
HAL Id: hal-04266479
https://hal.science/hal-04266479v1

Submitted on 2 Nov 2023 (v1), last revised 4 Dec 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A First Order Theory of Diagram Chasing
Assia Mahboubi, Matthieu Piquerez

To cite this version:
Assia Mahboubi, Matthieu Piquerez. A First Order Theory of Diagram Chasing. 32nd EACSL Annual
Conference on Computer Science Logic 2024 (CSL’24), Feb 2024, Naples (Université Federico II), Italy.
�hal-04266479v1�

https://hal.science/hal-04266479v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A First Order Theory of Diagram Chasing
Assia Mahboubi �

Nantes Université, École Centrale Nantes, CNRS, INRIA, LS2N, UMR 6004, France

Matthieu Piquerez
Nantes Université, École Centrale Nantes, CNRS, INRIA, LS2N, UMR 6004, France

Abstract
This paper discusses the formalization of proofs “by diagram chasing”, a standard technique for
proving properties in abelian categories. We discuss how the essence of diagram chases can be
captured by a simple many-sorted first-order theory, and we study the models and decidability of
this theory. The longer-term motivation of this work is the design of a computer-aided instrument
for writing reliable proofs in homological algebra, based on interactive theorem provers.
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1 Introduction

Homological algebra [8] attaches and studies a sequence of algebraic objects, typically groups
or modules, to a certain space, e.g., a ring or a topological space, in order to better understand
the latter. In this field, diagram chasing is a major proof technique, which is usually carried
out via a form of diagrammatic reasoning on abelian categories. A diagram can be seen
as a functor F : J → C, whose domain J , the indexing category, is a small category [12].
Diagrams are usually represented as directed multi-graphs, also called quivers, whose vertices
are decorated with objects of C, and arrows with morphisms. Paths in such graphs thus
correspond to chains of composable arrows. Diagrams allow for visualizing the existence of
certain morphisms, and to study identities between certain compositions of morphisms. In
particular, a diagram commutes when any two paths with same source and target lead to
identical composite. For instance, the commutativity of the following diagram:

.

.

.
b c

a

asserts that morphism a is equal to the composition of morphisms c and b, denoted b ◦ c.
Commutativity of diagrams in certain categories can be used to state more involved properties,
and diagram chasing essentially consists in establishing the existence, injectivity, surjectivity
of certain morphisms, or the exactness of some sequences, using hypotheses of the same nature.
The five lemma or the snake lemma are typical examples of proofs “by diagram chasing”, also
called diagram chases. On paper, diagrams help conveying in a convincing manner proofs
otherwise consisting of overly pedestrian chains of equations. The tension between readability
and elusiveness may however become a challenge. For instance, diagram chases may rely on
non-trivial duality arguments, that is, on the fact that a property about diagrams in any
abelian category remains true after reversing all the involved arrows, although the replay of
a given proof mutatis mutandis cannot be fulfilled in general.

Motivated in part by the second author’s experience in writing intricate diagram chases
(see for instance [11, p.337]), this work aims at laying the foundations of a computer-aided
instrument for writing reliable proofs in homological algebra, based on interactive theorem
provers. The present article discusses the design of a formal language for statements of
properties amenable to proofs by diagram chasing, according to three objectives. The first
is simplicity and expressivity: this language should be at the same time simple enough to
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be implemented in a formal library, and expressive enough to encompass the desired corpus
of results. Then, duality arguments in proofs shall follow directly from a meta-property of
the language. Finally, the corresponding proof system should allow for effective proofs of
commutativity clauses, that is, proving that the commutativity of some diagram follows from
the commutativity of some other diagrams, so that these proofs can eventually be automated.

I Definition 1. We define the many-sorted signatures Σ̊, resp. Σ, as follows: the sorts of
signature Σ̊, resp. Σ, are finite, resp. acyclic finite, quivers. The symbols of Σ̊, resp. Σ,
consists of one function symbol restrm:Q′→Q, of arity Q → Q′, per each quiver morphism,
resp. each embedding between acyclic quivers, m and one predicate commuteQ on sort Q for
each finite, resp. acyclic finite, quiver Q.

The thesis of the present article is that signature Σ fulfills the three above objectives. We
validate this thesis by giving a first-order theory for diagrams over small and abelian small
categories respectively. We state and prove a duality theorem and motivate the choice of
Σ over the possibly more intuitive Σ̊ by the effectiveness objective. The rest of the article
is organized as follows. We first fix some vocabulary and notations in Section 2, so as
in particular to make Definition 1 precise. Then, Section 3 introduces a theory for small
categories and describes its models, Section 4 discusses duality, before Section 5 provides
an analogue study for abelian categories. Last, we prove in Section 6 the decidability, resp.
undecidability, of commutativity clauses in Σ, resp. Σ̊, before concluding in Section 7.

2 Preliminaries

In all what follows, N := {0, 1, . . . } refers to the set of non-negative integers. If if k ∈ N,
then [k] denotes the finite collection {0, . . . , k − 1}. We denote cardA the cardinal of a finite
set A. We use the notation id for the identity map.

2.1 Quivers
I Definition 2 (General quiver, dual). A general quiver Q is a quadruple (VQ, AQ, sQ : AQ →
VQ, tQ : AQ → VQ) where VQ and AQ are two sets. The element of VQ are called the vertices
of Q and the element of AQ are called arrows. If a ∈ AQ, sQ(a) is called the source of a
and tQ(a) is called its target. The dual of a quiver Q is the quiver Q? := (VQ, AQ, tQ, sQ),
which swaps the source and the target maps of Q.

I Definition 3 (Morphism, embedding, restriction). A morphism of quiver m : Q → Q′, is the
data of two maps mV : VQ → VQ′ and mA : AQ → AQ′ such that mA ◦ sQ = sQ′ ◦mA and
mA ◦ tQ = tQ′ ◦mA. Such a morphism is called an embedding of quivers if moreover both
mV and mA are injective. In this case we write m : Q ↪→ Q′.

