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Abstract 21 

Over the last 70 years, extreme heat has been increasing at global scale [1,2], with a rapid 22 

rate in several regions including Western Europe [3]. Climate models broadly capture 23 

heat trends globally [1], but exhibit systematically weaker extreme heat trends than 24 

observations in Western Europe [4-6], together with a weaker summer warming [7,8]. 25 

The causes of this mismatch, confirmed here by the analysis of 273 latest generation 26 

coupled climate simulations, among which only a handful of them overpass observed 27 

trends, are not well understood. Here we use a circulation analogue approach [9,10] to 28 

identify the dynamical contribution to daily maximum temperature trends [11-12], and 29 

show that a substantial fraction (0.8°C [0.2°-1.4°C] of 3.4°C per global warming degree) 30 

of the trend is due to circulation changes, largely due to increases in southerly flows over 31 

Western Europe. Their rapid increase in frequency (+43% per global warming degree 32 



[10%-76%] since 1950) and persistence are largely underestimated in the 32 climate 33 

model flow simulations analyzed, as well as their overall dynamical contributions to 34 

temperature trends. The few simulations reaching the observed warming trends in 35 

extreme heat have weaker and non-significant dynamical changes, indicating 36 

compensating biases in dynamical and thermodynamical trends. These model biases in 37 

circulation trends can be due to a systematically underestimated or erroneous 38 

representation of the circulation response to external forcing, or to a systematic 39 

underestimation of interdecadal variability, or both. The former implies that future 40 

projections are too conservative, the latter that we are left with deep uncertainty 41 

regarding the pace of future summer heat in Europe: the current strong trend could 42 

weaken or increase in future decades. This calls for caution when interpreting climate 43 

projections of heat extremes over Western Europe, in particular in view of adaptation to 44 

heat waves. 45 

 46 

Summer temperatures and heat extremes in Western Europe have warmed much faster than 47 

elsewhere in the mid-latitudes over the last two decades [3,5]. As a consequence, several 48 

unprecedented heatwaves took place in the last 20 years. In 2003, the full summer season mean 49 

temperature was unprecedented in Europe [13]. Northwestern Europe was hit by record 50 

temperatures in 2018 [14,15]. In 2019, two short (3-day) but intense heat waves saw all-time 51 

temperature records broken in many places, associated with a rapid northward advection of 52 

Saharan air [6]. All-time records were broken again in 2022, with temperatures above 40°C 53 

reaching far north (eg. Brittany, U.K.) [16]. Unprecedented, and even record-shattering 54 

extremes are plausible in climate projections [17], but the pace of their increasing magnitude 55 

in Western Europe is generally not predicted by these climate models [4,18]. 56 

 57 

Here we focus on summer (JJA) maximum and mean of daily maximal temperatures (resp. 58 

denoted hereafter TXx and TXm for simplicity), and the regional amplification of their trends 59 

relative to the global temperature trend. Trends in TXx and TXm are calculated over the 73-60 

year 1950-2022 period using a linear regression with the Global mean Surface Air Temperature 61 

(GSAT, see methods section) from ERA5, and are expressed in °C per global warming degree 62 

(GWD). As shown in Figure 1 and Extended Data Fig. 1, both ERA5 reanalyses [19] and E-63 

OBS interpolated observations [20] exhibit trends reaching more than 5°C/GWD for TXx in 64 

northern France and Benelux. Over the limited area spanning 5W-15E; 45N-55N (blue box, 65 

called hereafter “Western Europe”), the land area-average TXx trend is 3.4°C/GWD  for ERA5 66 



and E-OBS [2.4 - 4.3°C/GWD]. It exceeds the more moderate TXm trends by about 40% for 67 

ERA5 (2.4°C/GWD [1.7 - 3.0°C/GWD] and 30% for E-OBS (2.6°C/GWD [1.9 - 68 

3.3°C/GWD]). These rapid warming trends are exceptional on a global scale: The 20°x10° 69 

Western Europe region has the highest TXx (all year round) trend of all regions of the same 70 

size around the globe between 75°S and 75°N shifted by steps of 5° (including sea points), 71 

even though this region was originally not selected for this purpose. 72 

 73 

A variety of processes have been proposed for explaining these overproportional warming 74 

trends with respect to global temperature change. For mean summer temperatures, changes in 75 

mean atmospheric circulation [7,21], changes in aerosol [22] and changes in early summer soil 76 

moisture [23] and related feedbacks were considered for explaining (part of) the trends. For 77 

extreme heat, the increase in the frequency and persistence of split midlatitude jet states over 78 

the last 40 years, possibly associated with the reported weakening of the mean summer zonal 79 

circulation [24], can explain about a third of the amplified trend in heatwave intensity [3]. 80 

Changes in atmospheric circulations around Europe that favor heat were also emphasized [25], 81 

in particular a positive trend in a dipole structure with a low pressure over the Eastern Atlantic 82 

[26-27] and a high pressure over the Mediterranean extended towards central Europe [28]. Yet, 83 

no increasing trend was found in blocking over Scandinavia that has led to the 2018 heat wave 84 

[14,29]. Moreover, reported changes in Rossby waves are not robust and are ensitive to their 85 

exact definition [30]. In addition, variability of summer temperatures has been shown to be 86 

large in Central Europe [31]. Thus, while several studies have hinted at a potential role of 87 

dynamical changes in amplifying European heat waves, a systematic analysis is lacking, 88 

including also how models simulate these changes. 89 

 90 

 91 



 92 
Figure 1: ERA5 temperature trends relative to the global warming level (°C/GWD), for 93 

summer Maximum daily Tmax (TXx) (top row) and summer Mean Tmax (TXm, bottom row). 94 

