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Over-order Multiplicities and their Application in Controlling
Delay Dynamics. On Zeros’ Distribution of Linear

Combinations of Kummer Hypergeometric Functions

Islam Boussaada*† Guilherme Mazanti* Silviu-Iulian Niculescu*

Abstract

A series of recent works have shown that, for a system of linear functional differential equations, a spectral
value having a multiplicity exceeding the order of the system tends to correspond to the spectral abscissa of
the system, a property called MID for multiplicity-induced-dominancy. In particular, when this multiplicity
coincides with the degree of the quasipolynomial this property is called generic MID (GMID). The GMID
has been fully characterized for single-delay retarded as well as neutral delay-differential equations thanks
to the representation of the corresponding quasipolynomial in terms of a Kummer hypergeometric function.
However, apart from partial results, in full generality, no result of the literature enables the characterization
of the dominance of a spectral value having an intermediate multiplicity, which is essentially due to the lack
of existing results among the open literature pertaining to linear combinations of Kummer functions’ zeros
distribution. In this work, we overcome this difficulty and we further investigate the MID to cover the so-
called over-order MID, that is, the cases where the multiplicity is larger than the order of the corresponding
differential equation.

2020 Mathematics Subject Classification. 33C15, 34M03, 30A10, 34K06, 93D15
Keywords. Confluent hypergeometric functions, Whittaker function, Kummer function, zeros location, stability and stabi-
lization, exponential decay, pole placement, prescribed stabilization

1 Introduction
The common feature of propagation, transport phenomena/processes and population dynamics is their time
heterogeneity, and there exists a wide variety of mathematical models describing these dynamic behaviors in bi-
ology, physics, economics and engineering. One of the simplest ways of capturing the said time heterogeneity of
the dynamics is to use time-delay systems represented by delay-differential equations (DDEs) under appropriate
initial conditions. For the basic theory of DDEs1, we refer to [11, 25, 28, 30–32, 36, 37, 39, 41, 43, 44, 70, 74].
The classification of the DDEs2 and fundamental properties of the solutions can be found in [39]. Although
delay systems are infinite-dimensional, a first idea to properly understand and analyze their dynamics was to
extend methods and techniques from ordinary differential equations (ODEs) to DDEs, leading to some unitary
viewpoint of the qualitative properties for both classes of differential equations. Such an angle was adopted
since the 1960s, and we refer, in particular, to [31, 38] for further insights on the underlying methods.

In this spirit, and in the same fashion as in [31] for the presentation the properties of the solutions of DDEs,
we adopt some terminology coming from ODEs. In particular, the order of a DDE simply means the order

*Université Paris-Saclay, CNRS, CentraleSupélec, Inria, Laboratoire des signaux et systèmes, 91190, Gif-sur-Yvette, France. E-
mails: Islam.Boussaada@l2s.centralesupelec.fr, Guilherme.Mazanti@l2s.centralesupelec.fr, Silviu.
Niculescu@l2s.centralesupelec.fr

†IPSA, 94200, Ivry-sur-Seine, France
1initial value problem, existence, uniqueness of the solutions, linear systems, stability theory
2in two classes: retarded and neutral DDEs
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of the highest derivative involved in the equation3. In the linear DDE case, the characteristic function is a
quasipolynomial (see, e.g., [11]) and, likewise the ODE case, we can introduce the notion of degree. However,
since a quasipolynomial has an infinite number of (characteristic) roots, the meaning of its degree is slightly
different. Indeed, contrarily to the polynomial case, the degree does not determine the number of roots, it is
rather related to the number of parameters of the quasipolynomial4. By exploiting the Pólya-Szegő bound [64]
pertaining to the number of roots of exponential polynomials in horizontal strips, [23] (see also [50]) showed
that the maximal admissible multiplicity of a characteristic root is given by the degree of the corresponding
quasipolynomial, and, in addition to the first and second-order DDE cases discussed in [63], we can mention a
classical control example — stabilizing a second-order inverted pendulum by a delayed position feedback —,
where one may have characteristic roots at the origin with a multiplicity larger than the order of closed-loop
system5 (see, for instance, [22, 65, 68] and the references therein). Such multiple zeros are called over-order
multiple (characteristic) roots, and to the best of the authors’ knowledge, excepting some simple cases, there
does not exist a systematic analysis of such (multiple) roots, and, in particular, a better comprehension of the
way they may affect the dynamics of the corresponding dynamical system is missing.

One of the objectives of this paper is to further investigate the over-order multiplicity and, in particular, to
explicitly determine conditions when such a root is dominant, in the sense that it defines the spectral abscissa
of the corresponding dynamical system. The latter property is called multiplicity-induced-dominancy (MID).
Although the existence of multiple characteristic roots for the scalar DDE was emphasized since the end of the
1940s, the first systematic study in the parameter-space for the scalar and second-order DDEs (both retarded
and neutral cases) including a single delay (delay equal to one) can be found in [63]. It should be mentioned
that Pinney observed that the characteristic roots with the highest (possible) multiplicity can also exhibit the
greatest real part6, which, in our terminology, corresponds to the MID property. Namely, in order to avoid os-
cillations with the ambition of getting the maximum damping of all transient solutions, the author emphasized
the difficulty of the problem and studied the triple (dominant) roots in the scalar neutral and quintuple (domi-
nant) in the second-order neutral DDE cases, respectively. It should be pointed out that the proposed approach,
which is quite close to the so-called D-decomposition method introduced by Neimark [58], cannot be simply
extended to more general classes of DDEs. For a better understanding of the complexity of the analysis, we
refer to the study of the over-order MID property for scalar neutral DDEs with a single delay in [12], where
the authors proved the dominance by exploiting the explicit (frequency) bound for the imaginary part of the
unstable (characteristic) roots7.

For DDEs of arbitrary order, the MID property was proven in the generic case (i.e., the over-order mul-
tiplicity is equal to the degree of the quasipolynomial) in [50] (retarded case) and in [15] (unified treatment
of retarded and neutral cases). In fact, the authors of these papers have shown that the generic MID problem
can be reduced to (i) solving an appropriate linear system of equations, and (ii) an appropriate factorization of
the corresponding quasipolynomial. Finally, the dominance is proved by exploiting the properties of Kummer
hypergeometric functions. For a good introduction to hypergeometric functions, we refer to [26, 34, 75] (see
also [42] for an historical perspective). As underscored in [16], it should be mentioned that new interpretations
of the Padé approximation of the exponential function based on the location of the zeros of Kummer functions
with real parameters have been enabled [17].

For an overview of some of the methods for the characterization of the behavior of the (characteristic)
multiple roots of linear DDEs in the parameter-space8, we refer to [60]. In particular, if the frequency-sweeping
curves introduced in [46] capture the multiplicity of the roots located on the imaginary axis, multiplicity induced
by the structure of the delay parameters, but, unfortunately, they cannot detect over-order multiplicities in the

3In this context, the terminology of differential-difference equations introduced by Bellman and Cooke [11] should be mentioned. The
authors made an explicit distinction between the differential order corresponding to the highest derivative order appearing in the equation
and the so-called difference order that corresponds to the number of distinct (time) arguments appearing in the (same) equation minus one;
for further arguments concerning the terminology, see, for instance, [60] and the references therein.

4The notion of “parameters” is seen in a large sense, including all coefficients and delay terms.
5For instance, in the inverted pendulum case, we may have one triple characteristic root at the origin of the linearization of the dynamical

system in closed-loop represented by a second-order DDE.
6More precisely, the reader is referred to Chapters 3 (characteristic equations), 4 (scalar DDE) and 5 (second-order DDE) in [63].
7Complex characteristic roots located in the right half-plane.
8also including the delays (seen as parameters)
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single delay case. Next, the perturbation-based approach using the Weirstrass–Malgrange preparation theorem
and proposed in [49] permits the characterization of the asymptotic behavior of the (characteristic) roots of
any multiplicity, albeit without any guarantee about the dominancy of the (corresponding) root. It is worth
mentioning that this last approach combined with the MID yields an appropriate local analysis of the behavior of
the multiple roots with respect to some of the parameters of the corresponding system9. For further discussions
on such topics, we refer to [52].

The interest for a deeper understanding and an explicit characterization of the MID property for more gen-
eral classes of dynamical systems represented by DDEs emanates from the control area. As discussed in [59,69],
starting with the 1950s, in engineering applications, delay was commonly associated to instability, oscillations
and bad behaviors in dynamical systems, and there is an abundant literature on the elaboration of criteria allow-
ing to guarantee the exponential stability of the systems independently of the size of the delay. However, some
results showed that the delay, as a control parameter can be useful for improving the stability and/or the behav-
ior of linear dynamical systems, see, for instance, the so-called proportional minus delay controller introduced
by [71, 72] or the output delay feedback that stabilizes some oscillatory systems discussed in [1]. Furthermore,
as highlighted by [45]10, increasing the delay is not necessarily associated with instability and there are cases
where a larger delay may induce stability even though the property does not necessarily hold for “small” delay
values.

As a consequence of the remarks/examples above, understanding the dependence of the characteristic roots
with respect to the system parameters appears to be essential. Several methods/techniques grouped together un-
der the title eigenvalue-based approaches have been the subject of several contributions, see, for instance, [54],
and the references therein. These methods have the particularity of using and exploiting the duality between two
types of methods for solving eigenvalue problems: one nonlinear in finite dimension and the other linear in infi-
nite dimension and, as a consequence, to better characterize the properties of the spectral abscissa with respect
to system parameters11. The derived results reinforce the interest in using the delay as a control parameter,
however they also show some limitations of the approach.

Furthermore, the continuous dependence of the characteristic roots on the controller parameters represents
an interesting property to be further exploited. Indeed, for instance, the so-called continuous pole placement
proposed in [53] in the retarded case uses such a continuity property and explicitly uses the fact that, in the
retarded case, the number of unstable roots is finite together with an appropriate monitoring of the characteristic
roots with a “large” real part (see, e.g., [55] for an extension to neutral systems). This pole placement method
represents one of the potential extensions of the stabilization procedure related to the classical pole placement
method for ODEs [2]. Another extension of the pole placement method is the so-called partial pole placement
method which simply employs the degree of the quasipolynomial and the MID property mentioned above. First,
the degree of the quasipolynomial gives an upper bound on the number of functional equations to be taken into
account in the appropriate tuning of the controller gains. Second, the MID property gives a guarantee for the
decay rate of the solutions of the closed-loop system. This control method was discussed in [50] (retarded
case) and [15] (retarded and neutral cases) in the case of maximal admissible multiplicity. A few recent results
showed that this property holds for other over-order multiplicities and, in particular, in the case of the lowest
over-order multiplicity, see, for instance, [9] (in the case of real-rooted plants), [18] (by exploiting the frequency
bound). To the best of the authors’ knowledge, there does not exist an explicit characterization of the partial
pole placement in the case of over-order of multiplicity. The method proposed in this paper enables the handling
of such a problem in its generality.

To summarize, the aim of this paper is to address such MID spectral problems and to propose a new method
that could also encompass over-order (algebraic) multiplicities with the guarantee of dominance of the cor-
responding spectrum. More precisely, the contribution of the paper is threefold: first, to further investigate
over-order MID cases. Roughly speaking, if the problem of multiplicity can be reduced to solving an appropri-
ate system of functional equations, the dominance requires a deeper analysis and an appropriate understanding
of the way the changes in the parameters may affect the spectrum distribution. As shown below, a central
role is played by the so-called elimination-produced function (see Section 3), and its interest clearly appears

9complete regular splitting or not
10The corresponding method is known as the τ -decomposition method, see, e.g., [54] for a deeper discussion on such topics.
11The spectral abscissa represents the rightmost characteristic root of the (corresponding characteristic) function.

3



in a control setting in terms of degrees of freedom induced by the system structure and the (controller) gains
selection. Next, the appropriate tool for proving the dominancy is the Green–Hille (integral) transformation
introduced by Hille one century ago [40] for characterizing the location of the non-asymptotic zeros of (degen-
erate) Whittaker hypergeometric functions. For an introduction to confluent hypergeometric functions, we refer
to [26]. A motivating example (scalar neutral DDEs of degree three representing the closed-loop dynamics of
a transport equation subject to a stabilizing boundary proportional-integral (PI) action, see Section 2) helps to a
better understanding of the existing links between over-order MID (double characteristic root in this case) and
Hille’s method.

It should be noted that the elimination-produced function represents a novelty and generalizes some of the
ideas proposed earlier by the authors of this paper. In particular, we recover some of the cases when this function
reduces to a polynomial, called elimination-produced polynomial (see Section 3). Next, we further exploit the
properties of Kummer hypergeometric functions to handle the dominance property for over-order multiplicities
leading to a more unified treatment.

