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Motion Estimation in Parallel-Beam Linogram Geometry Using Data Consistency Conditions

Data consistency conditions (DCCs) express the redundancy in the projections. In X-ray computed tomography, the most common conditions are expressed pairwise on the projections or as equality between projection-based moments and polynomials. The latter is better known in the parallel-beam geometry as the Helgason-Ludwig consistency conditions (HLCCs). The DCCs are often used to self-calibrate radiography systems. In this paper, we adjust data consistency conditions to a time-dependent model of the data in the parallel linogram geometry. We show that it is not possible to estimate the parameters of a uniform motion of a translating object using the DCCs. However, we show that we can estimate the average speed with prior information on the object's center of mass. Then, we model and estimate the parameters of a periodical variation of the motion. Finally, we run simulations to assess the performances of our method.

Introduction

In X-ray computed tomography, the data consistency conditions (DCCs) give information on the behavior of the radiography system based on the redundancy of the projections. If some changes occur in the system, the conditions are no longer satisfied. The changes can be detected or even estimated with proper modeling. In the literature, some conditions are derived from the Helgason-Ludwig consistency conditions (HLCCs) [START_REF] Ludwig | The Radon Transform on Euclidean Space[END_REF] [START_REF] Helgason | The Radon Transform[END_REF]. These conditions have been used to estimate the motion of a moving object in the fan-beam geometry with a circular trajectory of the source and in the parallel geometry [START_REF] Yu | Data consistency based translational motion reduction in fan-beam ct[END_REF]. A more suitable representation of the data in the geometry with the source on a line is the linogram. The HLCCs have been expressed in the linogram geometry [START_REF] Clackdoyle | Necessary and Sufficient Consistency Conditions for Fanbeam Projections Along a Line[END_REF]. Results on the estimation of the source position and motion have been published for the fan-beam linogram geometry [START_REF] Clackdoyle | Fanbeam data consistency conditions for applications to motion detection[END_REF][6] [START_REF] Nguyen | Automatic geometric calibration in 3d cone-beam geometry with sources on a line[END_REF]. In this work, we consider a radiography system composed of a X-ray source, a horizontal linear detector and an object translating on a conveyor belt. The source and detector are supposed stationary. The object position is defined by its center of mass c(t). The system is represented in the Fig. 1. Equivalently, this system can be considered as a system with a stationary object and a translating source and detector. The translation is the same as in the original radiography system but in the opposite direction. The equivalent system is represented in Fig. 2. At a fixed viewing angle φ , all the X-rays are parallel. The source position and the projection on the detector are supposed point-like. The X-rays are defined in the coordinate system (x 1 , x 2 ) as segment from the source S(t) = (x(t), 0) to the detector point with the direction
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X-ray source conveyor belt moving object detector Figure 1: The radiography system is constituted of a X-ray source, a horizontal linear detector and a conveyor belt. Everything is stationary, except for the object translating on the conveyor belt. γ φ = (sin φ , cos φ ) ∈ S 1 , where S 1 is the unit sphere. We suppose that the measured object µ : R 2 → R has a compact support. The projections are modeled by the Beer-Lambert absorption law which makes the link between the object µ, the initial intensity I 0 of the X-rays and the intensity I acquired by the detector:

I = I 0 exp - R µ S(t) + rγ φ dr (1) 
A logarithm transform leads to the classical projection form:

p(φ , x(t)) = R µ (x(t), 0) + rγ φ dr (2) 
In the following, we first define the parallel linogram geometry and recall the parallel linogram consistency conditions derived from the HLCCs to our geometry. We show that we cannot estimate the parameters of a uniform motion. Then, we model and estimate the parameters of a non uniform mo-tion with the DCCs. Finally, we run simulations to evaluate the accuracy of the method.

