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Decay Rate Assignment through Multiple
Spectral Values in Delay Systems

Islam Boussaada, Guilherme Mazanti, Silviu-Iulian Niculescu, and Wim Michiels

Abstract— This article focuses on a spectral property
for linear time-invariant dynamical systems represented
by delay-differential equations (DDEs) entitled multiplicity-
induced-dominancy (MID), which consists, roughly speak-
ing, in the spectral abscissa of the system being defined by
a multiple spectral value. More precisely, we focus on the
MID property for spectral values with overorder multiplicity,
i.e., a multiplicity larger than the order of the DDE. We
highlight the fact that a root of overorder multiplicity is
necessarily a root of a particular polynomial, called the
elimination-produced polynomial, and we address the MID
property using a suitable factorization of the corresponding
characteristic function involving special functions of Kum-
mer type. Additional results and discussion are provided
in the case of the nth order integrator, in particular on the
local optimality of a multiple root. The derived results show
how the delay can be further exploited as a control param-
eter and are applied to some problems of stabilization of
standard benchmarks with prescribed exponential decay.

Index Terms— Characteristic function, delay, exponential
stability, Green–Hille transformation, hypergeometric func-
tions, Kummer functions, partial pole placement.

I. INTRODUCTION

Since Hazen’s paper [1] on the theory of servomechanisms
in the 1930s, it is commonly accepted that the delays in
systems’ dynamics are at the origin of dynamic oscillations
and instabilities. As a consequence, modeling delays, under-
standing the effects induced by them, and controlling delay
systems represented a problem of recurring interest during
the last century. More precisely, one of the ways to describe
and explicitly take into account past information in processes
and/or phenomena is to use mathematical models based on
delay-differential equations (DDEs). For example, transport
and propagation phenomena, signal transmission in commu-
nication networks, or age structure in population dynamics
are typical classes of processes and/or phenomena where
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delays can be used in modeling time heterogeneity leading
to DDEs. For further examples, we refer to [2]–[7] and the
references therein. Finally, for an appropriate definition and
related classification of DDEs, the reader is referred to [3],
[8]–[11].

As pointed out in [12], a delay can induce stability (stabiliz-
ing effect) in some cases, and a lack of stability (destabilizing)
in other cases. These stability issues have been extensively
discussed in the open literature, and there exists a system-
atic methodological and numerical treatment for the stability
analysis of most cases (see, e.g., [5], [13]–[18]). To the best
of the authors’ knowledge, in the control area, the beneficial
effect of the delay in closed-loop appears in the 1970s within
the framework of the approximation of the derivative action
of PID controllers by a delay-difference operator [19], [20].
Moreover, the τ -decomposition method, proposed a decade
earlier in [21], enables the computation of the delay intervals
guaranteeing asymptotic stability, explicitly showing that, in
certain cases, augmentation of the delay leads to stability. In
this context, the idea of using the delay as a control parameter
came naturally. For instance, a chain of n integrators can be
stabilized by a controller including n delays [22], [23]. If the
main advantage of exploiting delays in the controllers is the
simplicity of their implementation, their infinite-dimensional
character, however, yields some unexpected behaviors of the
corresponding closed-loop systems which imposes, as a con-
sequence, some limitations in the choice of the parameters.
For an overview of some of the methods and techniques, we
refer to [5], [12], [24].

A classical approach in the stability analysis and stabiliza-
tion of linear time-invariant (LTI) dynamical systems including
delays is the application of spectral methods (see, e.g., [5]).
The spectrum of a DDE can be characterized as the set of
complex roots of its characteristic function, which presents
itself under the form of a quasipolynomial1. These roots
are usually referred to as spectral values or characteristic
roots of the system. The analysis of quasipolynomials and,
in particular, the location of their roots, is of fundamental
importance for the spectral analysis of DDEs, and many works
have addressed this question. For instance, the origin of an
LTI DDE is exponentially stable if, and only if, the spectral
abscissa2 of the system, defined as the supremum of the real
parts of the roots of its characteristic function, is negative. We
refer the interested reader to [5] and [25, Chapter 3] (where
these functions are referred to as exponential polynomials). In

1A finite sum of polynomials multiplied by exponentials.
2Also called the rightmost characteristic root.
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particular, an important fact about a quasipolynomial is that
the multiplicity of any of its roots is upper bounded by some
positive integer, known as the degree of the quasipolynomial,
as stated, for instance, in [26, Part Three, Problem 206.2],
[27], [28].