Second, as a byproduct of the analysis proposed in this paper, the location of zeros of linear combination
of Kummer (hypergeometric) functions can be derived, and these results allow exploiting MID ideas into a
different frame and more precisely in the case of contiguous (degenerate hypergeometric) functions (see, for
instance, [62] for further details and related definition12). To the best of the authors’ knowledge, such ideas
represent a novelty in the open literature.

Finally, we use the over-order MID to the control of dynamical systems by using the so-called partial pole
placement method that simply consists in assigning a given multiplicity of a spectral value for the closed-loop
system by an appropriate choice of the controller gains with the guarantee of the exponential stability of the
closed-loop system solution with a prescribed rate given by this spectral value. To the best of the authors’
knowledge, such ideas represent a novelty and propose a different angle to control dynamical systems repre-
sented by DDEs.

Some illustrative case studies show the effectiveness of the method, see for instance [8, 27, 56]. In fact
we consider two control problems of two classes of infinite-dimensional systems whose dynamical equations
can be represented by DDEs: the control of a transonic flow in a wind tunnel13 and the control of a first-order
unstable plant including a communication delay in the input/output channel by using a “standard” PID control
law14. It should be mentioned that our method offers an interesting alternative to the existing tuning rules with
a prescribed decay rate for the corresponding closed-loop system.

The remaining of the paper is organized as follows: Prerequisites on degenerate hypergeometric functions, a
motivating example (controlling transport equation by a PI controller), the problem formulation, and definitions
of over-order multiplicities are presented in Section 2. The methodology for the study of the over-order multi-
plicities as well as some control perspectives are proposed in Section 3. Next, Section 4 includes two illustrative
examples and briefly presents the software P3δ covering the over-order multiplicity. Finally, some concluding
remarks end the paper.

Notation. Throughout the paper, the following notations are used: N∗, R, C denote the sets of positive integers,
real numbers, and complex numbers, respectively, and we set N = N∗ ∪ {0}. For a complex number λ, ℜ(λ)
and ℑ(λ) denote its real and imaginary parts, respectively. The open left and right complex half-planes are the
sets C− and C+, respectively, defined by C− = {λ ∈ C | ℜ(λ) < 0} and C+ = {λ ∈ C | ℜ(λ) > 0}. Given
k, n ∈ N with k ≤ n, the binomial coefficient

(
n
k

)
is defined as

(
n
k

)
= n!

k!(n−k)! and this notation is extended to
k, n ∈ Z by setting

(
n
k

)
= 0 when n < 0, k < 0, or k > n. For α ∈ C and k ∈ N, (α)k is the Pochhammer

symbol for the ascending factorial, defined inductively as (α)0 = 1 and (α)k+1 = (α+ k)(α)k.

12To the best of the authors’ knowledge, contiguous functions appear in the works of Gauss (1813) and he was the first to define the
equations which relate such functions

13under the assumption that the flow is uniform across every cross section and the tunnel is a one-dimensional tube of varying cross-
sectional area, leading to a a coupled model of nonlinear partial differential equations in one space dimension

14For a more detailed discussion on the existing tuning rules for PID controllers, we refer to [61].
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2 Prerequisites and Problem Formulation
This section provides a brief presentation of the definitions and results that shall be of use in the sequel.

2.1 Dynamical systems with delay
Consider the linear time-invariant (LTI) dynamical system described by the DDE including a single delay:

y(n)(t) +

n−1∑
k=0

aky
(k)(t) +

m∑
k=0

αky
(k)(t− τ) = 0, (1)

under appropriate initial conditions, where y(·) is the real-valued unknown function, τ > 0 is the delay, and
a0, . . . , an−1, α0, . . . , αm are real coefficients. The DDE (1) is said to be of retarded type15 if m < n, or of
neutral type if m = n. We refer to [11], [39], [54] for a deeper discussions on DDEs and related results and
properties. Notice that (1) is a particular case of the following matrix form:

ξ̇(t) +Bτ ξ̇(t− τ) = A0ξ(t) +Aτξ(t− τ) (2)

where ξ = (y(t), y′(t), . . . , y(n−1)(t))T ∈ Rn is the state-vector and A0, Aτ , Bτ ∈ Mn(R) are real-valued
matrices which can be easily constructed from (1).

The characteristic function associated with (1) is the quasipolynomial ∆: C → C defined by

∆(λ) = P0(λ) + e−λτPτ (λ), (3)

where P0, Pτ are polynomials with real coefficients given by:
P0(λ) = λn +

n−1∑
k=0

akλ
k,

Pτ (λ) =

m∑
k=0

bkλk.

(4)

It is well-known that the exponential stability of the trivial solution of (1) is given by the location of the char-
acteristic roots of ∆, see, e.g., [11, 54].

As discussed in [23], the degree of the quasipolynomial ∆, denoted by deg(∆), is nothing else than the
Pólya–Szegő bound [64] and, in our case, deg(∆) = n+m+1 and it is larger than the degree of the polynomials
P0 and Pτ . It is easy to observe that the quasipolynomial degree corresponds also to the maximal allowable
multiplicity that a characteristic root of (4) may have. To reach such a bound, the characteristic root should be
real.

2.2 Degenerate hypergeometric functions and the corresponding contiguous relations
To develop our results, we need to use some properties of classical hypergoemetric functions. The first such
a function we introduce is the Kummer (confluent) hypergeometric function, which, for a, b ∈ C such that
−b /∈ N, is the entire function Φ(a, b, ·) : C → C defined by the series

Φ(a, b, z) =

∞∑
k=0

(a)k
(b)k

zk

k!
. (5)

The series in (5) converges for every z ∈ C and, as presented in [26, 34, 62], it satisfies the (second-order)
Kummer differential equation

z
∂2Φ

∂z2
(a, b, z) + (b− z)

∂Φ

∂z
(a, b, z)− aΦ(a, b, z) = 0. (6)

15in the case when the highest order of derivation appears only in the non-delayed term y(n)(t)
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As discussed in [26,34,62], for every a, b, z ∈ C such that ℜ(b) > ℜ(a) > 0, Kummer functions also admit the
integral representation

Φ(a, b, z) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0

eztta−1(1− t)b−a−1 dt, (7)

where Γ denotes the Gamma function. This integral representation has been exploited in [50] to characterize
the spectrum of some DDEs of retarded type.

Notice that Kummer functions satisfy some recurrence relations often called contiguous relations, see for
instance [62]. In particular, in our case, the following relations are of interest:

Lemma 1 ( [62, p. 325]). Let a ̸= b and z ̸= 0 be three complex numbers. The following relations hold:

Φ(a, b+ 1, z) =
−b (a+ z) Φ(a, b, z) + abΦ(a+ 1, b, z)

z (a− b)
,

Φ(a+ 1, b+ 1, z) = −−bΦ(a+ 1, b, z) + bΦ(a, b, z)

z
.

(8)

Kummer confluent hypergeometric functions have close links with Whittaker functions. More precisely, for
k, l ∈ C with −2l /∈ N∗, the Whittaker function Mk,l is the function defined for z ∈ C by

Mk,l(z) = e−
z
2 z

1
2+lΦ( 12 + l − k, 1 + 2l, z) (9)

(see, e.g., [62]). Note that, if 1
2 + l is not an integer, the function Mk,l is a multi-valued complex function with

branch point at z = 0. The nontrivial roots of Mk,l coincide with those of Φ( 12 + l − k, 1 + 2l, ·) and Mk,l

satisfies the (second-order) Whittaker differential equation

d2φ

dz2
(z) =

(
1

4
− k

z
+

l2 − 1
4

z2

)
φ(z). (10)

Since Mk,l is a nontrivial solution of the second-order linear differential equation (10), any nontrivial root of
Mk,l is necessarily simple.

2.3 Some Insights on Linear Combinations of Two Kummer Functions
Notice that on beyond the standard contiguous relations recalled in Lemma 1 and the other contiguous relations
from [62, p. 325], to the best of the authors’ knowledge, there does not exist any result describing the distribution
of the nonasymptotic zeros of linear combinations of Kummer functions.

The next result, which is established and shown in [18], provides a partial step towards our goal, by giving a
non-autonomous second-order differential equation having a given linear combination of two Kummer functions
as a solution.

Lemma 2. Let a, b be two complex numbers and α and β two real numbers. Then the complex function F
defined by

F (z) = αΦ(a, b, z) + β Φ(a, b+ 1, z), (11)

with z /∈ {0, β(β+α)b2

((a−b)α−βb)α}, satisfies the second-order differential equation

d2φ

dz2
(z) +Q(z)

dφ

dz
(z) +R(z)φ(z) = 0, (12)

where

Q(z) = −1 +
b+ 1

z
− α (aα− αb− βb)

D(z)
, (13)
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R(z) = −N(z)

D(z)
, (14)

with

N(z) = a
((
(a− b)α2 − αbβ

)
z − βb (b+ 1)α

)
− a b2β2,

D(z) =
(
(a− b)α2 − αbβ

)
z − α b2β − b2β2.

Lemma 2 can be proved by using a simple property of Φ, namely, ∂Φ
∂z (a, b, z) =

a
bΦ(a+1, b+1, z), which

follows immediately from (5), and exploiting the contiguous relations from Lemma 1. In the sequel, we shall
refer to functions F of the form (59) as Kummer-type functions.

Note that Whittaker functions are defined in terms of Kummer functions in (9) by using the multiplicative
factor e−

z
2 z

1
2+l, thanks to which the Whittaker differential equation (10) has no first-order term. We now

proceed similarly from Kummer-type functions in order to define Whittaker-type functions. The next lemma
can be shown by straightforward computations.

Lemma 3. Let a, b be two complex numbers, α, β be two real numbers, F be the function defined in (11), and
Q and R be given by (13) and (14), respectively.

Let Q be a primitive of Q
2 and define the function W by

W (z) = eQ(z)F (z). (15)

Then W satisfies the second-order differential equation

d2W

dz2
(z) +G(z)W (z) = 0, (16)

where

G(z) = R(z)− (Q(z))2

4
− 1

2

dQ

dz
(z). (17)

In the sequel, we refer to functions W of the form (15) as Whittaker-type functions.
As discussed in the previous section, beyond the standard contiguous relation, to the best of the authors’

knowledge, there does not exist any result describing the distribution of the non-asymptotic zeros’ of linear
combinations of Kummer functions.

2.4 Hille oscillation theorems
In [40], Hille studied the distribution of zeros of functions of a complex variable satisfying linear second-
order homogeneous differential equations with variable coefficients, as is the case for the degenerate Whittaker
function Mk,l, which satisfies (10). Thanks to an integral transformation defined there and called Green–Hille
transformation, and some further conditions on the behavior of the function, Hille showed how to discard
regions in the complex plane from including complex roots. Consider, for instance, the general homogeneous
second-order differential equation:

d

dz

[
K(z)

dφ

dz
(z)

]
+G(z)φ(z) = 0, (18)

where z is complex and the functions G and K are assumed analytic in some region Ω such that K does not
vanish in that region. Equation (18) can be written in Ω as a second-order system on the unknown functions
φ1(z) = φ(z) and φ2(z) = K(z) dφ

dz (z), and the Green–Hille transformation consists on multiplying the
equation on φ1 by φ2(z), that on φ2 by φ1(z), and integrating on z along a path in Ω, which yields:[

φ1(z)φ2(z)
]z2
z1

−
∫ z2

z1

|φ2(z)|2
dz

K(z)
+

∫ z2

z1

|φ1(z)|2G(z) dz = 0, (19)

7



where z1, z2 ∈ Ω and both integrals are taken along the same arbitrary smooth path in Ω connecting z1 to z2.
The following result, which is proved in [17] using the Green–Hille transformation from [40], gives insights

on the distribution of the non asymptotic zeros of Kummer hypergeometric functions with real arguments a and
b.

Proposition 2.1 ( [17]). Let a, b ∈ R be such that b ≥ 2.

1. If b = 2a, then all nontrivial roots z of Φ(a, b, ·) are purely imaginary.

2. If b > 2a (resp., b < 2a), then all nontrivial roots z of Φ(a, b, ·) satisfy ℜ(z) > 0 (resp., ℜ(z) < 0).

3. If b ̸= 2a, then all nontrivial roots z of Φ(a, b, ·) satisfy

(b− 2a)2ℑ(z)2 − (4a(b− a)− 2b)ℜ(z)2 > 0.