Theory

Parallel linogram geometry

In an equivalent radiography system, the object is considered stationary. The source and the detector are moving at the same speed on two parallel lines separated by a distance D > 0. The parallel beam X-rays in the linogram geometry are parallel segments from a source at S(t) = (x(t), 0) on the x 2 = 0 axis to a detector at (x(t) + u, D) on the parallel axis x 2 = D where u ∈ R and the distance D is fixed. The object position is defined by its center of mass c = (c 1 , c 2 ). We assume x ′ (t) < 0, ∀t ∈ R. The offset u on the x 1 axis between the source at (x(t), 0) and the detector point at (x(t) + u, D) is bijectively linked to the projection angle

φ with u = D tan(φ ), φ ∈ ]-π/2, π/2[, u ∈ R, or equivalently φ u = arctan(u/D).
This system is represented in Fig. 3. The parallel-beam linogram l is defined by:

l(u, x) = R µ((x, 0) + r(u, D))dr (3) 
In our geometry, the X-rays are indexed by the time t at which they are measured. Thus, we define the parallel linogram = l and the parallel linogram operator = L as:

= L µ (u,t) = = l (u,t) (4) 
= l(u, x(t))

= R µ((x(t), 0) + r(u, D))dr (5) 
The linogram = l is a weighted linogram. Using the change of variable r ′ = r √ u 2 + D 2 , we have:

= l (u,t) = 1 √ u 2 + D 2 R µ((x(t), 0) + r ′ γ φ u )dr ′ (7) = 1 √ u 2 + D 2 p(φ u , x(t)) (8) 
where

γ φ u = (sin(φ u ), cos(φ u )) = 1 √ u 2 +D 2 (u, D).

Helgason-Ludwig Consistency Conditions

In the parallel-beam linogram geometry, the order n ∈ N moment of the projections is defined by:

J n (u) = R l(u, x)x n dx (9) 
For the Radon transform, the Helgason-Ludwig theorem states that the order n moment is an homogeneous polynomial of order n in cos φ and sin φ [START_REF] Naterrer | The Mathematics of Computerized Tomography[END_REF]. Such DCCs can be derived for the parallel linogram geometry [START_REF] Clackdoyle | Necessary and Sufficient Consistency Conditions for Fanbeam Projections Along a Line[END_REF]. We adjust these conditions to our geometry. Using a change of variable, we define the order n moment of the projections as:

φ u D x 2 x 1 γ φu (x(t) + u, D) c (x(t), 0)
= Jn (u) = R = l (u,t)x n (t)|x ′ (t)|dt (10) 
Proposition 1 (from [START_REF] Clackdoyle | Necessary and Sufficient Consistency Conditions for Fanbeam Projections Along a Line[END_REF]) The data

= l are consistent, i.e. = l is in the range of = L , if and only if = Jn (u) = n ∑ k=0 c n,k u k (11) 
From the data = l , we can only compute the time related moment Jn (u) defined as follow:

Jn (u) = R = l (u,t)t n dt (12) 
In the following sub-sections, we use the proposition 1 to estimate parameters related to the motion x(t).

Uniform motion

We first model the source position using 2 real parameters x 0 and v 0 .

x(t) = x 0 + v 0 t (13) 
The parameter x 0 cannot be estimated using DCCs [START_REF] Desbat | Calibration and data consistency in parallel and fan-beam linogram geometries[END_REF]. We arbitrarily set x 0 = 0. Thus, = Jn (u) can be rewritten as:

= Jn (u) = |v 0 |v n 0 R = l (u,t)t n dt (14) = sgn(v 0 )v n+1 0 Jn (u) (15) 
We want to estimate v 0 using the Eq. ( 15). Since = Jn (u) is defined relatively to v 0 , we use the proposition 1. Therefore, in addition to v 0 , we need to estimate the parameters c n,k for k = 0, . . . , n. Let's now consider u 1 , . . . , u n a where n a is the number of projections. We get a non-linear system of equations from the Eq. (15).

                 sgn(v 0 ) n ∑ k=0 c n,k u k 1 -v n+1 0 Jn (u 1 ) = 0 . . . sgn(v 0 ) n ∑ k=0 c n,k u k n a -v n+1 0 Jn (u n a ) = 0 ∀n ∈ N (16)
The system of Eqs. ( 16) has an infinity of solutions: if {(c n,k , v 0 ), ∀n ∈ N, k = 0, . . . , n} is a solution then (λ n+1 c n,k , λ v 0 ), ∀n ∈ N, k = 0, . . . , n is a solution for any λ ∈ R. Thus, we cannot determine v 0 from the DCCs.