In the case of LTI systems represented by DDEs, recent
works have highlighted a particularly interesting spectral
property, called multiplicity-induced-dominancy (MID), which
consists in conditions on the system’s parameters under which
a multiple spectral value corresponds to the spectral abscissa
[29], [30]. The first analytic proof of this property has been
proposed for first-order DDEs in [31], and it relies on an
integral representation of the characteristic function and a
contradiction argument. In particular, it appears that a charac-
teristic root of maximal multiplicity (i.e., equal to the degree
of the corresponding quasipolynomial) necessarily defines the
spectral abscissa of the system. Such a systematic study of
the links between roots of large multiplicity and the spectral
abscissa was not sufficiently addressed in the literature until
the early work [31], even though some hints in this direction
are provided in [2] in the case of low-order systems. Since
these works, the case of the assignment of a characteristic
root with maximal multiplicity, called generic MID property,
was recently addressed and completely characterized in [32]
(generic retarded case) and in [33] (unifying retarded and neu-
tral cases) for LTI DDEs including a single delay. As discussed
in [32], [33], by exploiting the degree of quasipolynomials,
this property opens an interesting perspective in control area
through the so-called partial pole placement method, that is,
imposing the multiplicity of a characteristic root of the closed-
loop system by an appropriate choice of the controller gains
guarantees the exponential stability of the closed-loop system
with a prescribed decay rate.

The arguments used to prove the generic MID property in
[32], [33] are based on some analytical properties of Kummer
and Whittaker confluent hypergeometric functions, which can-
not be extended straightforwardly to treat the nongeneric case3,
a fact that represents a drawback of the method. However,
as shown in [34], by way of different arguments that exploit
the structure of the system, the MID property still holds in
some cases with lower multiplicity, but there does not exist
any systematic procedure to treat them.

The aim of this article is to address these problems and
to outline the ideas of a new method that could also en-
compass the MID with intermediate overorder multiplicities,
i.e., multiplicities greater than the order of the DDE (see
Section III-B for a precise definition of the MID property
and the notion of overorder multiplicity). This method exploits
the factorization of the characteristic function, the particular
structure and related properties of the integral term in the
proposed factorization. More precisely, the contribution of this
article is threefold.

First, we provide conditions under which spectral values
with the lowest overorder (algebraic) multiplicity are domi-
nant, i.e., they have the largest real part among all spectral
values. To prove the proposed results, we explicitly com-

3I.e., of multiplicity strictly smaller than the degree of the quasipolynomial.

pute and exploit the properties of the so-called elimination-
produced polynomial. To guarantee the dominancy of the
multiple root, one makes use of the Green–Hille (integral)
transformation introduced by Hille one century ago [35] for
characterizing the location of the nonasymptotic zeros of
Whittaker hypergeometric functions. It should be noted that
these ideas complete the previous approaches based on the
properties of Kummer hypergeometric functions to handle
generic MID in the retarded and neutral cases (see, e.g., [32],
[33]). The proposed method represents a novelty in the open
literature. The underlying ideas were first explored recently
in [36] in the characterization of the MID property of a root
with generic multiplicity-minus-one4, in which computations
turned out to be simpler than in the present setting. Second,
we show that the spectral abscissa function reaches a strict
local minimum in the configuration corresponding to a root
with the lowest overorder multiplicity. Finally, as a byproduct
of the analysis, new insights on MID control of dynamics for
integrators chains and pendulum are proposed.

The rest of this article is organized as follows. Some
prerequisites are proposed in Section II. A motivating example
and the problem formulation are given in Section III. The
main results are derived in Section IV, which also introduces
the concept of elimination-produced polynomial and provides
a representation of quasipolynomials in terms of a linear
combination of two Kummer functions. Section V considers
the application of the results to the partial pole placement
for a chain of integrators, investigating also in this case the
link between the proposed partial pole placement and the
problem of minimizing the spectral abscissa. An illustrative
example and some novelties and perspectives on the Partial
pole placement via delay action (P3δ) software are discussed
in Section VI. Finally, Section VII concludes this article.

Notations: Throughout this article, the following notations
are used: N∗, R, and C denote the sets of positive integers, real,
and complex numbers, respectively; we set N = N∗∪{0}. The
set of all integers is denoted by Z and, for a, b ∈ R, we denote
Ja, bK = [a, b]∩Z, with the convention that [a, b] = ∅ if a > b.
For λ ∈ C, ℜ(λ) and ℑ(λ) denote its real and imaginary
parts, respectively. The open left (right) complex half-plane
is the set C− (C+) defined by C− = {λ ∈ C | ℜ(λ) < 0}
(C+ = {λ ∈ C | ℜ(λ) > 0}).

II. PREREQUISITES

A. Spectral Properties of DDEs

Consider the LTI dynamical system described by the DDE

y(n)(t) +

n−1∑
k=0

aky
(k)(t) +

m∑
k=0

αky
(k)(t− τ) = 0, (1)

under appropriate initial conditions, where y(·) is a real-valued
unknown function, τ > 0 is the delay, and a0, . . . , an−1, α0,
. . . , αm are real coefficients. The DDE (1) is said to be of
retarded (neutral) type if m < n (m = n). The goal of
this section is to provide elementary results on the spectral

4I.e., the largest overorder multiplicity strictly smaller than the degree.