If A is a subset of AQ, the (spanning) restriction of Q to A denoted Q|A is the quiver
(VQ, A, sQ|A, tQ|A). There is a canonical embedding Q|A ↪→ Q.

We denote by ∅ the empty quiver with no vertex and no arrow, and by S̊ the set of
quivers Q such that VQ and AQ are finite subsets of N. In this article, a quiver refers to an
element of S̊. We use a non-cursive Q for elements of S̊, and a cursive Q for general quivers.

For the sake of readability, we use drawings to describe some elements of S̊, as for instance:

. . .
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For a quiver Q denoted by such a drawing, the convention is that VQ = [cardVQ] and
AQ = [cardAQ] . From left to right, the drawn vertices correspond to 0, 1, . . . , cardVQ − 1.
Arrows are then numbered by sorting pairs (sQ, tQ) in increasing lexicographical order, as in:

. . .0 1 20
1

2
3

We also use drawings to denote embeddings. The black part represents the domain of the
morphism, the union of black and gray parts represents its codomain. Here is an example of
an embedding of the quiver . . into the quiver drawn above.

. . .

I Definition 4 (Path-quiver). The path-quiver of length k, denoted PQk, is the quiver with
k + 1 vertices and k arrows ([k + 1], [k], id, (i 7→ i+ 1)).

A path-quiver can be drawn as:

. . . .. . .

with at least one vertex. Such a path-quiver is called nontrivial if it has at least two vertices.
If 0 ≤ k ≤ l are two integers, we denote by spk,l : PQk ↪→ PQl the leftmost embedding

of PQk into PQl, i.e., such that (spk,l)V (0) = 0. If k and l are clear from the context, we
draw spk,l as if k 6= 0 and as . if k = 0. Moreover, we denote by tpk,l : PQk ↪→ PQl the
rightmost embedding of PQk into PQl, i.e., such that (tpk,l)V (k) = l. The corresponding
drawings are and .. Moreover, if P is a nontrivial path-quiver, we define stP : . . ↪→ P

to be the embedding mapping the first vertex on the leftmost vertex of P and the second
vertex on the rightmost vertex of P . We denote this embedding . ..

If Q is a general quiver, a morphism of the form p : PQk → Q, for some k, is called a
path of Q from u to v of length k, where u := p(0) and v := p(k). Two paths p1 : P1 ↪→ Q,
p2 : P2 ↪→ Q of Q have the same extremities if p1 ◦ stP1 = p2 ◦ stP2 . We denote by BPQ the
set of pair of paths of Q having the same extremities. Let Q′ be another general quiver and
m : Q → Q′ be a morphism. Then we define m∗(p) := m ◦ p.

A general quiver is acyclic if any path of this quiver is an embedding. The set of acyclic
quivers in S̊ is denoted by S.

I Definition 5 (Free category). For a general quiver Q, the free category over Q, denoted
〈Q〉 is the category with objects Ob〈Q〉 = VQ whose morphisms Hom〈Q〉(u, v), for two vertices
u and v are the paths from u to v. The identity map from u to u is the empty path, and the
composition is defined as the concatenation of paths.

Note that a morphismm of quivers induces a functor between the corresponding categories
that we denote by Φm. In the other direction, any small category C has an underlying quiver.

2.2 Diagrams
We can now introduce diagrams in a category, and a few useful specific examples thereof.

I Definition 6 (Diagram). For any category C and any quiver Q, a diagram in C over Q is a
functor from 〈Q〉 to C.

Let P be a path-quiver from vertex u to vertex v. To a diagram D : 〈P 〉 → C over P one
can associate the corresponding composition of morphisms in the category C, which is an
element of HomC(D(u), D(v)). We denote this element comp(D). By convention, when the
path-quiver P is trivial, comp(D) is the identity map idD(u).
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I Definition 7 (Pullback). Let Q,Q′ be two quivers and let D be a diagram over Q. Let
m : Q′ → Q be a morphism of quivers. We define the pullback of D by m, denoted m∗(D),
as the diagram D ◦ Φm over Q′.

I Definition 8 (Commutative diagram). For any category C and any quiver Q,a diagram D

over Q is commutative if comp(p∗1(D)) and comp(p∗2(D)) coincide for any two paths p1 and
p2 in Q with same extremities, that is:

∀(p1, p2) ∈ BPQ, comp(p∗1(D)) = comp(p∗2(D)). (1)

The next lemma allows to reduce the number of distinct diagrams involved in a formula.

I Lemma 9. Let C be some category. Consider two diagrams D1 and D2 in C over Q1 and
Q2, respectively. If the pullback of D1 by m1 coincides with the pullback of D2 by m2, i.e.,

m∗1(D1) = m∗2(D2)

then, there exists a unique diagram D′ over Q′ such that D1 (resp. D2) is the pullback of D′
by m′1 (resp. m′2), i.e.,

D1 = m′∗1 (D′) and D2 = m′∗2 (D′)

Proof. Immediate. J

I Definition 10 (Pushout). Consider four quivers Q,Q1, Q2, Q
′ and four maps m1 : Q→ Q1,

m2 : Q→ Q2, m′1 : Q1 → Q′ and m′2 : Q2 → Q′:

Q Q1

Q2 Q′.

m1

m2 m′1
m′2

This data is a pushout configuration if:
m′1 ◦m1 = m′2 ◦m2,
Q′ = Im(m′1) ∪ Im(m′2), (i.e., VQ′ = Im(m′1,V ) ∪ Im(m′2,V ) and AQ′ = Im(m′1,A) ∪
Im(m′2,A)),
Im(m′1 ◦m1) = Im(m′1) ∩ Im(m′2).

Consider a pushout configuration as in Definition 10. The triple (Q′,m′1,m′2) is called a
pushout of (Q,Q1, Q2,m1,m2). Such a pushout always exists, and any two such pushouts
are isomorphic. Moreover, if m1 and m2 are embeddings, then so are m′1 and m′2.