The raw trend (left panels) is compared to the estimated dynamical contribution to these trends 95 

(right panels), obtained by replacing daily temperatures by those of best circulation analogues 96 

with a thermodynamic correction (see Methods). The areas highlighted are: (black box) the 97 

area used to calculate the anomaly correlation of 500 hPa streamfunction for the definition of 98 

analogues; the Western Europe focus area (blue box), where maximal daily temperature trends 99 

are averaged in this study. Dotted points show areas where statistical significance of trends is 100 

less than 95% (two sided). The statistical test uses a 2-sigma rule for the regression coefficient, 101 

accounting for the total number of well-separated analogues (see Methods). 102 

 103 

We used a method based on circulation analogues to assess the role of dynamical changes in 104 

the TXx and TXm trends (see the methods section for a full description). Regional atmospheric 105 

circulation patterns are characterized by their 500 hPa streamfunction over the domain shown 106 

in Fig. 1a (black box). We identify circulation analogues for a given day by searching for other 107 

summer dates (JJA months) with similar anomaly structures, measured by the spatial anomaly 108 

correlation coefficient (ACC). A set of dates with circulation analogues allows us to calculate 109 

statistics conditionally to a given circulation [9,10,32,33], or to assess the role of dynamical 110 

changes in circulation-conditioned variables [11,12]. 111 

 112 



In order to estimate the contribution of dynamical changes to TXx and TXm trends (called 113 

hereafter the “dynamical TXx and TXm trends”), we replace each daily temperature field by 114 

the temperature field from a different day that had the best analogue circulation. In the absence 115 

of long-term trends in circulation, this is equivalent to shuffling the temperature time series 116 

while keeping the dynamics, thereby creating a trend-free “analogue temperature time series”. 117 

In the presence of long-term circulation trends, the trend in the analogue temperature time 118 

series comes from the changes in circulations (e.g. an increase in circulations favorable to heat, 119 

or vice versa). Replacement by analogues should in principle remove thermodynamical effects 120 

from global warming. As global warming is not homogeneous across the time period, and to 121 

ensure analogue regional temperatures represent a given global warming level, we further apply 122 

a correction by scaling all analogue temperatures to a reference year for global warming (2022) 123 

(see Methods). We verified that results were similar in both cases (with and without scaling, 124 

not shown). 125 

 126 

The dynamical TXx trend (Fig 1b) is generally positive over Western Europe and reaches about 127 

1.5°C/GWD in several  areas. The dynamical TXm trend is found to exceed 1°C/GWD over 128 

Southwestern Europe (Fig 1d). Over Western Europe, the average TXm and TXx dynamical 129 

trends are respectively 0.74°C/GWD [0.26-1.21°C/GWD] and 0.79°C/GWD [0.24-130 

1.35°C/GWD]. For E-OBS the dynamical trends are 0.78°C/GWD [0.27-1.29°C/GWD] and 131 

0.86°C/GWD [0.29-1.43°C/GWD] for TXm and TXx respectively. 132 

 133 

We verify these findings on the dynamical contributions to extreme temperatures trends with a 134 

second method, called “dynamical adjustment” [34] : The method uses a spatial circulation 135 

field (here: z500 for consistency with previous studies) as a proxy in order to estimate the 136 

contribution of circulation to temperature variability. Here, we use ridge regression, a linear 137 

regression technique that regularizes the coefficients of the high-dimensional circulation 138 

predictors [35], and we subsequently evaluate the dynamical contribution of z500 to the 139 

Western Europe TXx trends and averaged results over Western Europe (see method details in 140 

the Methods section). Results are consistent with the analogue approach (Extended Data Figure 141 

2), although with a slightly weaker dynamical TXx trend of 0.56 °C/GWD. 142 

 143 

To test the sensitivity of our results to the analogue domain, we performed sensitivity 144 

experiments by extending and reducing the domain by 10° longitude and 5° latitude (leaving 145 

about ⅔ or more of the domain common with the reference one). The dynamical trend is 146 



significant and within 0.5°C/GWD and 0.9°C/GWD, except when reducing the domain towards 147 

the North-Eastern part (20W-20E;35N-60N), (dynamical tendency reduced to 0.38°C/GWL) a 148 

probable consequence of the key role of the upstream part of the pattern. 149 

 150 

Further, we investigate the specific streamfunction patterns associated with summer maximum 151 

extreme temperatures over central France [1.5E;46.5N] – i.e., a region where the TXx 152 

dynamical trend is large (see Fig. 1). We select the reference date (29/06/2019) for which the 153 

streamfunction pattern (Fig. 2a) has a maximal average ACC (0.59) with other streamfunction 154 

patterns occurring each year when maximal temperature (TXx) is reached at this grid point, so 155 

it is most representative of those “TXx days”. We find that about 15% of the summer days in 156 

total have an ACC larger than 0.5 with the 29/06/2019 pattern, and that 53 out of 72 other TXx 157 

patterns also correlate by more than 0.5. For the sake of simplification, we will refer this class 158 

of patterns as the “Southerly Flow” patterns (SF), since almost all of the patterns bear a positive 159 

west-east streamfunction gradient (eg. 99% of patterns when considering the gradient between 160 

15°W and 5°E at 50°N), inducing southerly flows over the Western margin of Europe. This 161 

pattern also includes a strong anticyclonic component over Central Europe, which induces 162 

increased radiation and potential land-atmosphere feedbacks if persistent. As another example, 163 

the outstanding temperatures in London on 19/07/2022 were also obtained with a similar 164 

circulation pattern (ACC=0.81 with 29/06/2019) (not shown). To assess sensitivity to the 165 

reference pattern we also repeat all calculations with the 10 most representative TXx patterns 166 

