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OVER-ORDER MULTIPLICITIES AND THEIR APPLICATION IN CONTROLLING DELAY
DYNAMICS. ON ZEROS’ DISTRIBUTION OF LINEAR COMBINATIONS OF KUMMER

HYPERGEOMETRIC FUNCTIONS

ISLAM BOUSSAADA 1, 2, GUILHERME MAZANTI 1 AND SILVIU-IULIAN NICULESCU 1

Abstract. A series of recent works have shown that, for a system of linear functional differential equations, a
spectral value having a multiplicity exceeding the order of the system tends to correspond to the spectral abscissa
of the system, a property called MID for multiplicity-induced-dominancy. In particular, when this multiplicity
coincides with the degree of the characteristic quasipolynomial, this property is called generic MID (GMID), in
opposition to the intermediate MID (IMID), which corresponds to a multiplicity strictly smaller than the degree.
The GMID has been fully characterized for single-delay retarded as well as neutral delay-differential equations
thanks to the representation of the corresponding quasipolynomial in terms of a Kummer hypergeometric function.
However, apart from partial results, in full generality, no result of the literature enables the characterization of the
dominance of a spectral value having an intermediate multiplicity, which is essentially due to the lack of existing
results among the open literature pertaining to linear combinations of Kummer functions’ zeros distribution. In this
work, we overcome this difficulty and we further investigate the MID to cover the so-called over-order MID, that
is, the cases where the multiplicity is larger than the order of the corresponding differential equation.
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1. INTRODUCTION

The common feature of propagation, transport phenomena/processes and population dynamics is their time hetero-
geneity, and there exists a wide variety of mathematical models describing these dynamic behaviors in biology, physics,
economics and engineering. One of the simplest ways of capturing the said time heterogeneity of the dynamics is to use
time-delay systems represented by delay-differential equations (DDEs) under appropriate initial conditions. For the basic
theory of DDEs1, we refer to [10,25,28,30–32,36,37,39,41–43,65,69]. The classification of the DDEs2 and fundamental
properties of the solutions can be found in [39]. Although delay systems are infinite-dimensional, a first idea to prop-
erly understand and analyze their dynamics was to extend methods and techniques from ordinary differential equations

Keywords and phrases: Confluent hypergeometric functions, Whittaker function, Kummer function, zeros location, stability and stabilization, expo-
nential decay, pole placement, prescribed stabilization
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(ODEs) to DDEs, leading to some unitary viewpoint of the qualitative properties for both classes of differential equations.
Such an angle was adopted since the 1960s, and we refer to [31, 38] for further insights on the underlying methods.

In this spirit, and in the same fashion as in [31] for the presentation of the properties of the solutions of DDEs, we
adopt some terminology coming from ODEs. In particular, the order of a DDE simply means the order of the highest
derivative involved in the equation3. In the linear DDE case, the characteristic function is a quasipolynomial (see, e.g.,
[10]) and, likewise the ODE case, we can introduce the notion of degree. However, since a quasipolynomial has an infinite
number of (characteristic) roots, the meaning of its degree is slightly different. Indeed, contrarily to the polynomial case,
the degree does not determine the number of roots, it is rather related to the number of parameters of the quasipolynomial.
By exploiting the Pólya-Szegő bound [59] pertaining to the number of roots of exponential polynomials in horizontal
strips, [23] (see also [47]) showed that the maximal admissible multiplicity of a characteristic root is given by the degree
of the corresponding quasipolynomial, and, in addition to the first and second-order DDE cases discussed in [58], we can
mention a classical control example — stabilizing a second-order inverted pendulum by a delayed position feedback —,
where one may have characteristic roots at the origin with a multiplicity larger than the order of closed-loop system4 (see,
for instance, [22, 60, 63] and the references therein). Such multiple zeros are called over-order multiple (characteristic)
roots, and to the best of the authors’ knowledge, excepting some simple cases, there does not exist a systematic analysis
of such (multiple) roots, and, in particular, a better comprehension of the way they may affect the dynamics of the
corresponding dynamical system is missing.

One of the objectives of this paper is to further investigate roots with over-order multiplicity and, in particular, to
explicitly determine conditions when such a root is dominant, in the sense that it defines the spectral abscissa of the
corresponding dynamical system, i.e., the real part of the rightmost (characteristic) root. The latter property is called
multiplicity-induced-dominancy (MID). Although the existence of multiple characteristic roots for first-order DDEs was
emphasized since the end of the 1940s, the first systematic study in the parameter-space for the first- and second-order
DDEs (both retarded and neutral cases) including a single delay (delay equal to one) can be found in [58]. It should be
mentioned that Pinney observed that the characteristic roots with the highest (possible) multiplicity can also exhibit the
greatest real part5, which, in our terminology, corresponds to the MID property. Namely, in order to avoid oscillations
with the ambition of getting the maximum damping of all transient solutions, the author emphasized the difficulty of the
problem and studied the triple (dominant) roots in the first-order neutral and quintuple (dominant) in the second-order
neutral DDE cases, respectively. It should be pointed out that the proposed approach, which is quite close to the so-called
D-decomposition method introduced by Neimark [54], cannot be simply extended to more general classes of DDEs. For a
better understanding of the complexity of the analysis, we refer to the study of the over-order MID property for first-order
neutral DDEs with a single delay in [11], where the authors proved the dominance by exploiting the explicit (frequency)
bound for the imaginary part of the unstable (characteristic) roots6.

For DDEs of arbitrary order, the MID property was proven in the generic case (i.e., the over-order multiplicity is equal
to the degree of the quasipolynomial, a situation known as GMID for generic MID) in [47] (retarded case) and in [15]
(unified treatment of retarded and neutral cases). In fact, the authors of these papers have shown that the GMID problem
can be reduced to (i) solving an appropriate linear system of equations, and (ii) deriving an appropriate factorization of the
corresponding quasipolynomial. Finally, the dominance is proved by exploiting the properties of Kummer hypergeometric
functions. For a good introduction to hypergeometric functions, we refer to [26, 34, 70]. As discussed in [16], it should
be mentioned that new interpretations of the Padé approximation of the exponential function based on the location of the
zeros of Kummer functions with real parameters have been emphasized in [17]. Finally, for an overview of some of the

3In this context, the terminology of differential-difference equations introduced by Bellman and Cooke [10] should be mentioned. The authors made
an explicit distinction between the differential order, corresponding to the highest derivative order appearing in the equation, and the so-called difference
order, corresponding to the number of distinct (time) arguments appearing in the (same) equation minus one; for further arguments concerning the
terminology, see, for instance, [56] and the references therein.

4For instance, in the inverted pendulum case, we may have one triple characteristic root at the origin of the linearization of the dynamical system in
closed-loop represented by a second-order DDE.

5More precisely, the reader is referred to Chapters 3 (characteristic equations), 4 (first-order DDE) and 5 (second-order DDE) in [58].
6Complex characteristic roots located in the right half-plane.
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methods for the characterization of the behavior of the (characteristic) multiple roots of linear DDEs in the parameter
space7, we refer to [56].

In this paper, following several references on the topic [11,15,47,56,58], we will focus on the analysis of scalar DDEs
with a single delay. This is motivated by the fact that, despite its simple appearance, the single-delay case is subtle to
analyze and there are still many open problems concerning the MID property in this setting, some of which are the subject
of this paper. The situation is much more delicate in the presence of multiple delays and extensions of the single-delay
results to such a more general setting are far from being trivial. We mention the recent results from [35] dealing with the
MID property for a first-order scalar DDE with two delays; its generalization to a non-scalar or higher-order setting is an
open problem.

The interest for a deeper understanding and an explicit characterization of the MID property for more general classes of
dynamical systems represented by DDEs emanates from the control area. As discussed in [55,64], starting with the 1950s,
in engineering applications, delay was commonly associated to instability, oscillations and bad behaviors in dynamical
systems, and there is an abundant literature on the elaboration of criteria allowing to guarantee the exponential stability of
the systems independently of the size of the delay. However, some results showed that the delay, as a control parameter
can be useful for improving the stability and/or the behavior of linear dynamical systems, see, for instance, the so-called
proportional minus delay controller [66, 67] or the output delay feedback that stabilizes some oscillatory systems [1].
Furthermore, as highlighted by [44]8, increasing the delay is not necessarily associated with instability and there are cases
where a larger delay may induce stability even though the property does not necessarily hold for “small” delay values.

As a consequence of the discussion above, understanding the dependence of the characteristic roots with respect to the
system parameters is essential. Several methods/techniques grouped together under the title eigenvalue-based approaches
have been the subject of several contributions, see, for instance, [51] and the references therein. These methods use and
exploit the duality between two types of methods for solving eigenvalue problems: one nonlinear in finite dimension and
the other linear in infinite dimension and, as a consequence, to better characterize the properties of the spectral abscissa
with respect to system parameters, and reinforce the interest in using the delay as a control parameter.

The continuous dependence of the characteristic roots on the controller parameters represents an interesting property.
For instance, the so-called continuous pole placement proposed in [50] in the retarded case uses such a continuity property
and explicitly uses the fact that, in the retarded case, the number of unstable roots is finite together with an appropriate
monitoring of the characteristic roots with a “large” real part. Another extension of the pole placement method is the
so-called partial pole placement method, which simply employs the degree of the quasipolynomial and the MID property
mentioned above. First, the degree of the quasipolynomial gives an upper bound on the number of functional equations to
be taken into account in the appropriate tuning of the controller gains. Second, the MID property gives a guarantee for the
decay rate of the solutions of the closed-loop system. This control method was discussed in [47] (retarded case) and [15]
(retarded and neutral cases) in the case of maximal admissible multiplicity. A few recent results showed that this property
holds for other over-order multiplicities and, in particular, in the case of the lowest over-order multiplicity, we refer to [8]
(in the case of real-rooted plants) and [18] (by exploiting the frequency bound). To the best of the authors’ knowledge,
there does not exist an explicit characterization of the partial pole placement in the case of over-order multiplicity. The
method proposed in this paper enables the handling of such a problem in its generality.

To summarize, the aim of this paper is to address such MID spectral problems and to propose a new method that could
also encompass over-order (algebraic) multiplicities with the guarantee of dominance of the corresponding spectrum. As
the GMID property has already been extensively consider in the literature, we will focus here on the case of intermediate
multiplicities, known as intermediate MID or IMID. More precisely, the contribution of the paper is threefold: first, to
further investigate over-order MID cases. Roughly speaking, if the problem of multiplicity can be reduced to solving an
appropriate system of functional equations, the dominance requires a deeper analysis and an appropriate understanding
of the way the changes in the parameters may affect the spectrum distribution. As shown below, a central role is played
by the so-called elimination-produced function (see Section 3), and its interest clearly appears in a control setting in
terms of degrees of freedom induced by the system structure and the (controller) gains selection. Next, the appropriate
tool for proving the dominancy is the Green–Hille (integral) transformation introduced by Hille one century ago [40]

7also including the delays (seen as parameters)
8The corresponding method is known as the τ -decomposition method, see, e.g., [51] for a deeper discussion on such topics.



4

for characterizing the location of the non-asymptotic zeros of (degenerate) Whittaker hypergeometric functions. For an
introduction to confluent hypergeometric functions, we refer to [26]. A motivating example (first-order neutral DDEs of
degree three representing the closed-loop dynamics of a transport equation subject to a stabilizing boundary proportional-
integral (PI) action, see Section 2) helps to a better understanding of the existing links between over-order MID (double
characteristic root in this case) and Hille’s method.

It should be noted that the elimination-produced function represents a novelty and generalizes some of the ideas pro-
posed earlier by the authors of this paper. In particular, we recover some of the cases when this function reduces to a
polynomial, called elimination-produced polynomial (see Section 3). Next, we further exploit the properties of Kummer
hypergeometric functions to handle the dominance property for over-order multiplicities leading to a more unified treat-
ment. Second, as a byproduct of the analysis proposed in this paper, the location of zeros of linear combination of Kummer
(hypergeometric) functions can be derived, and these results allow exploiting MID ideas into a different frame and more
precisely in the case of contiguous (degenerate hypergeometric) functions (see, for instance, [57] for further details and
related definition). Finally, we use the over-order MID to the control of dynamical systems by using the so-called partial
pole placement method that simply consists in assigning a given multiplicity of a spectral value for the closed-loop system
by an appropriate choice of the controller gains with the guarantee of the exponential stability of the closed-loop system
solution with a prescribed rate given by this spectral value. To the best of the authors’ knowledge, such ideas represent a
novelty in the open literature.

