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Abstract 

Over the last 70 years, extreme heat has been increasing at global scale [1,2], with a rapid 

rate in several regions including Western Europe [3]. Climate models broadly capture 

heat trends globally [1], but exhibit systematically weaker extreme heat trends than 

observations in Western Europe [4-6], together with a weaker summer warming [7,8]. 

The causes of this mismatch, confirmed here by the analysis of 273 latest generation 

coupled climate simulations, among which only a handful of them overpass observed 

trends, are not well understood. Here we use a circulation analogue approach [9,10] to 

identify the dynamical contribution to temperature trends [11-12], and show that a 

substantial fraction (1.0°C [0.4°-1.6°C] of 3.4°C per global warming degree) of the trend 

is due to circulation changes, largely due to increases in southerly flows over Western 

Europe. Their rapid increase in frequency (+63% [20%-106%] since 1950) and 

persistence (+45% [12%-77%]) are not captured by any of the 32 climate model flow 

simulations analyzed. The few simulations reaching the observed warming trends in 

extreme heat have weak dynamical changes, with a decrease in occurrence of southerly 

flows, indicating that they capture the warming trend for the wrong reasons. These model 

biases in circulation trends can be due to a systematically underestimated or erroneous 

representation of the circulation response to external forcing, or to a systematic 

underestimation of interdecadal variability, or both. The former implies that projections 

are too conservative, the latter that we are left with deep uncertainty regarding the pace 



of future summer heat in Europe: the current strong recent trend could weaken or 

increase in future decades. This calls for caution when interpreting climate projections of 

heat extremes over Western Europe, in particular in view of adaptation to heat waves. 

 

Summer temperatures and heat extremes in Western Europe have warmed much faster than 

elsewhere in the mid-latitudes over the last two decades [3,5]. As a consequence, several 

unprecedented heatwaves took place in the last 20 years. In 2003, the full summer season mean 

temperature was unprecedented in Europe [13]. Northwestern Europe was hit by record 

temperatures in 2018 [14,15]. In 2019, two short (3-day) but intense heat waves saw all-time 

temperature records broken in many places, associated with a rapid northward advection of 

Saharan air [6]. All-time records were broken again in 2022, with temperatures above 40°C 

reaching far north (eg. Brittany, U.K.) [16]. Unprecedented, and even record-shattering 

extremes are plausible in climate projections [17], but the pace of their increasing magnitude 

in Western Europe is generally not predicted by these climate models [4,18]. 

 

Here we focus on summer (JJA) maximum and mean of daily maximal temperatures (resp. 

denoted hereafter TXx and TXm for simplicity), and the regional amplification of their trends 

relative to the global temperature trend. We verified that our results remain valid for linear 

trends relative to time, but do not describe them here. Trends in TXx and TXm are calculated 

over the 73-year 1950-2022 period using a linear regression with the Global mean Surface Air 

Temperature (GSAT, see methods section) from ERA5, and are expressed in °C per global 

warming degree (GWD). As shown in Figure 1 and Supp. Fig. 2, both ERA5 reanalyses [19] 

and E-OBS interpolated observations [20] show trends reaching more than 5°C/GWD for TXx 

in northern France and Benelux. Over the limited area spanning 5W-15E; 45N-55N (blue box, 

called hereafter “Western Europe”), the land area-average TXx trend is 3.4°C/GWD  for ERA5 

and E-OBS [2.4 - 4.3°C/GWD]. It exceeds the more moderate TXm trends by about 40% for 

ERA5 (2.4°C/GWD [1.7 - 3.0°C/GWD] and 30% for E-OBS (2.6°C/GWD [1.9 - 

3.3°C/GWD]). 

 

A variety of processes have been proposed for explaining these overproportional warming 

trends with respect to global temperature change. For mean summer temperatures, changes in 

mean atmospheric circulation [7,21], changes in aerosol [22] and changes in early summer soil 

moisture [23] and related feedbacks were considered for explaining (part of) the trends. For 

extreme heat, the increase in the frequency and persistence of splitted midlatitude jet states 

over the last 40 years, possibly associated with the reported weakening of the mean summer 

zonal circulation [24], can explain about a third of the amplified trend in heatwave intensity 

[3]. Changes in atmospheric circulations around Europe that favor heat were also emphasized 

[25], in particular a positive trend in a dipole structure with a low pressure over the Eastern 

Atlantic [26-27] and a high pressure over the Mediterranean extended towards central Europe 

[28]. Yet, no increasing trend was found in blocking over Scandinavia that has led to the 2018 

heat wave [14,29]. Moreover, reported changes in Rossby waves are not robust and sensitive 

to their exact definition [30]. In addition, variability of summer temperatures has been shown 

to be large in Central Europe [31]. Thus, while several studies have hinted at a potential role 



of dynamical changes in amplifying European heat waves, a systematic analysis is lacking, 

including also how models simulate these changes. 