(Extended data Figure 3) in the above sense. In these other cases, the frequency of associated 167 

correlated flows is within the 10-20% range. 168 

 169 

To check how the SF days contribute to the dynamical trend, we recalculated the dynamical 170 

trend excluding the SF days: we removed SF days from the time series, calculated the analogue 171 

temperatures of remaining days, the resulting yearly TXx, and recalculated the dynamical 172 

trend. We also did the opposite operation by keeping only SF days in the time series. On 173 

average over Western Europe (Figure 2b), the dynamical TXx trend without SF patterns 174 

becomes insignificant over Western Europe (0.08°C/GWD on average over Western Europe), 175 

while the SF-only TXx dynamical trend is both high and statistically significant (1.3°C/GWD).  176 

Similar results are found when using a different reference date among the 10 most 177 

representative patterns (not shown). Dynamical TXx trends over Western Europe can therefore 178 

largely be explained by changes in the characteristics of SF patterns. First, their frequency has 179 

increased by  43% [10%;76%] per GWD (52% with time between 1950 and 2022) (see 180 



Extended Data Table 1). Second, the number of “events” (one event is defined here as a set of 181 

consecutive days) per year and their mean persistence have increased (see Extended Data 182 

Figure 4). The persistence of SF patterns has increased by about 24% along the period [-1%, 183 

+50%] as a function of GWD. Such changes all give more chance, within a season, to reach 184 

the high end of the conditional temperature distribution. Other characteristics may also have 185 

changed (eg. amplitude) but were not investigated here. Significant frequency increases are 186 

also found for at least the 10 most representative patterns of Extended Data Figure 3, with rates 187 

in the range of 35% to 55% (Extended Data Table 1). 188 

 189 

190 

Figure 2: (left) Streamfunction anomaly of the 29/06/2019; (right) yearly time series of the 191 

Western Europe average of TXx (brown), the TXx of the analogue time series, averaged over 192 

Western Europe and using the 3 best analogues (black curve) (see Methods), and the 193 

corresponding time series obtained by excluding (resp. including only) Southerly Flow (SF) 194 

pattern dates before calculating the analogue TXx values  (blue circles, resp. red circles). The 195 

sets of dates (SF dates or SF excluded dates) within a year over which the yearly maximum is 196 

sought are therefore complementary. In each case, analogues are calculated using the full set 197 

of patterns (i.e. for SF excluded dates, analogues may contain SF patterns). Linear trends for 198 

all series are also shown, with the same color as the series. The dashed trends are for SF-only 199 

or SF-excluded cases. 200 

 201 

Note that SF is not the only flow pattern changing, and not all patterns associated with TXx 202 

days have an increasing frequency or persistence. For instance, the 23/07/2021 pattern, 203 

corresponding with summer TXx in central France for 2021, shows no particular evolution 204 



(Extended data Fig. 4). Our results are also consistent with the increase in occurrence and 205 

persistence of the specific class of double jet circulations explaining a large fraction of 206 

European heat extremes [3], and about half (i.e., much more than the mean probability, 15%) 207 

of double-jet days are found within the SF days. 208 

 209 

The representation of summer TXx and TXm trends have also been analyzed for a large number 210 

of CMIP6 model simulations (273 simulations in total for 36 models) (see Methods section for 211 

data processing). Over Western Europe, almost all CMIP6 simulations fail to simulate the 212 

observed strong TXx trends, as seen in Figure 3a, plotting the percentage of simulations with 213 

larger trends than observed, for each grid point. These differences are less pronounced for TXm 214 

(Fig. 3b) but the number of runs reaching the ERA5 trend remains small here too (10-20% in 215 

large parts of South-Western Europe). There are also other land areas outside Western Europe 216 

where the CMIP6 simulations are mostly above the observed warming TXx trend (i.e. Sahara, 217 

Northern Scandinavia, Southern Balkans). This suggests that there is no general 218 

underestimation of extreme heat trends over all regions (or land regions), and that the Western 219 

Europe case is quite specific. However, understanding these regional discrepancies across the 220 

globe is beyond the scope of this article. 221 

 222 

When averaging TXx trends over the Western Europe region above defined, only 4 of the 273 223 

individual runs analyzed (members of 3 models out of 36, ACCESS-ESM1, NorESM2-LM and 224 

KIOST-ESM) have a larger trend than the observations. The strong TXx trends observed 225 

correspond to the ~98-99th percentile of the overall CMIP6 distribution and could, from a 226 

statistical standpoint, be interpreted as consistent with Western Europe witnessing a very 227 

unlikely phase of internal interdecadal variability. However, in the five large model ensembles 228 

that were at our disposal (eg. ACCESS-ESM1-5, CanESM5, IPSL-CM6-LR, MIROC6, MPI-229 

ESM1-2-LR), only ACCESS-ESM1-5 has a few members for which TXx warms as rapidly as 230 

observed (Figure 3c), but this ensemble strongly overestimates the TXm trend (Figure 3d). 231 

Hence, this ensemble does not correctly estimate the daily maximal temperature distribution as 232 

observed in ERA5. 233 

 234 

Our results are qualitatively robust to the way trends are calculated. We estimated trends 235 

relative to time instead of GWD, and to each model initial-condition ensemble mean GWD 236 

instead of individual member GWD. In the first (resp. second) case, 9 (resp. 5) simulations 237 