I Lemma 11. Let C be some category. Consider two diagrams D1 and D2 in C over Q1 and
Q2, respectively. If the pullback of D1 by m1 coincides with the pullback of D2 by m2, i.e.,

m∗1(D1) = m∗2(D2)

then there exists a unique diagram D′ over Q′ such that D1 (resp. D2) is the pullback of D′
by m′1 (resp. m′1), i.e.,

D1 = m′∗1 (D′) and D2 = m′∗2 (D′)

Proof. Immediate. J

P1 = . . . . P2 = . . . Q′ = . . . ..

Figure 1 A pushout Q′ of two path-quivers P1 and P2 with respect to stP1 and stP2 .
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2.3 Category relations, path relations and quotient categories
We first name relations on the morphisms of a category that are compatible with composition:

I Definition 12 (Category relation). A category relation r on C is by definition the data of
an equivalence relation rA,B ⊆ Hom(A,B)2 for any pair of objects A and B such that, for
any objects A,B,C and any morphisms f, g ∈ Hom(A,B) and f ′, g′ ∈ Hom(B,C),

f ∼ g and f ′ ∼ g′ =⇒ f ′ ◦ f ∼ g′ ◦ g,

where we write h ∼ h′ if h and h′ are in relation, i.e., (h, h′) ∈ rA,B. Such a relation is said
complete if rA,B = Hom(A,B)2 for any pair of objects A and B.

I Lemma 13 (Quotient category). Given such a category relation, we define the quotient
category C/r given by ObC/r := ObC and HomC/r(A,B) = HomC(A,B)/rA,B is indeed a
category for the induced composition.

Proof. Immediate. J

We now name the relations between the paths of a general quiver induced by the corresponding
identities of morphism composites, in the associated free category.

I Definition 14. A relation between paths with same extremities in Q is by definition
a subset of BPQ. If r ⊆ BPQ is such a relation then, for (p, q) ∈ BPQ, we write p ∼ q

if (p, q) ∈ r. The complete path relation on Q, i.e., BPQ, is denoted totQ. Note that
BPQ =

⊔
A,B∈Ob〈Q〉 Hom〈Q〉(A,B)2. Such a relation r is called a path relation if it is a

category relation on 〈Q〉.

For instance, the equality of compositions in a small category C induces a path relation on
the underlying quiver Q. If r1, . . . , rl are some relations between paths with same extremities,
we denote by (r1, . . . , rl) the smallest path relation containing r1, . . . , rl.

Let Q′ be another general quiver and let m : Q → Q′ be a morphism. If r ⊆ BPQ, we
denote by m∗(r) the relation induced by the image by m of r in BPQ′ .

2.4 Many-sorted logic, categorical interpretation
We first recall a few basic definitions mostly pertaining to many-sorted logic, applied to the
signatures introduced by Definition 1, and we set the corresponding notations.

Let us first fix a countable set X, so that for each quiver Q in S̊ (resp. in S), elements of
the set XQ := X × {Q} are the variables of sort Q. A term of sort Q either is a variable of
sort Q or has the form restrm : Q′→Q(t), with t a term of sort Q. When possible, we leave
the sorts implicit and simplify the notation of symbol restrm : Q′→Q(t) into restrm.

We denote the equality symbols by ≈. An atom is thus of the form s ≈ t with s and t two
terms of the same sort, or of the form commuteQ(t) with t a term of sort Q. We consider
first-order many-sorted formulas and write the sort of quantifiers as a subscript, i.e., ∃QxQ, φ
and ∀QxQ, φ where Q ∈ S̊, xQ ∈ XQ and φ is a formula. In what follows, we however drop
sort subscripts when they are clear from the context.

We write ∃!y, P (y) for formula
(
∃y, P (y)

)
∧
(
∀y1, y2, P (y1) ∧ P (y2) → y1 ≈ y2

)
. A

formula with free variables x1, . . . , xn of respective sorts Q1, . . . , Qn is said to be of arity
Q1 × . . . Qn.

I Definition 15 (Models). Let Y ⊆ X × S̊ be a set of variables. An interpretation (also
called a model)M of Σ̊ over Y is a map such that
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each sort Q is mapped to a domain set, denotedMQ,
each variable x ∈ Y of sort Q is mapped to an element xM ∈MQ,
each function restrm : Q′→Q is mapped to function restrMm : Q′→Q : MQ →MQ′ ,
each predicate commuteQ is mapped to a subset commuteMQ ofMQ.

An interpretation is extended in the usual way to all formulas whose free variables are in Y .
An interpretationM of Σ̊ is an interpretation over the empty set.

We define interpretations (models) of Σ in a similar fashion.

The evaluation of a formula φ under an interpretationM is either true or false depending
on the truthiness of the interpretation of the formula. If φ has no free variable, we write
M |= φ if φM is true.

A theory is a set of formulas for a certain signature. Remember that signature Σ only
differs from Σ̊ by restricting the allowed sorts (to the acyclic quivers). If T̊ is a theory for
Σ̊, we thus define the restriction of T̊ to Σ, denoted T̊ |Σ, as the subset of formulas of T̊
which are well-formed with respect to Σ. A model of a theory is a model such that the
interpretation of every formula of the theory is true.

The prototypical models of the signatures introduced in Definition 1 are actually diagrams
over a certain category.

I Definition 16 (Categorical interpretation). To each small category C, we associate an
interpretation of Σ, resp. Σ̊, that we also denote by C, as follows.

To each sort Q we associate the set CQ of diagrams in C over Q.
restrm is interpreted as the function mapping a diagram D to the diagram m∗(D).
commuteCQ is the set of commutative diagrams in C over Q.

We call such an interpretation a categorical interpretation of Σ, resp. Σ̊.

3 A theory for diagrams over small categories

This section introduces a theory whose models of can be seen as categorical interpretations.

