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Abstract
This paper discusses the formalization of proofs “by diagram chasing”, a standard technique for
proving properties in abelian categories. We discuss how the essence of diagram chases can be
captured by a simple many-sorted first-order theory, and we study the models and decidability of
this theory. The longer-term motivation of this work is the design of a computer-aided instrument
for writing reliable proofs in homological algebra, based on interactive theorem provers.
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1 Introduction

Homological algebra [12, 14] attaches and studies a sequence of algebraic objects, typically
groups or modules, to a certain space, e.g., a ring or a topological space, in order to better
understand the latter. In this field, diagram chasing is a major proof technique, which is
usually carried out via a form of diagrammatic reasoning on abelian categories. Diagrams
appear as early as in the introduction of Mac Lane’s classic reference book [13], while Riehl’s
textbook devotes a section to the art of diagram chase [18, Section 1.6]. Lawvere and
Schanuel’s pedagogical introduction to category theory [11, Session 17] uses an entire session
to discuss the role of graphs in diagrammatic categorical reasoning.

A diagram can be seen as a functor F : J → C, whose domain J , the indexing category,
is a small category [18] sometimes also called the shape of the diagram [14]. Diagrams are
usually represented as directed multi-graphs, also called quivers, whose vertices are decorated
with objects of C, and arrows with morphisms. Paths in such graphs thus correspond to chains
of composable arrows. Diagrams allow for visualizing the existence of certain morphisms,
and to study identities between certain compositions of morphisms. In particular, a diagram
commutes when any two paths with same source and target lead to identical composite. For
instance, the commutativity of the diagram on Figure 1 asserts that morphism e is equal
to the composition of morphisms a and b, denoted by b ◦ a, as well as to the composition
d ◦ c. Commutativity of diagrams in certain categories can be used to state more involved
properties, and diagram chasing essentially consists in establishing the existence, injectivity,
surjectivity of certain morphisms, or the exactness of some sequences, using hypotheses of the
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Figure 1 Square diagram with a diagonal arrow

same nature. The five lemma or the snake lemma are typical examples of results with proofs
“by diagram chasing”, also called diagram chases. On paper, diagrams help conveying in a
convincing manner proofs otherwise consisting of overly pedestrian chains of equations. The
tension between readability and elusiveness may however become a challenge. For instance,
diagram chases may rely on non-trivial duality arguments, that is, on the fact that a property
about diagrams in any abelian category remains true after reversing all the involved arrows,
although the replay of a given proof mutatis mutandis cannot be fulfilled in general.

Motivated in part by the second author’s experience in writing intricate diagram chases
(see for instance [16, p.338]), this work aims at laying the foundations of a computer-aided
instrument for writing reliable proofs in homological algebra, based on interactive theorem
provers. The present article discusses the design of a formal language for statements of
properties amenable to proofs by diagram chasing, according to three objectives. The first
is simplicity and expressivity: this language should be at the same time simple enough to
be implemented in a formal library, and expressive enough to encompass the desired corpus
of results. Then, duality arguments in proofs shall follow directly from a meta-property of
the language. Finally, the corresponding proof system should allow for automating proofs of
commutativity clauses. Observe for instance, that the commutativity of the square diagram
of Figure 1 follows from that of the two triangle sub-diagrams: the concluding step in diagram
chases usually amounts to a such a commutativity clause. Automating the mundane proofs
of commutativity clauses amounts to studying a decision problem hereafter referred to as the
commerge problem: Given a collection of sub-diagrams of a larger diagram which commute,
must the entire diagram commute?

For this purpose, we introduce the two following formal languages.

▶ Definition 1. We define a many-sorted signature Σ̊ with sorts the collection of finite
quivers. Signature Σ̊ has one function symbol restrm : Q′→Q, of arity Q → Q′, per each quiver
morphism m : Q′ → Q between two quivers Q and Q′, and one predicate symbol commuteQ,
on sort Q, for each finite quiver Q.

Similarly, we define a many-sorted signature Σ with sorts the collection of finite acyclic
quivers. Signature Σ has one function symbol restrm : Q′↪→Q, of arity Q → Q′, per each
injective quiver morphism m : Q′ ↪→ Q between two quivers Q and Q′, and one predicate
symbol commuteQ, on sort Q, for each finite acyclic quiver Q.

The thesis of the present article is that signature Σ fulfills the three above objectives. We
validate this thesis by giving a first-order theory for diagrams in small and abelian small
categories respectively. We state and prove a duality theorem and motivate the choice of Σ
over the possibly more intuitive Σ̊ by the automation objective.

The rest of the article is organized as follows. We first fix some vocabulary and notations
in Section 2, so as in particular to make Definition 1 precise. Then, Section 3 introduces
a theory for small categories and describes its models, Section 4 discusses duality, before
Section 5 provides an analogue study for abelian categories. Finally in Section 6, we formalize
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and study the decidability of several variants of the commerge problem.

2 Preliminaries

In all what follows, N := {0, 1, . . . } refers to the set of non-negative integers. If k ∈ N, then
[k] denotes the finite collection {0, . . . , k − 1}. We denote card(A) the cardinal of a finite
set A. We use the notation id for the identity map.

2.1 Quivers
In this section, we introduce some vocabulary and notations related to directed multi-graphs,
also called simply graphs in some standard category theory textbooks [11, 13]. In this article,
we depart from these texts and use instead the term quiver.

▶ Definition 2 (General quiver, dual). A general quiver Q is a quadruple (VQ, AQ, sQ : AQ →
VQ, tQ : AQ → VQ) where VQ and AQ are two sets. The element of VQ are called the vertices
of Q and the element of AQ are called arrows. If a ∈ AQ, sQ(a) is called the source of a
and tQ(a) is called its target. The dual of a quiver Q is the quiver Q† := (VQ, AQ, tQ, sQ),
which swaps the source and the target maps of Q.

▶ Definition 3 (Morphism, embedding, restriction). A morphism of quivers m : Q → Q′, is
the data of two maps mV : VQ → VQ′ and mA : AQ → AQ′ such that mV ◦ sQ = sQ′ ◦ mA

and mV ◦ tQ = tQ′ ◦mA. Such a morphism is called an embedding of quivers if moreover
both mV and mA are injective. In this case we write m : Q ↪→ Q′.

If A is a subset of AQ, the (spanning) restriction of Q to A denoted by Q|A is the quiver
(VQ, A, sQ|A, tQ|A). There is a canonical embedding Q|A ↪→ Q.

