce some modifications and additional details.We use a 385 



regularized regression technique, called “ridge regression”, which is well-suited to deal with 386 

the large number of circulation predictor grid cells and a relatively short observed record. For 387 

TXx, we train our ridge regression model on the 15 warmest days in each summer during 1950-388 

2021 at each grid cell in the ERA5 reanalysis, resulting  in a total of 1080 observations (72 389 

summers and 15 days per summer). Since the z500 field contains information about the lower 390 

troposphere, and is affected by temperature change via thermal expansion, we detrend the 391 

spatial z500 field by subtracting the global average z500 at each time step and over each grid 392 

cell in the circulation domain. Hence, the analysis is based only on relative changes within the 393 

z500 field. To obtain regional estimates of the circulation-induced component of TXx, we 394 

performed an area-weighted average across the grid cells within the study domain.  395 

 396 

 397 

Data availability  398 

  399 

All analyzes have been conducted using 3 main data sets. The ERA5 reanalysis and the E-OBS 400 

data sets (processed from the https://climate.copernicus.eu) has been downloaded, and are 401 

available from the Climate Explorer https://climexp.knmi.nl . CMIP6 model simulations are 402 

available from the IPSL ESGF node https://esgf-node.ipsl.upmc.fr/ .  403 

  404 

Code availability  405 

  406 

Codes used in this article develop classical statistical algorithms, and are available upon 407 

request. Application codes are provided in the archive: https://zenodo.org/record/8310140  408 

 409 

 410 

 411 
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Figures 604 

 605 

 606 

 607 

 608 

Figure 1: Total and dynamical contributions to extreme and mean TX trends 609 

ERA5 reanalysis temperature trends relative to the global warming level (°C/GWD), for 610 

summer Maximum of maximal daily temperature (TXx) (a) and b)) and summer Mean of 611 

maximal daily temperature (TXm, c) and d)). The raw trend (a) and c)) is compared to the 612 

estimated dynamical contribution to these trends (b) and d)), obtained by replacing daily 613 

temperatures by those of best circulation analogues with a thermodynamic correction (see 614 

Methods). The areas highlighted are: (black box) the area used to calculate the anomaly 615 

correlation of 500 hPa streamfunction for the definition of analogues; the Western Europe focus 616 

area (blue box), where maximal daily temperature trends are averaged in this study. Dotted 617 

points show areas where statistical significance of trends is less than 95% (two sided). The 618 



statistical test uses a 2-sigma rule for the regression coefficient, accounting for the total number 619 

of well-separated analogues (see Methods). 620 

 621 

 622 

 623 

 624 

Figure 2: Southerly flow anomalies and their contributions to summer temperature 625 

maxima 626 

a) 500 hPa Streamfunction anomaly (Phi 500) of the 29/06/2019; b) yearly time series of 627 

the Western Europe average of Summer maximal temperature TXx (brown), the TXx 628 

of the analogue time series, averaged over Western Europe and using the 3 best 629 

analogues (black curve) (see Methods), and the corresponding time series obtained by 630 

excluding (resp. including only) Southerly Flow (SF) pattern dates before calculating 631 

the analogue TXx values  (blue circles, resp. red circles). The sets of dates (SF dates or 632 

SF excluded dates) within a year over which the yearly maximum is sought are therefore 633 

complementary. In each case, analogues are calculated using the full set of patterns (i.e. 634 

for SF excluded dates, analogues may contain SF patterns). Linear trends for all series 635 

are also shown, with the same color as the series. The dashed trends are for SF-only or 636 

SF-excluded cases. 637 

 638 



 639 

 640 

 641 

Figure 3: Simulated vs. observed TX trends in Western Europe 642 

Comparison between the ECMWF reanalysis ERA5 and 273 CMIP6 simulations of trends in 643 

Summer maximum summer of daily maximum temperature, TX, (TXx, panels a) and c)) and 644 

summer mean summer TX (TXm, panels b) and d)) in °C/GWD represented in different ways; 645 



top panels: percentage of simulations with a trend larger than ERA5 at each grid point; bottom 646 

panels: representation of trends for model ensembles (dots) and observations (red and orange 647 

lines) after averaging over Western Europe (5°W to 15°E ; 45°N-55°N); blue dots represent 648 

the 170 simulations that were analyzed with the analogue approach. Histograms at the bottom 649 

of the figure summarize the overall distribution of the TXx (left) and TXm (right) trends across 650 

the 273 simulations considered, together with the (blue) part analyzed with the analogue 651 

approach. Percentages of simulations with a trend larger than ERA5 are indicated in top right 652 

corners. 653 

 654 

 655 

 656 

 657 

 658 

 659 

 660 

 661 

 662 

 663 



 664 
 665 

Figure 4: Observed and dynamical and thermodynamical temperature trends 666 

Dynamical (a) and thermodynamical (b) contributions to the summer TXx (summer maximum 667 

of maximal daily temperature) trends from ERA5 ECMWF Reanalysis (red line), E-OBS 668 

observation (orange line), and the 170 CMIP6 model simulations (names in ordinate) that were 669 

available (black dots) averaged over Western Europe. The thermodynamical contributions are 670 

simply calculated as residual by subtracting the dynamical trend from the total trend (Figure 671 