3.1 Axioms
We now introduce the different axioms of the theory. A formula F with free variables
x1, . . . , xn is written F (x1, . . . , xn) so as to clarify the sorts of each variable in the arity of F .

Existence and uniqueness of the empty diagram

EmptyEU: ∃!∅x, x ≈ x

Compatibility of restrictions

For any quivers Q,Q′, Q′′ and morphisms m : Q→ Q′ and m′ : Q′ → Q′′, we define:

RestrCompm,m′ : ∀Q′′x′′, restrm(restrm′(x′′)) ≈ restrm′◦m(x′′).

Pushout

For any pushout configuration as in Definition 10, and using the same notations as this
definition, we define the following formulas of arity Q1 ×Q2 ×Q′:

Pushoutm′1,m′2(x1, x2, x
′) : restrm′1(x′) ≈ x1 ∧ restrm′2(x′) ≈ x2.
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PushoutEm1,m2,m′1,m
′
2
: ∀x1, x2, restrm1(x1) ≈ restrm2(x2)

→ ∃!x′, Pushoutm′1,m′2(x1, x2, x
′).

Composition

The following formula, of arity . . × . . × . . , describes composite of arrows:

Comp(x, y, z) : ∃.
.

.w, restr .
.

. (w) ≈ x ∧ restr.
.

.(w) ≈ y

∧ restr .
. .(w) ≈ z ∧ commute(w)

while the following one ensures the existence of compositions:

CompE: ∀x, y,∃z, Comp(x, y, z).

Equality of nontrivial paths

For any two nontrivial path-quivers P1 and P2, and Q′, m′1, m′2 such that the following
diagram forms a pushout configuration (as for instance on Figure 1)

. . P1

P2 Q′

stP1

stP2 m′1
m′2

we define the following formula of arity P1 × P2:

EqPathP1,P2(x1, x2) : restr. .(x1) ≈ restr. .(x2)
∧

(
∀x, Pushoutm′1,m′2(x1, x2, x)→ commute(x)

)
.

Identity

The following formula, of arity . × . . , defines the identity map:

Id(x, y) : restr .. (y) ≈ x ∧ ∀z, w,(
Comp(y, z, w)→ EqPath(z, w)

)
∧
(
Comp(z, y, w)→ EqPath(z, w)

)
and the following formula ensures the existence of identity maps.

IdE: ∀x, ∃y, Id(x, y).

Equality for general paths

For any nontrivial path-quiver P , we define the following formulas:

EqPath.,.(x, y) : x ≈ y,
EqPath.,P (x, y) : ∃z, Id(x, z) ∧ EqPath. .,P (z, y),
EqPathP,.(x, y) : EqPath.,P (y, x).

Hence, we can see EqPath as a relation with arity any pair of path-quivers. We ensure
this relation to be an equivalence relation by defining for any path-quivers P1, P2 and P3 the
three formulas EqPathReflP1 , EqPathSymP1,P2 and EqPathTransP1,P2,P3 stating that the
relation EqPath is respectively reflexive, symmetric and transitive.
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We also make sure to enforce the properties of a category relation. For this purpose, for
any four path-quivers P1, P ′1, P2, and P ′2, of respective length k1, k

′
1, k2 and k′2, we define

the following formula where bound variables x1, x2, x
′
1, x
′
2 respectively have sort P1, P2, P ′1

and P ′2 and the sort of x′′i , i ∈ {1, 2}, is PQki+k′i
.

EqPathConcatP1,P2,P ′1,P
′
2
: ∀x1, x2, x

′
1, x
′
2,

EqPath(x1, x2) ∧ EqPath(x′1, x′2) ∧ restr .(x1) ≈ restr. (x′1)
→ ∀x′′1 , x′′2 , Pushout , (x1, x

′
1, x
′′
1) ∧ Pushout , (x2, x

′
2, x
′′
2)

→ EqPath(x′′1 , x′′2).

Commutativity

We relate commutativity and equality by the following formula:

ComEq : ∀. .x, commute(x) → restr. .(x) ≈ restr. .(x).

For any quiver Q, the following formula provides an analogue of the notion of commut-
ativity of diagrams given in Definition 8, Equation (1):

PathComQ : ∀Qx,
∧

(p1,p2)∈BPQ

EqPath(restrp1(x), restrp2(x)) ↔ commute(x).

where we recall that BPQ denotes the set of pair of paths of Q having the same extremities.

I Definition 17. Theory T̊cat, over signature Σ̊, consists of the following formulas:
EmptyEU, CompE, IdE, ComEq,
RestrCompm,m′ for any pair of maps m and m′ as in Section 3.1,
PushoutEm1,m2,m′1,m

′
2
for a pushout configuration as in Definition 10,

EqPathReflP1 ,EqPathSymP1,P2 ,EqPathTransP1,P2,P3 ,EqPathConcatP1,P2,P3,P4 for any
quadruple of path-quivers P1, P2, P3 and P4,
PathComQ for any quiver Q.

Theory Tcat is defined as the restriction of T̊cat to Σ.

3.2 Models
Models of Tcat, resp. T̊cat are in fact exactly what we have called categorical interpretations.

I Theorem 18. Every categorical interpretation of Σ, resp. Σ̊, is a model of Tcat, resp. T̊cat.
Moreover, any modelM of Tcat, resp. T̊cat, has an isomorphic categorical interpretation.

Proof. We only prove the theorem for Tcat, as the proof for T̊cat is similar.
If C is a small category, a routine check shows that the associated model C of Σ verifies

the theory Tcat. For instance,
the formulas PushoutE follows from the remark in Definition 10,
IdE and CompE come from the existence of the identity map and the existence of the
composition respectively,
for two path-quivers P1, P2 and two diagrams D1 and D2 over them, EqPathP1,P2(D1, D2)
is the relation comp(D1) = comp(D2), which is a path relation by Lemma 13,
ComEq and PathComQ follow from Equation (1).
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Let us prove the other direction. Let Q be an acyclic quiver. By an abuse of the notations,
if v ∈ VQ, resp. a ∈ AQ, we also denote by v the corresponding embedding v : . ↪→ Q, resp.
a : . . ↪→ Q. Here is a crucial lemma for the proof of the theorem.