We denote by ∅ the empty quiver with no vertex and no arrow, and by S̊ the set of
quivers Q such that VQ and AQ are finite subsets of N. In this article, a quiver refers to an
element of S̊. We use a non-cursive Q for elements of S̊, and a cursive Q for general quivers.

For the sake of readability, we use drawings to describe some elements of S̊, as for instance:

. . .

For a quiver Q denoted by such a drawing, the convention is that VQ = [card(VQ)] and
AQ = [card(AQ)]. From left to right, the drawn vertices correspond to 0, 1, . . . , card(VQ) − 1.
Arrows are then numbered by sorting pairs (sQ, tQ) in increasing lexicographical order, as in:

. . .0 1 20
1

2
3

We also use drawings to denote embeddings. The black part represents the domain of the
morphism, the union of black and gray parts represents its codomain. Here is an example of
an embedding of the quiver . . into the quiver drawn above.

. . .

▶ Definition 4 (Path-quiver). The path-quiver of length k, denoted by PQk, is the quiver
with k + 1 vertices and k arrows ([k + 1], [k], id, (i 7→ i+ 1)).

A path-quiver can be drawn as:

CVIT 2016
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. . . .. . .

with at least one vertex. Such a path-quiver is called nontrivial if it has at least two vertices.
If 0 ≤ k ≤ l are two integers, we denote by spk,l : PQk ↪→ PQl the leftmost embedding

of PQk into PQl, i.e., such that (spk,l)V (0) = 0. If k and l are clear from the context, we
draw spk,l as if k ̸= 0 and as . if k = 0. Moreover, we denote by tpk,l : PQk ↪→ PQl the
rightmost embedding of PQk into PQl, i.e., such that (tpk,l)V (k) = l. The corresponding
drawings are and .. Moreover, if P is a nontrivial path-quiver, we define stP : . . ↪→ P

to be the embedding mapping the first vertex on the leftmost vertex of P and the second
vertex on the rightmost vertex of P . We denote this embedding . ..

If Q is a general quiver, a morphism of the form p : PQk → Q, for some k, is called a path
of Q from u to v of length k, where u := p(0) and v := p(k). If moreover pA is injective, it is
called a trail [24]. A trail p such that pV (0) = pV (k) is called a cycle. Two paths p1 : P1 → Q,
p2 : P2 → Q of Q have the same extremities if p1 ◦ stP1 = p2 ◦ stP2 . We denote by BPQ, resp.
BTQ, the set of pairs of paths, resp. of trails, of Q having the same extremities. Such a pair
is called a bipath, resp. a bitrail.

A general quiver is acyclic if any path of this quiver is an embedding. The set of acyclic
quivers in S̊ is denoted by S.

We now recall the definition of a free category (see for instance [13, Section II.7]).

▶ Definition 5 (Free category). For a general quiver Q, the free category over Q, denoted by
⟨Q⟩ is the category with objects Ob⟨Q⟩ = VQ whose morphisms Hom⟨Q⟩(u, v), for two vertices
u and v are the paths from u to v. The identity map from u to u is the empty path, and the
composition is defined as the concatenation of paths.

Note that a morphism m of quivers induces a functor between the corresponding categories
that we denote by Φm. In the other direction, any small category C has an underlying quiver.

2.2 Diagrams
The purpose of this section is to introduce diagrams in a category, and to define what it
means for a diagram to commute. We also introduce useful constructions later used for
building new diagrams by restricting and pasting existing ones.

▶ Definition 6 (Diagram). For any category C and any quiver Q, a diagram in C over Q is a
functor from ⟨Q⟩ to C.

Definition 6 is actually a special case of D-shaped diagrams, for D a small category [14].
Thanks to the universal properties of free categories, it coincides with Mac Lane’s Q-shaped
diagrams in category C [13, Section II.7].

Let P be a path-quiver from vertex u to vertex v. To a diagram D : ⟨P ⟩ → C over P one
can associate the corresponding composition of morphisms in the category C, which is an
element of HomC(D(u), D(v)). We denote this element comp(D). By convention, when the
path-quiver P is trivial, comp(D) is the identity map idD(u).

▶ Definition 7 (Pullback). Let Q,Q′ be two quivers and let D be a diagram over Q. Let
m : Q′ → Q be a morphism of quivers. We define the pullback of D by m, denoted by m∗(D),
as the diagram D ◦ Φm over Q′.

Note that term pullback here refers to pre-composition rather than to fiber products.
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▶ Definition 8 (Commutative diagram). For any category C and any quiver Q, a diagram D

over Q is commutative if comp(p∗
1(D)) and comp(p∗

2(D)) coincide for any two paths p1 and
p2 in Q with same extremities, that is:

∀(p1, p2) ∈ BPQ, comp(p∗
1(D)) = comp(p∗

2(D)).

▶ Definition 9 (Pushout configuration). Consider four quivers Q,Q1, Q2, Q
′ and four embed-

dings m1 : Q ↪→ Q1, m2 : Q ↪→ Q2, m′
1 : Q1 ↪→ Q′ and m′

2 : Q2 ↪→ Q′:

Q Q1

Q2 Q′.

m1

m2 m′
1

m′
2

This data is a pushout configuration if:
m′

1 ◦m1 = m′
2 ◦m2,

Q′ = Im(m′
1) ∪ Im(m′

2), (i.e., VQ′ = Im(m′
1,V ) ∪ Im(m′

2,V ) and AQ′ = Im(m′
1,A) ∪

Im(m′
2,A)),

Im(m′
1 ◦m1) = Im(m′

1) ∩ Im(m′
2).

In this case, the triple (Q′,m′
1,m

′
2) is called a pushout of (Q,Q1, Q2,m1,m2).

▶ Remark 10. Any tuple (Q,Q1, Q2,m1,m2) has a pushout, and any two pushouts of the
same tuple are isomorphic, see for instance Figure 2.

The next lemma allows to reduce the number of distinct diagrams involved in a formula.

▶ Lemma 11. Let C be some category. Consider a pushout configuration as in Definition 9.
Consider two diagrams D1 and D2 in C over Q1 and Q2, respectively. If the pullback of D1
by m1 coincides with the pullback of D2 by m2, i.e.,

m∗
1(D1) = m∗

2(D2)

then there exists a unique diagram D′ over Q′ such that D1, resp. D2, is the pullback of D′

by m′
1, resp. m′

2, i.e.,

D1 = m′∗
1 (D′) and D2 = m′∗

2 (D′)

Proof. Immediate. ◀

2.3 Category congruences, path relations and quotient categories
We first introduce category congruences and quotients, following Mac Lane [13, Section II.8],
and provide an important example thereof. However, we slightly depart from this reference
by only considering the special case of quotients of categories by congruences, as it is the
only one used in the present article.

