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SUPPLEMENTARY MATERIAL TO “A HYPOTHESIS TEST FOR THE

DOMAIN OF ATTRACTION OF A RANDOM VARIABLE”

Hector Olivero1 and Denis Talay2

Abstract. In the paper [14] we address theoreticals aspects of testing whether a sampled probability
distribution of a random variable V belongs to the domain of attraction of the Normal law or in the
domain of attraction of a stable law with index smaller than 2.

In this supplementary paper we present and discuss numerical results which allow us to illustrate
satisfying properties of the proposed test.

Résumé. Dans l’article [14], nous abordons les aspects théoriques du test d’hypothèses pour déterminer
si une variable aléatoire V appartient au domaine d’attraction de la loi normale ou au domaine
d’attraction d’une loi stable avec un indice inférieur à 2.

Dans ce document supplémentaire, nous présentons et discutons des résultats numériques qui nous
permettent d’illustrer les propriétés satisfaisantes du test proposé.

2020 Mathematics Subject Classification. 62F05, 62G10, 60J65.

August 28, 2024.

1. Introduction

In the paper [14] we address theoreticals aspects of testing whether a sampled probability distribution of
a random variable belongs to the domain of attraction of the Normal law or in the domain of attraction of a
stable law with index smaller than 2.

More precisely, we develop an hypothesis test for which the null and alternative hypotheses respectively are:

H0 : X ∈ DA(2)

and

H1 : ∃0 < α < 2, X ∈ DA(α).

Here is our main result.
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Theorem 1.1. Assume that X belongs to some domain of attraction. Consider and i.i.d. sample X1, . . . , Xm

of X, and the statistic

Ŝ m
n =

∑n−1
i=1

∣∣∣∣∑⌊mi
n ⌋

j=⌊m(i−1)
n ⌋+1

(Xj −Xm)

∣∣∣∣ ∣∣∣∣∑⌊m(i+1)
n ⌋

j=⌊mi
n ⌋+1

(Xj −Xm)

∣∣∣∣∑n
i=1

∣∣∣∣∑⌊mi
n ⌋

j=⌊m(i−1)
n ⌋+1

(Xj −Xm)

∣∣∣∣2
,

where Xm stands for the sample mean. Let zq denote the q-quantile of a standard normal random variable and
let σ2

π := 1 + 4
π − 20

π2 . The rejection region

Cn,m :=

{∣∣∣∣Ŝ m
n − 2

π

∣∣∣∣ > z1−q/2

√
σ2
π

n

}

satisfies:

(1) lim supn→∞ lim supm→∞ P (Cn,m|H0) ≤ q.
(2) limn→∞ limm→∞ P (Cn,m|H1) = 1.

Our construction of an effective hypothesis test is original. Unexpectedly, it is based on fine properties of
bivariations of semimartingales and a test for jumps which allows one to discriminate between discontinuous
stable processes and Brownian motions.
Plan of the paper: The plan of the paper is as follows.

In Section 2 we recall some known results about stable laws.
In Section 3 we illustrate by numerical examples that classical limit theorems are not well suited to test H0

against H1.
In Section 4 we present our hypothesis test and summarize our theoretical results in [14].
In Section 5 we discuss many numerical experiments. In particular, we examine the sensitivity of our test to

its two key parameters: the number n of discretization times and the sample size m.
In Section 6 we present numerical results which illustrate the robustness of our proposed test to our standing

and classical hypothesis that the sampled probability distribution belongs to the domain of attraction of a stable
law.

2. A few reminders on stable laws and domains of attraction

Let X,X1, X2, . . . be a sequence of non-degenerate i.i.d. random variables and let

Sm :=

m∑
j=1

Xj , m = 1, 2, . . .

One says that X, or the law of X, belongs to the domain of attraction of a given law L if there exist centering
constants µm and positive normalizing constants cm such that (Sm − µm)/cm converges in distribution to L.

The only probability laws which have a non-empty domain of attraction are the stable laws. Any stable law
has a characteristic function of the form

exp(i a λ− b |λ|α(1 + i β sign(λ) w(λ, α)))

for some parameters 0 < α ≤ 2 and −1 ≤ β ≤ 1, where

w(λ, α) =

{
tan(πα2 ) if α ̸= 1,
2
π log(|λ|) if α = 1.



TITLE WILL BE SET BY THE PUBLISHER 3

The parameter α is called the characteristic exponent or the index of the stable law. Given 0 < α ≤ 2, every
stable law with index α is called an α-stable distribution and denoted by Lα. Its domain of attraction is denoted
by D(α).

Tail properties of stable laws imply the following moment properties (see e.g. Embrechts et al. [3, Cor.2.2.10]).

Theorem 2.1. If the random variable X belongs to D(α) then

E(|X|δ) < ∞ for 0 < δ < α,

E(|X|δ) = ∞ for δ > α and α < 2.

In particular, E(X2) = ∞ for α < 2.

In [14] we explain why often one cannot get a priori theoretical tail estimates on the probability distribution
of particles with complex dynamics. Consequently, even if one a priori knows that this probability distribution
belongs to some domain of attraction, to determine the parameter α is a hard statistical question. That was a
motivation to build a specific hypothesis test which is based on the following limit theorems.

We start with Donsker’s invariance principle for i.i.d. random variables. See e.g. Whitt [18, Thms 4.5.2-4.5.3].

Theorem 2.2. Let X,X1, X2, . . . be a sequence of non-degenerate i.i.d. random variables such that X ∈ DA(α).
Then there exist centering constants µm and normalizing constants cm such that

Lm :=

(
S⌊mt⌋ − µmt

cm
, t ≥ 0

)
D−−−−→

m→∞
L,

where L is a standard α-stable Lévy process if α < 2, whereas for α = 2 L is a Brownian motion.

For α < 2, the trajectories of α-stable processes are a.s. discontinuous, whereas for α = 2 the trajectories
of the Brownian motion are a.s. continuous. In addition, one expects that for m large enough, the trajectories
of (S⌊mt⌋ − µmt)/cm resemble the trajectories of the limit process (see Fig. 1). Therefore, testing for jumps in
the trajectories of (S⌊mt⌋ − µmt)/cm should allow to discriminate between X ∈ DA(2) and X ∈ DA(α). This
is illustrated by Fig. 1. Simulations have been run with m = 10000. For r = 0.2 we are under H0 and we
can compute the explicit value of E(X) and E(X2). For r = 0.8 we know that |G|−r is in the normal domain
of attraction of stable distribution with index 1/r. Hence, the normalizing constant is cm = m1/r. Indeed,
respectively denoting by Φ and ϕ the cumulative distribution function and the density function of a standard
normal distribution we have

P(|G|−r > x) = 2Φ

(
1

x1/r

)
− 1.