Some illustrative case studies show the effectiveness of the method, see for instance [7,27,52]. In fact we consider two
control problems of two classes of infinite-dimensional systems whose dynamical equations can be represented by DDEs:
the control of a transonic flow in a wind tunnel9 and the control of a first-order unstable plant including a communication
delay in the input/output channel by using a “standard” PID control law.

The remaining of the paper is organized as follows: Prerequisites on degenerate hypergeometric functions, a motivat-
ing example (controlling transport equation by a PI controller), the problem formulation, and definitions of over-order
multiplicities are presented in Section 2. The methodology for the study of the over-order multiplicities as well as some
control perspectives are proposed in Section 3. Next, Section 4 includes two illustrative examples and briefly presents the
software P3δ covering the over-order multiplicity. Finally, some concluding remarks end the paper.

Notation. Throughout the paper, the following notations are used: N∗, R, C denote the sets of positive integers, real
numbers, and complex numbers, respectively, and we set N = N∗ ∪ {0}. For a complex number λ, ℜ(λ) and ℑ(λ)
denote its real and imaginary parts, respectively. The open left and right complex half-planes are the sets C− and C+,
respectively, defined by C− = {λ ∈ C | ℜ(λ) < 0} and C+ = {λ ∈ C | ℜ(λ) > 0}. Given k, n ∈ N with k ≤ n, the
binomial coefficient

(
n
k

)
is defined as

(
n
k

)
= n!

k!(n−k)! and this notation is extended to k, n ∈ Z by setting
(
n
k

)
= 0 when

n < 0, k < 0, or k > n. For α ∈ C and k ∈ N, (α)k is the Pochhammer symbol for the ascending factorial, defined
inductively as (α)0 = 1 and (α)k+1 = (α+ k)(α)k.

2. PREREQUISITES AND PROBLEM FORMULATION

This section provides a brief presentation of the definitions and results that shall be of use in the sequel.

2.1. Dynamical systems with delay

Consider the linear time-invariant (LTI) dynamical system described by the following DDE including a single delay:

y(n)(t) +

n−1∑
k=0

αky
(k)(t) +

m∑
k=0

βky
(k)(t− τ) = 0, (1)

under appropriate initial conditions, where y(·) is the real-valued unknown function, τ > 0 is the delay, and α0, . . . , αn−1,
β0, . . . , βm are real coefficients. The DDE (1) is said to be of retarded type if m < n, or of neutral type if m = n. It

9under the assumption that the flow is uniform across every cross section and the tunnel is a one-dimensional tube of varying cross-sectional area,
leading to a a coupled model of nonlinear partial differential equations in one space dimension
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should be mentioned that these classes of dynamical systems (retarded, neutral) depict different properties. For instance,
in the linear case, only point spectrum exists in the retarded case. In the neutral case, excepting the point spectrum, the
corresponding system possesses also essential spectrum, making the analysis more involved. We refer to [10], [39], [51]
for a deeper discussions on the classification of DDEs and related results and properties. Notice that (1) represents a
particular case of the following matrix form:

ξ̇(t) +Bτ ξ̇(t− τ) = A0ξ(t) +Aτξ(t− τ) (2)

where ξ = (y(t), y′(t), . . . , y(n−1)(t))T ∈ Rn is the state vector and A0, Aτ , Bτ ∈ Mn(R) are real-valued matrices
which can be easily constructed from (1).

The characteristic function associated with (1) is the quasipolynomial ∆: C → C defined by

∆(λ) := P0(λ) + e−λτPτ (λ), (3)

where P0, Pτ are polynomials with real coefficients given by:
P0(λ) := λn +

n−1∑
k=0

αkλ
k,

Pτ (λ) :=

m∑
k=0

βkλ
k.

(4)

It is well-known that the exponential stability of the trivial solution of (1) is given by the location of the characteristic
roots of ∆, see, e.g., [10, 51]. For DDEs, we have infinitely many such roots.

As discussed in [23], the degree of the quasipolynomial ∆, denoted by deg(∆), is nothing else than the Pólya–Szegő
bound [59] and, in our case, deg(∆) = n+m+ 1 and it is larger than the degree of the polynomials P0 and Pτ and the
order n of the delay-free ODE. As indicated in the Introduction, deg(∆) is nothing else than the number of the parameters
of the DDE (1), that is, the number of coefficients of the polynomials P0 and Pτ . Finally, it follows from the Pólya–Szegő
bound that the quasipolynomial degree corresponds also to the maximal allowable multiplicity that a characteristic root
of (3) may have. To reach such a bound, the characteristic root should be real.

2.2. Degenerate hypergeometric functions and the corresponding contiguous relations

To develop our results, we need to use some properties of classical hypergoemetric functions. The first such a function
we introduce is the Kummer (confluent) hypergeometric function, which, for a, b ∈ C such that −b /∈ N, is the entire
function Φ(a, b, ·) : C → C defined by the series

Φ(a, b, z) :=

∞∑
k=0

(a)k
(b)k

zk

k!
. (5)

The series in (5) converges for every z ∈ C and, as presented in [26, 34, 57], it satisfies the (second-order) Kummer
differential equation

z
∂2Φ

∂z2
(a, b, z) + (b− z)

∂Φ

∂z
(a, b, z)− aΦ(a, b, z) = 0. (6)

As discussed in [26, 34, 57], for every a, b, z ∈ C such that ℜ(b) > ℜ(a) > 0, Kummer functions also admit the integral
representation

Φ(a, b, z) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0

eztta−1(1− t)b−a−1 dt, (7)

where Γ denotes the Gamma function. This integral representation has been exploited in [47] to characterize the spectrum
of some DDEs of retarded type.
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Notice that Kummer functions satisfy some recurrence relations often called contiguous relations, see for instance [57].
In particular, in our case, the following relations are of interest.

Lemma 1 ([57, p. 325]). Let a, b, z be three complex numbers with a ̸= b and z ̸= 0. The following relations hold:

Φ(a, b+ 1, z) =
−b (a+ z) Φ(a, b, z) + abΦ(a+ 1, b, z)

z (a− b)
,

Φ(a+ 1, b+ 1, z) = −−bΦ(a+ 1, b, z) + bΦ(a, b, z)

z
.

(8)

Kummer confluent hypergeometric functions have close links with Whittaker functions. More precisely, for k, l ∈ C
with −2l /∈ N∗, the Whittaker function Mk,l is the function defined for z ∈ C by

Mk,l(z) := e−
z
2 z

1
2+lΦ( 12 + l − k, 1 + 2l, z) (9)

(see, e.g., [57]). Note that, if 1
2 + l is not an integer, the function Mk,l is a multi-valued complex function with branch

point at z = 0. The nontrivial roots of Mk,l coincide with those of Φ( 12 + l − k, 1 + 2l, ·) and Mk,l satisfies the
(second-order) Whittaker differential equation

d2φ

dz2
(z) =

(
1

4
− k

z
+

l2 − 1
4

z2

)
φ(z). (10)

Since Mk,l is a nontrivial solution of the second-order linear differential equation (10), any nontrivial root of Mk,l is
necessarily simple.

2.3. Some insights on linear combinations of two Kummer functions

Notice that, beyond the standard contiguous relations recalled in Lemma 1 and the other contiguous relations from
[57, p. 325], to the best of the authors’ knowledge, there does not exist any result describing the distribution of the
non-asymptotic zeros of linear combinations of Kummer functions.

The next result, which is established and shown in [18], provides a partial step towards our goal, by giving a non-
autonomous second-order differential equation having a given linear combination of two Kummer functions as a solution.

Lemma 2. Let a, b be two complex numbers and α and β two real numbers. Then the complex function F defined by

F (z) := αΦ(a, b, z) + β Φ(a, b+ 1, z), (11)

with z /∈ {0, β(β+α)b2

((a−b)α−βb)α}, satisfies the second-order differential equation

d2φ

dz2
(z) +Q(z)

dφ

dz
(z) +R(z)φ(z) = 0, (12)

where

Q(z) := −1 +
b+ 1

z
− α (aα− αb− βb)

D(z)
, (13)

R(z) := −N(z)

D(z)
, (14)

with

N(z) := a
((
(a− b)α2 − αbβ

)
z − βb (b+ 1)α

)
− a b2β2,

D(z) :=
(
(a− b)α2 − αbβ

)
z − α b2β − b2β2.



7

Lemma 2 can be proved by using a simple property of Φ, namely, ∂Φ
∂z (a, b, z) =

a
bΦ(a + 1, b + 1, z), which follows

immediately from (5), and exploiting the contiguous relations from Lemma 1. In the sequel, we shall refer to functions F
of the form (59) as Kummer-type functions.

Note that Whittaker functions are defined in terms of Kummer functions in (9) by using the multiplicative factor
e−

z
2 z

1
2+l, thanks to which the Whittaker differential equation (10) has no first-order term. We now proceed similarly from

Kummer-type functions in order to define Whittaker-type functions. The next lemma can be shown by straightforward
computations.

Lemma 3. Let a, b be two complex numbers, α, β be two real numbers, F be the function defined in (11), and Q and R
be given by (13) and (14), respectively.

Let Q be a primitive of Q
2 and define the function W by

W (z) := eQ(z)F (z). (15)

Then W satisfies the second-order differential equation

d2W

dz2
(z) +G(z)W (z) = 0, (16)

where

G(z) := R(z)− (Q(z))2

4
− 1

2

dQ

dz
(z). (17)

In the sequel, we refer to functions W of the form (15) as Whittaker-type functions.
As discussed previously, beyond the standard contiguous relations, to the best of the authors’ knowledge, there does

not exist any result describing the distribution of the non-asymptotic zeros of linear combinations of Kummer functions.

2.4. Hille oscillation theorems

In [40], Hille studied the distribution of zeros of functions of a complex variable satisfying linear second-order homo-
geneous differential equations with variable coefficients, as is the case for the degenerate Whittaker function Mk,l, which
satisfies (10). Thanks to an integral transformation defined there and called Green–Hille transformation, and some further
conditions on the behavior of the function, Hille showed how to discard regions in the complex plane from including
complex roots. Consider, for instance, the general homogeneous second-order differential equation

d

dz

[
K(z)

dφ

dz
(z)

]
+G(z)φ(z) = 0, (18)

where z is complex and the functions G and K are assumed analytic in some region Ω such that K does not vanish in
that region. Equation (18) can be written in Ω as a second-order system on the unknown functions φ1(z) = φ(z) and
φ2(z) = K(z) dφ

dz (z), and the Green–Hille transformation consists on multiplying the equation on φ1 by φ2(z), that on
φ2 by φ1(z), and integrating on z along a path in Ω, which yields

[
φ1(z)φ2(z)

]z2
z1

−
∫ z2

z1

|φ2(z)|2
dz

K(z)
+

∫ z2

z1

|φ1(z)|2G(z) dz = 0, (19)

where z1, z2 ∈ Ω and both integrals are taken along the same arbitrary smooth path in Ω connecting z1 to z2.
The following result, which is proved in [17] using the Green–Hille transformation from [40], gives insights on the

distribution of the non asymptotic zeros of Kummer hypergeometric functions with real arguments a and b.

Proposition 2.1 ([17]). Let a, b ∈ R be such that b ≥ 2.
(1) If b = 2a, then all nontrivial roots z of Φ(a, b, ·) are purely imaginary.
(2) If b > 2a (resp., b < 2a), then all nontrivial roots z of Φ(a, b, ·) satisfy ℜ(z) > 0 (resp., ℜ(z) < 0).
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(3) If b ̸= 2a, then all nontrivial roots z of Φ(a, b, ·) satisfy

(b− 2a)2ℑ(z)2 − (4a(b− a)− 2b)ℜ(z)2 > 0.

Remark 1. It should be noted that a quasipolynomial admitting a characteristic root with intermediate multiplicity neces-
sarily shares its remaining roots with an appropriate linear combination of Kummer functions. Unfortunately, to the best
of the authors’ knowledge, there does not exist any general result in the open literature to describe the distribution of the
non-asymptotic zeros of such a function combination.

2.5. Delay systems frequency bound in the right half-plane

Despite the unquestionable interest and insights of the Hille oscillation theorem [40] and the Green–Hille transform in
discarding regions in the complex plane from containing zeros of a meromorphic function which is a solution of a given
second-order differential equation, such an approach lacks effectiveness from the numerical point of view.