P1 = . . . . P2 = . . . Q′ = . . . ..

Figure 2 A pushout Q′ of two path-quivers P1 and P2 with respect to stP1 and stP2 .

CVIT 2016



23:6 A First Order Theory of Diagram Chasing

▶ Definition 12 (Category congruence). A category congruence r on C is the data of an
equivalence relation rA,B ⊆ HomC(A,B)2 for any pair of objects A and B such that, for any
objects A,B,C and any morphisms f, g ∈ HomC(A,B) and f ′, g′ ∈ HomC(B,C),

f ∼ g and f ′ ∼ g′ =⇒ f ′ ◦ f ∼ g′ ◦ g,

where we write h ∼ h′ if h and h′ are in relation, i.e., (h, h′) ∈ rE,F for some objects E and
F . Such a relation is said complete if rA,B = HomC(A,B)2 for any pair of objects A and B.

▶ Proposition 13 (Quotient category). Given such a category congruence, the data ObC/r :=
ObC and HomC/r(A,B) := HomC(A,B)/rA,B define a category C/r called the quotient
category of C by r.

Proof. Immediate. ◀

We now introduce relations on pairs of paths with same extremities in a general quiver:
the ones that are induced from a congruence on the corresponding free category are of special
interest.

▶ Definition 14. A relation between paths with same extremities in Q is by definition a
subset of BPQ. If r ⊆ BPQ is such a relation then, for (p, q) ∈ BPQ, we write p ∼ q if
(p, q) ∈ r. Note that BPQ =

⊔
A,B∈Ob⟨Q⟩

Hom⟨Q⟩(A,B)2. Such a relation r is called a path
relation if it is a category congruence on ⟨Q⟩. The complete path relation on Q, i.e., BPQ,
is denoted by totQ.

For instance, in a small category C the composition axiom induces a path relation on the
underlying quiver Q. To be more precise, this relation is given by

{(p1, p2) ∈ BPQ | comp(F ◦ Φp1) = comp(F ◦ Φp2)}

where F is the canonical functor from ⟨Q⟩ to C. Following the usual notation of ideals, if
r0, . . . , rl−1 are some relations between paths with same extremities, we denote by (ri | i ∈ [l])
the smallest path relation containing r0, . . . , rl−1.

Let Q′ be another general quiver and let m : Q → Q′ be a morphism. If r ⊆ BPQ, we
denote by m∗(r) the relation induced by the image by m of r in BPQ′ .

2.4 A finite characterization of commutative diagrams
Definition 8 about the commutativity of a finite diagram a priori relies on an infinite number
of equations. In this section, we give an equivalent formulation based on the finite set BTQ.

▶ Lemma 15. Let Q be a quiver. The smallest path relation containing BTQ ⊆ BPQ is the
total relation totQ.

Proof. Denote this smallest path relation by r. It suffices to prove that any path is related
with a trail. Let p be a path which is not a trail. Then p contains a nontrivial cycle, i.e., if
we denote by ≫ the concatenation operator on paths, p = p1 ≫c≫p2 for some paths p1 and
p2 and some nontrivial cycle c. Since any cycle is a trail, the pair (c, c ◦ . ) belongs to BTQ,
where c ◦ . is the path of length 0 based on cV (0). Hence p = p1 ≫c≫p2 ∼ p1 ≫p2. This
last past is strictly smaller, and we conclude by infinite descent. ◀

As a direct consequence of the previous lemma, we get the following proposition.

▶ Proposition 16. A diagram D over a finite quiver Q is commutative if and only if

∀(p1, p2) ∈ BTQ, comp(p∗
1(D)) = comp(p∗

2(D)).
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2.5 Many-sorted logic, categorical interpretation
We first recall a few basic definitions mostly pertaining to many-sorted logic, but instantiated
to the signatures introduced by Definition 1, and we set the corresponding notations.

Remember that signature Σ only differs from Σ̊ by restricting the allowed sorts to the
acyclic quivers and the allowed quiver morphisms to embeddings.

Let us first fix a countable set X, so that for each quiver Q in S̊ (resp. in S), elements of
the set XQ := X × {Q} are the variables of sort Q. A term of sort Q either is a variable of
sort Q or has the form restrm : Q→Q′(t), with t a term of sort Q′, Q′ a quiver and m : Q → Q′

a morphism of quivers. When possible, we leave the sorts implicit and simplify the notation
of symbol restrm : Q′→Q into restrm.

We denote the equality symbols by ≈, leaving sorts implicit. An atom is thus of the form
s ≈ t with s and t two terms of the same sort, or of the form commuteQ(t) with t a term of
sort Q. We consider first-order many-sorted formulas and write the sort of quantifiers as a
subscript, i.e., ∃Q xQ, ϕ and ∀Q xQ, ϕ where Q ∈ S̊, xQ ∈ XQ and ϕ is a formula.

We shorten ∀Qx, ∀Qy, P (x, y), resp. ∃Qx,∃Qy, P (x, y), into ∀Qx, y, P (x, y), resp. into
∃Qx, y, P (x, y). We write ∃!Q y, P (y) for formula

(
∃Q y, P (y)

)
∧

(
∀Q y1, y2, P (y1)∧P (y2) →

y1 ≈ y2
)
. A formula with free variables x1, . . . , xn of respective sorts Q1, . . . , Qn is said to

be of arity Q1 × . . . Qn.
We now define standard, sometimes also called Tarskian [20], semantics for first-order

theories on signatures Σ̊ and Σ. We mostly follow classic presentations [9] but adapted to
the context of multi-sorted signatures.

▶ Definition 17 (Structures, models). A Σ̊-structure M, also called interpretation of Σ̊, is
defined by:

a collection of disjoint non-empty domain sets (MQ)Q, indexed by the collection of
(quiver) sorts;
an interpretation of each function symbol restrm : Q′→Q, as a function restrM

m : Q′→Q with
domain MQ and codomain MQ′ ;
an interpretation of each predicate symbol commuteQ, as a subset commuteM

Q of MQ.
A given Σ̊-structure together with a variable assignment mapping any variable of sort Q to
an element of domain MQ entail a truth value for any first-order formula ϕ on language Σ̊.
If ϕ has no free variable, we write M |= ϕ if ϕM is true and we say that ϕ is valid in M.
A formula ϕ is satisfiable when there is a variable assignment which makes it true, and
unsatisfiable in the opposite case. A model of a theory T on signature Σ̊ is the interpretation
of a Σ̊-structure such that every formula in T is true.

We also define analogue structures, interpretations, models for signature Σ.