(from 4 different models) slightly exceed the ERA5 TXx trend. Trends relative to time allowed 238 



in particular two members of CanESM5 to reach observations thanks to the strong global 239 

warming (about 1.7°C since 1950), while the regional response to global warming (the regional 240 

trend as a function of GWD is about twice weaker than in ERA5. 241 

 242 

We also implemented a multiple testing procedure, the False Discovery Rate [36-38], to test 243 

the significance of the result in Western Europe.Under the hypothesis that "models are 244 

indistinguishable from reality", the rank of the observed TXx and TXm trends in the 245 

distribution of members is uniform and there can be regions over which the observation falls 246 

outside the model range only by chance. Extended Data Figure 5 shows that even taking into 247 

account the multiple nature of the test, Western Europe is among the regions where the 248 

mismatch between observed and simulated TXx trends is significant at the 95% confidence 249 

level in the sense of the FDR procedure, while no significant mismatch is found in this region 250 

for TXm trends. 251 

 252 

 253 



 254 

Figure 3: Comparison between ERA5 and 273 CMIP6 simulations of trends in Maximum 255 

summer TX (TXx, left panels) and Meansummer TX (TXm, right panels) in °C/GWD 256 

represented in different ways; top panels: percentage of simulations with a trend larger than 257 

ERA5 at each grid point; bottom panels: representation of trends for model ensembles (dots) 258 

and observations (red and orange lines) after averaging over Western Europe (5°W to 15°E ; 259 

45°N-55°N); blue dots represent the simulations that were analyzed with the analogue 260 

approach. Histograms at the bottom of the figure summarize the overall distribution of the TXx 261 

(left) and TXm (right) trends across the 273 simulations considered, together with the (blue) 262 

part analyzed with the analogue approach. Percentages of simulations with a trend larger than 263 

ERA5 are indicated in top right corners. 264 

 265 

In addition to the underestimated trends, climate simulations do not capture the dynamical 266 

changes underlying these temperature extreme changes. We applied the analogue analysis to 267 

the first available realization for each model (to save computing and data handling and 268 

processing burden) for which 500 hPa wind fields were available (32 simulations in total). This 269 

set was found to be rather representative to the overall simulation distributions, see Figure 3a-270 



b histograms) regarding TXx trends, with 2 models (KIOST-ESM and NorESM2-LM) 271 

exceeding the observed trend, and 3 models with trends only slightly below (ACCESS-ESM1-272 

5, HadGEM3-GC31-MM and INM-CM4-8). None of their dynamical temperature TXx trends 273 

are statistically significant nor reach the amplitude of the observed one over Western Europe 274 

(Figure 4a). Those simulations that do capture the observed overall TXx trend likely suffer 275 

from compensating biases between thermodynamical trends (too high) and dynamical trends 276 

(too low), as shown in Figure 4a. Some confidence intervals however encompass the ERA5 277 

and E-OBS TXx trends, leaving the possibility that variability explains the mismatch. For 12 278 

models, we could have access to new ensemble members that provided maximal overall TXx 279 

trend over Western Europe among available simulations. However these new members still 280 

underestimate the dynamical trend and the SF frequency changes, and the dynamical trend was 281 

only increased in 7 cases (Extended Data Table 2). This shows that the model underestimation 282 

of the dynamical trend does not (or weakly) depend on the member. On average over Western 283 

Europe, for TXm, a few models do have dynamical trends comparable to or larger than 284 

observations, but most have lower trends (Figure 4b).   285 

 286 

We also calculated the thermodynamical trend obtained as a residual by subtracting the 287 

dynamical trend from the total trend and reported the result in Figure 4 (blue triangles). This 288 

shows that climate models exhibit thermodynamical contributions that are broadly consistent 289 

with ERA5, albeit with significant spread across models. TXx thermodynamical trends can 290 

both be underestimated or overestimated across models, but there is a tendency for an 291 

underestimation of TXx thermodynamical trends, and a general agreement for TXm trends. 292 

This analysis clearly shows that dynamical changes are mainly responsible for the systematic 293 

mismatch between modeled and observed temperature trends. 294 

 295 

 296 



 297 

 298 

  299 

Figure 4: Total trend (black), dynamical contribution (red) and thermodynamical contribution 300 

from ERA5 (blue line), for the mean summer temperature (TXx, left panel) and yearly maximal 301 

temperature (TXm, right panel), averaged over Western Europe. The thermodynamical 302 

contributions are simply calculated as residual by subtracting the dynamical trend from the 303 

total trend. 95% Confidence intervals are shown for the dynamical trends. 304 

 305 

Climate simulations realistically simulate the climatological mean frequency of the SF patterns 306 

(range from 13.5% to 17.5%, not shown). However, the rapid observed increase in frequency 307 

of this flow field (+43%/GWD [10%-76%]) is only captured by one of the simulations 308 

(NorESM2-LM, , and largely underestimated by the others (Extended Data Table 1). The 309 

NorESM2-LM  simulation, however, also largely underestimates the change in frequency of 310 

more than half of the other representative patterns (Extended Data Table 1). This is the prime 311 

reason why models fail to reproduce the over-proportioned trends in heat extremes.  312 