In this preliminary subsection, we provide a numerical-oriented alternative for the Green–Hille transform leading to
an effective algorithm that we are explicitly using in our framework. In this sense, we first establish conditions on the
system’s parameters which guarantee the existence of a multiple root. Second, perform an affine change of variable in the
characteristic equation ∆(λ) = P0(λ)+Pτ (λ) e−λ τ in order to reduce the corresponding quasipolynomial to a normalized
form: ∆̃(z) = P̃0(z)+ P̃τ (z) e−z . Next, we derive a bound on the imaginary part of roots of the normalized characteristic
function in the complex right half-plane. Lastly, a certification of the dominance of the multiple root is demonstrated. In
what follows, Algorithm 1 lists the steps to be followed to reach a suitable frequency bound (see [12, 48]).

Algorithm 1 Estimation of the MID frequency bound in delay-differential equations (DDEs) with single delay

Require: ∆̃(z) = P̃0(z) + P̃τ (z) e−z // Normalized quasipolynomial
// Initialization
ord = 0
// ord: order of truncation of the Taylor expansion of e2 x = 1︸︷︷︸

ord=0

+2x︸ ︷︷ ︸
ord=1

+2x2 + 4 x3

3
+ · · ·

dominance = false
∃ z0 = x+ ι̇ω ∈ R∗

+ + ι̇R∗
+ s.t. ∆̃(z0) = 0

|P̃0(x+ ι̇ω)|2 e2 x = |P̃τ (x+ ι̇ω)|2
while ∼ dominance do

ord = ord+1
F (x, ω) = |P̃τ (x+ ι̇ω)|2 − |P̃0(x+ ι̇ω)|2 Tord(e2 x) > 0
// Tord(e2 x): Taylor expansion of e2 x of order = ord

ω2 = Ω
H(x,Ω) // The polynomial characterizing the real roots of F

end while
Ωk(x) // kth real root of H , depend on free parameters
if maxx(maxk(Ωk(x))) < π2 then

dominance = true
end if
return Frequency bound

2.6. Multiplicity-induced-dominancy property in DDEs and related topics

As briefly explained in the Introduction, a characteristic root λ0 (of ∆) satisfies the MID property if
(i) its algebraic multiplicity (denoted M = M(λ0)) is larger than one,
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(ii) it is dominant in the sense that the remaining characteristic roots λ of the spectrum satisfy the condition ℜ(λ) ≤
ℜ(λ0).

Since the maximal allowable multiplicity is defined by the degree of the quasipolynomial ∆ (see, e.g., [47]), it is clear
that the multiplicity M satisfies the inequalities 2 ≤ M ≤ deg(∆). The case M = deg(∆) is called generic multiplicity,
and the MID property in this case is called generic MID (GMID), while any multiplicity larger than one and smaller
than deg(∆) denotes an intermediate multiplicity, the MID property being called intermediate MID (IMID) in this case.
Regarding these intermediate multiplicities, when compared to deg(P0) = n, there are three sub-cases:

(i.1) sub-order multiplicity, if 1 < M < n = deg(P0),
(i.2) M = n,
(i.3) over-order multiplicity, if 1 + deg(P0) = 1 + n ≤ M ≤ deg(∆).

The names of the notions of sub-order and over-order multiplicities can be easily understood after recalling that deg(P0) =
n is the order of the DDE (1). The “limit” case when the multiplicity is equal to the order n simply represents an
intermediate multiplicity.

With these definitions and notations, the smallest over-order multiplicity is given by one added to the degree of the
polynomial P0, and the largest is given by the degree of the characteristic function ∆ and it corresponds to the so-called
generic multiplicity. Property (ii) above states that λ0 should be the rightmost root of the spectrum and defines the spectral
abscissa of the corresponding quasipolynomial ∆ (see, for instance, [51] and the references therein).

For a better understanding of the notions above, consider the following simple example. In the case of second-order
DDEs of retarded type including one delay with deg(P0) = 2, deg(P1) = 1, we have deg(∆) = 4. Thus, in this case,
the generic multiplicity is four, the intermediate multiplicities are two and three, and the only over-order multiplicities
are three and four since the order of the DDE is two. In this configuration, the only sub-order multiplicity is one (simple
roots), and this simply means that, in this configuration, there does not exist any sub-order multiple characteristic root.

With the notations and the definitions above, our main objective is to address the MID property in the case of over-
order multiplicities. It should be mentioned that the generic case, i.e., M(λ0) = deg(∆), was already treated and explicit
characterizations exist. More precisely, the retarded case m = n − 1 was characterized in [47] and a unified treatment
of the retarded and neutral cases, where n − 1 ≤ m ≤ n, was provided in [15]. For proving the dominancy, both
characterizations [15, 47] use the properties of Kummer and Whittaker hypergeometric functions. In the sequel, we thus
focus on over-order intermediate multiplicities.

To the best of the authors’ knowledge, in the open literature, the MID with over-order multiplicities has been addressed
in two particular configurations, M(λ0) = n+1 and M(λ0) = n+m. More precisely, in the “limit” case M(λ0) = n+1,
sufficient conditions for their validity have been proposed in [8], where the authors exploited the particular spectrum
location of the open-loop plant. Finally, by using a different argument inspired by the Green–Hille transformation, [18]
treated the case M(λ0) = n+m corresponding to the other “limit” case. Finally, it should be mentioned that in the case
of second-order DDEs of retarded type with a single delay, these two limits cases coincide and they were treated in [24].

2.7. Motivating example: Boundary control of the transport equation

To illustrate the use of the MID property for hyperbolic PDE control purposes, let us revisit the problem of high-
volume, multistage continuous production flow through a re-entrant factory control [5, 29], which, in its linear version,
amounts to the problem of exponential stabilization of the standard scalar conservation law

∂tφ(t, x) + η ∂xφ(t, x) = 0, t ∈ [0, ∞), x ∈ (0, L), (20)

that is, a linear transport equation where φ(t, x) represents the density or the concentration at position x ∈ (0, L), with
L > 0, and in time t ∈ [0,+∞) of the corresponding physical quantity of interest. Under the assumption that the diffusion
is neglected, the linear mapping φ 7→ ηφ, with η > 0 defines the flux function10. Finally, the quantity η represents the
so-called advection speed or the velocity of propagation.

10linear convection in this case
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In view of the boundary control of the dynamics of (20), [29] uses the standard PI controller

φ(t, 0) = kp φ(t, L) + ki

∫ t

0

φ(ν, L)dν, (21)

where kp and ki are the feedback parameters representing proportional and integral control gains. Applying the Laplace
transform in time to (20)–(21), one gets, after multiplication by λ, the characteristic function 11

∆(λ) = λ− (ki + kpλ)e−
L
η λ, (22)

which is a quasipolynomial of neutral type with the delay given by the ratio between the length and the speed of propaga-
tion, L/η.

As discussed in the previous sections, the degree of the quasipolynomial ∆ is equal to 3. Recall also that, thanks
to the results from [15], the maximal multiplicity can be achieved only by a real root. Furthermore, if such a maximal
multiplicity is reached, the GMID property holds and the corresponding triple characteristic root λ0 = − 2 η

L is necessarily
the spectral abscissa. Despite the interest of this property from a purely analytic view point, a control implementation
based on the GMID lacks of robustness, see for instance [49]. As a matter of fact, for the sake of robustness with respect
to the model’s parametric uncertainties, it appears that it will be more appropriate to relax constraints on the choice of
the closed-loop spectral abscissa. This can be carried out using the IMID property by assigning a root with an over-order
intermediate multiplicity (in this case, multiplicity two).

Proposition 2.2. For any λ0 satisfying −η/L < λ0 < 0, the PI controller given by

ki = −λ2
0L e

Lλ0
η

η
, kp =

e
Lλ0
η (Lλ0 + η)

η
(23)

stabilizes the system (20). Furthermore, the intermediate MID property holds for the double root λ0, which gives the
exponential decay rate of the closed-loop system.

Remark 2. Since deg(∆) = 3 and the order of the delay-free ODE is one (first-order case), it is easy to observe that
the double root λ0 represents the only possible over-order multiple root and, in this case, the largest over-order and the
smallest over-order multiplicities coincide. Furthermore, since we are in the first-order case, there does not exist any
sub-order multiple root, and the characteristic roots of order one correspond to the simple roots of the characteristic
function.

Before providing the proof of Proposition 2.2, let us consider the generic quasipolynomial ∆: C → C defined by

∆(λ) = λ+ α0 + e−λτ (β1λ+ β0). (24)

This corresponds to the first-order neutral systems studied in [11]. In this case, deg(∆) = 3 and we are interested
in the dominance of roots attaining the intermediate multiplicity 2 which, as explained above, represents an over-order
multiplicity.

A number λ0 ∈ R is a characteristic root of multiplicity at least 2 of ∆ if and only if the coefficients β1 and β0 satisfy

β1 = −eλ0τ (1 + (α0 + λ0)τ) ,

β0 = eλ0τ ((α0 + λ0)λ0τ − α0) .
(25)

We first remark that, under conditions (25), (24) can be rewritten as

∆(λ) = λ+ α0 − e−(λ−λ0)τ ((α0 + λ0)(λ− λ0)τ + λ+ α0) .

11Closed-loop characteristic function of a first-order DDE of neutral type (m = n = 1).
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We perform the change of variables in C corresponding to the new variable z = τ(λ − λ0). More precisely, consider
∆̃(z) = τ∆(λ0 +

z
τ ), which satisfies

∆̃(z) = z + α− e−z (z(1 + α) + α) ,

where α = τ(α0 + λ0). Note that λ0 is a dominant root of (24) if and only if 0 is a dominant root of ∆̃.
A straightforward computation shows that

∆̃(z) = z2
∫ 1

0

[1 + α− α(1− t)] e−ztdt,

and thus, using the integral representation (7) of Kummer functions, we deduce that

∆̃(z) = z2
[
(1 + α)Φ(1, 2,−z)− α

2
Φ(1, 3,−z)

]
. (26)

Let F : C → C be the function defined by

F (z) := (1 + α)Φ(1, 2, z)− α

2
Φ(1, 3, z).

Thanks to (26), the root at the origin, z = 0, is a dominant root of ∆̃ if and only if all roots of F have non-negative real
part. To study the sign of the real part of the roots of F , we apply Hille’s method as described in Section 2.2. Notice first
that, by Lemma 2, F satisfies the second-order equation (12) with α replaced by 1 + α and β replaced by −α

2 . We now
perform a transformation similar to that used to obtain Whittaker functions from Kummer functions. More precisely, we
multiply F by a function of z in such a way that the second-order ODE satisfied by the product has no first-order term.
This can be achieved introducing the Whittaker-type function

W (z) :=
e−z/2z3/2√

(1 + α)z − α(α+ 2)
F (z),

which satisfies
d2W

dz2
(z) +G(z)W (z) = 0, (27)

where G is given by

G(z) := − (α+ 1)2z4 − 2α(α+ 1)(α+ 2)z3 + α2(1 + (α+ 1)2)z2 + 2α3(α+ 2)z + 3α2(α+ 2)2

4z2((α+ 1)z − α(α+ 2))2
. (28)

Note that G can be rewritten as

G(z) = − 1

4
− 3

4z2
− 3(α+ 1)2

4((α+ 1)z − α(α+ 2))2

− α2 + 3α+ 3

2α(α+ 2)z
+

(α+ 1)(α2 + 3α+ 3)

2α(α+ 2)((α+ 1)z − α(α+ 2))
.

Applying Hille’s method to (27), we obtain, by taking in (18) z1 = 0 and z2 equal to a root z∗ of F , that∫ z∗

0

|W ′(z)|2dz =

∫ z∗

0

|W (z)|2G(z)dz.
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We choose as integration path the line segment from 0 to z∗. Hence

z∗

∫ 1

0

|W ′(tz∗)|
2
dt = z∗

∫ 1

0

|W (tz∗)|2G(tz∗)dt.