Remark 1. It should be noted that a quasipolynomial admitting a characteristic root with intermediate mul-
tiplicity necessarily shares its remaining roots with an appropriate linear combination of Kummer functions.
Unfortunately, to the best of the authors’ knowledge, there does not exist any general result in the open litera-
ture to describe the distribution of the non-asymptotic zeros of such a function combination.

2.5 Delay Systems Frequency Bound in the Right Half-plane
Despite the unquestionable interest and insights of the Hille oscillation Theorems [40] and the Green–Hille
transform in discarding regions in the complex plane from containing zeros of a meromorphic function which is
a solution of a given second-order differential equation, such an approach lacks effectiveness from the numerical
point of view.

In this preliminary subsection, we provide a numerical-oriented alternative for the Green–Hille transform
leading to an effective algorithm that we are explicitly using in our framework. In this sense, we first establish
conditions on the system’s parameters which guarantee the existence of a multiple root. Second, perform an
affine change of variable in the characteristic equation ∆(λ) = P0(λ) + Pτ (λ) e−λ τ in order to reduce the
corresponding quasipolynomial to a normalized form: ∆̃(z) = P̃0(z)+ P̃τ (z) e−z . Next, we derive a bound on
the imaginary part of roots of the normalized characteristic function in the complex right half-plane. Lastly, a
certification of the dominance of the multiple root is demonstrated. In what follows, Algorithm 1 lists the steps
to be followed to reach a suitable frequency bound (see [13, 51]).

2.6 Multiplicity-induced-dominancy property in DDEs and related topics
As briefly explained in the Introduction, a characteristic root λ0 (of ∆) satisfies the MID property if

(i) its algebraic multiplicity (denoted M = M(λ0)) is larger than one,

(ii) it is dominant in the sense that the remaining characteristic roots λσ of the spectrum satisfy the condition
ℜ(λσ) ≤ ℜ(λ0).

Since the maximal allowable multiplicity is defined by the degree of the quasipolynomial ∆ (see, e.g., [50]),
it is clear that 2 ≤ M ≤ deg(∆). The case M = deg(∆) is called generic multiplicity, and any multiplicity
larger than one and smaller than deg(∆) denotes an intermediate multiplicity. Regarding these intermediate
multiplicities, when compared to deg(P0) = n, there are two sub-cases:

(i.1) sub-order multiplicity, if 1 < M ≤ n = deg(P0), and

(i.2) over-order multiplicity, if 1 + deg(P0) = 1 + n ≤ M ≤ deg(∆).
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Algorithm 1 Estimation of the MID frequency bound in time-delay differential equations with single delay

Require: ∆̃(z) = P̃0(z) + P̃τ (z) e−z // Normalized quasipolynomial
// Initialization
ord = 0
// ord: order of truncation of the Taylor expansion of e2 x = 1︸︷︷︸

ord=0

+2x︸ ︷︷ ︸
ord=1

+2x2 + 4 x3

3
+ · · ·

dominance = false
∃ z0 = x+ ι̇ω ∈ R∗

+ + ι̇R∗
+ s.t. ∆̃(z0) = 0

|P̃0(x+ ι̇ω)|2 e2 x = |P̃τ (x+ ι̇ω)|2
while ∼ dominance do

ord = ord+1
F (x, ω) = |P̃τ (x+ ι̇ω)|2 − |P̃0(x+ ι̇ω)|2 Tord(e2 x) > 0
// Tord(e2 x): Taylor expansion of e2 x of order = ord

ω2 = Ω
H(x,Ω) // The polynomial characterizing the real roots of F

end while
Ωk(x) // kth real root of H , depend on free parameters
if maxx(maxk(Ωk(x))) < π2 then
dominance = true

end if
return Frequency bound

With these definitions and notations, the smallest over-order multiplicity is given by one added to the degree
of the polynomial P , and the largest is given by the degree of the characteristic function ∆ and it corresponds
to the so-called generic multiplicity. The second property states that λ0 should be the rightmost root of the
spectrum and defines the spectral abscissa of the corresponding quasipolynomial ∆ (see, for instance, [54] and
the references therein).

For a better understanding of the notions, consider the following simple example. In the case of second-
order DDEs of retarded type including one delay with deg(P0) = 2, deg(P1) = 1, we have deg(∆) = 4.
Thus, in this case, the generic multiplicity is four, the intermediate multiplicities are two and three, and the only
over-order multiplicities are three and four since the order of the DDE is two. In this configuration, the only
sub-order multiplicity is two.

Our main objective is to address the MID property in the case of over-order multiplicities. It should be
mentioned that the generic case, i.e., M(λ0) = deg(∆), was already treated and explicit characterizations
exist: the retarded case m = n− 1 was characterized in [50] and a unified treatment of the retarded and neutral
cases, where m ≤ n, was provided in [15].

To the best of the authors’ knowledge, in the open literature, the MID with over-order multiplicities has
been addressed in two particular configurations M(λ0) = n + 1 and M(λ0) = n +m. More precisely, in the
“limit” case M(λ0) = n+1, sufficient conditions for their validity have been proposed in [9], where the authors
exploited the particular spectrum location of the open-loop plant. Finally, by using a different argument inspired
by the Green–Hille transformation, [18] treated the case M(λ0) = n + m corresponding to the other “limit”
case. Finally, it should be mentioned that in the case of second-order DDEs of retarded type with a single delay,
these two limits cases coincide and they were treated in [24].

2.7 Motivating example: Boundary control of the transport equation
To illustrate the use of the MID property for hyperbolic PDE control purposes, let us revisit the problem of
high-volume, multistage continuous production flow through a re-entrant factory control [6, 29], which, in its
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linear version, amounts to the problem of exponential stabilization of the standard scalar conservation law:

∂tφ(t, x) + η ∂xφ(t, x) = 0, t ∈ [0, ∞), x ∈ (0, L), (20)

that is a “standard” linear transport equation where φ(t, x) represents the density or the concentration at position
x ∈ (0, L), with L > 0, and in time t ∈ [0,+∞) of the corresponding physical quantity of interest. Under the
assumption that the diffusion is neglected, the linear mapping φ 7→ ηφ, with η > 0 defines the flux function16.
Finally, the quantity η represents the so-called advection speed or the velocity of propagation. In view of
boundary controlling the dynamics of Equation (20), the standard PI controller is proposed in [29]:

φ(t, 0) = kp φ(t, L) + ki

∫ t

0

φ(ν, L)dν, (21)

where kp and ki are the feedback parameters representing proportional and integral control gains. By using the
Laplace transform to both sides of the boundary condition (21) and multiplying by λ, one gets the following 17:

∆(λ) = λ− (ki + kpλ)e−
L
η λ, (22)

which is a scalar quasipolynomial of neutral type with the delay given by the ratio between the length and the
speed of propagation L/η.

As discussed in the previous sections, the degree of the quasipolynomial ∆ is equal to 3. Recall also that,
thanks to the results from [15], the maximal multiplicity can be achieved only by a real root. Furthermore, if
such a maximal multiplicity is reached, the GMID property holds and the corresponding triple characteristic
root λ0 = − 2 η

L is necessarily the spectral abscissa. Despite the interest of this property from a purely analytic
view point, a control implementation based on the GMID lacks of robustness, see for instance [52]. As a
matter of fact, for the sake of robustness with respect to the model’s parametric uncertainties, it appears that
it will be more appropriate to relax constraints on the choice of the closed-loop spectral abscissa. This can be
carried out using the MID property by assigning a root with an over-order intermediate multiplicity (in this case,
multiplicity two):

Proposition 2.2. For any λ0 satisfying −η/L < λ0 < 0, the PI controller given by:

ki = −λ2
0L e

Lλ0
η

η
, kp =

e
Lλ0
η (Lλ0 + η)

η
(23)

stabilizes the system (20). Furthermore, the intermediate MID property holds with an exponential decay rate
λ0 for the closed-loop system.

Before providing the proof of Proposition 2.2, let us consider the generic quasipolynomial ∆: C → C
defined by

∆(λ) = λ+ a+ e−λτ (b1λ+ b0). (24)

This corresponds to the scalar neutral systems studied in [12]. In this case, deg(∆) = 3 and we are interested
in the dominance of roots attaining the intermediate multiplicity 2, which is an over-order multiplicity since the
neutral DDE is scalar.

A number λ0 ∈ R is a root of multiplicity at least 2 of ∆ if and only if the coefficients b1 and b0 satisfy

b1 = −eλ0τ (1 + (a+ λ0)τ) ,

b0 = eλ0τ ((a+ λ0)λ0τ − a) .
(25)

We first remark that, under conditions (25), (24) can be rewritten as

∆(λ) = λ+ a− e−(λ−λ0)τ ((a+ λ0)(λ− λ0)τ + λ+ a) .

16linear convection in this case
17Scalar closed-loop characteristic function of neutral type (m = n = 1).
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We perform the change of variables in C corresponding to the new variable z = τ(λ − λ0). More precisely,
consider ∆̃(z) = τ∆(λ0 +

z
τ ), which satisfies

∆̃(z) = z + α− e−z (z(1 + α) + α) ,

where α = τ(a+ λ0). Note that λ0 is a dominant root of (24) if and only if 0 is a dominant root of ∆̃.
A straightforward computation shows that

∆̃(z) = z2
∫ 1

0

[1 + α− α(1− t)] e−ztdt

and thus, using the integral representation (7) of Kummer functions, we deduce that

∆̃(z) = z2
[
(1 + α)Φ(1, 2,−z)− α

2
Φ(1, 3,−z)

]
. (26)

Let F : C → C be the function defined by

F (z) = (1 + α)Φ(1, 2, z)− α

2
Φ(1, 3, z).

Thanks to (26), the root 0 is a dominant root of ∆̃ if and only if all roots of F have nonnegative real part. To
study the sign of the real part of the roots of F , we apply Hille’s method as described in Section 2.2. Notice first
that, by Lemma 2, F satisfies the second-order equation (12) with α replaced by 1 + α and β replaced by −α

2 .
We now perform a transformation similar to that used to obtain Whittaker functions from Kummer functions.
More precisely, we multiply F by a function of z in such a way that the second-order ODE satisfied by the
product has no first-order term. This can be achieved introducing the Whittaker-type function

W (z) =
e−z/2z3/2√

(1 + α)z − α(α+ 2)
F (z),

which satisfies
d2W

dz2
(z) +G(z)W (z) = 0, (27)

where G is given by

G(z) = − (α+ 1)2z4 − 2α(α+ 1)(α+ 2)z3 + α2(1 + (α+ 1)2)z2 + 2α3(α+ 2)z + 3α2(α+ 2)2

4z2((α+ 1)z − α(α+ 2))2
. (28)

Note that G can be rewritten as

G(z) = − 1

4
− 3

4z2
− 3(α+ 1)2

4((α+ 1)z − α(α+ 2))2

− α2 + 3α+ 3

2α(α+ 2)z
+

(α+ 1)(α2 + 3α+ 3)

2α(α+ 2)((α+ 1)z − α(α+ 2))
.

Applying Hille’s method to (27), we obtain, by taking in (18) z1 = 0 and z2 equal to a root z∗ of F , we deduce
that ∫ z∗

0

|W ′(z)|2dz =

∫ z∗

0

|W (z)|2G(z)dz.

We choose as integration path the line segment from 0 to z∗. Hence

z∗

∫ 1

0

|W ′(tz∗)|
2
dt = z∗

∫ 1

0

|W (tz∗)|2G(tz∗)dt.
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Taking the real part, we get

x∗

∫ 1

0

|W ′(tz∗)|
2
dt =

∫ 1

0

|W (tz∗)|2ℜ [z∗G(tz∗)] dt.

where x∗ = ℜ(z∗) and y∗ = ℑ(z∗).
So, a sufficient condition for F to admit only roots with positive real part is that

ℜ

[
−z

4
− 3

4t2z
− 3z(α+ 1)2

4((α+ 1)tz − α(α+ 2))2
−α2 + 3α+ 3

2α(α+ 2)t
+

z(α+ 1)(α2 + 3α+ 3)

2α(α+ 2)((α+ 1)tz − α(α+ 2))

]
≥ 0, (29)

for every t ∈ (0, 1) and z ∈ C−, where α = (a + λ0)τ . Then λ0 is a dominant root of ∆, i.e., ℜ(λ) ≤ λ0 for
every root λ of ∆.

As emphasized in the previous sections, Hille oscillation method provides only implicit sufficient conditions.
So that, in the following proof we exploit the numerical alternative provided in Section 2.5.