 313 

Overall, our results show that CMIP6 simulations underestimate the rapid observed warming 314 

of extreme heat over Western Europe. The analysis of atmospheric circulation changes shows 315 

that there is a large dynamical contribution to this observed trend, which is underestimated by 316 

climate models, explaining a large part of the discrepancy in trend between models and 317 

observations. By contrast, models and observational trends are broadly consistent in terms of 318 

the thermodynamic contribution to the trend. We cannot rule out other sources of systematic 319 

uncertainties such as lack of homogeneity of reanalyses, in particular for circulation patterns, 320 



or inaccuracies in the aerosol and land use forcing changes that would translate in systematic 321 

model trend biases. 322 

 323 

Determining the cause of the mismatch between models and observations is critical to assess 324 

whether the large observed warming TXx trend is likely or unlikely to continue. If due to a 325 

wrong forced dynamical regional response – models underestimate the forced response to 326 

greenhouse gases – then this mismatch is expected to remain and even strengthen in the future, 327 

as global warming increases. If related to unforced internal variability [39,40] – internal 328 

variability simulated by models is too small [41] – then the mismatch is expected to decrease 329 

in the future, but the term of this decrease is unknown and could be years or decades, leaving 330 

the fate of Western Europe heatwaves in large uncertainty.  331 

 332 

Here we have shown that the observed extreme temperature trends for Western Europe are not 333 

captured by CMIP6 simulations, due to underestimated dynamical trends. Similar conclusions 334 

were found for wintertime weather over Europe [42]. Further research needs to determine the 335 

causes of the mismatch between simulated and observed heat trends, whether this is due to 336 

uncaptured internal variability or missing (dynamical) forcing/processes. Either way, our 337 

results call for caution when using climate model projections for adaptation and resilience 338 

plans. 339 

 340 

  341 



Methods 342 

Calculation of dynamical contributions to mean and extreme summer temperature 343 

trends: The method used to estimate dynamical contribution to the change in one variable 344 

follows the conceptual framework developed in Vautard et al. (2016), with a different 345 

implementation here. It is based on the estimation of the change in the variable solely due to 346 

the changes in regional upper-air circulations. For instance, even without extra heating from 347 

radiative and diabatic processes, an increase in the frequency of southerly flows in Western 348 

Europe would induce a mean regional warming. An increase in anticyclonic conditions would 349 

similarly lead to increased radiation and thus temperature. This can also lead to a cooling if 350 

increasingly frequent circulations are linked to cooler temperatures (eg. in Northerly winds). 351 

To estimate this dynamical effect of changing circulations on temperatures, we need to 352 

carefully remove any thermodynamical effect of climate change.  353 

 354 

We assume that daily temperature T (which can be mean, minimum or maximum daily 355 

temperature, and in the current article will be maximum temperature) has a distribution at a 356 

given location or grid point which depends on the atmospheric circulation and on other 357 

processes, including global warming. We then assume a decomposition into: 358 

 359 

(1)360   , 

 361 

where X is the 500 hPa streamfunction anomaly, characterizing the atmospheric circulation 362 

(simultaneous to the temperature), GWD stands for the global warming degree, <T|X>GWD is 363 

the average daily maximum temperature conditioned to the circulation, assumed to be 364 

dependent on GWD, and T’ is a fluctuation. This circulation-conditioned temperature includes 365 

not only advection effects (i.e. from cooler/warmer regions), but also all processes linked to 366 

the circulation (subsidence in anticyclone, increased radiation, surface-atmosphere feedbacks, 367 

…), so the overall dynamical trend includes all underlying processes tied to the dynamical 368 

conditions. In order to remove thermodynamical effects due to climate change, we scale all 369 

temperatures to a reference warming level. For this, we assume that the circulation-conditioned 370 

mean temperature depends linearly on the global warming level, so the decomposition can be 371 

written: 372 

 373 

(2)                                                                                    374 , 



 375 

where ref refers to a reference global warming level, taken here as that of 2022, so all changes 376 

are expressed relative to 2022. The coefficient b(X) represents the mean warming rate 377 

conditioned to the circulation X, which includes thermodynamical effects of the climate change 378 

response – it is therefore assumed that the amount of warming depends on the circulation type. 379 

Assuming one can calculate b(X) and GWD, all daily temperatures are then scaled to the 380 

reference level with the following thermodynamical correction: 381 

 382 

(3)                                                                 . 383 

 384 

The dynamical contribution to any temperature trend constructed from daily temperatures (eg. 385 

here TXm, TXx) can then be calculated from the Ts time series, because changes with GWD 386 

are only through the changes in the frequency of occurrences of X for given GWDs. Trends 387 

should also not depend on the particular time Ts values are drawn as long as they occur 388 

simultaneously to a streamfunction anomaly which is similar to that encountered in the same 389 

sequence order as that of the series. Hence to increase statistical robustness and remove any 390 

residual link to the specific order of temperatures, we replace Ts temperatures by those 391 

occurring in circulations X along the time series. This has the advantage of “randomizing” the 392 

timing of analogues and providing multiple realizations to calculate dynamical trends. A new 393 

temperature analogue series is created by replacing each daily with that of the best circulation 394 

analogue, then another new series is made with the second best analogue, etc… (see below for 395 

practical analogue calculation). From each of these analogue time series, TXm and TXx are 396 

recalculated for each year, then averaged across analogues, and a regression with GWD is 397 

calculated at each grid point, together with its confidence interval, (plus or minus twice the 398 

standard error of the regression coefficient). To keep analogue quality high, we limit the 399 

number of time series to 3. To calculate time series of averages over Western Europe land, we 400 

apply the 0.5°x0.5° land mask of E-OBS and average over the grid points included in [-5W - 401 