Taking the real part, we get

x∗

∫ 1

0

|W ′(tz∗)|
2
dt =

∫ 1

0

|W (tz∗)|2ℜ [z∗G(tz∗)] dt,

where x∗ = ℜ(z∗) and y∗ = ℑ(z∗).
So, a sufficient condition for F to admit only roots with positive real part is that

ℜ
[
−z

4
− 3

4t2z
− 3z(α+ 1)2

4((α+ 1)tz − α(α+ 2))2
− α2 + 3α+ 3

2α(α+ 2)t
+

z(α+ 1)(α2 + 3α+ 3)

2α(α+ 2)((α+ 1)tz − α(α+ 2))

]
≥ 0, (29)

for every t ∈ (0, 1) and z ∈ C−, where α = (a+ λ0)τ . Then λ0 is a dominant root of ∆, i.e., ℜ(λ) ≤ λ0 for every root
λ of ∆.

As emphasized in the previous sections, Hille oscillation method provides only sufficient conditions. In the following
proof, we exploit instead the algorithmic alternative provided in Section 2.5.

Proof of Proposition 2.2. Using a standard elimination procedure (thanks to the linear dependency of the quasipolynomial
with respect to its parameters) allows to show that a real number λ0 is a root of multiplicity 2 of ∆ if and only if the PI
gains kp and ki satisfy (23). Thus, the characteristic function can be written as

∆̃(z) = P̃0(z) + P̃τ (z)e−z, (30)

where P̃0(z) = z+ ρ, and P̃τ (z) = (−ρ− 1) z− ρ, with ρ = Lλ0/η. A necessary condition for the exponential stability
is given by the stability of the corresponding delay-difference operator (see, e.g., [39]). Thus, ρ should verify |ρ+ 1| < 1,
that is ρ ∈ (−2, 0). Next, ∆̃ in (30) can be written as

∆̃(z) = z2
∫ 1

0

qρ(t) e
−tz dt where qρ(t) = ρ t+ 1. (31)

In our approach, qρ should keep a constant sign for t ∈ (0, 1), which happens if an only if ρ ≥ −1, and then we concentrate
in the interval of interest ρ ∈ (−1, 0). Next, one follows the steps of Algorithm 1. By setting z0 = x0+ iω0 ∈ R++ iR+

as a root of ∆̃(z), we have
|P̃0(x0 + iω0)|2e2 x0 = |P̃τ (x0 + iω0)|2.

Since e2 x > 1 + 2x for any x ∈ R+, the real-valued function Fρ(x, ω) =
∣∣∣P̃τ (x+ iω)

∣∣∣2 − |P̃0(x + iω)|2 (1 + 2x)

satisfies Fρ(x0, ω0) > 0. In fact, Fρ is nothing but the following quadratic polynomial in (real) ω

Fρ(x, ω) = bρ(x)ω
2 + cρ(x), (32)

where bρ = −2x+ 2 ρ+ ρ2, cρ = −2x3 +
(
ρ2 − 2 ρ

)
x2. By setting x± = ρ2

2 ± ρ, one easily checks that Fρ is positive
for x ∈ (x+, x−) if ρ ∈ (−1, 0).

The next step consists in characterizing the frequency bound for potential unstable roots if ρ ∈ (−1, 0). Since the
discriminant of Fρ defined in (32) is positive, then Fρ admits two real roots,

ω±
ρ (x) := ∓

√
− (ρ2 + 2 ρ− 2x) (ρ2 − 2 ρ− 2x)x

ρ2 + 2 ρ− 2x
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where ω+
ρ denotes the greatest solution. Since ρ ∈ (−1, 0) and x > 0, ω+

ρ is upper bounded with respect to ρ by the

parameter-free expression ω+(x) = x
√
−4 x2+3
1+2 x , which reaches a maximum value at x∗ =

√
3
2 . Thus, ω = ω+

ρ (x) ≤
ω+(x∗) ≈ 0.5899 < π. In other words, all unstable solutions zu of ∆̃ should satisfy the condition 0 < ℑ(zu) < π.

Finally, by a contradiction argument, one assumes that such an unstable root zu exists. Then, the integral representation
yields

∫ 1

0
(ρ t+ 1) e−t zu dt = 0, the imaginary part of which is

∫ 1

0
t (ρ t+ 1) e−t x sin(ω t)dt = 0. Now, the frequency

bound 0 < ω ≤ π of the previous step entails that the function t 7→ t (ρ t+ 1) e−x t sin(ω t) is strictly positive in (0, 1),
thereby contradicting the last equality. This ends the proof. □

FIGURE 1. Numerical simulation of a solution of (20)–(21) satisfying (23) with parameters L = 1 and
η = 1 and initial condition φ(0, x) = sin(πx).

As an illustration of Proposition 2.2, Fig. 1 represents a solution φ of (20) under the PI controller (21) with parameters
ki and kp computed from (23) with the choice λ0 = − η

2L . The numerical solution was computed using a standard finite
difference upwind scheme to discretize (20) and using Simpson’s rule to approximate the integral in (21).

2.8. Problem formulation

As emphasized in the Introduction, the aim of this paper is to further exploit the zeros distribution of linear combination
of Kummer/Whittaker functions in the control of dynamical systems represented by DDEs by using the partial pole
placement. As a matter of fact, our goal is to characterize quasipolynomials with multiple roots as a particular linear
combinations of Kummer functions

∑M−1
k=0 ζk Φ(a, b+ k,−z). Next, for a prescribed λ0, we aim to establish conditions

discarding the right half-plane {λ ∈ C | ℜ(λ) > λ0} from containing zeros of such functions. This step allows to show
the validity of the MID property with over-order intermediate multiplicities, i.e., to show the dominancy of the multiple
root among the set of all the remaining zeros of the considered quasipolynomial.

Consider now the DDE (1) and its characteristic function

∆: C → C, ∆(λ) := P0(λ) + Pτ (λ)e−λτ ,
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where deg(P0) = n, deg(Pτ ) = m ≤ n. As indicated in [23], deg(∆) = n+m+ 1.
The problem addressed in this paper can be formulated as follows: finding conditions on the parameters of the dynam-

ical system (1) such that a (real) characteristic root λ0 with intermediate algebraic multiplicity n+1 ≤ M(λ0) ≤ n+m
satisfies the MID property, i.e., it corresponds to the rightmost characteristic root.

3. MAIN RESULTS

With the definitions, notations and prerequisites above, we are now able to state our main results.

3.1. Necessary and sufficient conditions guaranteeing multiplicity n+ 1 ≤ M(λ0) ≤ n+m+ 1

Thanks to the preliminary results of Section 2.3, we are now in position to prove the following result, providing a
necessary and sufficient condition for a given real number λ0 to be a root of a quasipolynomial ∆ with multiplicity
between n+ 1 and n+m+ 1.

Theorem 3.1. Let n,m be nonnegative integers with n ≥ m, τ > 0, λ0 ∈ R, M ∈ [n+ 1, n+m+ 1] be an integer, and
consider the quasipolynomial ∆ from (3)–(4). The number λ0 is a root of multiplicity at least M of ∆ if and only if there
exists a polynomial p of degree n+m+ 1−M with p(0) = 1 such that

∆(λ) =
τM−n(λ− λ0)

M

(M − n− 1)!

∫ 1

0

tM−n−1(1− t)M−m−1p(t)e−tτ(λ−λ0)dt. (33)

Proof. Let V be the set of all functions ∆ of the form ∆(λ) = P0(λ)+e−λτPτ (λ) with P0 and Pτ given by (4). Note that
V is is a real affine space with dimV = n+m+1, which is an affine subspace of the space of all entire complex functions,
seen as a real vector space. In addition, V can be canonically identified with Rn+m+1 by identifying a quasipolynomial
∆ with its coefficients α0, . . . , αn−1, β0, . . . , βm.

Let us denote by VM
λ0

the subset of V of those functions ∆ admitting λ0 as a root of multiplicity at least M , i.e.,

VM
λ0

:=
{
∆ ∈ V

∣∣∣ ∆(k)(λ0) = 0 for all k ∈ {0, . . . ,M − 1}
}
.

Each equation ∆(k)(λ0) = 0, k ∈ {0, . . . ,M − 1}, defines a hyperplane in V and, when identifying V with the Euclidean
space Rn+m+1, the normal vectors to all such hyperplanes are linearly independent. Hence VM

λ0
is a subspace of V of

codimension M , i.e., dimVλ0 = n+m+ 1−M .
Introduce now WM

λ0
as the space of all functions ∆ of the form (33) for some polynomial p of degree n+m+ 1−M

with p(0) = 1. The set WM
λ0

is an affine subspace of the space of all entire complex functions, seen once again as a real
vector space, with dimWM

λ0
= n+m+ 1−M .

As a first step, we will prove that WM
λ0

⊂ V , i.e., we show that every function ∆ of the form (33) is indeed a
quasipolynomial of the form (3)–(4). To do so, we first notice that, by an immediate inductive integration by parts,
we have (see also [47, Proposition 2.1])

∫ 1

0

q(t)e−ztdt =

d∑
k=0

q(k)(0)− q(k)(1)e−z

zk+1
(34)

for every z ∈ C \ {0}, d ∈ N, and q a polynomial of degree d. Now, let ∆ ∈ WM
λ0

and p be a polynomial of degree
n+m+1−M with p(0) = 1 be such that ∆ is given by (33). Define q(t) = tM−n−1(1− t)M−m−1p(t) and notice that
q(0) = q′(0) = · · · = q(M−n−2)(0) = 0, q(M−n−1)(0) = (M − n− 1)!, and q(1) = q′(1) = · · · = q(M−m−2)(1) = 0.
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By using (34), we deduce that

∆(λ) =
τM−n(λ− λ0)

M

(M − n− 1)!

M−1∑
k=0

q(k)(0)− q(k)(1)e−τ(λ−λ0)

τk+1(λ− λ0)k+1

= (λ− λ0)
n +

n−1∑
k=0

q(M−k−1)(0)

τn−k(M − n− 1)!
(λ− λ0)

k − e−τ(λ−λ0)
m∑

k=0

q(M−k−1)(1)

τn−k(M − n− 1)!
(λ− λ0)

k,

(35)

and thus, as required, ∆ ∈ V .
We now notice that WM

λ0
⊂ VM

λ0
, since, by construction, for any ∆ given by (33), λ0 is clearly a root of multiplicity at

least M of ∆. Finally, since WM
λ0

and VM
λ0

are both affine spaces with the same dimension, we conclude that WM
λ0

= VM
λ0

,
yielding the conclusion. □

Remark 3. Note that (35) provides explicit expressions for the polynomials P0 and Pτ from (4) in terms of the polynomial
q introduced in the above proof. More precisely, we have

P0(λ) = (λ− λ0)
n +

n−1∑
k=0

q(M−k−1)(0)

τn−k(M − n− 1)!
(λ− λ0)

k,

Pτ (λ) = −eτλ0

m∑
k=0

q(M−k−1)(1)

τn−k(M − n− 1)!
(λ− λ0)

k.

Recalling that q(t) = tM−n−1(1− t)M−m−1p(t), one may further express P0 and Pτ in terms of p. Indeed, we have

q(M−k−1)(0)

(M − n− 1)!
=

n−k∑
j=0

(
M − k − 1

n− k

)(
n− k

j

)
(−1)j(M −m− 1)!

(M −m− j − 1)!
p(n−k−j)(0),

q(M−k−1)(0)

(M − n− 1)!
=

m−k∑
j=0

(
M − k − 1

m− k

)(
m− k

j

)
(−1)M−m−1(M −m− 1)!

(M − n− j − 1)!
p(m−k−j)(1),

and thus

P0(λ) = (λ− λ0)
n +

n−1∑
k=0

n−k∑
j=0

(−1)j

τn−k

(
M − k − 1

n− k

)(
n− k

j

)
(M −m− 1)!

(M −m− j − 1)!
p(n−k−j)(0)(λ− λ0)

k, (36)

Pτ (λ) = −eτλ0

m∑
k=0

m−k∑
j=0

(−1)M−m−1

τn−k

(
M − k − 1

m− k

)(
m− k

j

)
(M −m− 1)!

(M − n− j − 1)!
p(m−k−j)(1)(λ− λ0)

k. (37)

Proposition 3.1. Let n,m be nonnegative integers with n ≥ m, τ > 0, λ0 ∈ R, M ∈ [n+ 1, n+m+ 1] be an integer,
and consider the quasipolynomial ∆ from (3)–(4). The number λ0 is a root of multiplicity at least M of ∆ if and only if
there exist real numbers π0, π1, . . . , πn+m+1−M with

∑n+m+1−M
k=0 πk = 1 such that

∆(λ) = τM−n(λ − λ0)
M

n+m+1−M∑
k=0

πk
(M −m+ k − 1)!