 

 

 

Figure 1: ERA5 temperature trends relative to the global warming level (°C/GWD), for 

summer Mean daily Tmax (TXm) (top row) and summer Maximum Tmax (TXx, bottom row). 

The raw trend (left panels) is compared to the estimated dynamical contribution to these trends 

(right panels), obtained by replacing daily temperatures by those of best circulation analogues 

with a thermodynamic correction (see Methods). The areas highlighted are: (black frame) the 

area used to calculate the anomaly correlation of 500 hPa streamfunction for the definition of 

analogues; the Western Europe focus area, where maximal daily temperature trends are 

averaged in this study. Dotted points show areas where statistical significance of trends is less 

than 95% (two sided). The statistical test uses a 2-sigma rule for the regression coefficient, 

accounting for the total number of well-separated analogues (see Methods). 

 

We used a method based on circulation analogues to assess the role of dynamical changes in 

the TXm and TXx trends (see the methods section for a full description). Regional atmospheric 

circulation patterns are characterized by their 500 hPa streamfunction over the domain shown 

in Fig. 1a (black box). We identify circulation analogues for a given day by searching for other 

summer dates (JJA months) with similar anomaly structures, measured by the spatial anomaly 



correlation coefficient (ACC). A set of dates with circulation analogues allows to calculate 

statistics conditionally to a given circulation [9,10,32,33], or to assess the role of dynamical 

changes in circulation-conditioned variables [11,12]. 

 

In order to estimate the contribution of dynamical changes to TXx and TXm trends (called 

hereafter the “dynamical TXx and TXm trends”), we replace each daily temperature field by 

those found for best analogue circulations in other dates of the time series. In the absence of 

long-term trends in circulation, this is equivalent to shuffling the temperature time series while 

keeping the dynamics, thereby creating a trend-free “analogue temperature time series”. In the 

presence of long-term circulation trends, the trend in the analogue temperature time series 

comes from the changes in circulations (e.g. an increase in circulations favorable to heat, or 

vice versa). Replacement by analogues should in principle remove thermodynamical effects 

from climate change. In order to ensure these were entirely removed, we further apply a 

correction by scaling all analogue temperatures to a reference year for global warming (2022) 

(see Methods). We verified that results were similar in both cases (not shown). 

 

The dynamical TXm trend is found to exceed 1°C/GWD over Southwestern Europe (Fig 1b). 

The dynamical TXx trend (Fig 1d) reaches 2°C/GWD over Central France, and remains 

significant across Central Europe. Over Western Europe, the average TXm and TXx dynamical 

trends are respectively 0.82°C/GWD [0.33-1.32°C/GWD] and 1.0°C/GWD [0.39-

1.64°C/GWD]. For E-OBS the dynamical trends are 0.85°C/GWD [0.34-1.37°C/GWD] and 

1.1°C/GWD [0.44-1.69°C/GWD] for TXm and TXx respectively. 

 

In order to verify our findings on extreme temperatures with another previously designed 

method, we also estimated the dynamical contributions to the trends using a second method, 

so-called  “dynamical adjustment” [34] : The method uses a spatial circulation field (here: z500 

for consistency with previous studies) as a proxy in order to estimate the contribution of 

circulation to temperature variability. Here, we use ridge regression, a linear regression 

technique that regularizes the coefficients of the high-dimensional circulation predictors [35], 

and we subsequently evaluate the dynamical contribution of z500 to the area-averaged Western 

Europe TXx trends (see method details in the Methods section). Results are consistent, with 

the analogue approach (Extended Data Figure 2), with however a weaker dynamical TXx trend 

of 0.58 °C/GWD and a linear change of 0.89°C over 1950-2021. 

 

Further, we investigate the specific streamfunction patterns associated with summer maximum 

extreme temperatures over central France [1.5E;46.5N] – i.e., in the region where the TXx 

dynamical trend is the largest (see Fig. 1). The highest TXx value at that location was reached 

on 29 June 2019 (an extreme temperature episode with 40°C largely exceeded in several places 

in Central France). We then select dates with ACC exceeding 0.5 with the streamfunction 

anomaly of 29/06/2019 (Fig. 2a). We find that about 15% of the summer days in total have an 

ACC larger than 0.5. For the sake of simplification, we will refer this class patterns as the 

“Southerly Flow” patterns (SF), since almost all of the patterns bear a positive west-east 

streamfunction gradient (eg. 99% of patterns when considering the gradient between 15°W and 

5°E at 50°N), inducing southerly flows over the Western margin of Europe. This pattern also 



includes a strong anticyclonic component over Central Europe, which induces increased 

radiation and potential land-atmosphere feedbacks if persistent. As another example, the 

outstanding temperatures obtained in London on 19/07/2022 were also obtained with a similar 

circulation pattern (ACC=0.81 with 29/06/2019) (not shown).  