Estimating v 0 from a center of mass property

The parameters of the uniform motion cannot be estimated using the DCCs only. However, we can use DCCs with a calibration object to estimate v 0 . The DCCs of order 0 and 1 are related to the center of mass of an object (This property can be used for misalignment correction of the projections) [START_REF] Desbat | Calibration and data consistency in parallel and fan-beam linogram geometries[END_REF]. We show in this sub-section that we can use the center of mass coordinates to estimate the average velocity v 0 of the source from two different projections. Using the definition of = Jn (u) and x(t) in the Eqs. ( 10) and ( 13), we get the following:

= J1 (u) = J0 (u) = R = l (u,t)(x 0 + v 0 t)v 0 dt R = l (u,t)v 0 dt (17) = x 0 + v 0 t c (u) ( 18 
)
where t c (u) = J1 (u)/ J0 (u) is the temporal center of mass of the projection u. Now, using the Eqs. ( 4) and ( 10), we get:

= J1 (u) = J0 (u) = R R µ(x(t) + ru, rD)x(t)x ′ (t)drdt R R µ(x(t) + ru, rD)x ′ (t)drdt (19) 
We make the following change of variables:

x 1 = x(t) + ru x 2 = rD (20)
Additionally, we have dx 1 dx 2 = |-Dx ′ (t)| drdt. We recall that x ′ (t) < 0, ∀t ∈ R. Then, we have dx 1 dx 2 = -Dx ′ (t)drdt.

Hence, applying the change of variables, we get:

= J1 (u) = J0 (u) = R R µ(x 1 , x 2 ) x 1 - x 2 D u dx 1 dx 2 R R µ(x 1 , x 2 )dx 1 dx 2 (21) = c 1 - u D c 2 ( 22 
)
where c = (c 1 , c 2 ) is the center of mass of the calibration object µ. From the Eqs. ( 18) and ( 22), we have:

c 1 - u D c 2 = x 0 + v 0 t c (u) (23) 
For two different projections u 1 and u 2 , we can write the following formula using a linear combination of the Eq. ( 23).

v 0 = - u 1 -u 2 D(t c (u 1 ) -t c (u 2 )) c 2 (24) 
We do not need to know c 1 nor x 0 here but only c 2 .

Non uniform motion estimation

We now assume the conveyor belt has a non uniform motion due to mechanical instabilities. We model the variations with the time dependent function δ (t). The position of the source is then defined by:

x(t) = x 0 + v 0 t + δ (t) (25) 
The motion δ is assumed to be periodic.

δ (t) = A sin(ωt + ψ) (26) 
We assume x ′ (t) < 0, ∀t ∈ R. The DCCs can be rewritten using Eqs. ( 25) and ( 26) as:

= Jn (u) = - R = l (u,t)(x 0 + v 0 t + A sin(ωt + ψ)) n × (v 0 + Aω cos(ωt + ψ))dt (27) 
Eq. ( 27) is non-linear in A, ω, ψ for all n ∈ N. We apply the proposition 1 as in the subsection 2.3. We use the 0-order condition to estimate the parameters A, ω, ψ, c 0,0 by solving a non-linear system of equations using the Gauss-Newton algorithm based on:

-v 0 J0 (u) = c 0,0 + Aω R = l (u,t) cos(ωt + ψ)dt (28) 