(2M −m− n+ k − 1)!
Φ(M − n, 2M −m − n + k,−τ(λ − λ0)). (38)
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Proof. By Theorem 3.1, λ0 is a root of multiplicity at least M of ∆ if and only if there exists a polynomial p of degree
n+m+ 1−M with p(0) = 1 and such that (33) holds. Such a polynomial can be written in a unique manner as

p(t) =

n+m+1−M∑
k=0

πk(1− t)k (39)

for some real numbers π0, . . . , πn+m+1−M , and the condition p(0) = 1 is satisfied if and only if
∑n+m+1−M

k=0 πk = 1.
Hence, (33) can be rewritten as

∆(λ) =
τM−n(λ− λ0)

M

(M − n− 1)!

n+m+1−M∑
k=0

πk

∫ 1

0

tM−n−1(1− t)k+M−m−1e−tτ(λ−λ0)dt.

The equivalence between this formula and (38) follows from (7), yielding the conclusion. □

Remark 4. It can be observed that the polynomial p involved in the kernel defining ∆ and given in (33) can be alternatively
written as

p(t) =

n+m+1−M∑
k=0

σk t
k (40)

with

σk = (−1)k
n+m+1−M∑

ℓ=k

(
k

ℓ

)
πℓ for k ∈ {0, . . . , n+m+ 1−M}. (41)

Furthermore, using (36), one easily recovers the expression of αk for k ∈ {0, . . . , n − 1} as a function of σℓ for ℓ ∈
{0, . . . , n+m+ 1−M} or equivalently, by, using (39), as a function of πℓ for ℓ ∈ {0, . . . , n+m+ 1−M}.

3.2. Elimination-produced function

In concrete control problems, typically, some of the coefficients of the polynomials P0 and Pτ from (4) are fixed,
corresponding to parameters coming from the physical modeling of the system, while other coefficients can be freely
chosen, corresponding to parameters coming, for instance, from an implemented linear feedback controller (see [13] for
some illustrations of such applications). In this section, we discuss how one can compute the “free” coefficients of the
polynomials (4) in order to impose that a given real number λ0 is a root of multiplicity at least M of the quasipolynomial
∆ from (3).

We will assume in this section that n and m are nonnegative integers with n ≥ m, M ∈ [n+1, n+m+1] is an integer
representing the desired multiplicity of the root λ0, and that M − 1 coefficients of the polynomials P0 and Pτ from (4)
can be freely chosen, the other n +m + 2 −M coefficients being fixed. In this configuration, which appears in several
practical applications (see, e.g., [62], as well as the examples from Section 4 below), the M − 1 degrees of freedom in the
coefficients of the system are typically not enough to ensure the existence of a root of multiplicity M by themselves, and
an additional constraint on the root λ0 and the delay τ must be imposed. This constraint can be formulated as a certain
meromorphic function on (λ0, τ), depending on the known coefficients of P0 and Pτ , being equal to 0. This meromorphic
function will be called elimination-produced function, and the main goal of this section is to describe it, first in a general
setting, and then in the particular case where the known coefficients are the coefficients of the monomials of highest
degree in P0. For that purpose, we start with some appropriate notations and definitions.

Let n and m be nonnegative integers with n ≥ m, D = n+m+1, M ∈ [n+1, n+m+1] be an integer, I ⊂ {1, . . . , D}
be a set of cardinality M − 1, and I = {1, . . . , D} \ I .

We define the holomorphic functions ℓ : C2 → M1,D(C), ℓI : C2 → M1,M−1(C), ℓI : C2 → M1,D−M+1(C),
A : C2 → MM−1,D(C), AI : C2 → MM−1,M−1(C), AI : C2 → MM−1,D−M+1(C), and b : C → MM−1,1(C), and
the real number bM as follows.
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For (λ0, τ) ∈ C2, we set

ℓ(λ0, τ) :=
(
λn−1
0 · · · λ0 1 λm

0 e−λ0τ · · · λ0e−λ0τ e−λ0τ
)
, (42)

ℓI(λ0, τ) (respectively, ℓI(λ0, τ)) is the row matrix whose entries are the columns of ∂M−1

∂λM−1
0

ℓ(λ0, τ) whose indices belong

to I (respectively, to I),

A(λ0, τ) :=


ℓ(λ0, τ)
∂ℓ
∂λ0

(λ0, τ)
...

∂M−2ℓ

∂λM−2
0

(λ0, τ)

 , (43)

AI(λ0, τ) (respectively, AI(λ0, τ)) is the matrix whose columns are the columns of A(λ0, τ) whose indices belong to I

(respectively, to I), b(λ0) is the column matrix with M − 1 rows whose first entry is −λn
0 and such that its k−th entry

bk(λ0), for an integer k ∈ [2,M − 1], satisfies bk(λ0) =
d

dλ0
bk−1(λ0). We also set

bM :=

{
−n! if M = n+ 1,

0 otherwise.
(44)

The set I introduced above represents the indices of the coefficients of the polynomials P0 and Pτ from (4) that are
assumed to be free, when arranged in the column vector

X :=
(
αn−1 · · · α1 α0 βm · · · β1 β0

)T
, (45)

and I represents the indices of the known coefficients of P0 and Pτ in this same vector. Note that the order of the
coefficients in the vector X corresponds to the order of the entries of the row matrix ℓ(λ0, τ), so that we have the equality
∆(λ0) = λn

0 + ℓ(λ0, τ)X .

Definition 3.1. With the notations above, if detAI(·, ·) is not the zero function, for (λ0, τ) ∈ C × R+ such that
detAI(λ0, τ) ̸= 0 and γ ∈ RD−M+1, we define P(λ0, τ ; γ) ∈ C by

P(λ0, τ ; γ) := ℓI(λ0, τ)γ + ℓI(λ0, τ)AI(λ0, τ)
−1(b(λ0)−AI(λ0, τ)γ)− bM . (46)

The function P is called elimination-produced function.

The vector γ in Definition 3.1 represents the numerical values of the known coefficients of P0 and Pτ from (4): it
corresponds to taking, in the above vector X , only the entries corresponding to indices in I .

Remark 5. Note that detAI(λ0, τ) is a quasipolynomial in the variable λ0, depending only on τ , n, m, M , and I . In
particular, when detAI is not identically zero, for every γ ∈ RD−M+1, the function P(·, ·; γ) is meromorphic, and can
be expressed as a fraction of quasipolynomials, its denominator being detAI(λ0, τ).

Example 3.1. To illustrate Definition 3.1 and notations above, consider the case n = 2 and m = 1, i.e.,

∆(λ) = λ2 + α1λ+ α0 + e−λτ (β1λ+ β0),

in which case D = n +m + 1 = 4. We are interested here in roots of multiplicity M = 3. We assume that α1 and β0

are known, and α0 and β1 are free. In this case, we have I = {2, 3}, which correspond to the indices of α0 and β1 in the
vector (α1, α0, β1, β0), and thus I = {1, 4}. We compute

ℓ(λ0, τ) =
(
λ0 1 λ0e−λ0τ e−λ0τ

)
,
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ℓI(λ0, τ) =
(
0 (τ2λ0 − 2τ)e−λ0τ

)
,

ℓI(λ0, τ) =
(
0 τ2e−λ0τ

)
,

A(λ0, τ) =

(
λ0 1 λ0e−λ0τ e−λ0τ

1 0 (1− λ0τ)e−λ0τ −τe−λ0τ

)
,

AI(λ0, τ) =

(
1 λ0e−λ0τ

0 (1− λ0τ)e−λ0τ

)
,

AI(λ0, τ) =

(
λ0 e−λ0τ

1 −τe−λ0τ

)
,

b(λ0) =

(
−λ2

0

−2λ0

)
,

bM = −2.

In particular, we have

detAI(λ0, τ) = (1− λ0τ)e−λ0τ ,

which is not identically zero. Thus, letting γ = (α∗
1, β

∗
0) be the vector containing the numerical values of the fixed

parameters α1 and β0, the elimination-produced function P is given by

P(λ0, τ ; (α
∗
1, β

∗
0)) =

α∗
1λ0τ

2 − 2α∗
1τ + β∗

0τ
2e−λ0τ + 2λ2

0τ
2 − 2λ0τ − 2

λ0τ − 1
.

The main interest of the notation we introduced above, and in particular of the elimination-produced function from
Definition 3.1, is that it allows one to express conditions for a real number λ0 to be a root of multiplicity M of ∆ in terms
of the free coefficients of P0 and Pτ , as expressed in the following theorem.

Theorem 3.2. Let n,m be non-negative integers with n ≥ m, τ > 0, M ∈ [n+1, n+m+1] be an integer, and consider
the quasipolynomial ∆ from (3)–(4).

Let I ⊂ {1, . . . , D} be a set of cardinality M − 1 and I = {1, . . . , D} \ I . Let X be the parameter vector from (45)
and denote by XI and XI the vectors obtained by keeping in X only the entries with indices in I and I , respectively.
Assume that the values of the parameters in XI are known and denote by γ the vector with those values. Consider also
the functions ℓI , ℓI , AI , AI , b, P, and the real number bM defined in (42)–(44).

Let λ0 ∈ R be such that detAI(λ0, τ) ̸= 0. Then λ0 is a root of multiplicity at least M of ∆ if and only if

XI = AI(λ0, τ)
−1 (b(λ0)−AI(λ0, τ)γ) and P(λ0, τ ; γ) = 0. (47)

Proof. The number λ0 is a root of multiplicity at least M of ∆ if and only if ∆(k)(λ0) = 0 for every k ∈ {0, . . . ,M −1},
and, recalling that ∆(λ) = λn + ℓ(λ, τ)X , these M equations can be rewritten as

A(λ0, τ)X = b(λ0),

∂M−1ℓ

∂λM−1
0

ℓ(λ0, τ)X = bM ,

where ℓ and A are defined in (42) and (43). Splitting X into XI and XI and noticing that XI = γ, the above system is
equivalent to {

AI(λ0, τ)XI +AI(λ0, τ)γ = b(λ0),

ℓI(λ0, τ)XI + ℓI(λ0, τ)γ = bM ,

and, using the assumption detAI(λ0, τ) ̸= 0, we obtain that the above system is equivalent to (47). □
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Remark 6. In the above framework, we have considered that the values of some of the coefficients of the quasipolynomial
∆ from (3)–(4) are known. Our approach can also be generalized to the case where, instead of knowing values of the
coefficients, we have other information on them, such as the fact that they satisfy some linear dependence relation, written
under the form CX = d for some matrix C ∈ MD−M+1,D(C) of full rank and some d ∈ RD−M+1. Indeed, in this case,
we decompose the space RD into the direct sum KerC ⊕ (KerC)⊥, and we replace the decomposition into indices in I
and I done in the construction above by projections into KerC and (KerC)⊥.

3.3. A control-oriented setting

In Section 3.2, I is an arbitrary subset of {1, . . . , D} with M − 1 elements, meaning that we can consider any choice
of free parameters of the quasipolynomial ∆ from (3)–(4). With the aim of obtaining more precise results in a particular
situation, we now consider the case where I = {D −M + 2, . . . , D}, and thus I = {1, . . . , D −M + 1}, meaning that
the coefficients of highest degree of P0 are all known, and the M − 1 free parameters are the coefficients of Pτ and those
of lowest degree of P0 (except in the particular case n = m and M = n + 1, in which case the coefficient βm of Pτ is
also assumed to be known).

Our first result in this setting is the following characterization of the elimination-produced function.

Proposition 3.2. Let n,m be nonnegative integers with n ≥ m, τ > 0, M ∈ [n+ 1, n+m+ 1] be an integer satisfying
M ≥ m + 2, and consider the quasipolynomial ∆ from (3)–(4). Let P be the elimination-produced function in the case
I = {D −M + 2, . . . , D}. Then

P(λ0, τ ; γ) =

m+1∑
k=0

(
m+ 1

k

)
τkP

(M−1−k)
F,M (λ0), (48)

where

PF,M (λ) = λn +

D−M+1∑
k=1

αn−kλ
n−k. (49)

Proof. Note that, with the notations of Section 3.2, we have

b(λ0)−AI(λ0, τ)γ =


−PF,M (λ0)
−P ′

F,M (λ0)
...