15E ; 45N - 55N] 402 

 403 

Estimation of yearly GWD : In practice, GWD is calculated as a moving centered 5-year 404 

average of the global temperature with available data, for reanalyses and models, accounting 405 

for series ends in ERA5 (i.e. for 1950, taking into account an average only over 1950 to 1952, 406 

and for 2022 an average over 2020 and 2021). The 2022 value is then subtracted to all values, 407 

so GWD is 0 in 2022, and generally negative before. 408 



 409 

Selection of circulation analogues : In practice, circulations are characterized by the 500 hPa 410 

streamfunction over the [-30 +20°E ; 30 60°N] domain. Analogs of a given circulation are 411 

characterized by anomaly correlation coefficient (ACC) between streamfunction fields. For 412 

each summer day, we collect the best analogues (highest ACCs), and impose that they remain 413 

spaced by 6 days or more within a season, and self-analogues are not considered. This is done 414 

by successively testing fields in descending order of the ACC, and skipping days not respecting 415 

the separation with previously selected fields. 416 

 417 

Calculation of the circulation-conditioned thermodynamical trend b(X) : To calculate 418 

b(X), we also use analogue circulations, in a different way than above: For each summer day d 419 

of the 1950-2022 period, we estimate b(X(d)) using a regression of each raw temperature T(d) 420 

(before thermodynamical correction) associated with a large set of best analogue circulations 421 

of X(d) found between 1950 and 2022 with the GWD values of their respective year. We use 422 

the best 1% summer analogues (67 days) with the same spacing of at least 6 days. 99% of the 423 

worst of these 67 analogues across all summer days have ACC > 0.5, 65% have ACC > 0.7. 424 

Imposing a quality criterion on analogues such as ACC>0.7 or more would leave days with an 425 

insufficient number of analogues for regression. 426 

 427 

Dynamical adjustment: Dynamical adjustment is used as a second, alternative technique to 428 

estimate the influence of circulation-induced temperature trends. This method relies on the idea 429 

that temperature variability can be decomposed into a component that is driven by circulation-430 

induced variability, and a residual, thermodynamical component. The “thermodynamical” 431 

component is expect to contain a forced signal as well as any other unexplained variability or 432 

feedbacks [43]. Most applications of this technique characterize circulation-induced 433 

temperature variability using a proxy variable such as geopotential height  [34,35,44,45]. 434 

Dynamical adjustment techniques typically rely on linear methods such as variants of linear 435 

regression or circulation analogue techniques. 436 

 437 

Here, we use the spatial pattern of z500 in a relatively large circulation domain over Europe 438 

and the North Atlantic (-30 to 20°E, 30 to 60°N, similar to Fig. 1), following the method 439 

outlined in [45]. However, we introduce some modifications and additional details.We use a 440 

regularized regression technique, called “ridge regression”, which is well-suited to deal with 441 

the large number of circulation predictor grid cells and a relatively short observed record. For 442 



TXx, we train our ridge regression model on the 15 warmest days in each summer during 1950-443 

2021 at each grid cell in the ERA5 reanalysis, resulting  in a total of 1080 observations (72 444 

summers and 15 days per summer). Since the z500 field contains information about the lower 445 

troposphere, and is affected by temperature change via thermal expansion, we detrend the 446 

spatial z500 field by subtracting the global average z500 at each time step and over each grid 447 

cell in the circulation domain. Hence, the analysis is based only on relative changes within the 448 

z500 field. To obtain regional estimates of the circulation-induced component of TXx, we 449 

performed an area-weighted average across the grid cells within the study domain.  450 

 451 

 452 
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Supplementary Information 645 

 646 

Observation and model data 647 

 648 

We used ERA5 reanalysis of daily maximum temperatures and streamfunction fields. 649 

Streamfunction is calculated from u- and v- wind fields at 500 hPa on a T127 Gaussian grid, 650 

and then interpolated on a 1x1 regular grid, following: 651 

𝑢 =  −
   𝜕𝜓

𝜕𝑦
, and 𝑣 =

 𝜕𝜓

𝜕𝑥
,  where 𝜓 is the streamfunction, u is the zonal- and v the meridional 652 

component of the wind fields. 653 

 654 

Surface daily maximum temperatures from ERA5 are interpolated to a 0.5x0.5 grid. We also 655 

used observations from the E-OBS dataset v24e [20] for daily maximum temperature (TX). E-656 

OBS was initially taken from a 0.25 x 0.25 grid and projected onto the 0.5x0.5 grid. When 657 

considering averages over the selected Western Europe area [5W-15E;45N-60N], data are 658 

masked using the E-OBS land/sea mask (see below). 659 

 660 

Daily maximum temperatures and streamfunction are also calculated from model simulations 661 

including all first members of each CMIP6 model ensemble. In order to increase as much as 662 

possible the estimation of capacity of models to simulate TXx and TXm trends, we used all 663 

possible CMIP6 simulations made available through the ESGF infrastructure. When 664 

considering only TXx and TXm calculations for Figure 3, we used 273 simulations made with 665 

36 different models (see Figure 3). For Figure 4 and the analogue analysis for models, we keep 666 

only 32 models and 1 realization for which we have simultaneous 500 hPa wind fields and 667 

daily maximum temperatures. 668 

 669 

To have an historical time series to be compared with reanalysis or observations, we 670 

concatenate historical and SSP5-8.5 scenarios available (from 2015 to 2022). Initial tests made 671 

with SSP2-4.5 showed that results presented here are insensitive to this choice. 672 

 673 
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Extended Data 675 

 676 

 677 

 678 

Extended Data Figure 1: Same as Figure 1 but for E-OBS maximum daily temperatures 679 

 680 

 681 

 682 

 683 

 684 



 685 

 686 

Extended Data Figure 2: Dynamical contribution to forced trend during 1950-2021 in ERA5 687 

reanalysis. Black and blue lines present the area-averaged TXx and circulation-induced TXx 688 

over western Europe (5-15E, 45-55N), respectively. The values in parenthesis indicate the trend 689 

in the corresponding TXx time series. The trends are estimated based on Sen’s slope estimator. 690 