 

To check how these days contribute to the dynamical trend, we recalculated the dynamical 

trend excluding the SF days: we removed SF days from the time series, calculated the analogue 

temperatures of remaining days, the resulting yearly TXx, and recalculated the dynamical 

trend. We also did the opposite operation by keeping only SF days in the time series. On 

average over Western Europe (Figure 2b), the dynamical TXx trend without SF patterns 

becomes insignificant over Western Europe (0.02°C/GWD on average over Western Europe), 

while the SF-only TXx dynamical trend is high and significant (1.7°C/GWD).  Note that along 

the analogue time series (in red in Fig. 2b), the contribution of SF flows to yearly TXx (red 

dots) become almost systematic in the latest part of the time series (typically since 2000). 

Dynamical TXx trends over Western Europe can therefore largely be explained by changes in 

the characteristics of SF patterns. First, their frequency has increased by 63% between 1950 

and 2022, [+20%, +106%] (see Extended Data Figure 3). Second, the number of “events” (one 

event is defined here as a set of consecutive days) per year and their mean persistence have 

increased (see Extended Data Figure 3). The persistence of SF patterns has increased by about 

45% along the period [+12%, +77%] as a function of GWD. Such changes all give more 

chance, within a season, to reach the high end of the conditional temperature distribution. Other 

characteristics may also have changed (eg. amplitude) but were not investigated here.  

 

 
Figure 2: (left) Streamfunction anomaly of the 29/06/2019; (right) yearly time series of the 

Western Europe average of TXx (brown), the TXx of the analogue time series, averaged over 

Western Europe and the 3 best analogues (red curve) (see Methods), and the corresponding 

time series obtained by excluding (resp. including only) Southerly Flow (SF) pattern dates 

before calculating the analogue TXx values  (blue circles, resp. red circles). The sets of dates 

(SF dates or non-SF dates) within a year over which the yearly maximum is sought are therefore 

complementary. In each case, analogues are calculated using the full set of patterns (i.e. for 



non-SF dates, analogues may contain SF patterns). Linear trends for all series are also shown, 

with the same color as the series. The dashed red trend is that of the SF-only. 

 

Note that SF is  not the only flow pattern changing, and not all patterns associated with TXx 

days have an increasing frequency or persistence. For instance, the 23/07/2021 pattern, 

corresponding with summer TXx in central France for 2021, shows no particular evolution 

(Supp. Fig. 3). Our results are also consistent with the increase in occurrence and persistence 

of the specific class of double jet circulations explaining a large fraction of European heat 

extremes [3], and about half (i.e., much more than the mean probability, 15%) of double-jet 

days are found within the SF days. Vice versa we found that 15% of SF days are double jet 

days, which triples the probability of occurrence of double-jet days (5%). 

 

The representation of summer TXx and TXm trends has then been analyzed for a large 

number of CMIP6 model simulations (273 simulations in total for 36 models) (see Methods 

section for data processing and Supplementary Information). Over Western Europe, almost 

all CMIP6 simulations fail to simulate the observed strong TXx trends, as seen in Figure 3b, 

plotting the percentage of simulations with larger trends than observed, for each grid point. 

These differences are less pronounced for seasonal mean summer temperatures (Fig. 3a) but 

the number of runs reaching the ERA5 trend remains small here too (10-20% in large parts of 

South-Western Europe). There are also other land areas outside Western Europe where the 

CMIP6 simulations are mostly above the observed warming trend (i.e. Sahara, Northern 

Scandinavia, Southern Balkans). This suggests that there is no general underestimation of 

extreme heat trends over all regions (or land regions), and that the Western Europe case is 

quite specific. However, understanding these regional discrepancies across the globe is 

beyond the scope of this article. 

 

When averaging TXx trends over the Western Europe region above defined, only 4 of the 273 

individual runs analyzed (one or two members of 3 models out of 36, ACCESS-ESM1, 

NorESM2-LM and KIOST-ESM) have a larger trend than the observations (see also Extended 

Data Figure 3). The strong TXx trends observed correspond to the ~98-99th percentile of the 

overall CMIP6 distribution and could, from a statistical standpoint, be interpreted as consistent 

with Western Europe witnessing a very unlikely phase of internal interdecadal variability. 

However, in the five large model ensembles that were at our disposal (eg. CanESM5, IPSL-

CM6-LR, MIROC6, MPI-ESM1-2-LR, UK-ESM1-0-LL), only one (ACCESS-ESM1) has a 

few members that warm as rapidly as observed, but this ensemble strongly overestimate the 

mean summer trend (Figure 3c). 