From L’Hôpital’s Theorem it follows that

lim
x→∞

P(|G|−r > x)

1/x1/r
= lim

x→∞

2Φ
(
1/x1/r

)
− 1

1/x1/r
= lim

x→∞

2ϕ
(
1/x1/r

) (
1/x1/r

)′(
1/x1/r

)′ =

√
2

π
.

We thus deduce the desired result from [18, Thm.4.5.2].
This heuristic approach has a severe drawback: we do not know the values of µm and cm, in particular

because we do not know α. Nevertheless, as Corollary 2.4 below shows that one can use the Mapping Theorem
to bypass the fact that µm is unknown.

Remark 2.3. The conclusion of Theorem 2.2 still holds true in some cases when the Xi’s are weakly dependent.
Sufficient conditions to respectively obtain Brownian or stable Lévy limits can be found in Shao [15] or Tyran-
Kamińska [17].
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(a) r = 0.2 (b) r = 0.8

Figure 1. Trajectories of Lm when the subjacent random variable X ∼ |G|−r, where G ∼ N (0, 1).
In the left column r = 0.2, therefore the limit of Lm is a Brownian motion and the trajectories of Lm

seem to be continuous. In the right column, r = 0.8, hence the limit of Lm is a Lévy process and the
trajectories of Lm seem to have jumps.

One can easily prove the following

Proposition 2.4. Let

Zm :=

(
S⌊mt⌋ − tSm

cm
, t ≥ 0

)
. (2.1)

If X ∈ DA(α), then

Zm D−−−−→
m→∞

Z := Ψ(L),

where L is a standard α-stable Lévy process for α < 2 (and therefore Ψ(L) is a discontinuous process), whereas
for α = 2 L is a Brownian motion (and therefore Ψ(L) is a Brownian bridge).

To conclude, testing for jumps the trajectories of the limit process of Zm defined in (2.1) should allow one
to discriminate between X ∈ DA(2) and X ∈ DA(α), 0 < α < 2. It now remains to construct an hypothesis
test for the continuity of Ψ(L) which does not suppose that cm is known.

Before describing and analyzing our test, let us present numerical experiments which show that naive
statistical procedures to accept or reject H0 are unsatisfying.

3. Ineffectiveness of tests based on limit theorems for I.I.D. sequences: An
empirical evidence

In this section we empirically study several heuristic approaches based on limit theorems for I.I.D. sequences
to determine the heaviness of the tails of a distribution function. Our numerical experiments below tend to
show that such approaches are ineffective.

Given (X,X1, X2, . . .) a sequence of non-degenerate i.i.d. random variables, we respectively denote the sample
sum, the sample mean and the sum of the squares of the sample by

Sm :=

m∑
j=1

Xj , Xm :=
Sm

m
and V 2

m =

m∑
j=1

X2
j .
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3.1. A test based on fluctuations of running maxima

Numerical experiments discussed in Section 5.2 show that empirical means do not suffice to confidently decide
whether expectations are finite or infinite. The next proposition, which follows from results in O’Brien [13,
Thm.1] and Kesten [9], shows a strong discrepancy in the behavior of the running maxima of i.i.d. sequences
depending on whether the probability distribution of the random variables has finite or infinite expectation.

Proposition 3.1. Let (Xn) be a sequence of i.i.d. positive random variables and let Mn := max{X1, . . . , Xn}
be the running maximum of the sequence.

(1) If E(X) = ∞ then lim supn
Mn

n = ∞ a.s.

(2) If E(X) < ∞ then limn
Mn

n = 0 a.s.

In particular,

E(X) < ∞ ⇐⇒ lim
n

Mn

n
= 0 a.s.

The previous proposition suggests to use the behavior of the running maxima as an indicator of the finiteness
of the mean of a positive random variable. One could also use the ratio of the running maximum and the partial
sum: See the analysis of this ratio and of other statistics for heavy-tailed data in Embrechts et al. [3, Sec.6.2.6].
Notice that such an approach does not contradict Hawkins’result [6] (see the Introduction in [14]) since the
results compiled in [3, Sec.6.2.6] are asymptotic.

To numerically study the effectiveness of such an approach we consider a sample of V = X2, where X = |G|−r

with G a standard normal random variable, For r < 0.5 one has E(V ) < ∞ whereas for r ≥ 0.5 one has
E(V ) = ∞.

In Fig. 2a and 2b we draw ten trajectories of Mn

n for r = 0.3 in the left column and, respectively, for r = 0.425
in the right column. As expected, the trajectories tend to zero.

However, in accordance with Hawkins’ result [6], this approach is too naive to detect that the unknown
expectation is infinite. Actually, Fig. 3a and 3b illustrate that, when E(V ) is infinite, very big values are too
rare in the sample to lead to significantly excessive values of Mn

n , even when n is very large. Notice that, the

larger is n, the larger needs to be Vn to make Mn

n significantly larger than Mn−1

n−1 . Therefore, the trajectories of
Mn

n are piecewise decreasing as in the finite expectation case. Jumps occur at times Tn where new upper record
values appear. As for any i.i.d. sequence the probability law of Tn+1 − Tn does not depend on the law of the
subjacent random variable and has infinite expectation (see Nevzorov [Thms.4.1-4.2] in [12]) it seems impossible
to elaborate an effective rule for choosing a time n at which one could confidently decide that E(V ) = ∞.
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(a) r = 0.3
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(b) r = 0.425

Figure 2. Trajectories of Mn
n

in the finite expectation of V case.
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Figure 3. Trajectories of Mn
n

in the infinite expectation of V case.