Proof of Proposition 2.2. Using a standard elimination procedure (thanks to the linear dependency of the qua-
sipolynomial with respect to its parameters) allows to show that a real λ0 is a root of multiplicity 2 of ∆ if and
only if the PI gains kp and ki satisfy (23). Thus, the characteristic function can be written as:

∆̃(z) = P̃0(z) + P̃τ (z)e−z, (30)

where P̃0(z) = z+ρ, and P̃τ (z) = (−ρ− 1) z−ρ, with ρ = Lλ0/η. A necessary condition for the exponential
stability is given by the stability of the corresponding delay-difference operator (see, e.g. [39]). Thus, ρ should
verify |ρ+ 1| < 1, that is ρ ∈ (−2, 0). Next, ∆̃ in (30) can be written as:

∆̃(z) = z2
∫ 1

0

qρ(t) e
−tz dt where qρ(t) = ρ t+ 1. (31)

In our approach, qρ should keep a constant sign for t ∈ (0, 1), which happens if an only if ρ ≥ −1, and then
we concentrate in the interval of interest ρ ∈ (−1, 0). Next, one follows the steps of Algorithm 1 by setting
z0 = x0 + iω0 ∈ R+ + iR+ as a root of ∆̃(z), we then have

|P̃0(x0 + iω0)|2e2 x0 = |P̃τ (x0 + iω0)|2.

Since e2 x > 1 + 2x for any x ∈ R+, the real-valued function Fρ(x, ω) =
∣∣∣P̃τ (x+ iω)

∣∣∣2 − |P̃0(x +

iω)|2 (1 + 2x) satisfies Fρ(x0, ω0) > 0. In fact, Fρ is nothing but the following quadratic polynomial in
(real) ω

Fρ(x, ω) = bρ(x)ω
2 + cρ(x), (32)

where bρ = −2x+ 2 ρ+ ρ2, cρ = −2x3 +
(
ρ2 − 2 ρ

)
x2. By setting x± = ρ2

2 ± ρ, one easily checks that Fρ

is positive for x ∈ (x+, x−) if ρ ∈ (−1, 0).
The next step consists in characterizing the frequency bound for potential unstable roots if ρ ∈ (−1, 0).

Since the discriminant of Fρ defined in (32) is positive, then Fρ admits two real roots:

ω±
ρ (x) = ∓

√
− (ρ2 + 2 ρ− 2x) (ρ2 − 2 ρ− 2x)x

ρ2 + 2 ρ− 2x

where ω+
ρ denotes the greatest solution. Since ρ ∈ (−1, 0) and x > 0, ω+

ρ is upper bounded with respect to ρ

by the parameter-free expression ω+(x) = x
√
−4 x2+3
1+2 x , which reaches a maximum value at x∗ =

√
3
2 . Thus,

ω = ω+
ρ (x) ≤ ω+(x∗) ≈ 0.5899 < π. In other words, all unstable solutions zu of ∆̃ should satisfy the

condition 0 < ℑ(zu) < π.
Finally, by a contradiction argument, one assumes that such an unstable root zu exists. Then, the integral rep-

resentation yields
∫ 1

0
(ρ t+ 1) e−t zu dt = 0, the imaginary part of which is

∫ 1

0
t (ρ t+ 1) e−t x sin(ω t)dt = 0.

Now, the frequency bound 0 < ω ≤ π of the previous step entails that the function t 7→ t (ρ t+ 1) e−x t sin(ω t)
is strictly positive in (0, 1), thereby contradicting the last equality. This ends the proof.
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Figure 1: Numerical simulation of a solution of (20)-(21) satisfying (23) with parameters L = 1 η = 1 and
initial condition φ(0, x) = sin(πx).

As an illustration of Proposition 2.2, Fig. 1 represents a solution φ of (20) under the PI controller (21) with
parameters ki and kp computed from (23) with the choice λ0 = − η

2L . The numerical solution was computed
using a standard finite difference upwind scheme to discretize (20) and using Simpson’s rule to approximate the
integral in (21).

2.8 Problem Formulation
As emphasized in the Introduction, the aim of this paper is to further exploit the zeros distribution of linear
combination of Kummer/Whittaker functions in the control of dynamical systems represented by DDEs by
using the partial pole placement. As a matter of fact, our goal is to characterize quasipolynomials with multiple
roots as a particular linear combinations of Kummer functions

∑M−1
k=0 ζk Φ(a, b+k,−z). Next, for a prescribed

λ0 we aim to establish conditions discarding the right half-place {λ ∈ C | ℜ(λ) > λ0} from containing zeros of
such functions. This step allows to show the validity of the so-called MID property with over-order intermediate
multiplicities i.e. to show the dominancy of the multiple root among the set of all the remaining zeros of the
considered quasipolynomial. Consider now the DDE (1) with the characteristic function:

∆: C → C, ∆(λ) = P0(λ) + Pτ (λ)e−λτ ,

where deg(P0) = n, deg(Pτ ) = m ≤ n. As indicated in [23], deg(∆) = n+m+ 1.
The problem addressed in this paper can be formulated as follows: finding conditions on the parameters

of the dynamical system (1) such that a (real) characteristic root λ0 with intermediate algebraic multiplicity
n+ 1 ≤ M(λ0) ≤ n+m satisfies the MID property, i.e., it corresponds to the rightmost characteristic root.

3 Main Results
With the definitions, notations and prerequisites above, we are now able to state our main results.
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3.1 Necessary and Sufficient Conditions guaranteeing Multiplicity n + 1 ≤ M(λ0) ≤
n+m+ 1

Thanks to the preliminary results of Section 2.3, we are now in position to prove the following result, providing
a necessary and sufficient condition for a given real number λ0 to be a root of a quasipolynomial ∆ with
multiplicity between n+ 1 and n+m+ 1.

Theorem 3.1. Let n,m be nonnegative integers with n ≥ m, τ > 0, λ0 ∈ R, M ∈ [n + 1, n +m + 1] be an
integer, and consider the quasipolynomial ∆ from (3)–(4). The number λ0 is a root of multiplicity at least M of
∆ if and only if there exists a polynomial p of degree n+m+ 1−M with p(0) = 1 such that

∆(λ) =
τM−n(λ− λ0)

M

(M − n− 1)!

∫ 1

0

tM−n−1(1− t)M−m−1p(t)e−tτ(λ−λ0)dt. (33)

Proof. Let V be the set of all functions ∆ of the form ∆(λ) = P0(λ) + e−λτPτ (λ) with P0 and Pτ given by
(4). Note that V is is a real affine space with dimV = n +m + 1, which is an affine subspace of the space of
all entire complex functions, seen as a real vector space. In addition, V can be canonically identified with R2n

by identifying a quasipolynomial ∆ with its coefficients a0, . . . , an−1, b0, . . . , bm.
Let us denote by VM

λ0
the subset of V of those functions ∆ admitting λ0 as a root of multiplicity at least M ,

i.e.,
VM
λ0

=
{
∆ ∈ V

∣∣∣ ∆(k)(λ0) = 0 for all k ∈ {0, . . . ,M − 1}
}
.

Each equation ∆(k)(λ0) = 0, k ∈ {0, . . . ,M − 1}, defines a hyperplane in V and, when identifying V with
the Euclidean space R2n, the normal vectors to all such hyperplanes are linearly independent. Hence VM

λ0
is a

subspace of V of codimension M , i.e., dimVλ0
= n+m+ 1−M .

Introduce now WM
λ0

as the space of all functions ∆ of the form (33) for some polynomial p of degree
n+m+ 1−M with p(0) = 1. The set WM

λ0
is an affine subspace of the space of all entire complex functions,

seen once again as a real vector space, with dimWM
λ0

= n+m+ 1−M .
As a first step, we will prove that WM

λ0
⊂ V , i.e., we show that every function ∆ of the form (33) is indeed

a quasipolynomial of the form (3)–(4). To do so, we first notice that, by an immediate inductive integration by
parts, we have (see also [50, Proposition 2.1])∫ 1

0

q(t)e−ztdt =

d∑
k=0

q(k)(0)− q(k)(1)e−z

zk+1
(34)

for every z ∈ C \ {0}, d ∈ N, and q a polynomial of degree d. Now, let ∆ ∈ WM
λ0

and p be a polynomial of
degree n+m+1−M with p(0) = 1 be such that ∆ is given by (33). Define q(t) = tM−n−1(1−t)M−m−1p(t)
and notice that q(0) = q′(0) = · · · = q(M−n−2)(0) = 0, q(M−n−1)(0) = (M − n − 1)!, and q(1) = q′(1) =
· · · = q(M−m−2)(1) = 0. By using (34), we deduce that

∆(λ) =
τM−n(λ− λ0)

M

(M − n− 1)!

M−1∑
k=0

q(k)(0)− q(k)(1)e−τ(λ−λ0)

τk+1(λ− λ0)k+1

= (λ− λ0)
n +

n−1∑
k=0

q(M−k−1)(0)

τn−k(M − n− 1)!
(λ− λ0)

k

− e−τ(λ−λ0)
m∑

k=0

q(M−k−1)(1)

τn−k(M − n− 1)!
(λ− λ0)

k,

(35)

and thus, as required, ∆ ∈ V .
We now notice that WM

λ0
⊂ VM

λ0
, since, by construction, for any ∆ given by (33), λ0 is clearly a root of

multiplicity at least M of ∆. Finally, since WM
λ0

and VM
λ0

are both affine spaces with the same dimension, we
conclude that WM

λ0
= VM

λ0
, yielding the conclusion.
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Remark 2. Note that (35) provides explicit expressions for the polynomials P0 and Pτ from (4) in terms of the
polynomial q introduced in the above proof. More precisely, we have

P0(λ) = (λ− λ0)
n +

n−1∑
k=0

q(M−k−1)(0)

τn−k(M − n− 1)!
(λ− λ0)

k,

Pτ (λ) = −eτλ0

m∑
k=0

q(M−k−1)(1)

τn−k(M − n− 1)!
(λ− λ0)

k.

Recalling that q(t) = tM−n−1(1− t)M−m−1p(t), one may further express P0 and Pτ in terms of p. Indeed, we
have

q(M−k−1)(0)

(M − n− 1)!
=

n−k∑
j=0

(
M − k − 1

n− k

)(
n− k

j

)
(−1)j(M −m− 1)!

(M −m− j − 1)!
p(n−k−j)(0),

q(M−k−1)(0)

(M − n− 1)!
=

m−k∑
j=0

(
M − k − 1

m− k

)(
m− k

j

)
(−1)M−m−1(M −m− 1)!

(M − n− j − 1)!
p(m−k−j)(1),

and thus

P0(λ) = (λ− λ0)
n +

n−1∑
k=0

n−k∑
j=0

(−1)j

τn−k

(
M − k − 1

n− k

)(
n− k

j

)
(M −m− 1)!

(M −m− j − 1)!
p(n−k−j)(0)(λ− λ0)

k,

(36)

Pτ (λ) = −eτλ0

m∑
k=0

m−k∑
j=0

(−1)M−m−1

τn−k

(
M − k − 1

m− k

)(
m− k

j

)
(M −m− 1)!

(M − n− j − 1)!
p(m−k−j)(1)(λ− λ0)

k.

(37)

Proposition 3.1. Let n,m be nonnegative integers with n ≥ m, τ > 0, λ0 ∈ R, M ∈ [n+1, n+m+1] be an
integer, and consider the quasipolynomial ∆ from (3)–(4). The number λ0 is a root of multiplicity at least M of
∆ if and only if there exist real numbers π0, π1, . . . , πn+m+1−M with

∑n+m+1−M
k=0 πk = 1 such that

∆(λ) = τM−n(λ−λ0)
M

n+m+1−M∑
k=0

πk
(M −m+ k − 1)!

(2M −m− n+ k − 1)!
Φ(M−n, 2M−m−n+k,−τ(λ−λ0)).

(38)

Proof. By Theorem 3.1, λ0 is a root of multiplicity at least M of ∆ if and only if there exists a polynomial p of
degree n+m+ 1−M with p(0) = 1 and such that (33) holds. Such a polynomial can be written in a unique
manner as

p(t) =

n+m+1−M∑
k=0

πk(1− t)k (39)

for some real numbers π0, . . . , πn+m+1−M , and the condition p(0) = 1 is satisfied if and only if

n+m+1−M∑
k=0

πk = 1.

Hence, (33) can be rewritten as

∆(λ) =
τM−n(λ− λ0)

M

(M − n− 1)!

n+m+1−M∑
k=0

πk

∫ 1

0

tM−n−1(1− t)k+M−m−1e−tτ(λ−λ0)dt.