 



 

 

Figure 3: Comparison between ERA5 and 273 CMIP6 simulations of trends in Mean summer 

TX (TXm, left panels) and Maximum summer TX (TXx, right panels) in °C/GWD represented 

in different ways; top panels: percentage of simulations with a trend larger than ERA5 at each 

grid point; bottom panels: representation of trends for model ensembles (dots) and observations 

(red and orange lines) after averaging over Western Europe (5°W to 15°E ; 45°N-55°N); blue 

dots represent the simulations that were analyzed with the analogue approach. Histograms at 

the bottom of the figure summarize the overall distribution of the TXm (left) and TXx (right) 



trends across the 273 simulations considered, together with the (blue) part analyzed with the 

analogue approach. Percentages of simulations with a trend larger than ERA5 are indicated in 

top right corners. 

 

In addition, those climate simulations do not capture the dynamical changes underlying these 

temperature extreme changes. We applied the above analogue analysis to the first available 

realization for each model (to save computing and data handling and processing burden) for 

which 500 hPa wind fields were available (32 simulations in total). This set was found to be 

rather representative to the overall simulation distributions, see Figure 3c-d histograms) 

regarding temperature trends, with 2 models (KIOST-ESM and NorESM2-LM) exceeding 

trends similar to the observed ones for TXx, and 4-5 models with TXx trends only slightly 

below. None of these climate simulations reach the observed dynamical temperature trends 

with an amplitude as high as the observed one over western Europe (Figure 4a-b, top panels 

for the spatial distribution and Western Europe average for the bottom panels). On average 

over Western Europe, for summer mean (resp. maximum) trends, the highest amplitude of 

dynamical trends found in simulations reaches about 0.18°C/GWD (resp. 0.45°C/GWD) (see 

Figure 4c and Extended Data Table 1) while observed values are typically about four times 

(resp. twice) higher. Among those simulations with relatively similar total TXx trends as 

ERA5, none exhibit a statistically significant dynamical trend. Thus, those simulations do 

capture the total trend observed but for the wrong reasons, i.e.they suffer from compensating 

biases between thermodynamical and dynamical processes. 

 

We also calculated the thermodynamical trend obtained as a residual by subtracting the 

dynamical trend from the total trend.This shows that climate models exhibit thermodynamical 

contributions that are broadly consistent with ERA5, albeit with significant spread across 

models (Figs 4.c and 4.d, blue triangles). TXx thermodynamical trends can both be 

underestimated or overestimated across models, but there is a tendency for an overestimation 

of TXm thermodynamical trends, marked  for models with rather correct total trend. This 

analysis clearly shows that dynamical changes are responsible for the systematic mismatch 

between modeled and observed temperature trends. 

 



  

 
Figure 4: Upper panels: Maximum across 32 models of the dynamical contributions for trends 

(left: TXm; right: TXx); Lower panels: Total trend (black), dynamical contribution (red) and 

thermodynamical contribution from ERA5 (blue line), for the mean summer temperature 

(TXm, left panel) and yearly maximal temperature (TXx, right panel), averaged over Western 

Europe. The thermodynamical contributions are simply calculated as residual by subtracting 

the dynamical trend from the total trend. Confidence intervals are not shown here but can be 

found in Extended Data Table 1. 

 

Climate simulations realistically simulate the climatological mean frequency of the SF patterns 

(range from 15% to 18%, see Supp. Table 1), with a slight overestimation compared to 

observations (14.6% for ERA5). However, the rapid observed increase in frequency of this 

flow field (+63% over 1950-2022 [20%-106%], or +57%/GWD [20%-93%]) is not simulated 

by any of the models. This is the prime reason why models fail to reproduce the over-

proportioned trends in heat extremes. For most models there is even a decrease in the frequency 

of SF patterns, with sometimes large amplitudes (eg. a 20-30%/GWD decrease range for 

ACCESS-ESM1-5, CanESM5, MPI-ESM1-2-LR, NorESM2-MM; see Supp. Table 1). Event 

duration is also decreasing in most models. 

 



Overall, our results show that CMIP6 models fail to reproduce the rapid observed warming of 

extreme heat over Western Europe. The analysis of atmospheric circulation changes shows that 

there is a large dynamical contribution to this observed trend, which is not reproduced by 

climate models, explaining a large part of the discrepancy in trend between models and 

observations. By contrast, models and observational trends are broadly consistent in terms of 

the thermodynamic contribution to the trend. We cannot rule out other sources of systematic 

uncertainties such as lack of homogeneity of reanalyses, in particular for circulation patterns, 

or inaccuracies in the aerosol and land use forcing changes that would translate in systematic 

model trend biases. 