3.2. A test based on the Central Limit Theorem

For random variables X with E(X) = 0, it holds that X ∈ DA(2) if and only if Sm/Vm converges in
distribution to the standard normal law (See Giné et al. [4]). Therefore, to test if a random variable belongs to
DA(2) it seems natural to apply a normality test to a sample of Sm/Vm (obtained by using the observed sample
of X). This approach suffers from the two following drawbacks. First, one needs to center the random variable
while, in our setting, the mean of X is unknown. Second, the aymptotic behavior of Sm/Vm for X /∈ DA(2) is
unknown. Additionally, for poorly chosen simulation parameters we can have an empirical rejection rate equal
to 1 when X ∈ DA(2). For example, we have followed this strategy for the random variable X = |G|−0.4, with
G ∼ N (0, 1). We have fixed m = 1000 and we have generated a sample of S1000/V1000 with size 1000 and then
we have performed the Shapiro-Wilk normality test. Repeating this procedure 1000 times we have obtained an
empirical rejection rate equal to 1. That is, each one of our samples of S1000/V1000 leads to the rejection of the
hypothesis that the probability distribution is Gaussian. In Fig. 4 we show the p-values of the Shapiro-Wilk
test obtained in 200 of our experiments. We omit the 800 other results for the sake of a good visualisation.

3.3. A test based on the Self-normalized Iterated Logarithm Law

Griffin and Kuelbs [5, Thm.1] have shown that if X belongs to DA(2) and E(X) = 0, then

lim sup
m→∞

Sm

Vm

√
2 log log(m)

= 1 a.s.

Disregarding the fact that E(X) is unknown, it seems appealing to use this result to decide whether the
probability law of X belongs to DA(2).

Let us consider X = |G|−r, where G is a standard normal random variable. We know that for r ≤ 0.5,
X ∈ DA(2), whereas for r > 0.5, X ∈ DA(1/r). In Figs. 5 and 6 we show the trajectories of Sm/Vm, and we

compare them with
√
2 log log(m). As expected, for r ≤ 1/2, the paths of Sm/Vm starting at a large enough

value of m do not cross the curves of the maps −
√

2 log log(m) and
√

2 log log(m) (Fig. 5). For r > 1/2 we do
not observe, at least qualitatively, a very different behavior (Fig. 6). In fact, most of the trajectories remain

confined between the curves of the maps −
√

2 log log(m) and
√

2 log log(m).
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Figure 4. p-values of the Shapiro-Wilk normality test for 200 of our experiment (See details in
Section 3.2). The empirical rejection rate is equal to 1.
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(a) r = 0.3
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(b) r = 0.49

Figure 5. Trajectories of the self-normalized empirical mean for laws in DA(2)

3.4. Estimation of the tail index: The Meerschaert-Scheffler estimator

To determine the index α of the domain of attraction of a sampled random variable X one can use the
Meerschaert-Scheffler estimator [11] defined as

γ̂m :=
max{log

(∑m
i=1(Xi − X̄m)2

)
, 0}

2 log(m)
.

This estimator is an alternative to the classical Hill estimator introduced in [7]. Meerschaert and Scheffler
proved that the estimator γ̂n is asymptotically consistent when the data belong to some DA(α). More precisely,
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Figure 6. Trajectories of the Self-normalized empirical mean for laws NOT in DA(2)

Theorem 3.2 (Theorem 1 and 2 in [11] ). Let X,X1, X2, . . . be a sequence of non-degenerate i.i.d. random
variables such that X ∈ DA(α).

(1) If 0 < α < 2:

γ̂m
P, L1, L2

−−−−−−→
m→∞

1

α

and for some sequence (cm) tending to 0 and some α
2 -stable r.v. Y ,

2 log(m) (γ̂m − 1
α − cm) ⇒ log(Y ).

(2) If α = 2:

γ̂m
P−−−−→

m→∞

1

α
.

Additionally:
(a) if the variance σ2 of X is finite, then

2 log(m)(γ̂m − 1
2 )

P−−−−→
m→∞

log(σ2).

(b) if the variance of X is infinite, then there exists some sequence (cm) tending to 0 in probability and
some 1-stable r.v. Y , such that

2 log(m) (γ̂m − 1
2 − cm) ⇒ log(|Y |).

The convergence rate of γ̂m is low but the limit distribution of the suitably normalized error is narrow.
Meerschaert and Scheffler also proved that γ̂m converges under weaker assumptions, namely, when the sample
is in the domain of semistable attraction of a semistable law [11, Thm.3].

The table 1 below illustrates the behaviour of γ̂m. As expected, the convergence towards the limit value is
slow. However, we notice that γ̂m takes acceptable finite values for any large enough m. We also notice that
γ̂m seems to be biassed.

In table 2 we present the results obtained when X ∼ |G|−0.45, where G ∼ N(0, 1). In this case, the second
moment of X is finite. Thus, X belongs to the domain of attraction of the Normal distribution. We compute γm
for 10000 simulated samples of size m ∈ {105, 106, 107, 108, 109}. Table 2 shows that γm is always larger than
0.5. This could lead one to conclude that X does not belong to DA(2). Hence, because of its slow convergence,
one cannot use this estimator to test H0 vs. H1.
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Random Variable α m = 105 m = 106 m = 107 m = 108

|G|−0.6, G ∼ N (0, 1) 0.6 0.67540532 0.66530621 0.65674121 0.65042646
|G|−0.7, G ∼ N (0, 1) 0.7 0.76454733 0.75509289 0.74727714 0.74128
|G|−0.8, G ∼ N (0, 1) 0.8 0.85825199 0.84867939 0.84254414 0.83792346

Table 1. Mean value of the Meerschaert-Scheffler estimator of the tail index for different
random variables over 10000 simulations of samples with size m.

m Empirical mean of γ̂ Empirical sd of γ̂ Empirical min of γ̂
105 0.55740888 0.0169447807 0.5331192
106 0.55160767 0.0113382256 0.53850901
107 0.54669192 0.00862631795 0.53852758
108 0.54221338 0.00650946694 0.53628999
109 0.53842022 0.00491848875 0.53440811

Table 2. Descriptive statistics of the Meerschaert-Scheffler estimator of the tail index of X =
|G−0.45| over 10000 simulations of samples with different sizes.

4. Our hypothesis test for domains of attraction of stable laws

Determining whether a stochastic process Y is continuous or not from the observation of one single path at
discrete times, is an important modelling issue in many fields, notably in economics and financial mathematics.
It has been addressed by several authors in the last years. See for example Ait-Sahalia and Jacod [1] and the
references therein.

Our situation is somehow different since we are not observing a trajectory of a given process. We rather
are constructing one discrete time path by means of a normalization procedure of our (observed or simulated)
data and this constructed trajectory is always discontinuous. We therefore aim to construct a statistic whose
asymptotic properties will allow us to apply detection of jumps of semimartingale methods.