The equivalence between this formula and (38) follows from (7), yielding the conclusion.
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Remark 3. It can be observed that the polynomial p involved in the kernel defining ∆ and given in (33) can be
alternatively written as:

p(t) =

n+m+1−M∑
k=0

αk t
k (40)

with

αk = (−1)k
n+m+1−M∑

ℓ=k

(
k

ℓ

)
πℓ for k ∈ {0, . . . , n+m+ 1−M}. (41)

Furthermore, using the first equality from (36), one easily recovers the expression of ak for k ∈ {0, . . . , n− 1}
as a function of αℓ for ℓ ∈ {0, . . . , n + m + 1 − M} or equivalently, by using (39), a function of πℓ for
ℓ ∈ {0, . . . , n+m+ 1−M}.

3.2 Elimination-produced function
In concrete control problems, typically, some of the coefficients of the polynomials P0 and Pτ from (4) are
fixed, corresponding to parameters coming from the physical modeling of the system, while other coefficients
can be freely chosen, corresponding to parameters coming, for instance, from an implemented linear feedback
controller (see [14] for some illustrations of such applications). In this section, we discuss how one can com-
pute the “free” coefficients of the polynomials (4) in order to impose that a given real number λ0 is a root of
multiplicity at least M of the quasipolynomial ∆ from (3).

We will assume in this section that n and m are nonnegative integers with n ≥ m, M ∈ [n+ 1, n+m+ 1]
is an integer representing the desired multiplicity of the root λ0, and that M − 1 coefficients of the polynomials
P0 and Pτ from (4) can be freely chosen, the other n+m+2−M coefficients being fixed. In this configuration,
which appears in several practical applications (see, e.g., [67], as well as the examples from Section 4 below),
the M − 1 degrees of freedom in the coefficients of the system are typically not enough to ensure the existence
of a root of multiplicity M by themselves, and an additional constraint on the root λ0 and the delay τ must
be imposed. This constraint can be formulated as a certain meromorphic function on (λ0, τ), depending on
the known coefficients of P0 and Pτ , being equal to 0. This meromorphic function will be called elimination-
produced function, and the main goal of this section is to describe it, first in a general setting, and then in the
particular case where the known coefficients are the coefficients of the monomials of highest degree in P0. For
that purpose, we start with some appropriate notations and definitions.

Let n and m be nonnegative integers with n ≥ m, D = n+m+ 1, M ∈ [n+ 1, n+m+ 1] be an integer,
I ⊂ {1, . . . , D} be a set of cardinality M − 1, and I = {1, . . . , D} \ I .

We define the holomorphic functions

ℓ : C2 → M1,D(C), ℓI : C2 → M1,M−1(C), ℓI : C
2 → M1,D−M+1(C),

A : C2 → MM−1,D(C), AI : C2 → MM−1,M−1(C), AI : C
2 → MM−1,D−M+1(C),

b : C → MM−1,1(C),

and the real number bM as follows:
For (λ0, τ) ∈ C2, we set

ℓ(λ0, τ) =
(
λn−1
0 · · · λ0 1 λm

0 e−λ0τ · · · λ0e−λ0τ e−λ0τ
)
, (42)

ℓI(λ0, τ) (respectively, ℓI(λ0, τ)) is the row matrix whose entries are the columns of ∂M−1

∂λM−1
0

ℓ(λ0, τ) whose

indices belong to I (respectively, to I),

A(λ0, τ) =


ℓ(λ0, τ)
∂ℓ
∂λ0

(λ0, τ)
...

∂M−2ℓ
∂λM−2

0

(λ0, τ)

 , (43)
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AI(λ0, τ) (respectively, AI(λ0, τ)) is the matrix whose columns are the columns of A(λ0, τ) whose indices
belong to I (respectively, to I), b(λ0) is the column matrix with M − 1 rows whose first entry is −λn

0 and such
that its k−th entry bk(λ0), for an integer k ∈ [2,M − 1], satisfies bk(λ0) =

d
dλ0

bk−1(λ0). We also set

bM =

{
−n! if M = n+ 1

0 otherwise.
(44)

The set I introduced above represents the indices of the coefficients of the polynomials P0 and Pτ from (4)
that are assumed to be free, when arranged in the column vector

X =
(
an−1 · · · a1 a0 bm · · · b1 b0

)T
, (45)

and I represents the indices of the known coefficients of P0 and Pτ in this same vector. Note that the order of
the coefficients in the vector X corresponds to the order of the entries of the row matrix ℓ(λ0, τ), so that we
have the equality ∆(λ0) = λn

0 + ℓ(λ0, τ)X .

Definition 3.1. With the notations above, if detAI(·, ·) is not the zero function, for (λ0, τ) ∈ C×R+ such that
detAI(λ0, τ) ̸= 0 and γ ∈ RD−M+1, we define P(λ0, τ ; γ) ∈ C by

P(λ0, τ ; γ) = ℓI(λ0, τ)γ + ℓI(λ0, τ)AI(λ0, τ)
−1(b(λ0)−AI(λ0, τ)γ)− bM . (46)

The function P is called elimination-produced function.

The vector γ in Definition 3.1 represents the numerical values of the known coefficients of P0 and Pτ from
(4): it corresponds to taking, in the above vector X , only the entries corresponding to indices in I .

Remark 4. Note that detAI(λ0, τ) is a quasipolynomial in the variable λ0, depending only on τ , n, m, M ,
and I . In particular, when detAI is not identically zero, for every γ ∈ RD−M+1, the function P(·, ·; γ) is
meromorphic, and can be expressed as a fraction of quasipolynomials, its denominator being detAI(λ0, τ).

Example 3.1. To illustrate Definition 3.1 and notations above, consider the case n = 2 and m = 1, i.e.,

∆(λ) = λ2 + a1λ+ a0 + e−λτ (b1λ+ b0),

in which case D = n+m+ 1 = 4. We are interested here in roots of multiplicity M = 3. We assume that a1
and b0 are known, and a0 and b1 are free. In this case, we have I = {2, 3}, which correspond to the indices of
a0 and b1 in the vector (a1, a0, b1, b0), and thus I = {1, 4}. In this case, we compute

ℓ(λ0, τ) =
(
λ0 1 λ0e−λ0τ e−λ0τ

)
,

ℓI(λ0, τ) =
(
0 (τ2λ0 − 2τ)e−λ0τ

)
,

ℓI(λ0, τ) =
(
0 τ2e−λ0τ

)
,

A(λ0, τ) =

(
λ0 1 λ0e−λ0τ e−λ0τ

1 0 (1− λ0τ)e−λ0τ −τe−λ0τ

)
,

AI(λ0, τ) =

(
1 λ0e−λ0τ

0 (1− λ0τ)e−λ0τ

)
,

AI(λ0, τ) =

(
λ0 e−λ0τ

1 −τe−λ0τ

)
,

b(λ0) =

(
−λ2

0

−2λ0

)
,

bM = −2.

In particular, we have

detAI(λ0, τ) = (1− λ0τ)e−λ0τ ,
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which is not identically zero. Thus, letting γ = (a∗1, b
∗
0) be the vector containing the numerical values of the

fixed parameters a1 and b0, the elimination-produced function P is given by

P(λ0, τ ; (a
∗
1, b

∗
0)) =

a∗1λ0τ
2 − 2a∗1τ + b∗0τ

2e−λ0τ + 2λ2
0τ

2 − 2λ0τ − 2

λ0τ − 1
.

The main interest of the notation we introduced above, and in particular of the elimination-produced function
from Definition 3.1, is that it allows one to express conditions for a real number λ0 to be a root of multiplicity
M of ∆ in terms of the free coefficients of P0 and Pτ , as expressed in the following theorem.

Theorem 3.2. Let n,m be nonnegative integers with n ≥ m, τ > 0, M ∈ [n + 1, n +m + 1] be an integer,
and consider the quasipolynomial ∆ from (3)–(4).

Let I ⊂ {1, . . . , D} be a set of cardinality M − 1 and I = {1, . . . , D} \ I . Let X be the parameter vector
from (45) and denote by XI and XI the vectors obtained by keeping in X only the entries with indices in I and
I , respectively. Assume that the values of the parameters in XI are known and denote by γ the vector with those
values. Consider also the functions ℓI , ℓI , AI , AI , b, P, and the real number bM defined in (42)-(44).

Let λ0 ∈ R be such that detAI(λ0, τ) ̸= 0. Then λ0 is a root of multiplicity at least M of ∆ if and only if

XI = AI(λ0, τ)
−1 (b(λ0)−AI(λ0, τ)γ) and P(λ0, τ ; γ) = 0. (47)

Proof. The number λ0 is a root of multiplicity at least M of ∆ if and only if ∆(k)(λ0) = 0 for every k ∈
{0, . . . ,M − 1}, and, recalling that ∆(λ) = λn + ℓ(λ, τ)X , these M equations can be rewritten as

A(λ0, τ)X = b(λ0),

∂M−1ℓ

∂λM−1
0

ℓ(λ0, τ)X = bM ,

where ℓ and A are defined in (42) and (43). Splitting X into XI and XI and noticing that XI = γ, the above
system is equivalent to {

AI(λ0, τ)XI +AI(λ0, τ)γ = b(λ0),

ℓI(λ0, τ)XI + ℓI(λ0, τ)γ = bM ,

and, using the assumption detAI(λ0, τ) ̸= 0, we obtain that the above system is equivalent to (47).

Remark 5. In the above framework, we have considered that the values of some of the coefficients of the
quasipolynomial ∆ from (3)–(4) are known. Our approach can also be generalized to the case where, instead
of knowing values of the coefficients, we have other information on them, such as the fact that they satisfy
some linear dependence relation, written under the form CX = d for some matrix C ∈ MD−M+1,D(C)
of full rank and some d ∈ RD−M+1. Indeed, in this case, we decompose the space RD into the direct sum
KerC⊕ (KerC)⊥, and we replace the decomposition into indices in I and I done in the construction above by
projections into KerC and (KerC)⊥.

3.3 A control-oriented setting
In Section 3.2, I is an arbitrary subset of {1, . . . , D} with M − 1 elements, meaning that we can consider
any choice of free parameters of the quasipolynomial ∆ from (3)–(4). With the aim of obtaining more precise
results in a particular situation, we now consider the case where I = {D − M + 2, . . . , D}, and thus I =
{1, . . . , D −M + 1}, meaning that the coefficients of highest degree of P0 are all known, and the M − 1 free
parameters are the coefficients of Pτ and those of lowest degree of P0 (except in the particular case n = m and
M = n+ 1, in which case the coefficient bm of Pτ is also assumed to be known).

Our first result in this setting is the following characterization of the elimination-produced function.
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Proposition 3.2. Let n,m be nonnegative integers with n ≥ m, τ > 0, M ∈ [n+ 1, n+m+ 1] be an integer
satisfying M ≥ m + 2, and consider the quasipolynomial ∆ from (3)–(4). Let P be the elimination-produced
function in the case I = {D −M + 2, . . . , D}. Then

P(λ0, τ ; γ) =

m+1∑
k=0

(
m+ 1

k

)
τkP

(M−1−k)
F,M (λ0), (48)

where

PF,M (λ) = λn +

D−M+1∑
k=1

an−kλ
n−k. (49)

Proof. Note that, with the notations of Section 3.2, we have

b(λ0)−AI(λ0, τ)γ =


−PF,M (λ0)
−P ′

F,M (λ0)
...

−P
(M−2)
F,M (λ0)

 (50)

and
ℓI(λ0, τ)γ − bM = P

(M−1)
F,M (λ0). (51)

Let
ℓ̃(λ0, τ) =

(
λM−m−3
0 · · · λ0 1 λm

0 e−λ0τ · · · λ0e−λ0τ e−λ0τ
)

and note that

AI(λ0, τ) =


ℓ̃(λ0, τ)
∂ℓ̃
∂λ0

(λ0, τ)
...

∂M−2ℓ̃
∂λM−2

0

(λ0, τ)


The matrix AI(λ0, τ) admits the block decomposition

AI(λ0, τ) =

(
AI,0(λ0) AI,1(λ0, τ)

0 AI,2(λ0, τ)

)
, (52)

where

AI,0(λ0) =


λM−m−3
0 · · · λ0 1

(M −m− 3)λM−m−4
0 · · · 1 0

... . .
. ...

...
(M −m− 3)! · · · 0 0

 ∈ MM−m−2(R),

AI,1(λ0, τ) =


ℓ̂(λ0, τ)
∂ℓ̂
∂λ0

(λ0, τ)
...