 691 



 692 

Extended Data Figure 3: 500 hPa streamfunction anomalies of the 9 most representative 693 

circulations, beyond 29/06/2019, when TXx is reached over Central France [1.5E-46.5N], by 694 

decreasing order of representativeness. 695 
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 697 

 698 

 699 

 700 



 701 

 702 

 703 



Extended Data Figure 4: Evolution of the yearly number of days (a), number of events (b) 704 

and mean duration of events (c) (0 when no event found) for Southerly Flow patterns (black) 705 

(streamfunction anomalies with an ACC with the 29/06/2019 anomaly greater than 0.5). For 706 

comparison, the figure also shows (in red) the same statistics but for another pattern (not 707 

shown), that of the anomaly of the 23/07/2021, which corresponds to the date of TXx for 2021 708 

in central France. 709 

 710 

 711 

 712 

 713 

Extended Data Figure 5: Generalization of Figure 3 at global scale. Percentage of simulations 714 

with a trend larger than ERA5 at each grid point for (top) the annual maximum of TX and 715 

(bottom) the JJA mean of TX. Green stippling indicates grid points where the mismatch 716 



between observed and simulated trends is significant at the 95% confidence level in the sense 717 

of the False Discovery Rate procedure (i.e. a two-sided multiple test with alpha=0.1). The 718 

Western Europe box is highlighted in magenta. For the top panel, the annual (rather than JJA 719 

in Figure 3) maximum of TX is used here to capture summer heat extremes in both 720 

hemispheres; in Western Europe annual or JJA maximum are equivalent. 721 

 722 
 723 

Model_realization 2019 
06/29 

2011 
06/27 

1968 
07/01 

2001 2013 1953 2012 2020 1987 2002 

ERA5 42.9 51.4 34.5 43.9 48.7 35.8 52.5 54.1 55.0 47.8 

ACCESS-CM2_r1i1p1f1 
ACCESS-ESM1-5_r2i1p1f1 
CAMS-CSM1-0_r2i1p1f1 
CanESM5_r1i1p1f1 
CMCC-ESM2_r1i1p1f1 
CNRM-CM6-1-HR_r1i1p1f2 
CNRM-CM6-1_r1i1p1f2 
CNRM-ESM2-1_r1i1p1f2 
EC-Earth3_r1i1p1f1 
EC-Earth3-CC_r1i1p1f1 
EC-Earth3-Veg_r1i1p1f1 
EC-Earth3-Veg-LR_r1i1p1f1 
FGOALS-g3_r1i1p1f1 
GFDL-CM4_r1i1p1f1 
GISS-E2-1-G_r1i1p1f2 
HadGEM3-GC31-LL_r1i1p1f3 
HadGEM3-GC31-MM_r1i1p1f3 
INM-CM4-8_r1i1p1f1 
INM-CM5-0_r1i1p1f1 
IPSL-CM6A-LR_r1i1p1f1 
KACE-1-0-G_r1i1p1f1 
KIOST-ESM_r1i1p1f1 
MIROC-ES2L_r1i1p1f2 
MIROC6_r1i1p1f1 
MPI-ESM1-2-HR_r1i1p1f1 
MPI-ESM1-2-LR_r1i1p1f1 
MRI-ESM2-0_r1i1p1f1 
NESM3_r1i1p1f1 
NorESM2-LM_r1i1p1f1 
NorESM2-MM_r1i1p1f1 
TaiESM1_r1i1p1f1 
UKESM1-0-LL_r1i1p1f2 

-16.4 
  7.0 
 -1.0 
 10.6 
  2.6 
 23.2 
-10.6 
  6.0 
 14.2 
-14.4 
 -5.3 
 -9.3 
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 -1.7 
-16.3 
 15.9 
 13.6 
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  0.7 
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 17.0 
  8.4 
 13.6 
 20.1 
  8.0 
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 10.7 
 17.8 
 42.7 
 -8.7 
 -4.2 
-13.1 

-26.9 
 -7.2 
 13.6 
  0.2 
 11.3 
 17.6 
  3.8 
  0.5 
  7.3 

-14.8 
-10.9 
 -4.3 
-48.6 
  4.1 

-30.3 
  7.4 
 14.2 
 22.5 
 -1.3 
-24.1 
 18.0 
  7.7 
  0.2 
 12.5 
 -0.7 
  4.1 
 -7.3 
 10.5 
 24.6 
-22.3 
 -3.4 
-19.3 

 -28.1 
  1.4 
  2.5 
  3.0 
  6.9 
 27.3 
 -6.3 
  4.8 
  6.9 

-17.6 
-17.4 
 -1.1 
-52.9 
 -8.5 
-32.1 
 18.4 
 16.1 
  6.6 
 -4.3 
-16.8 
 19.7 
 20.3 
 14.2 
 23.6 
  9.4 
  2.5 
  6.5 
 14.4 
 39.0 
-10.8 
  2.7 

-18.4 
 

-23.3 
 -6.5 
  0.7 
  9.7 
  5.9 
 25.8 
-12.9 
  4.9 
  9.6 

-12.2 
 -9.5 
  1.8 

-50.0 
 -6.0 
-29.7 
 11.1 
 17.9 
 15.5 
 -5.5 
 -8.9 
 25.9 
 19.9 
 24.0 
 22.9 
  8.8 
  2.0 
 -0.6 
 15.1 
 41.5 
 -9.6 
 -5.6 
-14.4 

 