Following Barndorff-Nielsen and Shephard [2], for any stochastic process (Yt)0≤t≤1 we set ∆n
i Y = Yi/n −

Y(i−1)/n and consider the realized bivariation, the realized quadratic variation and the normalized bivariation
respectively defined by

B̂(Y, n) :=

n−1∑
i=1

|∆n
i Y ||∆n

i+1Y |, Q̂(Y, n) :=

n∑
i=1

|∆n
i Y |2, Ŝn(Y ) :=

B̂(Y, n)

Q̂(Y, n)
. (4.1)

The hypotheses made by Barndorff-Nielsen and Shephard to justify their test (see [2, Thm.1] and our
discussion in [14]) do not apply in our context. This led us to introduce the following new statistic which
is adapted toour specific situation.

Definition 4.1. For any m,n ∈ N consider the functional Ŝn : D[0, 1] → R defined as

Ŝn(z) :=

∑n−1
i=1 |z(i/n)− z((i− 1)/n)||z((i+ 1)/n)− z(i/n)|∑n

i=1 |z(i/n)− z((i− 1)/n)|2
. (4.2)

Given an i.i.d. sample of X : X1, . . . , Xm and the corresponding process Zm as in (2.1) we define our statistic

Ŝ m
n as the normalized bivariation of Zm, that is,

Ŝ m
n := Ŝn(Z

m). (4.3)
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The next result provides a key property of the statistic Ŝ m
n .

Proposition 4.2. The statistic Ŝ m
n is scale-free and satisfies

Ŝ m
n =

∑n−1
i=1

∣∣∣∣∑⌊mi
n ⌋

j=⌊m(i−1)
n ⌋+1

(Xj −Xm)

∣∣∣∣ ∣∣∣∣∑⌊m(i+1)
n ⌋

j=⌊mi
n ⌋+1

(Xj −Xm)

∣∣∣∣∑n
i=1

∣∣∣∣∑⌊mi
n ⌋

j=⌊m(i−1)
n ⌋+1

(Xj −Xm)

∣∣∣∣2
.

Remark 4.3. Notice that computing Ŝ m
n only needs the values of the sample. In particular, one does not need

the unknown centering and normalizing factors µm and cm in Theorem 2.2.

Our hypothesis test for H0 against H1 is based on the following theorem:

Theorem 4.4. Assume that X belongs to some domain of attraction. Consider and i.i.d. sample X1, . . . , Xm

of a r.v. X. We consider the test hypotheses
H0: X ∈ DA(2)
and
H1: ∃0 < α < 2, X ∈ DA(α).

Let zq denote the q-quantile of a standard normal random variable and σ2
π = 1+ 4

π − 20
π2 . The rejection region

Cn,m :=

{∣∣∣∣Ŝ m
n − 2

π

∣∣∣∣ > z1−q/2

√
σ2
π

n

}

satisfies:

(1) lim supn→∞ lim supm→∞ P (Cn,m|H0) ≤ q.
(2) limn→∞ limm→∞ P (Cn,m|H1) = 1.

We also state a central limit theorem for our statistic under H0.

Proposition 4.5. If the subjacent random variable X belongs to the domain of attraction of the normal law,
for any bounded and continuous function φ : R → R we have

lim
n→∞

lim
m→∞

E
[
φ

(√
n

σπ

(
Ŝ m

n − 2

π

))]
= E [φ(N )] ,

where σ2
π = 1 + 4

π − 20
π2 and N is a standard Gaussian random variable.

Remark 4.6. Other tests in the literature related to ours: In [8] Jurečková and Picek develop a statistical
test for the heaviness of the tail of a distribution function F assuming that F is absolutely continuous and strictly
increasing on the set {x : F (x) > 0}. In their case, for m0 given, the null hypothesis is

Hm0
: xm0(1− F (x)) ≥ 1, ∀x > x0 for some x0 ≥ 0,

whereas the alternative hypothesis is

Km0
: lim sup

x→∞
xm0(1− F (x)) < 1.

Notice that for m0 = 2 the non-rejection Hm0
implies that F has infinite second moment. Although this test has a

very good behavior even for small samples, it is only applicable to absolutely continuous distributions whereas our
test does not need such a condition, which is essential for applications to samples produced by complex simulations
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of random processes. Moreover, Jurečková and Picek’s test applies to I.I.D. random variables, whereas our
methodology can be extended to some weak dependence cases (See Section 7.3 in [14]). This potentially allow
applications to interacting particles which propagate chaos. Finally, we refer to [10] for other nonparametric
techniques in the context of heavy tailed distributions.

5. Numerical analysis of our test

In this section we present numerical experiments which illustrate our main theorem 4.4 and its limitations
when applied to synthetic data.

In this section we consider the r.v. X = |G|−r with G ∼ N (0, 1) and r > 0. Notice that X has finite moments
of order smaller than 1/r and that X ∈ DA(2) when r ∈ (0, 1/2], whereas X ∈ DA(1/r) when r > 1/2.

5.1. Experiments under H0

In Tables 3a - 3j we report empirical rejection rates. The levels of confidence are either q = 0.1 or q = 0.05 and
the parameter r takes values in {0.1, 0.2, 0.3, 0.4, 0.45}. For each value of r, we have generated 104 independent
samples with sizes from m = 105 up to m = 108. In the cases r = 0.4 and r = 0.45 we have also considered
m = 109. To study the respective effects of m and n, for each sample size m we have made the number of time
steps n vary from n = 101 up to n = 104.

According to Theorem 4.4 one expects that the larger m and n are, the closer to q the empirical rejection
rate is. The tables below show that increasing m improves the approximation of the empirical rejection rates
to their expected values whereas increasing n does not have the same effect. One actually observes that the
empirical rejection rates become close to 1 when n becomes too large. Morover, it seems that m being fixed the
optimal choice of n depends on the value of r. The closer r is to the critical value 1

2 , the smaller n should be
chosen.

To summarize, even if our theoretical result is valid when n goes to infinity, in practice, we should use n
significantly smaller than m. In addition, as m increases, the convergence of the process Zm can be very slow.
Therefore, if n is chosen too large, one is zooming up too much and sees the discontinuities that Zm has by
construction. See Subsection 5.4 below for more comments on that issue.

The figures 7, 8, 9, 10 and 11 compare the histograms of the empirical distribution of the standardized Ŝ m
n

derived from our simulations and of the asymptotic distribution under H0 provided by Proposition 4.5. We
observe that the asymptotic normality regime is detected for m = 105 and larger if n is not too large compared
to m (less than 102, say).