The standard models of the signatures introduced in Definition 1 are actually diagrams
in a certain category.

▶ Definition 18 (Categorical interpretation). To each small category C, we associate an
interpretation of Σ, resp. Σ̊, that we also denote by C, as follows:

To each sort Q we associate the set CQ of diagrams in C over Q.
restrm is interpreted as the function mapping a diagram D to the diagram m∗(D).
commuteC

Q is the set of commutative diagrams in C over Q.
We call such an interpretation a categorical interpretation of Σ, resp. Σ̊.

3 A theory for diagrams in small categories

This section introduces a theory whose models can be seen as categorical interpretations.

CVIT 2016



23:8 A First Order Theory of Diagram Chasing

3.1 Axioms
We now introduce the different axioms of the theory. A formula F with free variables
x1, . . . , xn is written F (x1, . . . , xn) so as to clarify the sorts of each variable in the arity of F .

Existence and uniqueness of the empty diagram

EmptyEU: ∃!∅ x, x ≈ x

Compatibility of restrictions

For any quivers Q,Q′, Q′′ and morphisms m : Q → Q′ and m′ : Q′ → Q′′, we define:

RestrCompm,m′ : ∀Q′′ x′′, restrm(restrm′(x′′)) ≈ restrm′◦m(x′′).

Pushout

For any pushout configuration as in Definition 9, and using the same notations as this
definition, we define the following formulas of arity Q1 ×Q2 ×Q′:

Cospanm′
1,m′

2
(x1, x2, x

′) : restrm′
1
(x′) ≈ x1 ∧ restrm′

2
(x′) ≈ x2.

PushoutEUm1,m2,m′
1,m′

2
: ∀Q1 x1,∀Q2 x2, restrm1(x1) ≈ restrm2(x2)

→ ∃!Q′ x′, Cospanm′
1,m′

2
(x1, x2, x

′).

Composition

The following predicate, of arity . . × . . × . . , describes composite of arrows:

Comp(x, y, z) : ∃.
.

. w, restr .
.

. (w) ≈ x ∧ restr.
.

.(w) ≈ y

∧ restr .
. .(w) ≈ z ∧ commute(w)

while the following one ensures the existence of compositions:

CompE: ∀. .x, y, restr. .(x) ≈ restr .. (y) → ∃. .z, Comp(x, y, z).

Equality of nontrivial paths

For any two nontrivial path-quivers P1 and P2, it is possible to choose in a canonical way a
quiver Q′ together with two embeddings m′

1, m′
2 such that the following diagram forms a

pushout configuration (as for instance on Figure 2):

. . P1

P2 Q′

stP1

stP2 m′
1

m′
2

We thus define the following predicate of arity P1 × P2:

EqPathP1,P2(x1, x2) : restr. .(x1) ≈ restr. .(x2)
∧

(
∀Q′ x, Cospanm′

1,m′
2
(x1, x2, x) → commute(x)

)
.
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Identity

The following predicate, of arity . × . . , defines the identity map:

Id(x, y) : restr .. (y) ≈ x ∧ ∀. .z, w,(
Comp(y, z, w) → EqPath(z, w)

)
∧

(
Comp(z, y, w) → EqPath(z, w)

)
and the following formula ensures the existence of identity maps.

IdE: ∀.x, ∃. .y, Id(x, y).

Note that Id(x, y) and IdE entail that restr. .(y) ≈ x.

Equality for general paths

For any nontrivial path-quiver P , we define the following formulas:

EqPath.,.(x, y) : x ≈ y,

EqPath.,P (x, y) : ∃. .z, Id(x, z) ∧ EqPath. .,P (z, y),
EqPathP,.(x, y) : EqPath.,P (y, x).

Hence, we can see EqPath as a relation with arity any pair of path-quivers. We ensure
this relation to be an equivalence relation by defining for any path-quivers P1, P2 and P3 the
three formulas EqPathReflP1 , EqPathSymP1,P2 and EqPathTransP1,P2,P3 stating that the
relation EqPath is respectively reflexive, symmetric and transitive.

We also make sure to enforce the properties of a category congruence. For this purpose,
for any four path-quivers P1, P ′

1, P2, and P ′
2, of respective length k1, k

′
1, k2 and k′

2, we define
the following formula where bound variables x1, x2, x

′
1, x

′
2 respectively have sort P1, P2, P ′

1
and P ′

2 and the sort of x′′
i , i ∈ {1, 2}, is PQki+k′

i
.

EqPathConcatP1,P2,P ′
1,P ′

2
: ∀x1, x2, x

′
1, x

′
2,

EqPath(x1, x2) ∧ EqPath(x′
1, x

′
2) ∧ restr .(x1) ≈ restr. (x′

1)
→ ∀x′′

1 , x
′′
2 , Cospan , (x1, x

′
1, x

′′
1) ∧ Cospan , (x2, x

′
2, x

′′
2)

→ EqPath(x′′
1 , x

′′
2).

Commutativity

We relate commutativity and equality by the following formula:

ComEq : ∀. . x, commute(x) → restr. .(x) ≈ restr. .(x).

For any quiver Q, the following formula provides an analogue of the notion of commut-
ativity of diagrams via the characterization given in Proposition 16,

PathComQ : ∀Q x,
∧

(p1,p2)∈BTQ

EqPath(restrp1(x), restrp2(x)) ↔ commute(x).

where we recall that BTQ denotes the (finite) set of pairs of trails of Q having the same
extremities.

▶ Definition 19. Theory T̊cat, over signature Σ̊, consists of the following formulas:
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23:10 A First Order Theory of Diagram Chasing

EmptyEU, CompE, IdE, ComEq,
RestrCompm,m′ for any pair of maps m and m′ such that the codomain of m is the
domain of m′,
PushoutEUm1,m2,m′

1,m′
2

for a pushout configuration as in Definition 9,
EqPathReflP1 ,EqPathSymP1,P2 ,EqPathTransP1,P2,P3 ,EqPathConcatP1,P2,P3,P4 for any
quadruple of path-quivers P1, P2, P3 and P4,
PathComQ for any quiver Q.

Theory Tcat is defined as the restriction of T̊cat to Σ.

3.2 Models
Models of Tcat, resp. T̊cat, are in fact exactly what we have called categorical interpretations.

▶ Theorem 20. Every categorical interpretation of Σ, resp. Σ̊, is a model of Tcat, resp. T̊cat.
Moreover, any model M of Tcat, resp. T̊cat, has an isomorphic categorical interpretation.