BOUSSAADA ET AL.: DECAY RATE ASSIGNMENT THROUGH MULTIPLE SPECTRAL VALUES IN DELAY SYSTEMS 3

properties of (1) that will be useful in the sequel. For a deeper
discussion on DDEs, we refer to [5], [9].

Notice that (1) is a particular case of the time-delay system

ξ̇(t) +Bτ ξ̇(t− τ) = A0ξ(t) +Aτξ(t− τ). (2)

Indeed, if y is a solution of (1), then the vector ξ(t) =
(y(t), y′(t), . . . , y(n−1)(t))T ∈ Rn satisfies (2) for suitable
real matrices A0, Aτ , Bτ ∈ Mn(R) which can be constructed
from (1), with Aτ and Bτ of rank one.

The characteristic function associated with (1) is the quasi-
polynomial ∆: C → C defined by

∆(λ) = P0(λ) + Pτ (λ)e−λτ , (3)

where P0 and Pτ are the polynomials with real coefficients

P0(λ) = λn +

n−1∑
k=0

akλ
k, Pτ (λ) =

m∑
k=0

αkλ
k. (4)

Roots of ∆ are usually called characteristic roots or spectral
values of (1), and they are infinite in number, except in the
trivial case where ∆ reduces to a polynomial. The exponential
stability of the trivial solution of (1) holds true if, and only if,
there exists γ > 0 such that ℜ(λ) ≤ −γ for every root λ of
∆ (see, e.g., [5], [8]).

When the coefficient αm is not zero, the degree of the
quasipolynomial ∆ from (3) is the integer deg(∆) = n+m+1
(see for instance [25, p. 208] for the general definition of
the degree of a quasipolynomial). As discussed in [27], this
integer, which is larger than the degrees of the polynomials
P0 (deg(P0) = n) and Pτ (deg(Pτ ) = m), is nothing but the
integer appearing in the Pólya–Szegő bound from [26, Part
Three, Problem 206.2]5, and also corresponds to the maximal
(allowable) multiplicity that a characteristic root of (3)–(4)
may have. In addition, a characteristic root reaching this bound
is necessarily real.

Remark 1: On the imaginary axis, the characteristic roots
of the quasipolynomial ∆ defined by (3) admit a bounded fre-
quency, i.e., a bounded imaginary part. Indeed, any imaginary
root λ0 = ι̇ ω0 of ∆ necessarily satisfies

|P0(ι̇ ω0)|2 = |Pτ (ι̇ ω0)|2.

The function F defined by F(ω) = |P0(ι̇ ω)|2 − |Pτ (ι̇ ω)|2
is a polynomial on ω with real coefficients, and thus all its
positive roots can be bounded in terms of its coefficients (see,
for instance, [37]). However, this observation does not provide
insights on frequency bounds for other roots, in particular
(unstable) roots located in C+.

Despite the fact that the characteristic function of some
DDE has an infinite number of characteristic roots, retarded
systems, that is, (1) with m < n or, equivalently, (2) with
Bτ = 0, admit finitely many roots on any vertical strip in the
complex plane [9, Chapter 1, Lemma 4.1]. Several general
results on the location of roots of (3) can be found in the
literature, and we refer the interested reader to [38].

5Initially, the Pólya–Szegő result gives a bound on the number of the
quasipolynomial’s roots inside some horizontal strip defined by a ≤ ℑ(λ) ≤
b. By considering the particular case a = b, the Pólya–Szegő bound
corresponds to the number of roots of the form x+ ι̇a for x ∈ R, which is
itself a bound on the multiplicity of any of such a root.

The next proposition collects two interesting properties,
whose proofs can be found, respectively, in [5] and [39].

Proposition 1: Consider the DDE (1), the corresponding
system (2), and their characteristic function ∆ given by (3)–
(4). Then the following properties hold:

1) If m < n and λ is a characteristic root of system (2)
with Bτ = 0, then it satisfies

|λ| ≤ ∥A0 +Aτ e−τλ∥, (5)

where ∥·∥ is any induced matrix norm.
2) If m = n and lim

|λ|→∞
|Pτ (λ)/P0(λ)| < 1, then the

characteristic equation ∆ defined by (4) has a finite
number of roots in the right half-plane.

Remark 2: Inequality (5), combined with the triangular
inequality, provides a generic envelope curve around the char-
acteristic roots corresponding to system (2). In other words,
the equality case in (5) defines a curve in the complex plane
such that all characteristic roots of ∆ are located to its left.
We refer to [40] for further insights on spectral envelopes for
retarded time-delay systems with a single delay.