When n increases, the empirical distribution is clearly different from the limit one. For example, for r = 0.40,
when m = 106 and n = 104 the empiricial distribution is even not centered at 0. This behavior becomes worse
and worse as r approaches to the critical value 0.5 (see Fig. 11).
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n
m 101 102 103 104

105 0.095 0.098 0.117 0.997
106 0.094 0.093 0.096 0.170
107 0.103 0.099 0.097 0.103
108 0.100 0.100 0.095 0.101

(a) q = 0.1.

n
m 101 102 103 104

105 0.051 0.047 0.063 0.991
106 0.053 0.048 0.051 0.101
107 0.055 0.051 0.048 0.052
108 0.054 0.049 0.048 0.050

(b) q = 0.05.

n
m 101 102 103 104

105 0.097 0.107 0.224 1.000
106 0.093 0.095 0.106 0.714
107 0.100 0.102 0.104 0.122
108 0.098 0.098 0.100 0.099

(c) q = 0.1.

n
m 101 102 103 104

105 0.053 0.056 0.147 1.000
106 0.050 0.048 0.058 0.617
107 0.053 0.052 0.052 0.066
108 0.056 0.048 0.047 0.050

(d) q = 0.05.

n
m 101 102 103 104

105 0.101 0.136 0.705 1.000
106 0.106 0.106 0.240 1.000
107 0.100 0.101 0.126 0.776
108 0.097 0.101 0.104 0.199

(e) q = 0.1.

n
m 101 102 103 104

105 0.056 0.082 0.630 1.000
106 0.058 0.056 0.168 1.000
107 0.056 0.053 0.069 0.691
108 0.050 0.048 0.053 0.128

(f) q = 0.05.

n
m 101 102 103 104

105 0.118 0.302 0.991 1.000
106 0.103 0.202 0.860 1.000
107 0.101 0.151 0.571 1.000
108 0.101 0.126 0.356 0.999
109 0.096 0.118 0.229 0.947

(g) q = 0.1.

n
m 101 102 103 104

105 0.071 0.234 0.985 1.000
106 0.057 0.141 0.810 1.000
107 0.056 0.097 0.494 1.000
108 0.053 0.077 0.284 0.999
109 0.055 0.066 0.165 0.917

(h) q = 0.05.

n
m 101 102 103 104

105 0.123 0.436 1.000 1.000
106 0.114 0.332 0.985 1.000
107 0.118 0.262 0.909 1.000
108 0.109 0.220 0.773 1.000
109 0.109 0.190 0.623 1.000

(i) q = 0.1.

n
m 101 102 103 104

105 0.075 0.367 0.999 1.000
106 0.069 0.265 0.976 1.000
107 0.067 0.197 0.878 1.000
108 0.061 0.160 0.716 1.000
109 0.064 0.130 0.550 1.000

(j) q = 0.05.

Table 3. Empirical rejection rates for the Ŝ m
n -test with different values for r, m and n,

different confidence levels and 104 simulations. From top to bottom: r = 0.1, 0.2, 0.3, 0.4, 0.45.
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Figure 7. Empirical distribution of standardized Ŝ m
n for r = 0.1. The value of m increases from

105 on the top row up to 108 in the bottom row. The value of n increases from 101 on the left column
up to 105 in the right column.
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Figure 8. Empirical distribution of standardized Ŝ m
n for r = 0.2. The value of m increases from

105 on the top row up to 108 in the bottom row. The value of n increases from 101 on the left column
up to 104 in the right column.
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Figure 9. Empirical distribution of standardized Ŝ m
n for r = 0.3. The value of m increases from

105 on the top row up to 108 in the bottom row. The value of n increases from 101 on the left column
up to 104 in the right column.
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Figure 10. Empirical distribution of standardized Ŝ m
n for r = 0.4. The value of m increases from

105 on the top row up to 109 in the bottom row. The value of n increases from 101 on the left column
up to 104 in the right column.
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Figure 11. Empirical distribution of standardized Ŝ m
n for r = 0.45. The value of m increases from

105 on the top row up to 109 in the bottom row. The value of n increases from 101 on the left column
up to 104 in the right column.
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n
m 101 102 103 104

105 0, 172 0.714 1.000 1.000
106 0.168 0.669 1.000 1.000
107 0.155 0.628 1.000 1.000
108 0.157 0.589 1.000 1.000

(a) q = 0.1.

n
m 101 102 103 104

105 0.109 0.656 1.000 1.000
106 0.108 0.607 1.000 1.000
107 0.098 0.568 1.000 1.000
108 0.102 0.526 1.000 1.000

(b) q = 0.05.

n
m 101 102 103 104

105 0.190 0.821 1.000 1.000
106 0.199 0.789 1.000 1.000
107 0.198 0.765 1.000 1.000
108 0.194 0.761 1.000 1.000

(c) q = 0.1.

n
m 101 102 103 104

105 0.125 0.780 1.000 1.000
106 0.133 0.744 1.000 1.000
107 0.136 0.719 1.000 1.000
108 0.123 0.712 1.000 1.000

(d) q = 0.05.

n
m 101 102 103 104

105 0.267 0.956 1.000 1.000
106 0.276 0.954 1.000 1.000
107 0.264 0.951 1.000 1.000
108 0.268 0.950 1.000 1.000

(e) q = 0.1.

n
m 101 102 103 104

105 0.191 0.941 1.000 1.000
106 0.198 0.940 1.000 1.000
107 0.186 0.936 1.000 1.000
108 0.189 0.934 1.000 1.000

(f) q = 0.05.

n
m 101 102 103 104

105 0.332 0.988 1.000 1.000
106 0.332 0.985 1.000 1.000
107 0.331 0.987 1.000 1.000
108 0.340 0.987 1.000 1.000

(g) q = 0.1.

n
m 101 102 103 104

105 0.248 0.982 1.000 1.000
106 0.245 0.979 1.000 1.000
107 0.246 0.980 1.000 1.000
108 0.251 0.984 1.000 1.000

(h) q = 0.05.

Table 4. Empirical rejection rates for the Ŝ m
n -test with different values for r, m and n,

different confidence levels and 104 simulations. . From top to bottom: r = 0.55, 0.6, 0.75, 0.9.