Proof. We only prove the theorem for Tcat, as the proof for T̊cat is similar.
If C is a small category, a routine check shows that the associated model C of Σ verifies

the theory Tcat. For instance,
the formulas PushoutEU follows from Lemma 11;
IdE and CompE come from the existence of the identity map and the existence of the
composition respectively;
for two diagrams D1 and D2 respectively over path-quivers P1 and P2, the formula
EqPathP1,P2(D1, D2) corresponds to the relation comp(D1) = comp(D2), which is a path
relation;
ComEq and PathComQ follow from Proposition 16.

Let us prove the other direction. Let Q be an acyclic quiver. By an abuse of the notations,
if v ∈ VQ, resp. a ∈ AQ, we also denote by v, resp. a, the corresponding embedding v : . ↪→ Q,
resp. a : . . ↪→ Q. Here is a crucial lemma for the proof of the theorem.

▶ Lemma 21 (General pushout). Let M be a model of Tcat. Let Q be an acyclic quiver,
βV : VQ → M. and βA : AQ → M. . be two maps. Then the following statements are
equivalent.
1. There exists an element β of MQ such that, for any v ∈ VQ and any a ∈ AQ, restrM

v (β) =
βV (v) and restrM

a (β) = βA(a).
2. For any a ∈ AQ, restrM

.. (βA(a)) = βV (sQ(a)) and restrM
. .(βA(a)) = βV (tQ(a)).

Moreover, when both statements hold, the element β is unique.

Proof. The fact that the first point induces the second one follows directly from RestrComp.
Hence we focus on the other direction and on the uniqueness.

We proceed by induction on the structure of Q. In the case of an empty Q, the second
point holds trivially. The first point and the uniqueness follows from EmptyEU.

Assume first that the lemma holds for some quiver Q1 with no arrow. Let Q be the quiver
Q1 with an extra vertex v0. Let βV and βA be two maps as in the statement of the lemma,
and β1,V the restriction of βV to VQ1 . We have the following pushout configuration:

∅ Q1

. Q

m1

m2 m′
1

m′
2=v0
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Point 2 holds trivially. Let us prove the existence and uniqueness of an element β sat-
isfying the property of Point 1. By induction, we get a unique β1 ∈ MQ1 compat-
ible with β1,V and βA. Set β2 := βV (v0). By EmptyEU, restrM

m1
(β1) = restrM

m2
(β2).

Hence we can apply PushoutEUm1,m2,m′
1,m′

2
to get a unique element β ∈ MQ such that

CospanM
m′

1,m′
2
(β1, β2, β). From RestrComp and the induction hypothesis, it follows that for

β′ ∈ MQ, CospanM
m′

1,m′
2
(β1, β2, β

′) is equivalent to restrM
v (β′) = βV (v) for any v ∈ VQ. This

concludes the induction.
Assume more generally that the lemma holds for some acyclic quiver Q1. Let Q be an

acyclic quiver obtained from Q1 by adding one arrow a0. Let βV and βA be two maps as
before and β1,A the restriction of βA to AQ1 . Let m1 : . . ↪→ Q1 mapping the first point to
sQ(a0) and the second point to tQ(a0). Let m2 := st. . = . . . Once again, we get a
pushout configuration:

. . Q1

Q

m1

m2 m′
1

m′
2:=a0

Assume that Point 2 holds. By induction, we get a unique element β1 ∈ MQ1 compatible
with βV and β1,A. Set β2 := βA(a0). We have already proven the lemma for the quiver . . .
Hence we deduce that

restrM
m1

(β1) = restrM
m2

(β2).

We can apply PushoutEU as before to get Point 1 as well as the uniqueness part. This
concludes the proof of the lemma. ◀

We now continue the proof of Theorem 20. Let M be a model of Tcat. We define the
general quiver Q associated to M by

VQ := M. , AQ := M. . , sQ := restrM
.. and tQ := restrM

. . .

Set C̃ := ⟨Q⟩. Thanks to Lemma 21, to each acyclic quiver Q and to each element β ∈ MQ,
we can associate a unique diagram Ψ̃(β) in C̃ verifying:

for any v ∈ VQ, Ψ̃(β)(v) = restrM
v (β).

for any a ∈ AQ, Ψ̃(β)(a) is the path of length one with arrow restrM
a (β).

The image of Ψ̃ is exactly the set of diagrams whose morphisms are paths of lengths one.
Let us now introduce another important map. Let A and B be two objects of C̃, and let

p ∈ HomC̃(A,B). Recall that p is just a path from A to B in Q. Let k be the length of p.
By Lemma 21, there exists a unique element Θ(p) ∈ MPQk

such that
for each v ∈ VPQk

, restrM
v (Θ(p)) = p(v),

for each a ∈ APQk
, restrM

a (Θ(p)) = p(a).
Relation EqPathM thus induces a relation r on morphisms of C̃. Moreover, EqPathRefl,
EqPathSym, EqPathTrans and EqPathConcat, together with Lemma 21, make r a category
congruence. We can hence define the category C := C̃/r. Now Ψ̃ induces a map Ψ: MQ → CQ

for any quiver Q, and we claim that Ψ induces a model isomorphism between M and C.
Let Q be any acyclic quiver. We first prove that Ψ is injective. Let β, γ ∈ MQ such

that Ψ(β) = Ψ(γ). For any vertex v ∈ VQ, Ψ̃(β)(v) = Ψ̃(γ)(v), i.e., restrM
v (β) = restrM

v (γ).
Let a be an arrow of Q. Then we have the relation Ψ̃(β)(a) ∼ Ψ̃(γ)(a). By definition of
EqPath. .,. . , we validate the premise of ComEq, and thus the equality Ψ̃(β)(a) = Ψ̃(γ)(a),
i.e., restrM

a (β) = restrM
a (γ). By the uniqueness part of Lemma 21, we get β = γ.
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23:12 A First Order Theory of Diagram Chasing

We now consider the surjectivity of Ψ. It suffices to prove that any morphism p ∈
HomC̃(A,B), for any A,B ∈ ObC̃, is in relation via r to a path of length one. Indeed, in
such a case, for any diagram D̃ in C̃ over Q, one can find another diagram D̃′ over Q whose
morphisms are path of size one and such that any morphism of D̃ is in relation with the
corresponding morphism of D̃′. Hence the induced diagrams in C are equal. Moreover, D̃′ is
in the image of Ψ̃, and we would get the surjectivity.

Let P be a path-quiver and let β ∈ MP . We have to find an element γ ∈ M. . such
that EqPathM

P,. .(β, γ). If P has length one, this is trivial. If P has length zero, then by
IdE, there exists γ such that IdM(β, γ). Moreover, by the definition EqPath.,. . and using
the reflexivity of EqPath, we get EqPathM

.,. .(β, γ). If P has length two, then by CompE,
we can find an element γ such that

Comp(restrM
... (β), restrM

. . .(β), γ).