I Lemma 19 (General pushout). Let M be a model of Tcat. Let Q be an acyclic quiver,
βV : VQ → M. and βA : AQ → M. . be two maps. Then the following statements are
equivalent.
1. There exists an element β ofMQ such that restrMv (β) = βV (v) and restrMa (β) = βA(a)

for any v ∈ VQ and any a ∈ AQ,
2. For any a ∈ AQ, restrM .. (βA(a)) = βV (sQ(a)) and restrM. .(βA(a)) = βV (tQ(a)).
Moreover, when both statements hold, the element β is unique.

Proof. The fact that the first point induces the second one follows directly from RestrComp.
Hence we focus on the other direction and on the uniqueness.

We proceed by induction on the structure of Q. If Q = ∅ is empty, the second point
holds trivially. The first point and the uniqueness follows from EmptyEU.

Assume first that the lemma holds for some quiver Q1 with no arrow. Let Q be the
quiver Q1 with an extra vertex v0. Let βV and βA be two maps as in the statement of the
lemma, and β1,V the restriction of βV to Q1,V . We have the following pushout configuration:

∅ Q1

. Q

m1

m2 m′1

m′2=v0

Point 2 holds trivially. Let us prove the existence and the uniqueness of β satisfying
the property of Point 1. By induction, we get a unique β1 ∈ MQ1 compatible with β1,V
and βA. Set β2 := βV (v0). By EmptyEU, restrMm1

(β1) = restrMm2
(β2). Hence we can apply

PushoutEm1,m2,m′1,m
′
2
to get a unique element β ∈ MQ such that PushoutM(β1, β2, β).

Using RestrComp and the induction hypothesis, we can check that for β′ ∈ MQ, there is
an equivalence between PushoutM(β1, β2, β

′) and restrMv (β′) = βV (v) for any v ∈ VQ. This
concludes the induction.

Assume more generally that the lemma holds for some acyclic quiver Q1. Let Q be an
acyclic quiver obtained from Q1 by adding one arrow a0. Let βV and βA be two maps as
before and β1,A the restriction of βA to AQ1 . Let m1 : . . ↪→ Q1 mapping the first point to
sQ(a0) and the second point to tQ(a0). Let m2 := st. . = . . . Once again, we get a
pushout configuration:

. . Q1

Q

m1

m2 m′1

m′2:=a0

Assume that Point 2 holds. By induction, we get a unique element β1 ∈MQ1 compatible
with βV and β1,A. Set β2 := βA(a0). We have already proven the lemma for the quiver . . .
Hence we deduce that

restrMm1
(β1) = restrMm2

(β2).

We can apply PushoutE as before to get Point 1 as well as the uniqueness part. This
concludes the proof of the lemma. J
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We now continue the proof of Theorem 18. LetM be a model of Tcat. We define the
general quiver Q associated toM by

VQ :=M. , AQ :=M. . , sQ := restrM .. and tQ := restrM. . .

Set C̃ := 〈Q〉. Thanks to Lemma 19, to each acyclic quiver Q and to each element β ∈MQ,
we can associate a unique diagram Ψ̃(β) in C̃ verifying:

for any v ∈ VQ, Ψ̃(β)(v) = restrMv (β).
for any a ∈ AQ, Ψ̃(β)(a) is the path of length one with arrow restrMa (β).

The image of Ψ̃ is exactly the set of diagrams whose morphisms are paths of lengths one.
There is another important map. Let A and B be two objects of C̃, and let p ∈ Hom(A,B).

Recall that p is just a path from A to B in Q. Let k be the length of p. By Lemma 19, there
exists a unique element Θ(p) ∈MPQk such that

for each v ∈ VPQk , restrMv (Θ(p)) = p(v),
for each a ∈ APQk , restrMa (Θ(p)) = p(a).

Relation EqPathM thus induces a relation r on morphisms of C̃. Moreover, EqPathRefl,
EqPathSym, EqPathTrans and EqPathConcat, together with Lemma 19, make r a category
relation. We can hence define the category C := C̃/r. Now Ψ̃ induces a map Ψ: MQ → CQ
for any quiver Q, and we claim that Ψ induces a model isomorphism betweenM and C.

Let Q be any acyclic quiver. We first prove that Ψ is injective. Let β, γ ∈ MQ such
that Ψ(β) = Ψ(γ). For any vertex v ∈ VQ, Ψ̃(β)(v) = Ψ̃(γ)(v), i.e., restrMv (β) = restrMv (γ).
Let a be an arrow of Q. Then we have the relation Ψ̃(β)(a) ∼ Ψ̃(γ)(a). By definition of
EqPath. .,. . , we validate the premise of ComEq, and thus the equality Ψ̃(β)(a) = Ψ̃(γ)(a),
i.e., restrMa (β) = restrMa (γ). By the uniqueness part of Lemma 19, we get β = γ.

We now consider the surjectivity of Ψ. It suffices to prove that any morphism p ∈
HomC̃(A,B) is in relation via r to a path of length one. Indeed, in such a case, for any
diagram D̃ in C̃ over Q, one can find another diagram D̃′ over Q whose morphisms are path
of size one and such that any morphism of D̃ is in relation with the corresponding morphism
of D̃′. Hence the induced diagrams in C are equal. Moreover, D̃′ is in the image of Ψ̃, and
we would get the surjectivity.

Let P be a path-quiver and let β ∈ MP . We have to find an element γ ∈ M. . such
that EqPathMP,. .(β, γ). If P has length one, this is trivial. If P has length zero, then by
IdE, there exists γ such that IdM(β, γ). Moreover, by the definition EqPath.,. . and using
the reflexivity of EqPath, we get EqPathM.,. .(β, γ). If P has length two, then by CompE,
we can find an element γ such that

Comp(restrM ... (β), restrM. . .(β), γ).