5.2. Experiments under H1

In Tables 4a - 4h we report empirical rejection rates. The levels of confidence are either q = 0.1 or q = 0.05
and the parameter r takes values in r ∈ {0.6, 0.75, 0.9}. For these values of r one expects to observe empirical
rejection rates close to 1. It is actually the case for r = 0.75 and r = 0.9 if n > 10. When r is close to the limit
case 0.5 we observe a bigger ‘type 2’ error. As above, we have let m and n vary.

Our simulations seem to show that under H1 choosing a too small value of n leads to poor empirical rejection
rates. Notice also that, for small values of n, the empirical rejection rate does not seem to be monotonically
increasing with m.

As a complement to Section 3.1 and to Tables 4a- 4h, Tables 5a, 5b and 5c show values taken by the empirical
second moment of X. Since we are under H1, we know that E

(
X2

)
= ∞. Actually, Tables 5b and 5c show

big values of the empirical second moment. However, it is not so obvious that this information could suffice to
decide that the second moment is infinite. More striking, in the case of Table 5a the empirical second moment
is not a reliable indicator of the infiniteness of E

(
X2

)
, regardless the size of the sample. However, even when
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m
Statistic 105 106 107 108

Mean of M̂2 3.07× 102 5.51× 102 5.36× 102 8.54× 102

Std. Deviation of M̂2 1.04× 104 1.23× 104 6.48× 103 1.31× 104

Min of M̂2 2.00× 101 3.28× 101 5.30× 101 9.05× 101

Max of M̂2 9.76× 105 7.68× 105 4.44× 105 9.70× 105

Quantile(0.95) of M̂2 3.09× 102 5.68× 102 8.72× 102 1.31× 103

Quantile(0.99) of M̂2 1.80× 103 3.44× 103 5.03× 103 7.67× 103

(a) r = 0.6.

m
Statistic 105 106 107 108

Mean of M̂2 2.76× 105 2.20× 105 6.05× 105 2.80× 106

Std. Deviation of M̂2 2.13× 107 7.21× 106 2.75× 107 1.37× 108

Min of M̂2 1.36× 102 4.27× 102 1.31× 103 4.30× 103

Max of M̂2 2.10× 109 5.30× 108 2.24× 109 1.22× 1010

Quantile(0.95) of M̂2 1.96× 104 7.38× 104 1.94× 105 6.12× 105

Quantile(0.99) of M̂2 2.29× 105 6.79× 105 1.94× 106 5.61× 106

(b) r = 0.75.

m
Statistic 105 106 107 108

Mean of M̂2 8.54× 106 3.66× 108 6.88× 108 1.33× 109

Std. Deviation of M̂2 3.82× 108 2.53× 1010 4.08× 1010 4.11× 1010

Min of M̂2 1.21× 103 7.92× 103 5.35× 104 2.43× 105

Max of M̂2 3.67× 1010 2.39× 1012 3.90× 1012 2.99× 1012

Quantile(0.95) of M̂2 1.53× 106 9.58× 106 6.68× 107 3.58× 108

Quantile(0.99) of M̂2 3.20× 107 1.87× 108 1.08× 109 6.42× 109

(c) r = 0.9.

Table 5. Statistics of the empirical second moment computed in 10000 scenarios. The sample
sizes vary from 105 to 108.

r = 0.6, the empirical rejection rates of our test are close to 1 under H1. This seems to illustrate the relevance
of our test to detect infinite expectations.

5.2.1. Power of the test

We end this section studying numerically the power of the test, that is, the probability of not rejecting H0

when H1 holds. In Tables 4a - 4h we have observed that for n = 102 although the empirical rejection rate
(ERR) is large, the empirical Type II error (ETII = 1 − ERR) is still larger than the significance level of the
test. Meanwhile, for n = 103 the empirical rejection rate is 1 and consequently, the empirical Type II error is
0. This motivate us to study the behavior of the test for 102 < n < 103.

In Table 6 , we present the results of the simulations when we consider as subjacent random variable a
symmetric α-stable X. The results ara analogous to the ones obtained for X = |G|−r. The empirical Type II
Error is equal to zero for n = 103, but larger than the significance level of the test for n = 102 when α is closer
to the critical value α = 2.
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In Table 7 we present the results for the same distribution, but considering n = 200, 250, 500. Notice that
for m = 105 and n = 500 we obtain empirical Type II Error smaller than the significance level of the test, even
for α = 1.8. This is an evidence of the good behavior of our test for moderate sample sizes.

n
m 101 102 103

105 0.593 0.003 0.000
106 0.592 0.003 0.000
107 0.604 0.003 0.000

(a) q = 0.1.

n
m 101 102 103

105 0.683 0.005 0.000
106 0.684 0.005 0.000
107 0.698 0.004 0.000

(b) q = 0.05.

n
m 101 102 103

105 0.694 0.020 0.000
106 0.690 0.023 0.000
107 0.700 0.023 0.000

(c) q = 0.1.

n
m 101 102 103

105 0.778 0.028 0.000
106 0.775 0.031 0.000
107 0.782 0.032 0.000

(d) q = 0.05.

n
m 101 102 103

105 0.766 0.102 0.000
106 0.769 0.112 0.000
107 0.776 0.117 0.000

(e) q = 0.1.

n
m 101 102 103

105 0.844 0.127 0.000
106 0.840 0.139 0.000
107 0.847 0.146 0.000

(f) q = 0.05.

n
m 101 102 103

105 0.836 0.326 0.000
106 0.840 0.359 0.000
107 0.838 0.389 0.000

(g) q = 0.1.

n
m 101 102 103

105 0.894 0.383 0.000
106 0.897 0.419 0.000
107 0.898 0.448 0.000

(h) q = 0.05.

Table 6. α-stable X. Empirical Type II Error of the Ŝ m
n -test under H1 for different values

of α, m, n, q. First row: α = 0.9. Second row: α = 1.2.Third row: α = 1.5. Fourth row:
α = 1.8.

Moreover, Tables 4a to 7h allow one to estimate the Empirical Type II Error of the Test (ETIIE) for
different fixed values of m. We observe that it decreases, approximately, exponentially fast with n. For
example, when X = |G|−r with r = 0.45, one observes that ETIIE ≈ 0, 9 exp (−0, 007n). One thus may
consider that ETIIE is less than 0.049 when n ≥ 415. Similarly, when X is 1.8-stable, one observes that
ETIIE ≈ 0, 902 exp (−0, 008n) and one can expect that ETIIE is less than 0.049 when n ≥ 364. See Fig. 12.