The commutativity of the triangle induces EqPathM
. . .,. .(β, γ).

For P with length k > 2, we proceed by induction on the length of P . Using EqPathTrans,
it suffices to find γ over PQk−1 such that EqPathM

P,PQk−1
(β, γ). To do so, we see P as the

pushout of PQ2 and PQk−2 along m′
1 = : PQ2 → P and m′

2 = : PQk−2 → P . By
the case k = 2, we can find γ1 ∈ M. . such that EqPath(restrM

m′
1
(β), γ1). We set γ2 =

restrM
m′

2
(β). In particular we have EqPath(γ2, γ2). By EqPathConcat, we get EqPath(β, γ)

where γ ∈ MPQk−1 is such that Cospanm′
1,m′

2
(γ1, γ2, γ), and the result follows.

We have shown that Ψ induces a bijection between the corresponding domains. In order
to conclude the proof, it remains to prove that Ψ commutes with function restr and with
predicate commute. The commutativity with restr follows from the definition of Ψ and the
formulas RestrComp.

The compatibility with the predicate commute can be reduced to the compatibility
of EqPath via the formula PathCom and the characterization of commutativity given in
Proposition 16. Let P1 and P2 be two path-quivers and β1 ∈ MP1 and β2 ∈ MP2 . These
elements correspond to paths p1 and p2 in Q. Using the definitions of the different elements,
we get the following chain of equivalences:

EqPathC(Ψ(β1),Ψ(β2)) ⇔ compC(Ψ(β1)) = compC(Ψ(β2))

⇔ compC̃(Ψ̃(β1)) ∼ compC̃(Ψ̃(β2)) ⇔ p1 ∼ p2 ⇔ EqPath(β1, β2).

This concludes the proof of the theorem. ◀

4 Duality

Signatures of Definition 1 are tailored to enforce a built-in, therefore easy to prove, duality
principle, which we now make precise. Recall from Definition 2 that duality is an involution
on quivers, as well as on acyclic quivers. We define the dual of a formula over Σ̊ as follows:

if m : Q → Q′ is a morphism, then m† : Q† → Q′† is defined by m†
V = mV and m†

A = mA.
if x = (x, Q) is a variable in X × S̊ then x† := (x, Q†),
(restrm(x))† := restrm†(x†) and (commuteQ(x))† := commuteQ†(x†),
(x ≈ y)† := x† ≈ y†,
(∀Q x, ϕ)† := ∀Q† x†, ϕ† and (∃Q x, ϕ)† := ∃Q† x†, ϕ†,
(ϕ ∧ ψ)† := ϕ† ∧ ψ†, etc.
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For Y a set of variables, Y † denotes {x† | x ∈ Y }. For any theory T , T † denotes {ϕ† | ϕ ∈ T }.
For M an interpretation of Σ̊ over a set of variables Y , we define its dual model M† over

Y † as:
M†

Q := MQ† ,
for x ∈ Y †, xM† := (x†)M.
restrM†

m := restrM
m† and commuteM†

Q := commuteM
Q† ,

The duality involution also induces involutions respectively on formulas, theories and
models over Σ.

▶ Example 22. If C is a small category, then the dual interpretation C† is isomorphic to the
model of the dual category, both with respect to Σ̊ and to Σ.

▶ Theorem 23 (Duality theorem). Let ϕ be a formula with free variables included in Y ⊆ X×S,
resp. in Y ⊆ X × S̊, and let M be a model of Σ, resp. of Σ̊. Then

M |= ϕ ⇐⇒ M† |= ϕ†.

Proof. The proof is direct. ◀

▶ Remark 24. The duality principle has some useful direct consequences:
If ϕ is a valid, resp. satisfiable, resp. unsatisfiable, formula, then so is ϕ†.
Let T be theory such that any model of T verifies T †. If ϕ is a valid, resp. satisfiable,
resp. unsatisfiable, formula among models of T , so is ϕ†.
We have the following reciprocal. Let T be a theory such that any model M of T verifies
that M† |= T , then every model of T verifies T †.

The following fact follows directly from this last point, Theorem 20 and Example 22.

▶ Proposition 25. Models of Tcat verify T †
cat, and models of T̊cat verify T̊ †

cat.

5 A theory for diagrams in abelian categories

We now introduce a theory whose models are diagrams in small abelian categories. We rely
on the set of axioms given by Freyd in [7]. This reference is particularly well-suited for our
purpose. Indeed, the author does not impose the homomorphisms between any two objects
of an abelian category to form an abelian group, but this fact rather follows from the axioms.

Let us first formulate common notions of category theory in the languages introduced in
Section 2.5. Here is a predicate of arity . . which corresponds to monicity of a map in a
category.

Mono(x) : ∀. . . y, restr. . .(y) ≈ x

∧ commute(restr. . .(y)) ∧ commute(restr. . .(y))

→ commute(restr ... (y)).

The dual predicate to Mono(x) is named Epi(x).
Let Q be a quiver. We define the cone of Q as the quiver

cone(Q) := (VQ ⊔ {v0}, AQ ⊔ {av | v ∈ VQ}, scone(Q), tcone(Q)),
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where scone(Q) and tcone(Q) are extensions of sQ and tQ by sQ(av) = v0 and tQ(av) = v. We
define by iQ : Q ↪→ cone(Q) the corresponding embedding. If m : Q → Q′ is a morphism of
quivers, we get a canonical morphism cone(m) : cone(Q) → cone(Q′).

Abusing the notations, if a is an arrow of Q, we also denote by a : . . ↪→ Q the
corresponding morphism. We then introduce the usual notion of cones of diagrams by the
following formula of arity Q× cone(Q).

ConeQ(x, y) : restriQ
(y) ≈ x ∧

∧
a∈AQ

commute(restrcone(a)(y)).

We now formulate the notion of limit.

LimitQ(x, y) : ConeQ(x, y) ∧
∀cone(Q) z, ConeQ(x, z) → ∃!cone(cone(Q)) w, Cone(y, w) ∧ restrcone(iQ)(w) ≈ z.

We also introduce the dual ColimitQ(x, y) := Limit†
Q†(x, y).

The introduction of monos, epis, limits and colimits allows to state Freyd’s axioms of
abelian categories [7]. First, we define zero objects and kernels of respective arity . and
. . × . . as follows:

Zero(x) : ∀∅ y, Limit∅(y, x) ∧ Colimit∅(y, x),
Ker(x, y) : ∃. .. .z, restr. .. .(z) ≈ x ∧ restr . .. . (z) ≈ y

∧ Zero(restr. . .. (z)) ∧ Limit(restr. .. .(z), z).