−P
(M−2)
F,M (λ0)

 (50)

and
ℓI(λ0, τ)γ − bM = P

(M−1)
F,M (λ0). (51)

Let
ℓ̃(λ0, τ) :=

(
λM−m−3
0 · · · λ0 1 λm

0 e−λ0τ · · · λ0e−λ0τ e−λ0τ
)

and note that

AI(λ0, τ) =


ℓ̃(λ0, τ)
∂ℓ̃
∂λ0

(λ0, τ)
...

∂M−2ℓ̃

∂λM−2
0

(λ0, τ)


The matrix AI(λ0, τ) admits the block decomposition

AI(λ0, τ) =

(
AI,0(λ0) AI,1(λ0, τ)

0 AI,2(λ0, τ)

)
, (52)
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where

AI,0(λ0) :=


λM−m−3
0 · · · λ0 1

(M −m− 3)λM−m−4
0 · · · 1 0

... . .
. ...

...
(M −m− 3)! · · · 0 0

 ∈ MM−m−2(R),

AI,1(λ0, τ) :=


ℓ̂(λ0, τ)
∂ℓ̂
∂λ0

(λ0, τ)
...

∂M−m−3ℓ̂

∂λM−m−3
0

(λ0, τ)

 ∈ MM−m−2,m+1(R),

AI,2(λ0, τ) :=


∂M−m−2ℓ̂

∂λM−m−2
0

(λ0, τ)

...
∂M−2ℓ̂

∂λM−2
0

(λ0, τ)

 ∈ Mm+1,m+1(R),

and

ℓ̂(λ0, τ) :=
(
λm
0 e−λ0τ · · · λ0e−λ0τ e−λ0τ

)
∈ M1,m+1(R),

Clearly, AI,0(λ0) is invertible. Set ρ(λ0, τ) := eλ0τ ∂M−m−2ℓ̂

∂λM−m−2
0

(λ0, τ) and note that

ρ(λ0, τ) =
(
qm(λ0, τ) · · · q1(λ0, τ) q0(λ0, τ)

)
, (53)

where, for j ∈ {0, . . . ,m}, the function λ0 7→ qj(λ0, τ) is a polynomial of degree j, with coefficients depending on τ ,
and its term of highest degree is (−τ)M−m−2λj

0. Thus


ρ(λ0, τ)
∂ρ
∂λ0

(λ0, τ)
...

∂mρ
∂λm

0
(λ0, τ)

 =



qm(λ0, τ) · · · q2(λ0, τ) q1(λ0, τ) (−τ)M−m−2

∂qm
∂λ0

(λ0, τ) · · · ∂q2
∂λ0

(λ0, τ) (−τ)M−m−2 0
∂2qm
∂λ2

0
(λ0, τ) · · · 2(−τ)M−m−2 0 0

... . .
. ...

...
...

m!(−τ)M−m−2 · · · 0 0 0

 ,

and, in particular, since τ > 0, the above matrix is invertible. On the other hand, taking derivatives directly in the
definition of ρ, we have


ρ(λ0, τ)
∂ρ
∂λ0

(λ0, τ)
...

∂mρ
∂λm

0
(λ0, τ)

 = eλ0τ



1 0 0 · · · 0 0
τ 1 0 · · · 0 0
...

. . .
. . .

. . .
. . .

...(
k
k

)
τk

(
k

k−1

)
τk−1 . . . 1

. . . 0
...

...
. . .

. . .
. . .

...(
m
m

)
τm

(
m

m−1

)
τm−1 · · ·

(
m
2

)
τ2 mτ 1


AI,2(ρ, τ).

Hence, AI,2(ρ, τ) and, thanks to the block decomposition (52), AI(λ0, τ) is invertible.
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Thanks to (53), we have ∂m+1ρ

∂λm+1
0

(λ0, τ) = 0 and, using the definition of ρ, this implies that

m+1∑
k=0

(
m+ 1

k

)
τk

∂M−k−1ℓ̂

∂λM−k−1
0

(λ0, τ) = 0,

which can be rewritten in matrix form as

((m+1
m+1

)
τm+1

(
m+1
m

)
τm · · ·

(
m+1
1

)
τ
)
AI,2(λ0, τ) = − ∂M−1ℓ̂

∂λM−1
0

(λ0, τ).

Hence(
0 · · · 0

(
m+1
m+1

)
τm+1

(
m+1
m

)
τm · · ·

(
m+1
1

)
τ
)
AI(λ0, τ) = −

(
0 ∂M−1ℓ̂

∂λM−1
0

(λ0, τ)
)
= −ℓI(λ0, τ),

so that
ℓI(λ0, τ)AI(λ0, τ)

−1 = −
(
0 · · · 0

(
m+1
m+1

)
τm+1 · · ·

(
m+1
1

)
τ
)
. (54)

Inserting (50), (51), and (54) into (46), we finally deduce (48). □

Remark 7. Note that the elimination-produced function from (48) is a polynomial in (λ0, τ). We refer to this function
as the elimination-produced polynomial. Some remarks in the “limit” cases M = n+m (largest over-order multiplicity)
and M = n+ 1 (smallest over-order multiplicity) can be found in [18] and [14], respectively.

Remark 8. Proposition 3.2 requires the additional assumption that M ≥ m + 2. This is always satisfied if n > m,
since M ≥ n+ 1, and hence the only case not covered by Proposition 3.2 is the case of neutral systems with the smallest
over-order multiplicity, M = n + 1. In this case, the conclusion of Remark 7 does not hold. Indeed, consider the case
n = m = 1, i.e.,

∆(λ) = λ+ α0 + e−λτ (β1λ+ β0),

in which case D = 3. The lowest over-order multiplicity is M = 2 and, assuming α0 and β1 to be known and β0 to be
free (i.e., I = {3} and I = {1, 2}), straightforward computations from its definition show that the elimination-produced
function is

P(λ0, τ ; γ) = 1 + τλ0 + τα0 + β1e
−λ0τ ,

which is not a polynomial in (λ0, τ).

An interesting fact about the elimination-produced polynomial from Proposition 3.2 is that the elimination-produced
polynomial for a root of multiplicity M +1 can be obtained by derivating the elimination-produced polynomial for a root
of multiplicity M , as detailed in the next result.

Proposition 3.3. Let n,m be nonnegative integers with n ≥ m, τ > 0, M ∈ [n + 1, n + m] be an integer satisfying
M ≥ m+2, and consider the quasipolynomial ∆ from (3)–(4). Let PM (respectively, PM+1) be the elimination-produced
polynomial from Proposition 3.2 for a root of multiplicity at least M (respectively, at least M + 1). Then

PM+1(λ0, τ ; γ) =
∂PM

∂λ0
(λ0, τ ; γ).

Proof. Let PF,M and PF,M+1 be defined as in (49). Then

PF,M (λ) = PF,M+1(λ) + αM−m−2λ
M−m−2.

Hence, for every integer k ∈ [0,m+ 1], we have M −m− 2 < M − k, and thus

P
(M−k)
F,M (λ) = P

(M−k)
F,M+1(λ).
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It then follows from (48) that

PM+1(λ0, τ ; γ) =

m+1∑
k=0

(
m+ 1

k

)
τkP

(M−k)
F,M+1(λ0)

=

m+1∑
k=0

(
m+ 1

k

)
τkP

(M−k)
F,M (λ0) =

∂PM

∂λ0
(λ0, τ ; γ). □

We conclude this section by the following result, which provides an explicit expression of the elimination-produced
polynomial P from (48) in terms of the known coefficients αM−m−2, . . . , αn−1 of ∆.

Proposition 3.4. Let n,m be nonnegative integers with n ≥ m, τ > 0, M ∈ [n + 1, n + m + 1] be an integer
satisfying M ≥ m + 2, and consider the quasipolynomial ∆ from (3)–(4). Let P be the elimination-produced function
from Definition 3.1 in the case I = {D −M + 2, . . . , D}. Then

P(λ0, τ ; γ) =

D−M+1∑
j=0

n∑
ℓ=j+M−m−2

(
m+ 1

M − ℓ− 1 + j

)
ℓ!

j!
τM−ℓ−1+jαℓλ

j
0, (55)

with the convention αn = 1.

The proof of the above proposition follows by inserting (49) into (48) and standard changes of summation variables in
order to group the terms in powers of λ0.

3.4. Dominance of multiple roots and its consequences for stability

Note that (38) factorizes ∆ in terms of a linear combination of D −M + 1 Kummer functions with real coefficients.
However, in the following proposition, an equivalent combination of two Kummer functions with coefficients which are
rational functions in the terms of the complex variable λ will be considered.

Proposition 3.5. Consider the quasipolynomial ∆ from (3)–(4) with m ≤ n. The real number λ0 is a root of multiplicity
at least n+ 1 ≤ M ≤ n+m+ 1 of ∆ if, and only if, P(λ0, τ) = 0 and

∆(λ) =
τM−n(λ− λ0)

M

(M − n− 1)!
(β(λ) Φ(0, 1, −τ (λ− λ0)) + γ(λ) Φ(1, 1, −τ (λ− λ0))) , (56)

where

β(λ) :=
(M − n− 1)!P0(λ)

τM−n(λ− λ0)M
, (57)

γ(λ) :=
(M − n− 1)!Pτ (λ)

τM−n(λ− λ0)M
, (58)

and P0 and Pτ are given in (36)–(37).

Since for every a ∈ C with −a /∈ N, we have Φ(a, a, z) = Φ(1, 1, z) = ez and Φ(0, 1, z) = 1, thus an immediate
representation of the quasipolynomial ∆ is given by (56).

Beyond the standard contiguous relation (see for instance [57]), to the best of the authors’ knowledge, there does not
exist any result describing the distribution of the non-asymptotic zeros of linear combinations of Kummer functions. The
next lemma provides a partial step towards that goal, by providing a non-autonomous second-order differential equation
admitting a given linear combination of Kummer functions as a solution.
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Lemma 4. Let β̃ and γ̃ be two meromorphic functions. Then, the complex function F defined by

F (z) := β̃(z) Φ(0, 1, z) + γ̃(z) Φ(1, 1, z), (59)

with β̃ (z) γ̃′ (z) + γ̃ (z)
(
β̃ (z) τ − β̃′ (z)

)
̸= 0 satisfies the following second-order differential equation

F ′′(z) +Q(z)F ′(z) +R(z)F (z) = 0, (60)

where Q and R are given by

Q(z) :=

(
β̃′′ (z) + τ

(
β̃ (z) τ − 2 β̃′ (z)

))
γ̃ (z)− (γ̃′′ (z)) β̃ (z)

β̃ (z) γ̃′ (z) + γ̃ (z)
(
β̃ (z) τ − β̃′ (z)

) , (61)

R(z) :=

(
−β̃ (z) τ + β̃′ (z)

)
γ̃′′ (z)− γ̃′ (z)

(
β̃′′ (z) + τ

(
β̃ (z) τ − 2 β̃′ (z)

))
β̃ (z) γ̃′ (z) + γ̃ (z)

(
β̃ (z) τ − β̃′ (z)

) . (62)

In what follows, we shall refer to functions F of the form (59) as Kummer-type functions. Similarly to what was done
in Lemma 3, one can also define a Whittaker-type function W from the Kummer-type function F defined in (59) by the
same formula (15), where Q is a primitive of Q

2 for Q given by (61), and W satisfies (16) with G defined from Q and R
from (61)–(62) using the same expression (17) as in Lemma 3.

3.5. MID validity for over-order multiplicities

Now, we shall use the results of Section 2.3 relating quasipolynomials with roots of over-order multiplicity and Kum-
mer and Whittaker functions in order to provide sufficient conditions under which the MID property is valid for charac-
teristic roots of multiplicity at least n+ 1 ≤ M ≤ m+ n+ 1 of ∆.

Theorem 3.3. Consider the quasipolynomial ∆ from (3)–(4) with m ≤ n, and assume that ∆ admits a real root λ0 of
multiplicity at least n + 1 ≤ M ≤ m + n + 1. Let β and γ be the meromorphic functions defined in (57) and (58),
respectively, and define the meromorphic functions β̃ and γ̃ by

β̃(z) := β
(
λ0 −

z

τ

)
, γ̃(z) := γ

(
λ0 −

z

τ

)
. (63)

Let F , Q, R, and G be defined by (59), (61), (62), and (17), respectively. Assume that, for every t ∈ (0, 1) and every root
z of F in C−, we have ℜ[zG(tz)] ≥ 0. Then, λ0 is a dominant root of ∆, i.e., λ0 satisfies the MID property.