To summarize the tables in this section, in the cases where X = |G|−r and X has an α-stable distribution,
one can observe that for the moderate value n = 500 and different levels of confidence and different values of m,
the Type II error is much smaller than the level of confidence q, even when r is close to the critical value r = 0.5
(respectively, when α is close to 2).

5.3. Numerical experiments under weak dependence

In [14] we have shown that Theorem 4.4 still holds if we assume that the sample is stationary, r-dependent
and satisfies the two following conditions:
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n
m 200 250 500
105 0.000 0.000 0.000
106 0.000 0.000 0.000
107 0.000 0.000 0.000

(a) q = 0.1.

n
m 200 250 500
105 0.000 0.000 0.000
106 0.000 0.000 0.000
107 0.000 0.000 0.000

(b) q = 0.05.

n
m 200 250 500
105 0.000 0.000 0.000
106 0.000 0.000 0.000
107 0.001 0.000 0.000

(c) q = 0.1.

n
m 200 250 500
105 0.000 0.000 0.000
106 0.001 0.000 0.000
107 0.001 0.000 0.000

(d) q = 0.05.

n
m 200 250 500
105 0.011 0.005 0.000
106 0.015 0.006 0.000
107 0.014 0.005 0.000

(e) q = 0.1.

n
m 200 250 500
105 0.018 0.007 0.000
106 0.019 0.008 0.000
107 0.021 0.009 0.000

(f) q = 0.05.

n
m 200 250 500
105 0.120 0.067 0.005
106 0.149 0.095 0.010
107 0.177 0.118 0.015

(g) q = 0.1.

n
m 200 250 500
105 0.154 0.091 0.007
106 0.187 0.126 0.016
107 0.220 0.150 0.023

(h) q = 0.05.

Table 7. α-stable X. Empirical Type II Error of the Ŝ m
n -test under H1 for different values

of α, m, n, q. First row: α = 0.9. Second row: α = 1.2.Third row: α = 1.5. Fourth row:
α = 1.8.

sup
{
|Corr(f, g)| : real f ∈ L2(σ(X1)), real g ∈ L2(σ(X2, X3, . . .))

}
< 1 (5.1)

and

(∀ϵ > 0, ∀j = 2, . . . , k) lim
m→∞

P (|Xj | > ϵcm/|X1| > ϵcm) = 0. (5.2)

To illustrate the behavior of the test for non-independent random variables, we consider a sequence Y2, Y3, . . . , Ym

of 1-dependent random variables constructed as follows. First, we generate a sample X1, . . . , Xm of independent
copies of |G|−r where G ∼ N (0, 1), and then

Yk =
Xk−1

Xk−1 + 1
Xk,

Second, we apply our methodology to Y2, . . . , Ym for r = 0.3 and r = 0.75. In Tables 8a and 8b we report
the empirical rejection rates for two different levels of confidence. As m increases the empirical rates tend to
the theoretical ones. As in the i.i.d. case we also observe that the performance of the methodology decreases

when n becomes too large. In Fig. 13 illustrates the asymptotic normality of the statistic Ŝ m
n as in the i.i.d.

case. Finally, in Tables 8c and 8d, we report the results derived from our simulations for r = 0.75, that is, under
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Figure 12. Empirical Type II Error as a function of n. Left: X = |G|−r with r = 0.45 and sample

size m = 108. Right: α-stable X with α = 1.8 and sample size m = 107. Both figures exhibit a

satisfying Determination Coefficient R2 larger than 0.99.

n
m 101 102 103 104

105 0.096 0.123 0.527 1.000
106 0.096 0.105 0.175 0.999
107 0.100 0.102 0.111 0.480
108 0.096 0.098 0.098 0.133

(a) q = 0.1.

n
m 101 102 103 104

105 0.054 0.070 0.433 1.000
106 0.053 0.054 0.112 0.998
107 0.057 0.051 0.057 0.370
108 0.055 0.050 0.050 0.078

(b) q = 0.05.

n
m 101 102 103 104

105 0.262 0.953 1.000 1.000
106 0.263 0.955 1.000 1.000
107 0.271 0.952 1.000 1.000
108 0.270 0.951 1.000 1.000

(c) q = 0.1.

n
m 101 102 103 104

105 0.186 0.937 1.000 1.000
106 0.188 0.942 1.000 1.000
107 0.193 0.938 1.000 1.000
108 0.193 0.935 1.000 1.000

(d) q = 0.05.

Table 8. Empirical rejection rates for the Ŝ m
n -test for a 1-dependent sequence of random

variables for different values for r,m, n, different confidence levels and 104 simulations. Top
row: r = 0.3. Bottom row: r = 0.75.

H1. Again, as in the i.i.d. case, smaller values of n leads to bigger ‘type 2’ error. Nevertheless, for n = 102 we
already observe empirical rejection rates close to 1.
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Figure 13. Empirical distribution of standardized Ŝ m
n for a 1-dependent sequence of random

variables when r = 0.3. The value of m increases from 105 on the top row up to 108 in the bottom
row. The value of n increases from 101 on the left column up to 104 in the right column.

5.4. Choosing m in terms of n

According to Theorem 4.4, we expect that under H0, as m and n increase, the empirical rejection rate should
tend to q, and that is what we have observed numerically. However, we have also observed that the empirical
rejection rate does not seem to be monotone with respect to n. This is not totally unexpected. On one hand,
the order in which the limits are taken in Theorem 4.4 cannot be inverted. On the other hand, our test is based
on discretized trajectories of Zm which by construction are discontinuous. Therefore, when one increases the
number n of discretization times, one detects the small jumps of Zm at these discretization times, especially if
the sample size m is not large enough.

From the previous considerations, it follows that the choice of n cannot be independent of the choice of m.
In Tables 9a and 9b we report the experimental values of m and n for which, under H0, the best empirical
rejection rate is attained. Notice that the best value for n decreases when the parameter r tends to the critical
value r = 0.5 (in other words, when the subjacent random variable has lower and lower finite moments). In
particular, it does not seem to exist an optimal selection for the parameters m and n which is satisfying for any
random variable in the domain of attraction of the Gaussian law.

Under H1 the empirical rejection rate is expected to be close to 1. For n = 103 it is exactly what our
numerical experiments show. Nevertheless, under H0, the choice n = 103 led to very poor results for r ∼ 0.5.
In Tables 10a and 10b we report the empirical rejection rates for different values of r and q when n < 103.
Notice the change of regime between n = 101 and n = 102.
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r m n ERR
0.1 108 101, 102 0.100
0.2 108 103 0.100
0.3 107 101 0.100
0.4 107, 108 101 0.101
0.45 108, 109 101 0.109

(a) q = 0.1.

r m n ERR
0.1 108 104 0.050
0.2 108 104 0.050
0.3 108 101 0.050
0.4 108 101 0.053
0.45 108 101 0.061

(b) q = 0.05.