∂M−m−3ℓ̂
∂λM−m−3

0

(λ0, τ)

 ∈ MM−m−2,m+1(R),

AI,2(λ0, τ) =


∂M−m−2ℓ̂
∂λM−m−2

0

(λ0, τ)

...
∂M−2ℓ̂
∂λM−2

0

(λ0, τ)

 ∈ Mm+1,m+1(R),
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ℓ̂(λ0, τ) =
(
λm
0 e−λ0τ · · · λ0e−λ0τ e−λ0τ

)
∈ M1,m+1(R),

Clearly, AI,0(λ0) is invertible. Set ρ(λ0, τ) = eλ0τ ∂M−m−2ℓ̂
∂λM−m−2

0

(λ0, τ) and note that

ρ(λ0, τ) =
(
qm(λ0, τ) · · · q1(λ0, τ) q0(λ0, τ)

)
, (53)

where, for j ∈ {0, . . . ,m}, the function λ0 7→ qj(λ0, τ) is a polynomial of degree j, with coefficients depending
on τ , and its term of highest degree is (−τ)M−m−2λj

0. Thus


ρ(λ0, τ)
∂ρ
∂λ0

(λ0, τ)
...

∂mρ
∂λm

0
(λ0, τ)

 =


qm(λ0, τ) · · · q2(λ0, τ) q1(λ0, τ) (−τ)M−m−2

∂qm

∂λ0
(λ0, τ) · · · ∂q2

∂λ0
(λ0, τ) (−τ)M−m−2 0

∂2qm

∂λ2
0
(λ0, τ) · · · 2(−τ)M−m−2 0 0

... . .
. ...

...
...

m!(−τ)M−m−2 · · · 0 0 0

 ,

and, in particular, since τ > 0, the above matrix is invertible. On the other hand, taking derivatives directly in
the definition of ρ, we have


ρ(λ0, τ)
∂ρ
∂λ0

(λ0, τ)
...

∂mρ
∂λm

0
(λ0, τ)

 = eλ0τ



1 0 0 · · · 0 0
τ 1 0 · · · 0 0
...

. . .
. . .

. . .
. . .

...(
k
k

)
τk

(
k

k−1

)
τk−1 . . . 1

. . . 0
...

...
. . .

. . .
. . .

...(
m
m

)
τm

(
m

m−1

)
τm−1 · · ·

(
m
2

)
τ2 mτ 1


AI,2(ρ, τ).

Hence, AI,2(ρ, τ) and, thanks to the block decomposition (52), AI(λ0, τ) is invertible.
Thanks to (53), we have ∂m+1ρ

∂λm+1
0

(λ0, τ) = 0 and, using the definition of ρ, this implies that

m+1∑
k=0

(
m+ 1

k

)
τk

∂M−k−1ℓ̂

∂λM−k−1
0

(λ0, τ) = 0,

which can be rewritten in matrix form as

((m+1
m+1

)
τm+1

(
m+1
m

)
τm · · ·

(
m+1
1

)
τ
)
AI,2(λ0, τ) = − ∂M−1ℓ̂

∂λM−1
0

(λ0, τ).

Hence(
0 · · · 0

(
m+1
m+1

)
τm+1

(
m+1
m

)
τm · · ·

(
m+1
1

)
τ
)
AI(λ0, τ) = −

(
0 ∂M−1ℓ̂

∂λM−1
0

(λ0, τ)
)
= −ℓI(λ0, τ),

so that
ℓI(λ0, τ)AI(λ0, τ)

−1 = −
(
0 · · · 0

(
m+1
m+1

)
τm+1 · · ·

(
m+1
1

)
τ
)
. (54)

Inserting (50), (51), and (54) into (46), we finally deduce (48).

Remark 6. Note that the elimination-produced function from (48) is a polynomial in (λ0, τ). We refer to this
function as the elimination-produced polynomial.

Remark 7. Proposition 3.2 requires the additional assumption that M ≥ m + 2. This is always satisfied if
n > m, since M ≥ n+1, and hence the only case not covered by Proposition 3.2 is the case of neutral systems
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with the smallest over-order multiplicity, M = n + 1. In this case, the conclusion of Remark 6 does not hold.
Indeed, consider the case n = m = 1, i.e.,

∆(λ) = λ+ a0 + e−λτ (b1λ+ b0),

in which case D = 3. The lowest over-order multiplicity is M = 2 and, assuming a0 and b1 to be known and
b0 to be free (i.e., I = {3} and I = {1, 2}), straightforward computations from its definition show that the
elimination-produced function is

P(λ0, τ ; γ) = 1 + τλ0 + τa0 + b1e
−λ0τ ,

which is not a polynomial in (λ0, τ).

An interesting fact about the elimination-produced polynomial from Proposition 3.2 is that the elimination-
produced polynomial for a root of multiplicity M + 1 can be obtained by derivating the elimination-produced
polynomail for a root of multiplicity M , as detailed in the next result.

Proposition 3.3. Let n,m be nonnegative integers with n ≥ m, τ > 0, M ∈ [n + 1, n + m] be an integer
satisfying M ≥ m + 2, and consider the quasipolynomial ∆ from (3)–(4). Let PM (respectively, PM+1) be
the elimination-produced polynomial from Proposition 3.2 for a root of multiplicity at least M (respectively, at
least M + 1). Then

PM+1(λ0, τ ; γ) =
∂PM

∂λ0
(λ0, τ ; γ).

Proof. Let PF,M and PF,M+1 be defined as in (49). Then

PF,M (λ) = PF,M+1(λ) + aM−m−2λ
M−m−2.

Hence, for every integer k ∈ [0,m+ 1], we have M −m− 2 < M − k, and thus

P
(M−k)
F,M (λ) = P

(M−k)
F,M+1(λ).

It then follows from (48) that

PM+1(λ0, τ ; γ) =

m+1∑
k=0

(
m+ 1

k

)
τkP

(M−k)
F,M+1(λ0)

=
m+1∑
k=0

(
m+ 1

k

)
τkP

(M−k)
F,M (λ0) =

∂PM

∂λ0
(λ0, τ ; γ).

We conclude this section by the following result, which provides an explicit expression of the elimination-
produced polynomial P from (48) in terms of the known coefficients aM−m−2, . . . , an−1 of ∆.

Proposition 3.4. Let n,m be nonnegative integers with n ≥ m, τ > 0, M ∈ [n+ 1, n+m+ 1] be an integer
satisfying M ≥ m + 2, and consider the quasipolynomial ∆ from (3)–(4). Let P be the elimination-produced
function from Definition 3.1 in the case I = {D −M + 2, . . . , D}. Then

P(λ0, τ ; γ) =

D−M+1∑
j=0

n∑
ℓ=j+M−m−2

(
m+ 1

M − ℓ− 1 + j

)
ℓ!

j!
τM−ℓ−1+jaℓλ

j
0, (55)

with the convention an = 1.

The proof of the above proposition follows by inserting (49) into (48) and standard changes of summation
variables in order to group the terms in powers of λ0.
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3.4 Dominance of multiple roots and its consequences for stability
Note that (38) factorizes ∆ in terms of a linear combination of D − M + 1 Kummer functions with real
coefficients. However, in the following Proposition an equivalent combination of two Kummer functions with
coefficients which are rational functions in the terms of the complex variable λ will be considered.

Proposition 3.5. Consider the quasipolynomial ∆ from (3)–(4) with m ≤ n. The real number λ0 is a root of
multiplicity at least n+ 1 ≤ M ≤ n+m+ 1 of ∆ if, and only if, P(λ0, τ) = 0 and

∆(λ) =
τM−n(λ− λ0)

M

(M − n− 1)!
(β(λ) Φ(0, 1, −τ (λ− λ0)) + γ(λ) Φ(1, 1, −τ (λ− λ0))) , (56)

where

β(λ) =
(M − n− 1)!P0(λ)

τM−n(λ− λ0)M
, (57)

γ(λ) =
(M − n− 1)!Pτ (λ)

τM−n(λ− λ0)M
, (58)

and P0 and Pτ are given in (36)–(37).

Since for every a ∈ C with −a /∈ N, we have Φ(a, a, z) = Φ(1, 1, z) = ez and Φ(0, 1, z) = 1, thus an
immediate representation of the quasipolynomial ∆ is given by (56).

Beyond the standard contiguous relation (see for instance [62]), to the best of the authors’ knowledge,
there does not exist any result describing the distribution of the nonasymptotic zeros of linear combinations of
Kummer functions. The next lemma provides a partial step towards that goal, by providing a non-autonomous
second-order differential equation admitting a given linear combination of Kummer functions as a solution.

Lemma 4. Let β̃ and γ̃ be two meromorphic functions. Then, the complex function F defined by

F (z) = β̃(z) Φ(0, 1, z) + γ̃(z) Φ(1, 1, z), (59)

with β̃ (z) γ̃′ (z) + γ̃ (z)
(
β̃ (z) τ − β̃′ (z)

)
̸= 0 satisfies the following second-order differential equation

F ′′(z) +Q(z)F ′(z) +R(z)F (z) = 0, (60)

where Q and R are given in (61) and (62).

Q(z) =

(
β̃′′ (z) + τ

(
β̃ (z) τ − 2 β̃′ (z)

))
γ̃ (z)− (γ̃′′ (z)) β̃ (z)

β̃ (z) γ̃′ (z) + γ̃ (z)
(
β̃ (z) τ − β̃′ (z)

) , (61)

R(z) =

(
−β̃ (z) τ + β̃′ (z)

)
γ̃′′ (z)− γ̃′ (z)

(
β̃′′ (z) + τ

(
β̃ (z) τ − 2 β̃′ (z)

))
β̃ (z) γ̃′ (z) + γ̃ (z)

(
β̃ (z) τ − β̃′ (z)

) . (62)

In what follows, we shall refer to functions F of the form (59) as Kummer-type functions. Similarly to what
was done in Lemma 3, one can also define a Whittaker-type function W from the Kummer-type function F
defined in (59) by the same formula (15), where Q is a primitive of Q

2 for Q given by (61), and W satisfies (16)
with G defined from Q and R from (61)–(62) using the same expression (17) as in Lemma 3.

3.5 MID Validity for Over-order Multiplicities
Now, we shall use the results of Section 2.3 relating quasipolynomials with roots of over-order multiplicity and
Kummer and Whittaker functions in order to provide sufficient conditions under which the MID property is
valid for characteristic roots of multiplicity at least n+ 1 ≤ M ≤ m+ n+ 1 of ∆.
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Theorem 3.3. Consider the quasipolynomial ∆ from (3)–(4) with m ≤ n, and assume that ∆ admits a real
root λ0 of multiplicity at least n+ 1 ≤ M ≤ m+ n+ 1. Let β and γ be the meromorphic functions defined in
(57) and (58), respectively, and define the meromorphic functions β̃ and γ̃ by

β̃(z) = β
(
λ0 −

z

τ

)
, γ̃(z) = γ

(
λ0 −

z

τ

)
. (63)

Let F , Q, R, and G be defined by (59), (61), (62), and (17), respectively. Assume that, for every t ∈ (0, 1) and
every root z of F in C−, we have ℜ[zG(tz)] ≥ 0. Then, λ0 is a dominant root of ∆, i.e., λ0 satisfies the MID
property.

A result similar to Theorem 3.3 was already shown in [18, Theorem 10] for the case of roots of multiplicity
n + m. The proof of the former can be obtained by an easy adaptation of that of the latter, and we detail this
argument here for the sake of completeness.

Proof. We deduce from Proposition 3.5 and Lemma 4 that

∆(λ) =
τM−n(λ− λ0)

M

(M − n− 1)!
F (−τ(λ− λ0)). (64)

Since our objective is to investigate zeros of ∆ which are different from λ0, then we focus on its second factor
F . In particular, the result is thereby proved if we show that all roots of the Kummer-type function F have
nonnegative real part.

To do so, we consider the Whittaker-type function W (·) defined from F as in (15). Note that the differential
equation (16) satisfied by W is of the form (18), with K(z) = 1. As a consequence, one can apply Hille’s
method to (16). By taking z1 = 0 and z2 equal to a root z∗ of F (·) in (19), we obtain:∫ z∗

0

|W ′(z)|2dz =

∫ z∗

0

|W (z)|2G(z)dz.

We choose as integration path the line segment from 0 to z∗. Hence

z∗

∫ 1

0

|W ′(tz∗)|
2
dt = z∗

∫ 1

0

|W (tz∗)|2G(tz∗)dt.