A result similar to Theorem 3.3 was already shown in [18, Theorem 10] for the case of roots of multiplicity n + m.
The proof of the former can be obtained by an easy adaptation of that of the latter, and we detail this argument here for
the sake of completeness.

Proof. We deduce from Proposition 3.5 and Lemma 4 that

∆(λ) =
τM−n(λ− λ0)

M

(M − n− 1)!
F (−τ(λ− λ0)). (64)

Since our objective is to investigate zeros of ∆ which are different from λ0, then we focus on its second factor F . In
particular, the result is thereby proved if we show that all roots of the Kummer-type function F have nonnegative real
part.



24

To do so, we consider the Whittaker-type function W (·) defined from F as in (15). Note that the differential equation
(16) satisfied by W is of the form (18), with K(z) = 1. As a consequence, one can apply Hille’s method to (16). By
taking z1 = 0 and z2 equal to a root z∗ of F (·) in (19), we obtain∫ z∗

0

|W ′(z)|2dz =

∫ z∗

0

|W (z)|2G(z)dz.

We choose as integration path the line segment from 0 to z∗. Hence

z∗

∫ 1

0

|W ′(tz∗)|
2
dt = z∗

∫ 1

0

|W (tz∗)|2G(tz∗)dt.

Taking the real part, we get

x∗

∫ 1

0

|W ′(tz∗)|
2
dt =

∫ 1

0

|W (tz∗)|2ℜ [z∗G(tz∗)] dt, (65)

where x∗ = ℜ(z∗) and y∗ = ℑ(z∗).
Assume now, by contradiction, that F (·) admits a root with negative real part, and take z∗ in (65) as equal to this

root. The left-hand side of (65) is negative, however its right-hand side is nonnegative by assumption, yielding the desired
contradiction. Hence, all roots of F have nonnegative real parts, entailing the conclusion thanks to (64). □

4. COMPREHENSIVE ILLUSTRATIVE EXAMPLES WITH INSIGHTS ON NUMERICS

In this section, we provide some applications of the over-order intermediate MID (IMID)-based design in both retarded
and neutral cases: the control of a transonic flow in a wind tunnel as well as the design of the standard PID controller for
a prescribed stabilization of unstable delayed plants.

4.1. Control of a transonic flow in a wind tunnel

As a first application of the IMID-based design, let us revisit the regulation problem of the transonic flow in a wind
tunnel. Transonic flows in a compressible fluid exhibit complex dynamics, making their analysis challenging since a full
model of the flow is governed by a Navier–Stokes equation in a three-dimensional domain and boundary controls for
temperature and pressure regulation. A simplified model can be found in [68], assuming that the flow is uniform across
every cross section and the tunnel is a one-dimensional tube of varying cross-sectional area, yielding a coupled model of
nonlinear partial differential equations in one space dimension.

In order to study the response of the Mach number of the flow to changes in the guide vane angle a further simplified
model has been proposed in [6]. Propagation phenomena are modeled through a time delay, leading to the system of delay
differential equations {

κm′(t) +m(t) = kϑ(t− τ0),

ϑ′′(t) + 2ζωϑ′(t) + ω2ϑ(t) = ω2u(t),
(66)

where m, ϑ, and u represent, respectively, perturbations of the Mach number of the flow, the guide vane angle, and the
input of the guide vane actuator with respect to steady-state values. The parameters κ and k depend on the steady-state
operating point and are assumed to be constant as long as m, ϑ, and u remain small, and satisfy κ > 0 and k < 0. The
parameters ζ ∈ (0, 1) and ω > 0 come from the design of the guide vane angle actuator and are thus independent of the
operating point. The time-delay τ0 is assumed to depend only on the temperature of the flow. In the absence of control
(u(t) = 0), the open-loop system (66) is exponentially stable.

The design of exponentially stabilizing feedback laws for (66) improving its exponential decay rate has been consid-
ered, for instance, in [46], in which the author designs a predictor of the state over an interval of length equal to the
time-delay, yielding a closed-loop system with finite spectrum. However, the practical implementation of this type of con-
trollers suffers from robustness issues [33,53], which motivates the research for control laws with reduced implementation
complexity.
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The goal of this section is to illustrate how the main result of this work can be used to obtain a feedback controller for
(66) improving its open-loop characteristics, with a reduced complexity with respect to the controller proposed in [46].
We assume that the parameters ζ ∈ (0, 1) and ω > 0 are fixed. Here we exploit the control law proposed in [47],

u(t) = −β0 κ

kω2
m(t− τ1)−

β1 κ

kω2
m′(t− τ1)−

β2 κ

kω2
m′′(t− τ1), (67)

where τ1 > 0 should be greater than or equal to the time-delay corresponding to measuring m and its first two derivatives.
Notice that the tuning of (67) made in [47] relies on the GMID property, making such a design sensitive with respect to
parametric uncertainties, and it also assumed that one could choose the parameters ζ and ω.

Substituting the control law (67) into (66), one obtains that the closed-loop characteristic quasipolynomial ∆̃ is given
by

∆(λ) =
∆̃(λ)

κ
= λ3 +

(
2ωζ +

1

κ

)
λ2 +

(
ω2 +

2ωζ

κ

)
λ+

ω2

κ
+
(
β2λ

2 + β1λ+ β0

)
e−λ(τ), (68)

where τ = τ0 + τ1 and the division by κ is performed in order to obtain a quasipolynomial under the form (3), for which
the polynomial P0 is monic.

As a consequence of the main results, one gets the following.

Theorem 4.1. A given complex number λ0 is a root of multiplicity 4 of the quasipolynomial ∆ from (68) if, and only if,
λ0 is a root of the elimination-produced polynomial P, where

P(λ) := κλ3τ3 +
(
2ζκ τ3ω + 9κ τ2 + τ3

)
λ2

+
(
κω2τ3 +

(
12ζκ τ2 + 2ζ τ3

)
ω + 18κτ + 6τ2

)
λ

+
(
3κ τ2 + τ3

)
ω2 +

(
12ζκτ + 6ζ τ2

)
ω + 6κ+ 6τ

(69)

and the controller’s gains satisfy

β0

eλ0τ
=

((
2τ ζ2 − τ

)
ω2 + 14ωζ +

177

2τ
+

7

κ
+

τ

2κ2

)
λ2
0

+

(
ζτ ω3 +

((
12 +

2τ

κ

)
ζ2 + 7− τ

κ

)
ω2 +

(
τ

κ2
+

26

κ
+

162

τ

)
ζω +

246

τ2
+

81

κτ
+

3

κ2

)
λ0

+
(
3 +

τ

κ

)
ζ ω3 +

((
6

κ
+

12

τ

)
ζ2 +

τ

2κ2
+

15

κ
+

87

2τ

)
ω2 +

(
3

κ2
+

99

κτ
+

180

τ2

)
ζω +

87

τ3
+

90

κ τ2
+

3

κ2τ
,

β1

eλ0τ
=
(
2ωτζ + 21 +

τ

κ

)
λ2
0 +

((
36 +

4τ

κ

)
ωζ + 2ω2τ +

18

κ
+

66

τ

)
λ0

+

(
22

κ
+

48

τ

)
ωζ +

(
11 +

3τ

κ

)
ω2 +

24

κτ
+

24

τ2
,

β2

eλ0τ
=

3τλ2
0

2
+
(
2ωτζ + 6 +

τ

κ

)
λ0 +

(
4 +

τ

κ

)
ωζ +

ω2τ

2
+

2

κ
+

3

τ
,

where τ = τ0 + τ1. Moreover, if the discriminant of P is positive and if, for every t ∈ (0, 1) and every root z of F in C−,
we have ℜ[zG(tz)] ≥ 0, where F is defined by (57), (58), (59), and (63) and G is defined by (17), (57), (58), (61), (62),
and (63), then λ0 < 0, λ0 is a strictly dominant root of ∆, and the trivial solution of (66) with the control law (67) is
exponentially stable with exponential decay −λ0.

Proof. The result is a direct consequence of Proposition 3.5 and Theorem 3.3. The realness of λ0 is guaranteed by the
positivity of the discriminant of P, which is a cubic polynomial in λ. The negativity of λ0 is ensured by the fact that P is
Hurwitz for any (τ, κ, ω, ζ) ∈ R+ × R+ × R+ × R+. □
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Remark 9. As illustrated through the above example, despite the sufficient conditions established in Theorem 4.1, the use
of Hille oscillation theorems [40] and the Green–Hille transform lacks the explicit character when one is dealing with a
parametric study. As a matter of fact, one should further investigate the parametric semi-algebraic problem ℜ[zG(tz)] ≥
0, which is of huge complexity when a large number of parameters is involved and left free. This deeper analysis has been
done in some situations, including for a time-delay model for vibration control problems encountered in oilwell drilling
[7] and more general systems in which the multiplicity of the assigned root differs from the maximal one by 1 [18]. In the
sequel, we illustrate another possible approach based on an a priori bound using the algorithmic alternative described in
Section 2.5, which gives rise to more explicit conditions.

4.2. PID design of unstable low-order plants

PID control is the most popular control technology and dominates industrial control systems [61] because it represents
one of the simplest control laws with a small number of control parameters giving satisfactory behaviors for closed-loop
systems for large classes of industrial processes. Despite the fact that the design of such a controller is nowadays well-
mastered to meet the performance requirements in stabilization and tracking of finite-dimensional industrial processes, to
the best of the authors’ knowledge, there is no systematical method in tuning a PID controller for infinite-dimensional
systems. Recently, in [45], the MID property has been proposed as a method in tuning such controllers. Nonetheless,
the proposed solution in [45] lacks freedom on the prescribed stabilization of the delayed first-order case study. By this
section, we first revisit the considered problem and results from [45], then we improve such a solution by allowing some
additional freedom when assigning the closed-loop decay rate.

Consider the feedback system depicted in Figure 2, in which K(λ) represents a finite-dimensional linear time-invariant
(LTI) controller, Qτ (λ) denotes the plant containing a constant but uncertain delay τ , with a transfer function given by

Qτ (λ) =
1

λ− κ
e−τλ, τ ≥ 0, (71)

where κ ≥ 0. The controller K of interest is the standard PID controller, i.e., K(λ) = KPID(λ) where

Qτ (λ)

K(λ)

−

FIGURE 2. A tracking control system.

KPID(λ) = kp +
ki
λ

+ kdλ. (72)

Thus, the closed-loop characteristic quasipolynomial is found as{
∆(λ) = P0(λ) + Pτ (λ)e

−λτ

P0(λ) = λ2 − λ p, Pτ (λ) = kdλ
2 + kp λ+ ki .

(73)

The main result of [45] is stated as follows.

Theorem 4.2 ([45]). Let Pτ and KPID be given respectively by (71) and (72). Then the following statements are true.
i) For arbitrary real parameters kp , ki , kd and arbitrary positive delay τ , the multiplicity of any root of the

quasipolynomial ∆(λ) is less than or equal to 5.



27

ii) The quasipolynomial ∆ admits a multiple real root at

λ± =
τ κ− 6±

√
τ2κ2 + 12

2τ
(74)

with algebraic multiplicity at least 4 if and only if

kd =
(4 + 2 τ λ±–τ κ) eτ s±

2
,

kp = −
((
8 τ + τ2λ±

)
κ–18–12 τ λ±

)
eτ λ±

τ
,

ki =

(
(τλ± + 3) τ2κ2 − (12τλ± + 60) τκ+ 108 + 84 τ λ±

)
eτ λ±

2τ2
.

(75)

iii) If (75) is satisfied, then, under the condition τ < τ̄PID = 2/κ, λ = λ+ is the rightmost root of the quasipolyno-
mial ∆(λ) with multiplicity equal to 4.

As mentioned earlier, under the assumption that the delay τ and the unstable pole κ are fixed, the assignable quadruple
root (the spectral abscissa) λ+ given in (74) is fully characterized, i.e., it does not allow any degree of freedom in the
choice of the spectral abscissa. In order to enable some additional freedom when assigning it, one can relax such a
constraint by forcing an over-order multiplicity which is lower than four, which, in our case, gives exactly the only option
of multiplicity three.