 

Determining the cause of the mismatch between models and observations is critical to assess 

whether the large observed warming trend is likely or unlikely to continue. If due to a wrong 

forced dynamical regional response – models underestimate the forced response to greenhouse 

gases – then this mismatch is expected to remain and even strengthen in the future, as global 

warming increases. If related to unforced internal variability [36,37] – internal variability 

simulated by models is too small – then the mismatch is expected to decrease in the future, but 

the term of this decrease is unknown and could be years or decades, leaving the fate of Western 

Europe heatwaves in large uncertainty.  

 

Here we have shown that the observed extreme temperature trends for Western Europe are not 

captured by CMIP6 models, due to underestimated dynamical trends. Similar conclusions were 

found for wintertime weather over Europe [38]. Further research needs to determine the causes 

of the mismatch between simulated and observed temperature trends, whether this is due to 

uncaptured internal variability or missing (dynamical) forcing/processes. Either way, our 

results call for caution when using climate model projections for adaptation and resilience 

plans. 

  



Methods 

Calculation of dynamical contributions to mean and extreme summer temperature 

trends: The method used to estimate dynamical contribution to the change in one variable 

follows the conceptual framework developed in Vautard et al. (2016), with a different 

implementation here. It is based on the estimation of the change in the variable solely due to 

the changes in regional upper-air circulations. For instance, even without extra heating from 

radiative and diabatic processes, an increase in the frequency of southerly flows in Western 

Europe would induce a mean regional warming. An increase in anticyclonic conditions would 

similarly lead to increased radiation and thus temperature. This can also lead to a cooling if 

increasingly frequent circulations are linked to cooler temperatures (eg. in Northerly winds). 

To estimate this dynamical effect of changing circulations on temperatures, we need to 

carefully remove any thermodynamical effect of climate change.  

 

We assume that daily temperature T (which can be mean, minimum or maximum daily 

temperature, and in the current article will be maximum temperature) has a distribution at a 

given location or grid point which depends on the atmospheric circulation and on other 

processes, including global warming. We then assume a decomposition into: 

 

(1)   , 

 

where X is the 500 hPa streamfunction anomaly, characterizing the atmospheric circulation 

(simultaneous to the temperature), GWD stands for the global warming degree, <T|X>GWD is 

the average daily maximum temperature conditioned to the circulation, assumed to be 

dependent on GWD, and T’ is a fluctuation. This circulation-conditioned temperature includes 

not only advection effects (i.e. from cooler/warmer regions), but also all processes linked to 

the circulation (subsidence in anticyclone, increased radiation, surface-atmosphere feedbacks, 

…), so the overall dynamical trend includes all underlying processes tied to the dynamical 

conditions. In order to remove thermodynamical effects due to climate change, we scale all 

temperatures to a reference warming level. For this, we assume that the circulation-conditioned 

mean temperature depends linearly on the global warming level, so the decomposition can be 

written: 

 

(2)                                                                                    , 

 

where ref refers to a reference global warming level, taken here as that of 2022, so all changes 

are expressed relative to 2022. The coefficient b(X) represents the mean warming rate 

conditioned to the circulation X, which includes thermodynamical effects of the climate change 

response – it is therefore assumed that the amount of warming depends on the circulation type. 

Assuming one can calculate b(X) and GWD, all daily temperatures are then scaled to the 

reference level with the following thermodynamical correction: 

 

(3)                                                                 . 

 



The dynamical contribution to any temperature trend constructed from daily temperatures (eg. 

here TXm, TXx) can then be calculated from the Ts time series, because changes with GWD 

are only through the changes in the frequency of occurrences of X for given GWDs. Trends 

should also not depend on the particular time Ts values are drawn as long as they occur 

simultaneously to a streamfunction anomaly which is similar to that encountered in the same 

sequence order as that of the series. Hence to increase statistical robustness and remove any 

residual link to the specific order of temperatures, we replace Ts temperatures by those 

occurring in circulations X along the time series. This has the advantage of “randomizing” the 

timing of analogues and providing multiple realizations to calculate dynamical trends. A new 

temperature analogue series is created by replacing each daily with that of the best circulation 

analogue, then another new series is made with the second best analogue, etc… (see below for 

practical analogue calculation). From each of these analogue time series, TXm and TXx are 

recalculated for each year, then averaged across analogues, and a regression with GWD is 

calculated at each grid point, together with its confidence interval, (plus or minus twice the 

standard error of the regression coefficient). To keep analogue quality high, we limit the 

number of time series to 3. To calculate time series of averages over Western Europe land, we 

apply the 0.5°x0.5° land mask of E-OBS and average over the grid points included in [-5W - 

15E ; 45N - 55N] 

 

Estimation of yearly GWD : In practice, GWD is calculated as a moving centered 5-year 

average of the global temperature with available data, for reanalyses and models, accounting 

for series ends in ERA5 (i.e. for 1950, taking into account an average only over 1950 to 1952, 

and for 2022 an average over 2020 and 2021). The 2022 value is then subtracted to all values, 

so GWD is 0 in 2022, and generally negative before. 