3). For reference, the red bar at the bottom of Figure 4a stands for the 95% confidence interval 672 

of the estimate of the ERA5 TXx dynamical trend, estimated with a Gaussian assumption, i. e. 673 

the interval is calculated as plus or minus 2* the standard deviation (STD) of the error estimate 674 

on the trend coefficient. This confidence range describes the uncertainty related to the internal 675 

variability. This shows that this confidence range, calculated with the single realization of the 676 

observation, is consistent with the uncertainty range calculated from simulation members 677 

(respective standard deviations for observed trend and simulated trends of 0.28 and 0.25). 678 
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Observation and model data 702 

 703 

We used ERA5 reanalysis of daily maximum temperatures and streamfunction fields. 704 

Streamfunction is calculated from u- and v- wind fields at 500 hPa on a T127 Gaussian grid, 705 

and then interpolated on a 1x1 regular grid, following: 706 

𝑢 =  −
   𝜕𝜓

𝜕𝑦
, and 𝑣 =

 𝜕𝜓

𝜕𝑥
,  where 𝜓 is the streamfunction, u is the zonal- and v the meridional 707 

component of the wind fields. 708 

 709 

Surface daily maximum temperatures from ERA5 are interpolated to a 0.5x0.5 grid. We also 710 

used observations from the E-OBS dataset v24e [20] for daily maximum temperature (TX). E-711 



OBS was initially taken from a 0.25 x 0.25 grid and projected onto the 0.5x0.5 grid. When 712 

considering averages over the selected Western Europe area [5W-15E;45N-60N], data are 713 

masked using the E-OBS land/sea mask (see below). 714 

 715 

Daily maximum temperatures and streamfunction are also calculated from model simulations 716 

including all first members of each CMIP6 model ensemble. In order to increase as much as 717 

possible the estimation of capacity of models to simulate TXx and TXm trends, we used all 718 

possible CMIP6 simulations made available through the ESGF infrastructure. When 719 

considering only TXx and TXm calculations for Figure 3, we used 273 simulations made with 720 

36 different models (see Figure 3). For Figure 4 and the analogue analysis for models, we keep 721 

only 32 models and 1 realization for which we have simultaneous 500 hPa wind fields and 722 

daily maximum temperatures. 723 

 724 

To have an historical time series to be compared with reanalysis or observations, we 725 

concatenate historical and SSP5-8.5 scenarios available (from 2015 to 2022). Initial tests made 726 

with SSP2-4.5 showed that results presented here are insensitive to this choice. 727 

 728 

  729 



 730 

 731 

Supplementary Figure 1: TXx rends from the E-OBS observations 732 

Same as Figure 1 but for E-OBS maximum daily temperatures: a) 733 

 734 

 735 

 736 

 737 

 738 



 739 

 740 

Supplementary Figure 2: Dynamical contribution to forced TXx trend in Western Europe  741 

Black and blue lines present the area-averaged Summer maximum temperature TXx and 742 

circulation-induced TXx over western Europe (5-15E, 45-55N), respectively. The values in 743 

parenthesis indicate the trend in the corresponding TXx time series. The trends are estimated 744 

based on Sen’s slope estimator. 745 

 746 



 747 

Supplementary Figure 3: Most representative hot anomaly patterns 748 

500 hPa streamfunction anomalies (Phi 500) of the 9 most representative circulations, beyond 749 

29/06/2019, when TXx is reached over Central France [1.5E-46.5N], by decreasing order of 750 

representativeness. 751 

  752 

 753 

 754 

 755 

 756 



 757 

 758 

 759 

Supplementary Figure 4: Evolution of Southerly flow patterns 760 



Evolution of the yearly number of days (a), number of events (b) and mean duration of events 761 

(c) (0 when no event found) for Southerly Flow patterns (black) (streamfunction anomalies 762 

with an ACC with the 29/06/2019 anomaly greater than 0.5). For comparison, the figure also 763 

shows (in red) the same statistics but for another pattern, that of the anomaly of the 23/07/2021, 764 

which corresponds to the date of TXx for 2021 in central France. 765 

 766 

 767 

 768 

Supplementary Figure 5: Generalization of Figure 3 at global scale 769 

Percentage of simulations with a trend larger than ERA5 at each grid point for (a) the annual 770 

maximum of TX (TXx) and (b) the JJA mean of TX (TXm). Green stippling indicates grid 771 

points where the mismatch between observed and simulated trends is significant at the 95% 772 

confidence level in the sense of the False Discovery Rate procedure (i.e. a two-sided multiple 773 



test with alpha=0.1). The Western Europe box is highlighted in magenta. For the top panel, 774 

the annual (rather than JJA in Figure 3) maximum of TX is used here to capture summer heat 775 

extremes in both hemispheres; in Western Europe annual or JJA maximum are equivalent. 776 

 777 

 778 

 779 

Supplementary Figure 6: Dynamical and thermo-dynamical TXm trends 780 

Same as Figure 4 but for TXm instead of TXx. 781 
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   0.17 
  -0.05 
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 788 

Supplementary Table 1: Southerly Flow (SF) frequency trend and summer TXx dynamical 789 

trends for ERA5, E-OBS, and 170 simulations for which the daily 500 hPa wind and the 790 

maximum surface temperature fields were available for both historical and SSP5-8.5 791 

scenarios. TXx Trends are expressed in °C/GWD and frequency trends in %/GWD. 792 
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