 -18.7 
 -4.8 
  9.6 
 -1.4 
 17.6 
 17.7 
  2.6 
 -2.4 
  5.6 

-17.1 
  0.0 
 13.1 
-45.5 
 -2.3 
 -7.9 
  2.9 
  9.6 
 23.6 
 -5.1 
-12.5 
 14.2 
 -3.4 
 -2.2 
 25.7 
  6.3 
 -6.8 
  5.9 
  9.5 
 11.0 
-25.7 
-13.3 
-20.1 

 

-27.5 
  9.2 
  8.8 
  4.7 
 11.6 
 26.8 
 -9.4 
  0.6 
  4.8 

-12.2 
-15.2 
 -2.6 
-53.6 
 -9.1 
-28.7 
 16.1 
 17.5 
  8.5 
 -6.7 
 -9.3 
 25.4 
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 24.6 
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-10.4 
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  7.9 
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  6.2 
  0.3 
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-10.3 
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  0.3 
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  8.7 
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 -29.9 
 -2.6 
 17.7 
 -0.5 
  6.4 
 24.1 
  6.3 
 -2.0 
  2.8 

-13.0 
-14.7 
 -3.1 

-57.5 
  2.5 

-26.7 
 15.9 
  9.5 
 20.2 
 -7.5 

-21.6 
 15.0 
 10.9 
 11.4 
 20.1 
  0.5 
 -2.4 
 -9.8 
 12.1 
 26.5 
-32.4 
  2.7 

-21.4 
 

-30.4 
-11.6 
 -0.6 
 16.2 
 22.0 
 29.1 
-12.3 
 -6.1 
 17.8 
 -4.8 
-14.8 
-14.3 
-45.1 
 -5.6 
-39.3 
 12.6 
 34.5 
  6.2 
 11.1 
-19.2 
 34.0 
 23.9 
 18.9 
  7.0 
 16.3 
 18.5 
-13.0 
 23.5 
 36.2 
-11.1 
  2.0 

-16.0 
 

-23.2 
 -5.8 
 16.5 
  2.3 
 18.9 
 17.0 
  7.3 
  5.8 
  3.4 

-12.8 
-14.5 
 -0.5 
-48.1 
  9.3 

-28.5 
 14.9 
 13.3 
 22.5 
 -2.0 
-26.6 
  6.8 
  8.1 
 -8.0 
 14.9 
  1.7 
 -2.3 
-16.3 
  7.7 
 10.6 
-30.5 
 -0.3 
-25.3 

 

 724 

Extended Data Table 1: Models used for the dynamical temperature trend analysis and the 725 

analysis of Southerly Flows (SF) frequency trends (and reanalysis, first line); the name 726 

indicates the model and the realization, with ssp585 concatenated after 2014 to historical 727 

simulation in order to have a continuous time series from 1950 to 2022; Second to last column: 728 

SF frequency change over 1950-2022 as a function of the GWD. In each column, SFs are 729 

defined as “ACC with the reference pattern greater than 0.5”, with the reference patterns among 730 

one of the most representative ones represented in Figure 2a and Extended Data Figure 3. 731 
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Model_realization TXx trend TXx 
dynamical 

trend 

Model_realization with largest 
TXx trend 

TXx 
trend 

TXx 
dynamical 

trend 

ERA5 
E-OBS 

3.38 
3.41 

0.79 
0.86 

   

ACCESS-CM2_r1i1p1f1 
ACCESS-ESM1-5_r2i1p1f1 
CanESM5_r1i1p1f1 
EC-Earth3_r1i1p1f1 
EC-Earth3-Veg_r1i1p1f1 
EC-Earth3-Veg-LR_r1i1p1f1 
FGOALS-g3_r1i1p1f1 
HadGEM3-GC31-LL_r1i1p1f3 
KACE-1-0-G_r1i1p1f1 
MPI-ESM1-2-LR_r1i1p1f1 
MRI-ESM2-0_r1i1p1f1 
UKESM1-0-LL_r1i1p1f2 

  1.55 
  3.19 
  1.89 
  1.49 
  1.14 
  0.65 
  0.26 
  1.93 
  2.65 
  2.06 
  1.87 
  1.35 

 -0.27 
  0.02 
  0.23 
  0.16 
 -0.12 
  0.20 
 -0.67 
  0.30 
  0.33 
  0.33 
 -0.12 
  0.01 

ACCESS-CM2_r4i1p1f1 
ACCESS-ESM1-5_r34i1p1f1 
CanESM5_r6i1p2f1 
EC-Earth3_r4i1p1f1 
EC-Earth3-Veg_r4i1p1f1 
EC-Earth3-Veg-LR_r3i1p1f1 
FGOALS-g3_r4i1p1f1 
HadGEM3-GC31-LL_r4i1p1f3 
KACE-1-0-G_r3i1p1f1 
MPI-ESM1-2-LR_r3i1p1f1 
MRI-ESM2-0_r5i1p1f1 
UKESM1-0-LL_r2i1p1f2 

  1.89 
  3.42 
  2.02 
  1.49 
  1.42 
  1.16 
  0.87 
   2.49 
  2.80 
  2.09 
  1.89 
  2.25 

  0.10 
  0.35 
  0.46 
  0.24 
 -0.29 
 -0.15 
 -0.11 
  0.02 
  0.44 
  0.20 
  0.07 
 -0.05 

 734 

Extended Data Table 2: TXx overall and dynamical trends for ERA5, E-OBS, and models 735 

for which a member of the ensemble with largest overall trend in available simulations in 736 

addition of the first member. Trends are expressed in °C/GWD. 737 
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