 

Selection of circulation analogues : In practice, circulations are characterized by the 500 hPa 

streamfunction over the [-30 +20°E ; 30 60°N] domain. Analogs of a given circulation are 

characterized by anomaly correlation coefficient (ACC) between streamfunction fields. For 

each summer day, we collect the best analogues (highest ACCs), and impose that they remain 

spaced by 6 days or more within a season, and self-analogues are not considered. This is done 

by successively testing fields in descending order of the ACC, and skipping days not respecting 

the separation with previously selected fields. 

 

Calculation of the circulation-conditioned thermodynamical trend b(X) : To calculate 

b(X), we also use analogue circulations, in a different way than above: For each summer day d 

of the 1950-2022 period, we estimate b(X(d)) using a regression of each raw temperature T(d) 

(before thermodynamical correction) associated with a large set of best analogue circulations 

of X(d) found between 1950 and 2022 with the GWD values of their respective year. We use 

the best 1% summer analogues (67 days) with the same spacing of at least 6 days. 99% of the 

worst of these 67 analogues across all summer days have ACC > 0.5, 65% have ACC > 0.7. 

Imposing a quality criterion on analogues such as ACC>0.7 or more would leave days with an 

insufficient number of analogues for regression. 

 



Dynamical adjustment: Dynamical adjustment is used as a second, alternative technique to 

estimate the influence of circulation-induced temperature trends. The method relies on the idea 

that temperature variability can be decomposed into a component that is driven by circulation-

induced variability, and a residual, thermodynamical component. The latter 

“thermodynamical” component is expect to contain a forced signal as well as any other 

unexplained variability or feedbacks [39]. Most applications of the technique characterize 

circulation-induced temperature variability using a proxy variable [34,35,40,41]. Dynamical 

adjustment techniques typically rely on linear methods such as variants of linear regression or 

circulation analogue techniques. 

 

Here, we use the spatial pattern of z500 in a relatively large circulation domain over Europe 

and the North Atlantic (-30 to 20°E, 30 to 60°N, similar to Fig. 1). We broadly follow the 

method outlined in [42], but add some details and small modifications here: We use a 

regularized regression technique, called “ridge regression”, which is well-suited to deal with 

the large number of circulation predictor grid cells (p = X) and a relatively short observed 

record. For TXx, we train our method on the 15 warmest days in each summer during 1950-

2021 in the ERA5 reanalysis(thus the training sample consists in a total of 72 summers and 15 

days per summer). Because the z500 field contains information about the lower troposphere, 

and is affected by temperature change via thermal expansion, we detrend the spatial z500 field 

by subtracting the global average z500 at each time step and over each grid cell in the 

circulation domain. Hence, the analysis is based only on relative changes within the z500 field. 
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Supplementary Information 

 

Observation and model data 
 

We used ERA5 reanalysis of daily maximum temperatures and streamfunction fields. 

Streamfunction is calculated from u- and v- wind fields at 500 hPa on a T127 Gaussian grid, 

and then interpolated on a 1x1 regular grid, following: 

𝑢 =  −
   𝜕𝜓

𝜕𝑦
, and 𝑣 =

 𝜕𝜓

𝜕𝑥
,  where 𝜓 is the streamfunction, u is the zonal- and v the meridional 

component of the wind fields. 

 

Surface daily maximum temperatures from ERA5 are interpolated to a 0.5x0.5 grid. We also 

used observations from the E-OBS dataset v24e [20] for daily maximum temperature (TX). E-

OBS was initially taken from a 0.25 x 0.25 grid and projected onto the 0.5x0.5 grid. When 

considering averages over the selected Western Europe area [5W-15E;45N-60N], data are 

masked using the E-OBS land/sea mask (see below). 

 

Daily maximum temperatures and streamfunction are also calculated from model simulations 

including all first members of each CMIP6 model ensemble. In order to increase as much as 

possible the estimation of capacity of models to simulate TXx and TXm trends, we used all 

possible CMIP6 simulations made available through the ESGF infrastructure. When 

considering only TXx and TXm calculations for Figure 3, we used 273 simulations made with 

36 different models (see Figure 3). For Figure 4 and the analogue analysis for models, we keep 

only 32 models and 1 realization for which we have simultaneous 500 hPa wind fields and 

daily maximum temperatures. 