We also define Coker(x, y) := Ker†(x, y).

We define the category Tab, resp. T̊ab as the extension of Tcat, resp. T̊cat, by the following
formulas.

ZeroE: ∃.x, Zero(x),
ProductE: ∀..x, ∃cone(..) y, Limit..(x, y),

CoproductE: ProductE†,

KerE: ∀. .x, ∃. .y, Ker(x, y),
CokerE: KerE†,

MonoNormal : ∀. .x, Mono(x) → ∃. .y, Ker(y, x),
EpiNormal : MonoNormal†.

The following theorem states that Tab is a theory for diagrams in abelian categories.

▶ Theorem 26. The categorical interpretation induced by any small abelian category is a
model of Tab. Conversely, any model of Tab is isomorphic to the categorical interpretation
associated to some small abelian category.

Proof. This follows from Theorem 20 and from [7, Chapter 2]. ◀

▶ Proposition 27. The theory Tab implies its dual T †
ab.

Proof. The theory Tcat implies its dual by Proposition 25. Moreover, ZeroE clearly implies
its dual. Finally, the other axioms have their dual in the theory, by definition thereof. ◀

▶ Remark 28. The theorem and the proposition also hold for theory T̊ab.
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6 Decidability of the commerge problem

In this section, we use the notations of Section 2.3. Let Q be a quiver, k ∈ N and, for each
i ∈ [k], let Qi be a quiver and mi : Qi → Q be a morphism. We define the following formula:

Commergem0,...,mk−1
: ∀Q x,

k−1∧
i=0

commute(restrmi
(x)) → commute(x).

▶ Definition 29. Notations as above, the acyclic, resp. cyclic, commerge problem for
morphisms, or embeddings, m0, . . . ,mk−1 and for a theory T on language Σ, resp. Σ̊, is the
problem of deciding the validity of Commergem0,...,mk−1

in models of theory T .

We recall that a thin category is a category with at most one morphism between any pair
of objects. Let totQi

= BPQi
be the complete path relation on Qi. Set ri := mi ∗(totQi

) for
i ∈ [k]. Recall that (ri | i ∈ [k]) is the smallest path relation containing the ri for all i ∈ [k].

▶ Lemma 30. Notations as above, the formula Commergem0,...,mk−1
is valid for models of

Tcat, resp. T̊cat, if and only if ⟨Q⟩/(ri | i ∈ [k]) is a thin category.

Proof. Set C := ⟨Q⟩/(ri | i ∈ [k]). It is a model of Tcat, resp. T̊cat. Moreover, the canonical
diagram D : ⟨Q⟩ → C verifies the premise of Commergem0,...,mk−1

. If C is not thin, then there
are two paths p and q in ⟨Q⟩ with the same extremities which are not in relation. Then
comp(p∗(D)) is the class of p in the quotient, which is different of the class of q, that is of
comp(q∗(D)). Hence D is not commutative.

For the other direction, by Theorem 20, it suffices to study diagrams in small categories.
It is easy to check that any diagram D′ over Q in a category C′ which verifies the condition
of Commergem0,...,mk−1

factors through D, i.e., D′ = F ◦D for some functor F : C → C′. If
C is thin, then for any two paths p and q with same extremities in Q, we have:

comp(p∗(D′)) = F (comp(p∗(D))) = F (comp(q∗(D))) = comp(q∗(D′)).

Hence Commergem0,...,mk−1
is valid. ◀

▶ Theorem 31. The acyclic commerge problem for embeddings and Tcat is decidable.

Proof. By Lemma 30, it suffices to decide if ⟨Q⟩/(ri | i ∈ [k]) is a thin category. Since the
set of paths in ⟨Q⟩ is finite, we can compute the relation (mi ∗(totQi

) | i ∈ [k]) extensively
and check whether it is complete. ◀

▶ Proposition 32. The cyclic commerge problem for morphisms and T̊cat is undecidable.

Proof. We proceed by reduction to an undecidability result, independently due to Adyan
and Rabin [2, 17]. For B an arbitrary finite set and ⟨B⟩ the associated free monoid, let
M be the finitely presentable monoid ⟨B | r = 1, r ∈ R⟩, for R a nonempty finite subset
of ⟨B⟩ ∖ {1}. In particular, any finitely presentable group is of this form. Hence, by the
Adyan-Rabin theorem, determining the triviality of M from B and R is undecidable.

Let B, R and M as above. Let Q = ({v}, B⊔{e}, sQ, tQ) be a quiver with one vertex and
loops labeled by elements of B plus one loop e. To each element ρ ∈ R corresponds a path
pρ : PQkρ

→ Q, for some kρ ∈ N. Let Qρ be a pushout of the morphisms . .: . . ↪→ PQkρ
and

. . . Let mρ be the extension to Qρ of pρ obtained by mapping the new arrow onto e.
Also set me : . → Q which maps the loop on e. Now, ⟨Q⟩/

(
m∗

e(tot . ), (m∗
ρ(totQρ

) | ρ ∈ R)
)

is the category associated to the monoid M . Hence this category is thin if and only if the
monoid is trivial. The Adyan-Rabin theorem and Lemma 30 conclude the proof. ◀
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We strengthen the previous proposition to the case of embeddings.

▶ Theorem 33. The cyclic commerge problem for embeddings and T̊cat is undecidable.

Proof. Let B, R, M as in the proof of Proposition 32. Let Q be the quiver ({v}, B, sQ, tQ)
(note that we removed the arc e). If n ≥ 2, we define the quiver Q̊n as

Q̊n :=
(

{vi | i ∈ [n]}, {bi,j | b ∈ B, 0 ≤ i < j < n} ⊔ {ei,j | i, j ∈ [n]}, sQ̊n , tQ̊n

)
where

sQ̊n(bi,j) = vi, sQ̊n(ei,j) = vi, tQ̊n(bi,j) = vj , tQ̊n(ei,j) = vj .

We have a projection π : ⟨Q̊n⟩ → ⟨Q⟩, which maps bi,j on b and ei,j on idv, and a section
ι : ⟨Q⟩ → ⟨Q̊n⟩ defined by mapping v onto v0 and b onto b0,n−1 ◦ en−1,0, where, as usual, we
denote in a same way an arrow and the corresponding path of length one.