Theorem 4.3. Consider the quasipolynomial ∆ given in (73) and λ0 ∈ R. Then the following statements are true.

i) The quasipolynomial ∆ admits a triple root at λ0 if and only if the gains (kd, kp, ki) satisfy
kd =

(
λ0 (−λ0 + κ) τ2 + (2κ− 4λ0) τ − 2

)
eτλ0

2
,

kp =
(
λ2
0 (κ− λ0) τ

2 − λ0 (κ− 3λ0) τ + κ
)
eτλ0 ,

ki =
λ3
0τ ((κ− λ0) τ − 2) eτλ0

2
.

(76)

ii) Furthermore, if 
κ ∈

(
0,

1

τ

)
,

λ0 ∈

[
κ

2
− 2

τ
+

√
κ2τ2 + 8

2τ
, 0

)
,

(77)

then λ0 corresponds to the spectral abscissa of (73).

Proof. An integration by part shows that, under (76), the quasipolynomial ∆ reads

∆(λ) = τ (λ− λ0)
3
∫ 1

0

e−τ(λ−λ0)t

(
1

2
(λ0 − κ)λ0τ

2t2 + (2λ0 − κ)τ t+ 1

)
dt. (78)

Thus, the corresponding kernel polynomial (39) is given by

p(t) =
λ0 (λ0 − κ) τ2t2

2
+ (2λ0 − κ) τt+ 1, (79)
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which is necessarily real-rooted since its discriminant (w.r.t. the variable t) is given by δ =
(
(κ− λ0)

2 + λ2
0

)
τ2 ≥ 0.

Clearly, the leading coefficient of the polynomial p is positive. Furthermore, the corresponding zeros are given by

t± =
κ− 2λ0 ±

√
(κ− λ0)2 + λ2

0

λ0 (λ0 − κ) τ
. (80)

Since, κ ≥ 0 and the closed-loop multiple zero λ0 is intended to correspond to the exponential decay of (78), then it needs
to satisfy λ0 < 0, hence the denominator of t± given in (80) is positive, which yields that 0 < t− < t+. Hence, it suffices
to set t− ≥ 1 to guarantee the sign constancy of the kernel polynomial p given in (79). This assumption is equivalent to√

κ2 − 2λ0κ+ 2λ2
0 ≤ −λ2

0τ + (τκ− 2)λ0 + κ. (81)

An immediate necessary condition for the last inequality to hold is to select λ0 such that

λ0 ∈

[
κ

2
− 1

τ
−

√
κ2τ2 + 4

2τ
,
κ

2
− 1

τ
+

√
κ2τ2 + 4

2τ

]
. (82)

Furthermore, by squaring both sides of inequality (81), one gets

λ0 (κ− λ0)
(
−λ2

0τ
2 + τ (τκ− 4)λ0 + 2τκ− 2

)
≥ 0.

Again, since λ0 < 0 and κ ≥ 0, the third factor of the left-hand side of the above inequality has to be nonpositive, which
enables us to choose λ0 such that

λ0 ∈ R∗
− \

(
κ

2
− 2

τ
−

√
κ2τ2 + 8

2τ
,
κ

2
− 2

τ
+

√
κ2τ2 + 8

2τ

)
. (83)

Taking into account the intervals (82) and (83), one concludes that the sign constancy (positive) of the kernel polynomial
p given by (79) is guaranteed by

λ0 ∈

[
κ

2
− 2

τ
+

√
κ2τ2 + 8

2τ
,
κ

2
− 1

τ
+

√
κ2τ2 + 4

2τ

]
.

Finally, since λ0 < 0 and the corresponding lower-bound is strictly increasing with respect to κ and non-negative for κ τ ≥
1 and the corresponding upper-bound is positive, then necessarily κ τ < 1. As illustrated in Figure 3, the appropriate
choice of λ0 is such that

λ0 ∈

[
κ

2
− 2

τ
+

√
κ2τ2 + 8

2τ
, 0

)
. (84)

Next, one needs first to write ∆, or, equivalently, the corresponding integral representation given in (78), into a nor-
malized form. This is done using the standard affine change of variables [24, 47]

λ =
s

τ
+ λ0 (85)

and the new parametrization κ τ = ξ allowing to write (73) satisfying (76) as
∆̂(s) = τ2∆(λ =

s

τ
+ λ0) = P̂0(s) + P̂τ (s)e

−s,

P̂0(s) = s2 + (2λ0 − ξ) s+ λ0 (−ξ + λ0) ,

Pτ (s) =

(
−λ2

0

2
+

(ξ − 4)λ0

2
+ ξ − 1

)
s2 +

(
−λ2

0 +
(2ξ − 4)λ0

2
+ ξ

)
s+ λ0 (ξ − λ0) ,

(86)
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FIGURE 3. Region in the parameters (κ, λ0) plane described in (84) where the sign constancy of (79)
is guaranteed. The delay τ is taken unitary.

or, equivalently,

∆̂(s) = τ s3
∫ 1

0

e−s t

(
1− λ0 (ξ − λ0) t

2

2
+

(4λ0 − 2ξ) t

2

)
dt. (87)

Obviously, showing that λ0 is the spectral abscissa of (73) with control parameters satisfying (76) amounts to showing
that 0 is the spectral abscissa of (86) or, equivalently, (87). Thanks to the algorithm from [12, 48] also recalled in Sec-
tion 2.5 as Algorithm 1, one is now able to investigate the frequency bound for potential spectral values with positive real
parts for (86).

To do so, let us assume that there exists s0 = x0 + ι̇ω0 ∈ C+ such that ∆̂(s0) = 0, then necessarily

|P̂0(x0 + ι̇ ω0)|2 e2 x0 = |P̂τ (x0 + ι̇ ω0)|2. (88)

Consider then the family of auxiliary functions

Fn(x, ω) = |P̂τ (x+ ι̇ ω)|2 − Tn
(
e2 x
)
|P̂0(x+ ι̇ ω)|2,

where Tn designates the n-th order Taylor approximation. Since e2 x > Tn
(
e2 x
)
≥ 1 for any x > 0, we then have

Fn(x0, ω0) > 0. In particular, one has

F0(x, ω) = |P̂τ (x+ ι̇ ω)|2 − |P̂0(x+ ι̇ ω)|2 > 0.

The idea then amounts to show that, if s0 = x0 + ι̇ ω0 is a root of ∆̂ such that x0 > 0 and ω0 ≥ π, then F (x0, ω0) ≤ 0,
thus resulting a contradiction. Toward this end, we set ω =

√
Ω and establish the explicit expression

F0(x,
√
Ω) =

(λ0 + 2) (−λ0 + ξ − 2) µ(λ0, ξ)

4
Ω2 +

(
(λ0 + 2) (−λ0 + ξ − 2) µ(λ0, ξ)

2
x2 + ν(λ0, ξ) x

)
Ω

+
(λ0 + 2) (−λ0 + ξ − 2) µ(λ0, ξ)

2
x4 + ν(λ0, ξ)x

3

+
(
2λ0 (ξ − λ0)

(
−λ2

0 + (ξ − 4)λ0 + 2ξ
))

x2 + 2λ2
0 (ξ − λ0)

2
x
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with

µ(λ0, ξ) :=
(
−λ2

0 + (ξ − 4)λ0 + 2ξ
)
,

ν(λ0, ξ) :=
(
λ4
0 + (−2ξ + 6)λ3

0 +
(
ξ2 − 9ξ + 10

)
λ2
0 +

(
3ξ2 − 10ξ

)
λ0 + 2ξ2

)
.

Seen as a quadratic polynomial in Ω, the function F0 is positive only between its real roots (if they exist) since (84) yields
that the leading coefficient of F0 is negative. Let us investigate the existence of positive solutions for F0.

Fix x > 0. The discriminant of F0 in Ω is given by

D(x) = − (λ8
0 + (−4ξ + 12)λ7

0 +
(
6ξ2 − 42ξ + 48

)
λ6
0 +

(
−4ξ3 + 54ξ2 − 144ξ + 72

)
λ5
0

+
(
ξ4 − 30ξ3 + 155ξ2 − 180ξ + 28

)
λ4
0 +

(
6ξ4 − 70ξ3 + 152ξ2 − 56ξ

)
λ3
0

+
(
11ξ4 − 48ξ3 + 20ξ2

)
λ2
0 +

(
4ξ4 + 8ξ3

)
λ0 − 4ξ4)x2

− 2 (ξ − λ0)
2
λ2
0 (−λ0 + ξ − 2) (λ0 + 2)

(
−λ2

0 + (ξ − 4)λ0 + 2ξ
)
x,

which is nothing but a real-rooted second-order polynomial in x.
Notice that, if the discriminant D is negative for any positive x in some sub-region of 0 < ξ < 1 and λ0 satisfies (84),

then F0 cannot be positive. In that case, it is clear that the MID property holds.
However, if D is positive, then F0 is positive only in the interval (Ω−, Ω+), where

Ω±(x) := − x2 −
2
(
λ4
0 + (−2ξ + 6)λ3

0 +
(
ξ2 − 9ξ + 10

)
λ2
0 +

(
3ξ2 − 10ξ

)
λ0 + 2ξ2

)
x

(−λ0 + ξ − 2) (λ0 + 2) (−λ2
0 + (ξ − 4)λ0 + 2ξ)

∓
√
D(x)

(−λ0 + ξ − 2) (λ0 + 2) (−λ2
0 + (ξ − 4)λ0 + 2ξ)

.

By using some tedious but simple algebraic estimates, one obtains that

Ω+(x) < Γ(x) =
(
2 +

√
2
)
x− x2. (89)

Interestingly, Γ is a second-order polynomial in x, which is positive only in x ∈ (0, 2 +
√
2) and reaches its maximum

Γmax = 3
2 +

√
2 at x = 1 +

√
2
2 .

Clearly, in this case Ω = ω2 < π2, which allows to conclude that the imaginary part of the integral factor in (87)
satisfies ∫ 1

0

e−x t sin(ω t)

(
1− λ0 (ξ − λ0) t

2

2
+

(4λ0 − 2ξ) t

2

)
dt ̸= 0 for (x, ω) ∈ R∗

+ × R∗
+,

which ends the proof. □

4.3. P3δ software

The authors developed recently an intuitive Python software called Partial pole placement via delay action (P3δ)
[19–21]. P3δ (https://cutt.ly/p3delta) enables the design of delayed feedback control laws rendering the
closed-loop dynamics stable with a prescribed exponential decay rate. P3δ methodology relies on two properties of
quasipolynomial’s zeros distribution: (i) the MID and (ii) the CRRID [4, 9], for coexisting-real-root-induced-dominancy.

While the MID has been highlighted through this paper, the CRRID property consists in conditions on the system’s
parameters guaranteeing the dominance of coexistent real spectral values. When using the MID strategy on P3δ, two
options are proposed: the GMID-based design and the control-oriented IMID-based design. The first option relies on the
fact that a root of maximal multiplicity M(λ0) = n+m+1 is necessarily dominant and the latter exploits the over-order
intermediate multiplicity M(λ0) = n + 1, offering sufficient freedom in the choice of parameters. In future software
developments, the authors will integrate the result of this work into new P3δ functionality, allowing the users to exploit
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the IMID-based design with intermediate multiplicities n+1 ≤ M(λ0) ≤ n+m+1, yielding further freedom for control
purposes.

5. CONCLUDING REMARKS

The MID property defines an intriguing link between multiple spectral values and the spectral abscissa of a given
plant opening promising prospects in prescribed stabilization of both finite and infinite-dimensional dynamical systems.
While the GMID property (M(λ0) = m + n + 1) has been fully characterized in [15, 47] thanks to the hypergeometric
representation of the corresponding quasipolynomial, beyond some partial results [8, 18], the over-order intermediate
MID remained an open question. In this work, the over-order intermediate MID is investigated in depth. Thanks to a
Hille oscillation theorem in the complex domain, we first provide a unified proof for the IMID to hold when n + 1 ≤
M(λ0) ≤ m+ n by exploiting the representation of the quasipolynomial as a linear combination of contiguous Kummer
hypergeometric functions. Second, for the sake of the effectiveness of the MID-based design, an algorithmic method
relying on an a priori bound on the frequency of complex roots with positive real part is described. Both strategies have
been illustrated through concrete control applications in the retarded as well as in the neutral cases: prescribed regulation
of the Mach number in a wind-tunnel and the systematic PID control design for unstable first-order plants with input
delay. Both examples, as well as some recent works such as [2,3,35], show the true potential of the proposed partial pole
placement not only for ODEs and DDEs with a single delay but also for DDEs with several delays and some classes of
PDEs.
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