Taking the real part, we get

x∗

∫ 1

0

|W ′(tz∗)|
2
dt =

∫ 1

0

|W (tz∗)|2ℜ [z∗G(tz∗)] dt, (65)

where x∗ = ℜ(z∗) and y∗ = ℑ(z∗).
Assume now, by contradiction, that F (·) admits a root with negative real part, and take z∗ in (65) as equal

to this root. The left-hand side of (65) is negative, however its right-hand side is nonnegative by assumption,
yielding the desired contradiction. Hence, all roots of F have nonnegative real parts, entailing the conclusion
thanks to (64).

4 Comprehensive illustrative examples with insights on numerics
In this section, we provide some applications of the MID-based design in both retarded and neutral cases: the
control of a transonic flow in a wind tunnel as well as the design of the standard PID controller for a prescribed
stabilization of unstable delayed plants.
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4.1 Control of a transonic flow in a wind tunnel
As a first application of the IMID-based design, let us revisit the regulation problem of the transonic flow
in a wind tunnel. Transonic flows in a compressible fluid exhibit complex dynamics, making their analysis
challenging since a full model of the flow is governed by a Navier–Stokes equation in a three-dimensional
domain and boundary controls for temperature and pressure regulation. A simplified model can be found in [73],
assuming that the flow is uniform across every cross section and the tunnel is a one-dimensional tube of varying
cross-sectional area, yielding a coupled model of nonlinear partial differential equations in one space dimension.

In order to study the response of the Mach number of the flow to changes in the guide vane angle a further
simplified model has been proposed in [7]. Propagation phenomena are modeled through a time delay, leading
to the system of delay differential equations{

κm′(t) +m(t) = kϑ(t− τ0),

ϑ′′(t) + 2ζωϑ′(t) + ω2ϑ(t) = ω2u(t),
(66)

where m, ϑ, and u represent, respectively, perturbations of the Mach number of the flow, the guide vane angle,
and the input of the guide vane actuator with respect to steady-state values. The parameters κ and k depend
on the steady-state operating point and are assumed to be constant as long as m, ϑ, and u remain small, and
satisfy κ > 0 and k < 0. The parameters ζ ∈ (0, 1) and ω > 0 come from the design of the guide vane angle
actuator and are thus independent of the operating point. The time-delay τ0 is assumed to depend only on the
temperature of the flow. In the absence of control (u(t) = 0), the open-loop system (66) is exponentially stable.

The design of exponentially stabilizing feedback laws for (66) improving its exponential decay rate has
been considered, for instance, in [48], in which the author designs a predictor of the state over an interval
of length equal to the time-delay, yielding a closed-loop system with finite spectrum. However, the practical
implementation of this type of controllers suffers from robustness issues [33, 57], which motivates the research
for control laws with reduced implementation complexity.

The goal of this section is to illustrate how the main result of this work can be used to obtain a feedback
controller for (66) improving its open-loop characteristics, with a reduced complexity with respect to the con-
troller proposed in [48]. We assume that the parameters ζ ∈ (0, 1) and ω > 0 are fixed. Here we exploit the
control law proposed in [50]

u(t) = −β0 κ

kω2
m(t− τ1)−

β1 κ

kω2
m′(t− τ1)−

β2 κ

kω2
m′′(t− τ1), (67)

where τ1 > 0 should be greater than or equal to the time-delay corresponding to measuring m and its first two
derivatives. Notice that the tuning of (67) made in [50] relies on the GMID property, making such a design
sensitive with respect to parametric uncertainties, and it also assumed that one could choose the parameters ζ
and ω.

Substituting the control law (67) into (66), one obtains that the closed-loop characteristic quasipolynomial
∆̃ is given by

∆(λ) =
∆̃(λ)

κ

= λ3 +

(
2ωζ +

1

κ

)
λ2 +

(
ω2 +

2ωζ

κ

)
λ+

ω2

κ
+
(
β2λ

2 + β1λ+ β0

)
e−λ(τ),

where τ = τ0 + τ1 and the division by κ is performed in order to obtain a quasipolynomial under the form (3),
for which the polynomial P0 is monic.

As a consequence of the main results, one gets the following:

Theorem 4.1. A given complex number λ0 is a root of multiplicity 4 of the quasipolynomial ∆ from (68) if, and
only if, λ0 is a root of the elimination-produced polynomial P where

P(λ) = κλ3τ3 +
(
2ζκ τ3ω + 9κ τ2 + τ3

)
λ2

+
(
κω2τ3 +

(
12ζκ τ2 + 2ζ τ3

)
ω + 18κτ + 6τ2

)
λ

+
(
3κ τ2 + τ3

)
ω2 +

(
12ζκτ + 6ζ τ2

)
ω + 6κ+ 6τ

(68)
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and the controller’s gains satisfy

β0

eλ0τ
=

((
2τ ζ2 − τ

)
ω2 + 14ωζ +

177

2τ
+

7

κ
+

τ

2κ2

)
λ2
0

+

(
ζτ ω3 +

((
12 +

2τ

κ

)
ζ2 + 7− τ

κ

)
ω2 +

(
τ

κ2
+

26

κ
+

162

τ

)
ζω +

246

τ2
+

81

κτ
+

3

κ2

)
λ0

+
(
3 +

τ

κ

)
ζ ω3 +

((
6

κ
+

12

τ

)
ζ2 +

τ

2κ2
+

15

κ
+

87

2τ

)
ω2

+

(
3

κ2
+

99

κτ
+

180

τ2

)
ζω +

87

τ3
+

90

κ τ2
+

3

κ2τ
,

β1

eλ0τ
=
(
2ωτζ + 21 +

τ

κ

)
λ2
0 +

((
36 +

4τ

κ

)
ωζ + 2ω2τ +

18

κ
+

66

τ

)
λ0

+

(
22

κ
+

48

τ

)
ωζ +

(
11 +

3τ

κ

)
ω2 +

24

κτ
+

24

τ2
,

β2

eλ0τ
=

3τλ2
0

2
+
(
2ωτζ + 6 +

τ

κ

)
λ0 +

(
4 +

τ

κ

)
ωζ +

ω2τ

2
+

2

κ
+

3

τ
,

where τ = τ0 + τ1. Moreover, if the discriminant of P is positive and for every t ∈ (0, 1) and every root z
of F in C−, we have ℜ[zG(tz)] ≥ 0 is satisfied where G is defined by (61)-(62)-(17), then s0 < 0, s0 is a
strictly dominant root of ∆, and the trivial solution of (66) with the control law (67) is exponentially stable with
exponential decay −λ0.

Proof. The result is a direct consequence of Proposition 3.5 and Theorem 3.3. The realness of λ0 is guaranteed
by the positivity of the discriminant of P which is a of cubic polynomial in λ. The negativity of λ0 is ensured
by the fact that P is Hurwitz for any (τ, κ, ω, ζ) ∈ R+ × R+ × R+ × R+.

Remark 8. As illustrated through the above example, despite the sufficient conditions established in Theorem
4.1, the use of Hille oscillation theorems [40] and the Green–Hille transform lacks the explicit character when
one is dealing with a parametric study. As a matter of fact, one should further investigate the parametric semi-
algebraic problem ℜ[zG(tz)] ≥ 0, which is of huge complexity when a large number of parameters is involved
and left free. In the sequel we illustrate the effective superiority of the approach when a priori bound using the
algorithmic alternative described in Section 2.5 giving rise to more explicit conditions.

4.2 PID design of unstable low-order plants
PID control is the most popular control technology and dominates industrial control systems [66] because
it represents one of the simplest control laws with a small number of control parameters giving satisfactory
behaviors for closed-loop systems for large classes of industrial processes. Despite the fact that the design of
such a controller is nowadays well-mastered to meet the performance requirements in stabilization and tracking
of finite-dimensional industrial processes, to the best of the authors’ knowledge, there is no systematical method
in tuning a PID controller for infinite-dimensional systems. Recently, in [47], the MID property has been
proposed as a method in tuning such controllers. Nonetheless, the proposed solution in [47] lacks freedom on
the prescribed stabilization of the delayed first-order case study. By this section, we first revisit the considered
problem and results from [47], then we improve such a solution by allowing some additional freedom when
assigning the closed-loop decay rate.

Consider the feedback system depicted in Figure 2, in which K(λ) represents a finite-dimensional linear
time-invariant (LTI) controller, Qτ (λ) denotes the plant containing a constant but uncertain delay τ , with a
transfer function given by

Qτ (λ) =
1

λ− κ
e−τλ, τ ≥ 0, (70)

where κ ≥ 0. The controller K of interest is the standard PID controller, i.e., K(λ) = KPID(λ) where
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Qτ (λ)

K(λ)

−

Figure 2: A tracking control system.

KPID(λ) = kp +
ki
λ

+ kdλ. (71)

Thus, the closed-loop characteristic quasipolynomial is found as{
∆(λ) = P0(λ) + Pτ (λ)e

−λτ

P0(λ) = λ2 − λ p, Pτ (λ) = kdλ
2 + kp λ+ ki .

(72)

The main result of [47] is stated as follows.

Theorem 4.2 ( [47]). Let Pτ and KPID be given respectively by (70) and KPID(λ) by (71). Then the following
statements are true.

i) For arbitrary real parameters kp , ki , kd and arbitrary positive delay τ , the multiplicity of any root of the
quasipolynomial ∆(λ) is less than or equal to 5.

ii) The quasipolynomial ∆ admits a multiple real root at

λ± =
τ κ− 6±

√
τ2κ2 + 12

2τ
(73)

with algebraic multiplicity at least 4 if and only if

kd =
(4 + 2 τ λ±–τ κ) eτ s±

2
,

kp = −
((
8 τ + τ2λ±

)
κ–18–12 τ λ±

)
eτ λ±

τ
,

ki =

(
(τλ± + 3) τ2κ2 − (12τλ± + 60) τκ+ 108 + 84 τ λ±

)
eτ λ±

2τ2
.

(74)

iii) If (74) is satisfied, then, under the condition τ < τ̄PID = 2/κ, λ = λ+ is the rightmost root of the
quasipolynomial ∆(λ) with multiplicity equal to 4.

As mentioned earlier, under the assumption that the delay τ and the unstable pole κ are fixed, the assignable
quadruple root (the spectral abscissa) λ+ given in (73) is fully characterized, i.e., it does not allow any degree
of freedom in the choice of the spectral abscissa. In order to enable some additional freedom when assigning
it, one can relax such a constraint by forcing an over-order multiplicity which is lower than four, which, in our
case, gives exactly the only option of multiplicity three.

Theorem 4.3. Consider the quasipolynomial ∆ given in (72). Then the following statements are true.

i) The quasipolynomial ∆(λ) admits a triple real root at λ0 if and only if it is real and the gains (kd, kp, ki)
satisfy: 

kd =

(
λ0 (−λ0 + κ) τ2 + (2κ− 4λ0) τ − 2

)
eτλ0

2
,

kp =
(
λ2
0 (κ− λ0) τ

2 − λ0 (κ− 3λ0) τ + κ
)
eτλ0 ,

ki =
λ3
0τ ((κ− λ0) τ − 2) eτλ0

2
.

(75)
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ii) Furthermore, if 
κ ∈

(
0,

1

τ

)
λ0 ∈

[
κ

2
− 2

τ
+

√
κ2τ2 + 8

2τ
, 0

) (76)

then λ0 corresponds to the spectral abscissa of (72).

Proof. An integration by part shows that under (75), the quasipolynomial ∆ reads:

∆(λ) = τ (λ− λ0)
3
∫ 1

0

e−τ(λ−λ0)t

(
1

2
(λ0 − κ)λ0τ

2t2 + (2λ0 − κ)τ t+ 1

)
dt (77)

Thus, the corresponding kernel polynomial (39) is given by:

p(t) =
λ0 (λ0 − κ) τ2t2

2
+ (2λ0 − κ) τt+ 1, (78)

which is necessarily real-rooted since its discriminant (w.r.t. the variable t) is given by δ =
(
(κ− λ0)

2 + λ2
0

)
τ2

≥ 0. Clearly, the leading coefficient of the polynomial p is positive. Furthermore, the corresponding zeros are
given by

t± =
κ− 2λ0 ±

√
(κ− λ0)2 + λ2

0

λ0 (λ0 − κ) τ
. (79)

Since, κ ≥ 0 and the closed-loop multiple zero λ0 is intended to correspond to the exponential decay of
(77), then it needs to satisfy λ0 < 0, hence the denominator of t± given in (79) is positive, which yields that
0 < t− < t+. Hence, it suffices to set t− ≥ 1 to guarantee the sign constancy of the kernel polynomial p given
in (78). This assumption is equivalent to:√

κ2 − 2λ0κ+ 2λ2
0 ≤ −λ2

0τ + (τκ− 2)λ0 + κ. (80)

An immediate necessary condition for the last inequality to hold is to select λ0 such that

λ0 ∈

[
κ

2
− 1

τ
−

√
κ2τ2 + 4

2τ
,
κ

2
− 1

τ
+

√
κ2τ2 + 4

2τ

]
. (81)

Furthermore, by squaring both sides of inequality (80), one gets

λ0 (κ− λ0)
(
−λ2

0τ
2 + τ (τκ− 4)λ0 + 2τκ− 2

)
≥ 0.