 

To have an historical time series to be compared with reanalysis or observations, we 

concatenate historical and SSP5-8.5 scenarios available (from 2015 to 2022). Initial tests made 

with SSP2-4.5 showed that results presented here are insensitive to this choice. 

 

  



Extended Data Figures 

 

 

 
Extended Data Figure 1: Same as Figure 1 but for E-OBS maximum daily temperatures 

 

 



 
Extended Data Figure 2: Dynamical contribution to forced trend during 1950-2021 in ERA5 

reanalysis. Black and blue lines present the area-averaged TXx and circulation-induced TXx 

over western Europe (5-15E, 45-55N), respectively. The numbers in the square bracket show 

the trend (0C/season) in the corresponding TXx time series. The trends are estimated based on 

Sen’s slope estimator. 

 

 
 



 

 
 

Extended Data Figure 3: Evolution of the yearly number of days (a), number of events (b) 

and mean duration of events (c) (0 when no event found) for Southerly Flow patterns (black) 

(streamfunction anomalies with an ACC with the 29/06/2019 anomaly greater than 0.5). For 

comparison, the figure also shows (in red) the same statistics but for another pattern (not 

shown), that of the anomaly of the 23/07/2021, which corresponds to the date of TXx for 2021 

in central France. 

  



 

Model_realization Dynamical trend 
TXm (°C/GWD) 

Dynamical trend 
TXx (°C/GWD) 

Frequency 
SF % 

Frequency SF 
change in 
%/GWD 

Duration SA 
change in 
%/GWD 

ERA5  0.82 [ 0.33 1.32]  1.01 [ 0.39 1.64] 14.6 57 [20 93] 39 [11 67] 

ACCESS-CM2_r1i1p1f1 
ACCESS-ESM1-5_r2i1p1f1 
CAMS-CSM1-0_r2i1p1f1 
CanESM5_r1i1p1f1 
CMCC-ESM2_r1i1p1f1 
CNRM-CM6-1-HR_r1i1p1f2 
CNRM-CM6-1_r1i1p1f2 
CNRM-ESM2-1_r1i1p1f2 
EC-Earth3_r1i1p1f1 
EC-Earth3-CC_r1i1p1f1 
EC-Earth3-Veg_r1i1p1f1 
EC-Earth3-Veg-LR_r1i1p1f1 
FGOALS-g3_r1i1p1f1 
GFDL-CM4_r1i1p1f1 
GISS-E2-1-G_r1i1p1f2 
HadGEM3-GC31-LL_r1i1p1f3 
HadGEM3-GC31-MM_r1i1p1f3 
INM-CM4-8_r1i1p1f1 
INM-CM5-0_r1i1p1f1 
IPSL-CM6A-LR_r1i1p1f1 
KACE-1-0-G_r1i1p1f1 
KIOST-ESM_r1i1p1f1 
MIROC-ES2L_r1i1p1f2 
MIROC6_r1i1p1f1 
MPI-ESM1-2-HR_r1i1p1f1 
MPI-ESM1-2-LR_r1i1p1f1 
MRI-ESM2-0_r1i1p1f1 
NESM3_r1i1p1f1 
NorESM2-LM_r1i1p1f1 
NorESM2-MM_r1i1p1f1 
TaiESM1_r1i1p1f1 
UKESM1-0-LL_r1i1p1f2 

 0.12 [-0.05 0.29] 
 0.08 [-0.08 0.23] 
-0.08 [-0.50 0.34] 
 0.00 [-0.12 0.12] 
-0.10 [-0.26 0.06] 
-0.01 [-0.24 0.22] 
 0.14 [-0.06 0.34] 
 0.01 [-0.18 0.20] 
 0.02 [-0.10 0.14] 
 0.01 [-0.11 0.13] 
-0.06 [-0.24 0.11] 
 0.10 [-0.09 0.28] 
 0.07 [-0.08 0.23] 
-0.04 [-0.17 0.09] 
-0.14 [-0.32 0.05] 
 0.01 [-0.11 0.14] 
 0.20 [ 0.04 0.36] 
 0.17 [-0.14 0.48] 
 0.03 [-0.36 0.42] 
 0.05 [-0.10 0.20] 
-0.11 [-0.30 0.08] 
 0.03 [-0.13 0.18] 
 0.05 [-0.17 0.26] 
-0.12 [-0.43 0.19] 
-0.05 [-0.22 0.11] 
 0.00 [-0.11 0.12] 
-0.02 [-0.18 0.14] 
 0.09 [-0.08 0.27] 
-0.10 [-0.28 0.08] 
 0.09 [-0.12 0.30] 
 0.18 [ 0.01 0.36] 
 0.01 [-0.12 0.13] 