For A any subset of AQ̊n , let mA : Q̊n|A ↪→ Q̊n be the canonical embedding, and let
rA := mA ∗(totQ̊n|A

). Set r′ := (rA | A ∈ A) for A ⊂ P(AQ̊n) defined as the set containing
Ae := {ei,j | i, j ∈ [n]},
for i < j and b ∈ B,

Ab,i,j := { e0,i︸︷︷︸
if i ̸= 0

, bi,j , ej,n−1︸ ︷︷ ︸
if j ̸= n − 1

, b0,n−1}.

We claim that π and ι induce an equivalence of category between ⟨Q⟩ and ⟨Q̊n⟩/r′. From
the definition of Ae, for any i, j, l ∈ [n], we have ei,j ◦ ej,l ∼ ei,l and ei,i ∼ idi. Now the
definition of Ab,i,j , for b ∈ B and 0 ≤ i < j < n, induces that e0,i ◦ bi,j ◦ ej,n−1 ∼ b0,n−1.
These relations generate all r′, and they become equalities by applying the projection. Hence
π∗ : ⟨Q̊n⟩/r′ → ⟨Q⟩ is well-defined. Clearly π ◦ ι is identity. Concerning the other direction,
for b ∈ B and 0 ≤ i < j < n, we have

ι ◦ π(bi,j) = b0,n−1 ◦ en−1,0 ∼ e0,i ◦ bi,j ◦ ej,n−1 ◦ en−1,0 ∼ e0,i ◦ bi,j ◦ ej,0.

Hence we get a natural transformation η between the identity functor and ι ◦ π∗ by setting
ηi := ei,0 ∈ Hom⟨Q̊n⟩/r′(i, ι ◦ π(i) = v0). Since ei,0 is an isomorphism, we conclude that there
is an equivalence of category between ⟨Q⟩ and ⟨Q̊n⟩/r′.

Recall that M is the finitely presentable monoid ⟨B | r = 1, r ∈ R⟩. Assume that n is
greater than the longest word in R. To any word ρ = b0b1 · · · bl−1 in R corresponds a subset

Aρ := {e0,l, b
0
0,1, b

1
1,2, . . . , b

l−1
l−1,l} ⊆ AQ̊n .

Let A′ := A ∪ {Aρ | ρ ∈ R}. Then, ⟨Q̊n⟩/(rA | A ∈ A′) is equivalent as a category
to ⟨Q⟩/(π∗(rAρ) | ρ ∈ R) which is the category of the monoid M . Hence the validity of
Commerge(mA)A∈A′ is equivalent to the triviality of M . Once again, we conclude using
Lemma 30 and the Adyan-Rabin theorem. ◀

▶ Theorem 34. The theory Tcat is undecidable.

Proof. Let M , B, R be as in the proof of Theorem 33. Consider the acyclic quiver Q :=
({v0, v1}, B, sQ, tQ) where sQ(b) = v0 and tQ(b) = v1 for any b ∈ B. To a word ρ =
b0b1 · · · bl−1 with b0, . . . , bl−1 ∈ B, for some l ∈ N, we associate the predicate of arity Q

EqIdρ(x) : ∃PQl
y,

∧
i∈[l]

restrai
(y) ≈ restrbi(x) ∧ EqPath.,PQl

(restr. (y), y)
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where, for i ∈ [l], ai : . . → PQl maps the arc of . . onto the i-th arc of PQl and, as
usual, for b ∈ B, b : . . → Q maps the arc of . . onto the arc b ∈ AQ. If D is a diagram
over Q in some category C, then EqIdρ(D) is equivalent to the fact that D(v0) = D(v1) and
D(bl−1) ◦ · · · ◦D(b0) = idD(v0). In particular, a diagram D : ⟨Q⟩ → C verifies

∧
ρ∈R EqIdρ(D)

if and only if it factorizes through the category associated to the monoid M . Hence, the
triviality of the monoid M is equivalent to the validity of the following formula in Tcat:

∀Q x,
∧

ρ∈R

EqIdρ(x) → commute(x).

The Adyan-Rabin theorem concludes the proof. ◀

7 Conclusion

We have shown that the many-sorted signature Σ is expressive enough to formulate a theory
Tcat whose models are exactly diagrams in small categories, as well as an extension Tab
of Tcat whose models are exactly diagrams in small abelian categories. Restricting sorts
to acyclic quivers and morphisms to embeddings makes the commerge problem for Tcat
decidable, that is, one can decide when the commutativity of a given diagram follows from
that of a given collection of sub-diagrams. Generalizing this study to monoidal categories [19]
or more generally to higher category theory does not seem immediate. However, type-
theoretic approaches have been successfully applied to devise a syntactic description of weak
ω-categories [6] and of opetopes [22], and both these works laid the foundations of prototype
proof assistants.

The signatures and theories presented in this article are shaped by their subsequent usage
as interfaces in a computer-aided tool for diagram chases. This tool eventually produces
formal proofs of the corresponding theorems for a given mathematical structure. Interfaces
should indeed be convenient enough to fullfil for concrete applications, e.g., abelian groups.
This motivation explains some seemingly odd choices, including the use of a commutation
predicate instead of the arguably more natural equivalence relation on paths.

A companion file [1] to this submission illustrates how to implement a deep embedding
of formulas of Σ using the Coq proof assistant [21]; its content should be easy to transpose
to other proof systems. Theorem duality_theorem_with_theory expresses a general duality
principle. It can be specialized, e.g., to any formalized definition of abelian categories, and
the resulting instance of the theorem ensures that a formula of the language is valid for
abelian categories if and only if its dual is valid. This companion file however does not
provide any specific such formal definition of abelian categories. Theorem 31 results in a
complete decision procedure for commutativity clauses. The optimizations that make it work
on concrete examples however go beyond the scope of the present article.

Similar concerns about diagrammatic reasoning have motivated the implementation of
the accomplished Globular proof assistant [3], for higher-dimensional category theory. Based
on higher-dimensional rewriting, it implements various algorithms for constructing and
comparing diagrams in higher categories. It is geared towards visualization rather than
formal verification. The closest related work we are aware of seem unpublished at the time
of writing. Lafont’s categorical diagram editor [10], based on the Unimath library [23]
and Barras and Chabassier’s graphical interface for diagrammatic proofs [4] both provide a
graphical interface for generating Coq proof scripts and visualizing Coq goals as diagrams.
Himmel [8] describes a formalization of abelian categories in Lean [5], including proofs of
the five lemma and of the snake lemma, and proof (semi-)automation tied to this specific
formalization. Duality arguments are not addressed. Monbru [15] also discusses automation
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issues in diagram chases, and provides heuristics for generating them automatically, albeit
expressed in a pseudo-language.
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