The commutativity of the triangle induces EqPathM. . .,. .(β, γ).
For P with length k > 2, we work by induction. Using EqPathTrans, it suffices to find γ

over PQk−1 such that EqPathMP,PQk−1
(β, γ). To do so, we see P as the pushout of PQ2 and

PQk−2 along m′1 = : PQ2 → P and m′2 = : PQk−2 → P . By the case k = 2, we can
find γ1 ∈M. . such that EqPath(restrMm′1(β), γ1). We set γ2 = restrMm′2(β). In particular we
have EqPath(γ2, γ2). By EqPathConcat, we get EqPath(β, γ) where γ ∈ MPQk−1 is such
that Pushoutm′1,m′2(γ1, γ2, γ), and the result follows.

We have shown that Ψ induces a bijection between the corresponding domains. In order
to conclude the proof, it remains to prove that Ψ commutes with restr and with commute.
The commutativity with restr follows from the definition of Ψ and the formulas RestrComp.
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The compatibility with the predicate commute can be reduced to the compatibility of
EqPath via the formula PathCom. Let P1 and P2 be two path-quivers and β1 ∈MP1 and
β2 ∈MP2 . These elements correspond to paths p1 and p2 in Q. Using the definitions of the
different elements, we get the following chain of equivalences:

EqPathC(Ψ(β1),Ψ(β2))⇔ compC(Ψ(β1)) = compC(Ψ(β2))

⇔ compC̃(Ψ̃(β1)) ∼ compC̃(Ψ̃(β2))⇔ p1 ∼ p2 ⇔ EqPath(β1, β2).

This concludes the proof of the theorem. J

4 Duality

Signatures of Definition 1 are tailored to enforce a built-in, therefore easy to prove, duality
principle, which we now make precise. Recall from Definition 2 that duality is an involution
on quivers, and also on acyclic quivers. We define the dual of a formula over Σ̊ as follows:

if m : Q→ Q′ is a morphism, then m? : Q? → Q′? is defined by m?
V = mV and m?

A = mA.
if x = (x, Q) is a variable in X × S̊ then x? := (x, Q?),
(restrm(x))? := restrm?(x?) and (commuteQ(x))? := commuteQ?(x?),
(x ≈ y)? := x? ≈ y?,
(∀Qx, φ)? := ∀Q?x?, φ? and (∃Qx, φ)? := ∃Q?x?, φ?,
(φ ∧ ψ)? := φ? ∧ ψ?, etc.

For Y a set of variables, Y ? denotes {x? | x ∈ Y }. For any theory T , T ? denotes {φ? | φ ∈ T }.
ForM an interpretation of Σ̊ over a set of variables Y , we define its dual modelM? as:
M?

Q :=MQ? ,
for x ∈ Y ?, xM? := (x?)M.
restrM?

m := restrMm? and commuteM?

Q := commuteMQ? ,

The duality involution also restricts to formulas, theories and models over Σ.

I Example 20. If C is a small category, then the dual interpretation C? is isomorphic to the
model of the dual category, both with respect to Σ̊ and to Σ.

I Theorem 21 (Duality theorem). Let φ be a formula with free variables included in Y ⊆ X×S,
resp. in Y ⊆ X × S̊, and letM be a model of Σ, resp. of Σ̊. Then

M |= φ ⇐⇒ M? |= φ?.

Proof. More generally, a formula is provable if and only if its dual is provable. J

I Remark 22. The duality principle has some useful direct consequences:
If φ is a valid, resp. satisfiable, resp. unsatisfiable, formula, so is φ?.
Let T be theory such that any model of T verifies T ?. If φ is a valid, resp. satisfiable,
resp. unsatisfiable, formula among models of T , so is φ?.
We have the following reciprocal. Let T be a theory such that any modelM of T verifies
thatM? |= T , then every model of T verifies T ?.

The following fact follows directly from this last point, Theorem 18 and Example 20.

I Proposition 23. Models of Tcat verify T ?cat, and models of T̊cat verify T̊ ?cat.
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5 A theory for diagrams over abelian categories

We now introduce a theory whose models are diagrams in small abelian categories. We rely
on the set of axioms given by Freyd in [5]. This reference is particularly well-suited for our
purpose. Indeed, the author does not impose the homomorphisms between any two objects
of an abelian category to form a group, but this fact rather follows from the axioms.

Let us first introduce common notions of category theory in our logic. Here is a formula
of arity . . which corresponds to monicity of a map in a category.

Mono(x) : ∀. . .y, restr. . .(y) ≈ x

∧ commute(restr. . .(y)) ∧ commute(restr. . .(y))

→ commute(restr ... (y)).

The dual formula is called Epi.
Let Q be a quiver. We define the cone of Q as the quiver

cone(Q) := (VQ t {v0}, AQ t {av | v ∈ VQ}, scone(Q), tcone(Q)),

where scone(Q) and tcone(Q) are extensions of sQ and tQ by sQ(av) = v0 and tQ(av) = v. We
define by iQ : Q ↪→ cone(Q) the corresponding embedding. If m : Q→ Q′ is a morphism of
quivers, we get a canonical morphism cone(m) : cone(Q)→ cone(Q′).

Abusing the notations, if a is an arrow of Q, we also denote by a : . . ↪→ Q the
corresponding morphism. We then introduce the usual notion of cones of diagrams by the
following formula of arity Q× cone(Q).

ConeQ(x, y) : restriQ(y) ≈ x ∧
∧
a∈AQ

commute(restrcone(a)(y)).

Here is the notion of limit.

LimitQ(x, y) : ConeQ(x, y) ∧
∀z, ConeQ(x, z) → ∃!w, Cone(y, w) ∧ restrcone(iQ)(w) ≈ z.