 0.03 [-0.30 0.35] 
 0.14 [-0.18 0.46] 
 0.00 [-0.73 0.73] 
 0.09 [-0.08 0.25] 
 0.29 [-0.19 0.78] 
 0.11 [-0.24 0.46] 
 0.05 [-0.28 0.38] 
-0.01 [-0.25 0.22] 
-0.11 [-0.44 0.23] 
-0.03 [-0.30 0.24] 
-0.18 [-0.54 0.19] 
 0.00 [-0.41 0.42] 
 0.05 [-0.21 0.30] 
-0.12 [-0.37 0.13] 
-0.08 [-0.43 0.26] 
-0.02 [-0.29 0.24] 
 0.23 [-0.21 0.66] 
-0.18 [-0.71 0.35] 
-0.50 [-0.97-0.02] 
 0.25 [ 0.02 0.49] 
-0.16 [-0.52 0.21] 
 0.45 [-0.01 0.90] 
-0.12 [-0.54 0.30] 
 0.18 [-0.30 0.67] 
 0.01 [-0.37 0.39] 
 0.14 [-0.18 0.47] 
 0.12 [-0.18 0.41] 
-0.00 [-0.20 0.20] 
-0.14 [-0.66 0.38] 
 0.18 [-0.16 0.52] 
 0.23 [-0.16 0.62] 
 0.09 [-0.15 0.33] 

   17.4 
   17.1 
   16.6 
   17.3 
   17.9 
   15.8 
   17.1 
   16.7 
   16.8 
   17.1 
   17.4 
   17.3 
   17.9 
   17.3 
   15.8 
   17.3 
   16.0 
   15.2 
   16.3 
   16.0 
   16.9 
   18.1 
   17.3 
   17.3 
   16.9 
   16.3 
   17.9 
   16.8 
   17.5 
   17.0 
   17.9 
   16.8 

 -13 [ -34   8] 
 -30 [ -54  -6] 
 -27 [ -69  14] 
 -21 [ -38  -5] 
   8 [ -15  30] 
   7 [ -20  34] 
   0 [ -28  28] 
  -1 [ -20  18] 
 -10 [ -29   9] 
  -6 [ -26  14] 
  -5 [ -27  17] 
 -10 [ -40  19] 
 -19 [ -41   3] 
  -3 [ -22  16] 
  -1 [ -28  25] 
 -19 [ -36  -2] 
 -15 [ -40  10] 
 -19 [ -47  10] 
 -14 [ -43  14] 
  -5 [ -25  16] 
 -20 [ -38  -1] 
  -2 [ -23  19] 
   6 [ -26  37] 
 -19 [ -57  18] 
  -9 [ -35  16] 
 -27 [ -53  -1] 
   3 [ -18  24] 
  -7 [ -27  13] 
 -13 [ -35  10] 
 -28 [ -52  -4] 
  -8 [ -31  14] 
 -23 [ -40  -7] 

-14 [-29  1] 
 -8 [-24  8] 
 -8 [-41 25] 
 -2 [-12  9] 
 11 [ -4 25] 
  5 [-18 29] 
  9 [-12 30] 
  1 [-16 18] 
 -1 [-14 12] 
 -5 [-24 14] 
-11 [-26  5] 
-12 [-31  8] 
-13 [-29  4] 
  2 [-14 17] 
-10 [-26  7] 
-14 [-26 -2] 
-14 [-30  2] 
 -9 [-27  9] 
  3 [-19 25] 
-17 [-36  1] 
-15 [-28 -2] 
  3 [-11 16] 
 -2 [-25 20] 
 12 [-15 39] 
 -9 [-29 10] 
-23 [-51  5] 
 12 [ -7 31] 
 -1 [-17 15] 
-19 [-38 -0] 
  0 [-21 21] 
 -2 [-19 14] 
 -9 [-22  4] 

 

Extended Data Table 1: Models used for the dynamical temperature trend analysis  (and 

reanalysis, first line); the name indicates the model and the realization, with ssp585 

concatenated after 2014 to historical simulation in order to have a continuous time series from 

1950 to 2022; Second column: summer TXm trend  averaged over the land Western Europe 

area [5W;15E;45N;55N], and its confidence interval (calculated as +/-2 S.E. of the regression 

coefficient of the spatial average vs. the GWD of each simulation) ; Third column: same as the 

second for summer TXx; Fourth column: frequency of Southerly Flow patterns (SF) defined 

as the class of patterns with streamfunction anomaly correlation larger than 0.5 with that of 

29/06/2019 (Figure 3a); Fifth column: frequency change over 1950-2022 as a function of the 

GWD, together with the confidence interval, calculated as a regression of the mean yearly 

frequency with GWD; Sixth column, same as Fifth column for persistence change, calculated 

from mean yearly duration of event regressed with the GWD, and the confidence interval 

calculated as above. 

 