Table 9. Values of the parameters m and n for which the best empirical rejection rate (ERR)

of the Ŝ m
n -test is attained under H0 for different values of r and q.

r n = 101 n = 102

0.6 0.194 0.761
0.75 0.268 0.950
0.9 0.340 0.987

(a) q = 0.1.

r n = 101 n = 102

0.6 0.123 0.712
0.75 0.189 0.934
0.9 0.251 0.984

(b) q = 0.05.

Table 10. Values of the empirical rejection rate (ERR) of the Ŝ m
n -test for m = 108 for

different values of r under H1 and different values of q.

6. When the sampled probability distribution does not belong to any D(α)

As in many other works we have here supposed that the sampled probability distribution belongs to someD(α).
This might be difficult to check a priori, notably when the sample is produced by complex numerical methods.
For example, usually it is hard to check that the characterizations of stable laws are satisfied by the probability
distribution of particle systems with singular interaction kernels (See the Introduction in [14]).

In this section we present numerical results which tend to show that our test nicely rejects H0 when the
sampled probability distribution does not belong to any D(α).

6.1. The case of the St Petersburg probability distribution

The integer valued St Petersburg random variables Y satisfy

P
(
Y = 2k

)
= 2−k, k ≥ 1.

It is known that such a r.v. Y does not belong to the domain of attraction of any stable distribution, However,
it belongs to the domain of semi-stable attraction of a semi-stable distribution. Moreover,

E (Y p) =

∞∑
k=1

(
2k
)p 1

2k
=

∞∑
k=1

1

(21−p)
k
< +∞, if p < 1.

Therefore, for X = Y r one has E (Xq) < ∞ if q < 1/r. Thus, when r < 0.5 the r.v. X has finite variance and
belongs to the domain of attraction of the normal law.

In the sequel, we will call the probability distribution of Xr as a “r-powered St Petersburg probability
distribution”.

Tables 11a and 11b show empirical rejection rates for a r-powered St-Petersburg probability distribution
with r = 0.25. In this case, X ∈ DA(2) and we observe empirical rejection rates close to the theoretical ones.

In Fig. 14 we show empirical distributions of the standardized Ŝ m
n . As expected, the histograms resemble the

limit distribution for m large enough.
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n
m 101 102 103

105 0.107 0.461 1.000
106 0.103 0.181 0.988
107 0.097 0.114 0.470
108 0.095 0.106 0.141

(a) q = 0.1.

n
m 101 102 103

105 0.058 0.377 1.000
106 0.057 0.119 0.981
107 0.054 0.058 0.373
108 0.053 0.052 0.080

(b) q = 0.05.

Table 11. Empirical rejection rates for the Ŝ m
n -test for a r-powered St Petersburg probability

distribution with r = 0.25, different values for m and n, different confidence levels and 104

simulations.
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Figure 14. Histograms of standardized Ŝ m
n for r- powered St Petersburg probability distribution

with r = 0.25. The value of m increases from 105 on the top row up to 108 in the bottom row. The
value of n increases from 101 on the left column up to 103 in the right column.

Tables 12a to 12d show the empirical rejection rate for r-powered St-Petersburg probability distributions
for r ∈ {1, 2, 4}. In these cases the subjacent random variable is not in DA(α) for any α. However, our test
behaves consistently with the fact that the null hypothesis H0 is false.
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n
m 101 102 103

105 0.372 0.995 1.000
106 0.367 0.995 1.000
107 0.362 0.995 1.000
108 0.372 0.994 1.000

(a) q = 0.1.

n
m 101 102 103

105 0.276 0.992 1.000
106 0.274 0.993 1.000
107 0.271 0.992 1.000
108 0.284 0.991 1.000

(b) q = 0.05.

n
m 101 102 103

105 0.617 1.000 1.000
106 0.631 1.000 1.000
107 0.630 1.000 1.000
108 0.635 0.999 1.000

(c) q = 0.1.

n
m 101 102 103

105 0.495 0.999 1.000
106 0.502 0.999 1.000
107 0.495 1.000 1.000
108 0.501 0.999 1.000

(d) q = 0.05.

n
m 101 102 103

105 0.750 1.000 1.000
106 0.741 1.000 1.000
107 0.750 1.000 1.000
108 0.757 1.000 1.000

(e) q = 0.1.

n
m 101 102 103

105 0.739 0.999 1.000
106 0.729 1.000 1.000
107 0.738 1.000 1.000
108 0.743 1.000 1.000

(f) q = 0.05.

Table 12. Empirical rejection rates for the Ŝ m
n -test for a r-powered St Petersburg probability

distribution with different values for r, m and n, different confidence levels and 104 simulations.
From top to buttom: r = 1, 2, 4.

6.2. The case of a log-tailed distribution

We say that a random variable Y has a log-tailed distribution if

P (Y ≤ t) =

{
0 for t <

√
e− 1,

1− 1
log(1+t2) for t ≥

√
e− 1.

In view of Theorem 2.1 the random variable Y cannot belong to the domain of attraction of a stable distribution.
Notice that E(Y r) = +∞ for any r > 0. Even more, Y does not belong to the domain of partial attraction of
any semi stable distribution (cf. Shimizu [16, Thm.1]).

The tables 13a and 13b show the empirical rejection rates of our hypothesis test. Notice that, as son as
n > 10, the empirical rejection rates are very close to 1, which is consistent with the fact that H0 is false.

All the examples in this section seem to indicate that our test is robust with respect to the subjacent
hypothesis that X belongs to some DA(α) and correctly rejects the null hypothesis when X /∈ DA(α) for any
α.
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n
m 101 102 103

105 0.987 1.000 1.000
106 0.956 1.000 1.000
107 0.683 1.000 1.000
108 0.330 0.912 1.000

(a) q = 0.1.

n
m 101 102 103

105 0.983 1.000 1.000
106 0.939 1.000 1.000
107 0.601 1.000 1.000
108 0.318 0.911 1.000

(b) q = 0.05.

Table 13. Empirical rejection rates for the Ŝ m
n -test for a log-tailed distribution with different

values for m and n, different confidence levels and 104 simulations.
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