Simulations

The mean velocity v 0 is assumed to be known and δ (t) is estimated by solving the Eq. ( 28). The simulation are done using the library RTK [START_REF] Rit | The Reconstruction Toolkit (RTK), an open-source cone-beam CT reconstruction toolkit based on the Insight Toolkit (ITK)[END_REF]. Our phantom is composed of two cylinders respectively with a radius of 45mm and 50mm, and of density -0.2 and 0.2. It is placed midway between the source and the detector. The source to detector distance is D = 480mm. The linear detector is composed of 500 pixels with a pitch of 0.4mm. The leftmost pixel is the pixel 0. Thus, we set its origin at u = -200mm. The moving source position is defined by x(t) = x 0 + v 0 t + A sin(ωt + ψ) where we fix The initialization of the Gauss-Newton algorithm is set close to the real solution. Often, the convergence of the Gauss-Newton algorithm is local. The parameters are therefore initially set to A = 3, ω = 42, ψ = π/8, c 0,0 = 0. The results are given in the table 1. Noticing that π/4 ≈ 0.785, we see that the estimates are quite good. In the Fig. 4, we show the estimation of the function δ (t) and the difference between the theoretical value of δ (t) and its estimates. The differences are respectively up to 25µm and 80µm for the simulations with 0% and 1% noise. Except for c 0,0 , all the parameters can be roughly estimated a priori using external tools. With different set of initial solution, we could see that the most sensitive parameter is ω. It's worthwhile noticing that the solution is not unique. Indeed, it depends on the definition interval of ψ. We have A sin(ωt + ψ + kπ) = (-1) k A sin(ωt + ψ) with k ∈ Z.

x 0 = 0mm, v 0 = -1000mm/s, A = 2, ω = 40, ψ = π/4.

Conclusion

We have adjusted the Helgason-Ludwig consistency conditions expressed in the parallel linogram geometry to a timedependent self-calibration problem. We have proven that we cannot estimate the mean velocity v 0 using the DCCs. However, we have shown that we can estimate v 0 using a priori information on center of mass of a calibration object.

We have modeled a non uniform motion with a periodical function and proposed a method to estimate the motion based on 0-order DCC. As in [START_REF] Clackdoyle | Fanbeam data consistency conditions for applications to motion detection[END_REF], we experimented that higher order moments (n ≥ 1, cf Eq. ( 27)) do not provide significant improvements. Moreover, the results can easily be extended to the 3D using multiple 2D plane as done by Nguyen et al. [START_REF] Nguyen | Automatic geometric calibration in 3d cone-beam geometry with sources on a line[END_REF]. The redundancy in the data will most likely help to get more robust estimates. Nonetheless, the results obtained in the simulations are already good enough for our needs.
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 2 Figure 2: The equivalent radiography system. The source and the detector are moving at the same speed in the opposite direction to the translation of the conveyor belt in the Fig. 1. The object is stationary.

Figure 3 :

 3 Figure 3: The parallel linogram. The object is supposed stationary and its center of mass is denoted by c. For a viewing angle φ , the offset u = D tan φ between the source and the projection point on the detector is constant. The position of the source and the projection point associated to φ are respectively (x(t), 0) and (x(t) + u, D).
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 4 Figure 4: Estimation of the motion variation δ (t) = A sin (ωt + ψ)with 0%, 1% and 3% Gaussian noise. Top: the function δ (t) and its estimates. Bottom: difference between the theoretical value of δ (t) and its estimates.

Table 1 :

 1 We acquire the projection at a rate of 2000Hz within the interval [-T /2, T /2] where we set T = 0.6s. Gaussian noise is added to the projections. The standard deviation of the noise is defined for each pixel as a percentage of its value. Results of 50 simulations with Gaussian noise added to the projections. The parameter values are A = 2, ω = 40, ψ = π/4 ≈ 0.785.

	Noise	0%	1%	3%
	A	1.988	1.976 ± 0.030	1.959 ± 0.104
	ω	39.966 39.886 ± 0.181 39.731 ± 0.688
	ψ	0.785	0.783 ± 0.007	0.775 ± 0.028