We also introduce the dual notion ColimitQ := Limit?Q? .
The introduction of monos, epis, limits and colimits allows to state the axioms of abelian

category given by Freyd [5]. First, we define zero objects and kernels as follows.

Zero(x) : ∀y, Limit∅(y, x) ∧ Colimit∅(y, x),
Ker(x, y) : ∃. .. .z, restr. .. .(z) ≈ x ∧ restr . .. . (z) ≈ y

∧ Zero(restr. . .. (z)) ∧ Limit(restr. .. .(z), z).

We also define Coker := Ker?.

We define the category Tab as the extension of Tcat by the following formulas.

ZeroE: ∃.x, Zero(x),
ProductE: ∀x,∃y, Limit..(x, y),

CoproductE: ProductE?,
KerE: ∀x,∃y, Ker(x, y),

CokerE: KerE?,
MonoNormal : ∀x, Mono(x) → ∃y, Ker(y, x),

EpiNormal : MonoNormal?.
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The following theorem states that Tab is a theory for diagrams over abelian categories.

I Theorem 24. The categorical interpretation induced by any small abelian category is a
model of Tab. Conversely, any model of Tab is isomorphic to the categorical interpretation
associated to some small abelian category.

Proof. This follows from Theorem 18 and from [5, Chapter 2]. J

I Proposition 25. The theory Tab implies its dual T ?ab.

Proof. The theory Tcat implies its dual by Proposition 23. Moreover, ZeroE clearly implies
its dual. Finally, for the other axioms we added, we also added their dual. J

6 Decidability of the commerge problem

In this section, we use the notations of Section 2.3. Let Q be a quiver, k ∈ N and, for each
i ∈ [k], let Qi be a quiver and mi : Qi → Q be a morphism. We define the following formula:

Commergem0,...,mk−1
: ∀Qx,

k−1∧
i=0

commute(restrmi(x)) → commute(x).

I Definition 26. Notations as above, the acyclic, resp. cyclic, commerge problem for
morphisms, resp. embeddings, m0, . . . ,mk−1 and for a theory T is the problem of deciding
the validity of Commergem0,...,mk−1

among models of Σ, resp. Σ̊, verifying the theory T .

We recall that a thin category is a category with at most one morphism between any pair
of objects. Let totQi = BPQi be the complete path relation on Qi. Set ri := mi ∗(totQi) for
i ∈ [k]. Recall that (ri)i∈[k] is the smallest path relation containing the ri for all i ∈ [k].

I Lemma 27. Notation as above, the formula Commergem0,...,mk−1
is valid among model of

Tcat, resp. T̊cat, if and only if 〈Q〉/(ri)i∈[k] is a thin category.

Proof. Set C := 〈Q〉/(ri)i∈[k]. It is a model of Tcat, resp. T̊cat. Moreover, the canonical
diagram D : 〈Q〉 → C verifies the premise of Commergem0,...,mk−1

. If C is not thin, then there
ase two paths p and q in 〈Q〉 with the same extremities which are not in relation. Then
comp(p∗(D)) is the class of p in the quotient, which is different of the class of q, that is of
comp(q∗(D)). Hence D is not commutative.

For the other direction, by Theorem 18, it suffices to study diagrams in small categories.
It is easy to check that any diagram D′ over Q in a category C′ which verifies the condition
of Commergem0,...,mk−1

factors through D, i.e., D′ = Ψ ◦D for some functor Ψ: C → C′. If
C is thin, then for any two paths p and q with same extremities in Q,

comp(p∗(D′)) = Ψ(comp(p∗(D))) = Ψ(comp(q∗(D))) = comp(q∗(D′)).

Hence Commergem0,...,mk−1
is valid. J

I Theorem 28. The acyclic commerge problem for Tcat is decidable for any tuple of embed-
dings.

Proof. By Lemma 27, it suffices to decide if 〈Q〉/(ri)i∈[k]. Since 〈Q〉 and the 〈Qi〉, i ∈ [k]
are finite, we can compute relation (mi ∗(totQi) | i ∈ [k]) and check it is complete. J

I Proposition 29. There exists a tuple of morphisms for which the cyclic commerge problem
for T̊cat is undecidable.
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Proof. We proceed by reduction to an undecidability result, due to Markov [9]. For B an
arbitrary finite set and 〈B〉 the associated free monoid, let M be the finitely presentable
monoid 〈B〉/R, for R a finite subset of 〈B〉. The triviality of M is undecidable.

Let B, R and M as above. Let Q = ({v}, Bt{e}, sQ, tQ) be a quiver with one vertex and
loops labeled by elements of B plus one loop e. To each element ρ ∈ R corresponds a path
pρ : PQkρ → Q, for some kρ ∈ N. Let Qρ be a pushout of the morphisms . .: . . ↪→ PQkρ and
. . . Let mρ be the extension to Qρ of pρ obtained by mapping the new arrow onto e.
Also set me : . → Q which maps the loop on e. We claim that the cyclic commerge problem
for the mρ and me is undecidable. Indeed, 〈Q〉/

(
m∗e(tot . ), (m∗ρ(totQρ))ρ∈R

)
is the category

associated to the monoid M = 〈B〉/R. Hence this category is thin if and only if the monoid
is trivial. Markov Theorem [9] and Lemma 27 conclude the proof. J

We strengthen the previous proposition to the case of embeddings.

I Theorem 30. There exists a tuple of embeddings for which the cyclic commerge problem
for T̊cat is undecidable.

Proof. Let B, R, M as in the proof of Proposition 29. Let Q be the quiver ({v}, B, sQ, tQ).
If k ≥ 2, we define the quiver Q̊k as

Q̊k :=
(
{vi | i ∈ [k]}, {bi,j | b ∈ B, 0 ≤ i < j < k} t {ei,j | i, j ∈ [k]}, sQ̊k , tQ̊k

)
where

sQ̊k(bi,j) = vi, sQ̊k(ei,j) = vi, tQ̊k(bi,j) = vj , tQ̊k(ei,j) = vj .