Again, since λ0 < 0 and κ ≥ 0, the third factor of the left-hand side of the above inequality has to be non-
positive, which enables to choose λ0 such that

λ0 ∈ R∗
− \

(
κ

2
− 2

τ
−

√
κ2τ2 + 8

2τ
,
κ

2
− 2

τ
+

√
κ2τ2 + 8

2τ

)
. (82)

Taking into account the intervals (81) and (82), one concludes that the sign constancy (positive) of the kernel
polynomial p given by (78) is guaranteed by

λ0 ∈

[
κ

2
− 2

τ
+

√
κ2τ2 + 8

2τ
,
κ

2
− 1

τ
+

√
κ2τ2 + 4

2τ

]
.

Finally, since λ0 < 0 and the corresponding lower-bound is strictly increasing with respect to κ and non-
negative for κ τ ≥ 1 and the corresponding upper-bound is positive, then necessarily κ τ < 1. As illustrated in
Figure 3, the appropriate choice of λ0 is such that

λ0 ∈

[
κ

2
− 2

τ
+

√
κ2τ2 + 8

2τ
, 0

)
. (83)
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Figure 3: Region in the parameters (κ, λ0) plane described in (83) where the sign constancy of (78) is guaran-
teed. The delay τ is taken unitary.

Next, one needs first to write ∆, or, equivalently, the corresponding integral representation given in (77),
into a normalized form. This is done using the following standard affine change of variables [24, 50]

λ =
s

τ
+ λ0 (84)

and the new parametrization κ τ = ξ allowing to write (72) satisfying (75) as
∆̂(s) = τ2∆(λ =

s

τ
+ λ0) = P̂0(s) + P̂τ (s)e

−s,

P̂0(s) = s2 + (2λ0 − ξ) s+ λ0 (−ξ + λ0) ,

Pτ (s) =

(
−λ2

0

2
+

(ξ − 4)λ0

2
+ ξ − 1

)
s2 +

(
−λ2

0 +
(2ξ − 4)λ0

2
+ ξ

)
s+ λ0 (ξ − λ0) ,

(85)

or, equivalently,

∆̂(s) = τ s3
∫ 1

0

e−s t

(
1− λ0 (ξ − λ0) t

2

2
+

(4λ0 − 2ξ) t

2

)
dt. (86)

Obviously, to show that λ0 is the spectral abscissa of (72) with control parameters satisfying (75) amounts
to show that 0 is the spectral abscissa of (85) or, equivalently, (86). Thanks to the algorithm from [13, 51] also
recalled in Section 2.5 as Algorithm 1, one is now able to investigate the frequency bound for potential spectral
values with positive real parts for (85).

To do so, let us assume that there exists s0 = x0 + ι̇ω0 ∈ C+ such that ∆̂(s0) = 0, then necessarily

|P̂0(x0 + ι̇ ω0)|2 e2 x0 = |P̂τ (x0 + ι̇ ω0)|2. (87)

Consider then the family of auxiliary functions

Fn(x, ω) = |P̂τ (x+ ι̇ ω)|2 − Tn
(
e2 x
)
|P̂0(x+ ι̇ ω)|2.

where Tn designates the n-th order Taylor approximation. Since e2 x > Tn
(
e2 x
)
≥ 1 for any x > 0, we then

have Fn(x0, ω0) > 0. In particular, one has

F0(x, ω) = |P̂τ (x+ ι̇ ω)|2 − |P̂0(x+ ι̇ ω)|2 > 0.
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The idea then amounts to show that if s0 = x0 + ι̇ ω0 is a root of ∆̂ such that x0 > 0 and ω0 ≥ π, then
F (x0, ω0) ≤ 0, thus resulting a contradiction. Toward this end, we set ω =

√
Ω and establish the explicit

expression

F0(x,
√
Ω) =

(λ0 + 2) (−λ0 + ξ − 2) µ(λ0, ξ)

4
Ω2

+

(
(λ0 + 2) (−λ0 + ξ − 2) µ(λ0, ξ)

2
x2 + ν(λ0, ξ) x

)
Ω

+
(λ0 + 2) (−λ0 + ξ − 2) µ(λ0, ξ)

2
x4 + ν(λ0, ξ)x

3

+
(
2λ0 (ξ − λ0)

(
−λ2

0 + (ξ − 4)λ0 + 2ξ
))

x2 + 2λ2
0 (ξ − λ0)

2
x

with

µ(λ0, ξ) =
(
−λ2

0 + (ξ − 4)λ0 + 2ξ
)
,

ν(λ0, ξ) =
(
λ4
0 + (−2ξ + 6)λ3

0 +
(
ξ2 − 9ξ + 10

)
λ2
0 +

(
3ξ2 − 10ξ

)
λ0 + 2ξ2

)
.

Seen as a quadratic polynomial in Ω, the function F0 is positive only between its real roots (if they exist) since
(83) suggests that the leading coefficient of F0 is negative. Let us investigate the existence of positive solutions
for F0.

Fix x > 0. The discriminant of F0 in Ω is given by

D(x) = −
(
λ8
0 + (−4ξ + 12)λ7

0 +
(
6ξ2 − 42ξ + 48

)
λ6
0 +

(
−4ξ3 + 54ξ2 − 144ξ + 72

)
λ5
0

+
(
ξ4 − 30ξ3 + 155ξ2 − 180ξ + 28

)
λ4
0 +

(
6ξ4 − 70ξ3 + 152ξ2 − 56ξ

)
λ3
0

+
(
11ξ4 − 48ξ3 + 20ξ2

)
λ2
0 +

(
4ξ4 + 8ξ3

)
λ0 − 4ξ4

)
x2

− 2 (ξ − λ0)
2
λ2
0 (−λ0 + ξ − 2) (λ0 + 2)

(
−λ2

0 + (ξ − 4)λ0 + 2ξ
)
x,

which is nothing but a real-rooted second-order polynomial in x.
Notice that, if the discriminant D is negative for any positive x in some sub-region of 0 < ξ < 1 and λ0

satisfies (83), then F0 cannot be positive. In that case, it is clear that the MID applies.
However, if D is positive then F0 is positive only in the interval (Ω−, Ω+) where

Ω±(x) =− x2 −
2
(
λ4
0 + (−2ξ + 6)λ3

0 +
(
ξ2 − 9ξ + 10

)
λ2
0 +

(
3ξ2 − 10ξ

)
λ0 + 2ξ2

)
x

(−λ0 + ξ − 2) (λ0 + 2) (−λ2
0 + (ξ − 4)λ0 + 2ξ)

∓
√
D(x)

(−λ0 + ξ − 2) (λ0 + 2) (−λ2
0 + (ξ − 4)λ0 + 2ξ)

.

By using some tedious but simple algebraic estimates, one obtains that

Ω+(x) < Γ(x) =
(
2 +

√
2
)
x− x2. (88)

Interestingly, Γ is a second-order polynomial in x, which is positive only in x ∈ (0, 2 +
√
2) and reaches its

maximum Γmax = 3
2 +

√
2 at x = 1 +

√
2
2 .

Clearly, in this case Ω = ω2 < π2, which allows to conclude that the imaginary part of the integral factor in
(86) satisfies∫ 1

0

e−x t sin(ω t)

(
1− λ0 (ξ − λ0) t

2

2
+

(4λ0 − 2ξ) t

2

)
dt ̸= 0 for (x, ω) ∈ R∗

+ × R∗
+,

which ends the proof.

29



4.3 P3δ Software
The authors developed recently an intuitive Python software called Partial pole placement via delay action
(P3δ) [19–21]. P3δ (https://cutt.ly/p3delta) enables the design of delayed feedback control laws
rendering the closed-loop dynamics stable with a prescribed exponential decay rate. P3δ methodology relies on
two properties of quasipolynomial’s zeros distribution: (i) the MID and (ii) the CRRID [5, 10], for coexisting-
real-root-induced-dominancy.

While the MID has been highlighted through this paper, the CRRID property consists in conditions on
the system’s parameters guaranteeing the dominance of coexistent real spectral values. When using the MID
strategy on P3δ, two options are proposed: the GMID-based design and the control-oriented IMID-based design.
The first option relies on the fact that a root of maximal multiplicity M(λ0) = n+m+1 is necessarily dominant
and the latter exploits the over-order intermediate multiplicity M(λ0) = n + 1, offering sufficient freedom in
parameters’ choice. In future software developments, the authors will integrate the result of this work into
new P3δ functionality allowing the users to exploit the IMID-based design with intermediate multiplicities
n+ 1 ≤ M(λ0) ≤ n+m+ 1, yielding further freedom for control purpose.

5 Concluding Remarks
The MID property defines an intriguing link between multiple spectral values and the spectral abscissa of a given
plant opening promising prospects in prescribed stabilization of both finite and infinite-dimensional dynamical
systems. While the GMID property (M(λ0) = m+n+1) has been fully characterized in [15,50] thanks to the
hypergeometric representation of the corresponding quasipolynomial, on beyond of some partial results [9, 18]
the over-order intermediate MID remained an open question. In this work, the over-order intermediate MID
is investigated in depth. Thanks to a Hille oscillation theorem in the complex domain, we first provide a
unified proof for the IMID to hold when n + 1 ≤ M(λ0) ≤ m + n by exploiting the representation of the
quasipolynomial as a linear combination of contiguous Kummer hypergeometric functions. Second, for the
sake of the effectiveness of the MID-based design, an algorithmic method relying on an a-priori bound on
the frequency of complex roots with positive real part. Both strategies have been illustrated through concrete
control applications in the retarded as well as in the neutral cases: prescribed regulation of the Mach number
in a wind-tunnel and the systematic PID control design for unstable first-order plants with input delay. Both
examples, as well as some recent works such as [3, 4, 35], show the true potential of the proposed partial pole
placement not only for ODEs and DDEs but also for some classes of PDEs.
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[49] A. Martı́nez-González, C.-F. Méndez-Barrios, S.-I. Niculescu, J. Chen, and L. Félix. Weierstrass ap-
proach to asymptotic behavior characterization of critical imaginary roots for retarded differential equa-
tions. SIAM Journal on Control and Optimization, 57(1):1–22, 2019.

[50] G. Mazanti, I. Boussaada, and S.-I. Niculescu. Multiplicity-induced-dominancy for delay-differential
equations of retarded type. J. Differential Equations, 286:84–118, 2021.

[51] G. Mazanti, I. Boussaada, S.-I. Niculescu, and Y. Chitour. Effects of roots of maximal multiplicity on
the stability of some classes of delay differential-algebraic systems: The lossless propagation case. In
Proceeding of 24th International Symposium on Mathematical Theory of Networks and Systems (MTNS
2021), IFAC-PapersOnLine, Cambridge, United Kingdom, 2021.

[52] W. Michiels, I. Boussaada, and S.-I. Niculescu. An explicit formula for the splitting of multiple eigenvalues
for nonlinear eigenvalue problems and connections with the linearization for the delay eigenvalue problem.
SIAM Journal on Matrix Analysis and Applications, 38(2):599–620, 2017.

[53] W. Michiels, K. Engelborghs, P. Vansevenant, and D. Roose. The continuous pole placement method for
delay equations. Automatica, 38(5):747–761, 2002.

[54] W. Michiels and S. Niculescu. Stability, control, and computation for time-delay systems: An eigenvalue-
based approach, volume 27 of Advances in Design and Control. Soc. Ind. Appl. Math, Philadelphia, PA,
second edition, 2014.

[55] W. Michiels and T. Vyhlı́dal. An eigenvalue based approach to the robust stabilization of linear time-delay
systems of neutral type. Automatica, 41(6):991–998, 2005.

33



[56] C. A. Molnar, T. Balogh, I. Boussaada, and T. Insperger. Calculation of the critical delay for the double
inverted pendulum. Journal of Vibration and Control, 27(3-4):1 – 9, 2020.

[57] S. Mondie and W. Michiels. Finite spectrum assignment of unstable time-delay systems with a safe
implementation. IEEE Transactions on Automatic Control, 48(12):2207–2212, 2003.

[58] Y. I. Neı̆mark. The structure of the D-decomposition of the space of quasipolynomials and the diagrams
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