We have a projection π : 〈Q̊k〉 → 〈Q〉, which maps bi,j on b and ei,j on idv, and a section
ι : 〈Q〉 → 〈Q̊k〉 defined by mapping v onto v0 and b onto b0,k−1 ◦ ek−1,0, where, as usual, we
denote in a same way an arrow and the corresponding path of length one.

For A any subset of AQ̊k , let mA : Q̊k|A ↪→ Q̊k be the canonical embedding, and let
rA := mA ∗(totQ̊k|A). Set r′ := ((rA)A∈A) for A ⊂ 2AQ̊k defined as the set containing

Ae := {ei,j | i, j ∈ [k]},
for i < j and b ∈ B,

Ab,i,j := { e0,i︸︷︷︸
if i 6= 0

, bi,j , ej,k−1︸ ︷︷ ︸
if j 6= k − 1

, b0,k−1}.

We claim that π and ι induce an equivalence of category between 〈Q〉 and 〈Q̊k〉/r′. From
the definition of Ae, for any i, j, l ∈ [k], we have ei,j ◦ ej,l ∼ ei,l and ei,i ∼ idi. Now the
definition of Ab,i,j , for b ∈ B and 0 ≤ i < j < k, induces that e0,i ◦ bi,j ◦ ej,k−1 ∼ b0,k−1.
These relations generate all r′, and they become equalities by applying the projection. Hence
π∗ : 〈Q̊k〉/r′ → 〈Q〉 is well-defined. Clearly π ◦ ι is identity. Concerning the other direction,
for b ∈ B and 0 ≤ i < j < k, we have

ι ◦ π(bi,j) = b0,k−1 ◦ ek−1,0 ∼ e0,i ◦ bi,j ◦ ej,k−1 ◦ ek−1,0 ∼ e0,i ◦ bi,j ◦ ej,0.

Hence we get a natural transformation η between the identity functor and ι ◦ π∗ by setting
ηi := ei,0 ∈ Hom〈Q̊k〉/r′(i, ι ◦ π(i) = 0). Since ei,0 is an isomorphism, we conclude that there
is an equivalence of category between 〈Q〉 and 〈Q̊k〉/r′.

Recall that M is the monoid 〈B〉/R. Assume that k is greater than the longest word in
R. To any word ρ = b1b2 . . . bl in R corresponds a subset

Aρ := {e0,l, b
1
0,1, b

2
1,2, . . . , b

l
l−1,l} ⊆ AQ̊k .
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Let A′ := A ∪ {Aρ | ρ ∈ R}. We claim that Commerge(mA)A∈A′ is undecidable. Indeed,
Q̊k/((rA)A∈A′) is equivalent as a category to Q/(π∗(rAρ))ρ∈R which is the category of the
monoid M . Once again, we conclude using Lemma 27 and Markov Theorem. J

I Theorem 31. The theory Tcat contains undecidable formulas.

Proof. Let M , B, R and Q as in the proof of Theorem 30. Let k be the size of the longest
word in R plus one. We define the quiver Qk as

Qk :=
(
{vi | i ∈ [k]}, {bi,j | b ∈ B, 0 ≤ i < j < k} t {ei,j | 0 ≤ i < j < k}, sQk , tQk

)
where

sQk(bi,j) = vi, sQk(ei,j) = vi, tQk(bi,j) = vj , tQk(ei,j) = vj .

Note that Qk is acyclic. Let

A′′ := {Ab,i,j | b ∈ B, 0 ≤ i < j < k} ∪ {Aρ | ρ ∈ R},

where Ab,i,j and Aρ are defined as in the proof of Theorem 30. For A ∈ A′′, let mA : Qk|A ↪→
Qk be the corresponding embedding. Consider the formula

CommergeWithIdM : ∀Qkx,
∧

0≤i<j<k
Id(restrvi(x), restrei,j (x))

∧
∧

A∈A′′
commute(restrA(x)) → commute(x).

The projection π : Qk → Q induces a pullback π∗ between diagrams on Q and that on
Qk. It is easy to check that π∗ induces a bijection between the diagrams on Q, verifying
the condition of the commerge problem described in the proof of Proposition 29, and the
diagrams on Qk verifying the condition of CommergeWithIdM . Moreover the bijection
preserves commutativity. Hence we conclude the proof as for Proposition 29. J

7 Conclusion

We have shown that the many-sorted signature Σ is expressive enough to formulate a theory
Tcat and its extension Tab, whose models are exactly and respectively diagrams in small
categories, and that in small abelian categories. Restricting sorts to acyclic quivers makes the
commerge problem for Tcat decidable. A companion file [1] to this submission illustrates how
to implement a deep embedding of formulas of Σ using the Coq proof assistant [13]; its content
should be easy to transpose to other proof systems. Theorem duality_theorem_with_theory
shall bring a duality principle, i.e., that a formula of the language is valid if and only if its
dual is valid, to any formalized definition of abelian categories. Theorem 28 results in a
complete decision procedure for commutativity clauses. The optimizations that make it work
on concrete examples however go beyond the scope of the present article.

Similar concerns have motivated the implementation of the accomplished Globular proof
assistant [2], for higher-dimensional category theory. The closest related work we are aware of
yet seem unpublished at the time of writing. Lafont’s categorical diagram editor [7], based on
the Unimath library [14] and Barras and Chabassier’s graphical interface for diagrammatic
proofs [3] both provide a graphical interface for generating Coq proof scripts and visualizing
Coq goals as diagrams. No specific automation is however provided. Himmel [6] describes a
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formalization of abelian categories in Lean [4], including proofs of the five lemma and of the
snake lemma, and proof (semi-)automation tied to this specific formalization. Duality argu-
ments are not addressed. Monbru [10] also discusses automation issues in diagram chases, and
provides heuristics for generating them automatically, albeit expressed in a pseudo-language.
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