In the sequel, we describe a procedure from [41], inferred
from ideas used in the analysis of particular cases in [42]–[44],
that, given λ0 ∈ R and ω0 > 0, helps us finding appropriate
conditions such that the characteristic roots of ∆ with ℜ(λ) ≥
λ0 necessarily satisfy |ℑ(λ)| ≤ ω0. In the case λ0 = 0, ω0

represents a frequency bound for unstable characteristic roots.
Given λ0 ∈ R, let ∆̃(z) = τn∆(λ0 + z

τ ), write ∆̃(z) =

P̃0(z) + e−zP̃τ (z) for some suitable polynomials P̃0 and P̃τ ,
and note that any root z of ∆̃ satisfies the modulus condition

|P̃0(x+ ι̇ω)|2e2x = |P̃τ (x+ ι̇ω)|2,

where x = ℜ(z) and ω = ℑ(z). If x ≥ 0, then e2x ≥ Tℓ(x),
where, for ℓ ∈ N, the polynomial Tℓ is the truncation of the
Taylor expansion of e2x at order ℓ, i.e., Tℓ(x) =

∑ℓ
k=0

(2x)ℓ

ℓ! .
Hence, any root z = x+ ι̇ω of ∆̃ with non-negative real part
satisfies F(x, ω) ≥ 0, where F is the polynomial given by

F(x, ω) = |P̃τ (x+ ι̇ω)|2 − |P̃0(x+ ι̇ω)|2Tℓ(x).

In addition, F only depends on ω through ω2. Define the
polynomial H by setting H(x,Ω) = F (x,

√
Ω) for Ω ≥ 0.

Hence, any root z = x+ ι̇ω of ∆̃ with x ≥ 0 satisfies

H(x,Ω) ≥ 0, (6)

where Ω = ω2. By exploiting the polynomial inequality (6),
one can establish a bound on the imaginary parts of the
roots of ∆̃. The procedure described above and synthesized
in Algorithm 1 (see Appendix) is adapted from [41], which
consists in increasing the order of the Taylor expansion of e2x

until a suitable bound is found or a maximal truncation order
is reached. For further details, we refer to [41]–[44].

B. Hypergeometric Functions and Integral
Transformations

The main ingredient of the proposed partial pole placement
method is based on the properties of a particular class of
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hypergeometric functions, namely, Kummer confluent hyper-
geometric function, which, for a, b ∈ C such that −b /∈ N, is
the entire function Φ(a, b, ·) : C → C defined by the series

Φ(a, b, z) =

∞∑
k=0

(a)k
(b)k

zk

k!
, (7)

where, for α ∈ C and k ∈ N, (α)k is the Pochhammer symbol
for the ascending factorial, defined inductively as (α)0 = 1
and (α)k+1 = (α + k)(α)k. The series in (7) converges for
every z ∈ C and, as presented in [45]–[47], the Kummer
function satisfies the Kummer differential equation, that is,

z
∂2Φ

∂z2
(a, b, z) + (b− z)

∂Φ

∂z
(a, b, z)− aΦ(a, b, z) = 0. (8)

Finally, for every a, b, z ∈ C, such that ℜ(b) > ℜ(a) > 0,
Kummer functions admit the integral representation [45]–[47]

Φ(a, b, z) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0

eztta−1(1− t)b−a−1 dt, (9)

where Γ denotes the Gamma function. This integral repre-
sentation has been used in [32], [33], [48] to characterize
the spectrum of some DDEs. Kummer functions exhibit a
range of remarkable properties. In particular, they satisfy some
recurrence relations, often called contiguous relations (see, for
instance, [47]), which will be exploited in the sequel.

Lemma 1 ([47, p. 325]): Let a, b, z ∈ C with a ̸= b, z ̸= 0,
and −b /∈ N. The following relations hold:

Φ(a, b+ 1, z) =
−b (a+ z) Φ(a, b, z) + abΦ(a+ 1, b, z)

z (a− b)
,

Φ(a+ 1, b+ 1, z) = −−bΦ(a+ 1, b, z) + bΦ(a, b, z)

z
.

(10)
Kummer functions are strongly related to another interesting

class of hypergeometric functions called Whittaker functions.
For k, l ∈ C with −2l /∈ N∗, the Whittaker function Mk,l is
defined for z ∈ C by

Mk,l(z) = e−
z
2 z

1
2+lΦ( 12 + l − k, 1 + 2l, z), (11)

(see, e.g., [47]). Note that, if 1
2 + l is not an integer, then

the function Mk,l is a multi-valued complex function with
branch point at z = 0. In addition, the nontrivial roots of
Mk,l coincide with those of Φ( 12 + l− k, 1+ 2l, ·) and Mk,l

satisfies the Whittaker differential equation

φ′′(z) =

(
1

4
− k

z
+

l2 − 1
4

z2

)
φ(z). (12)

Taking into account that Mk,l is a nontrivial solution of
the second-order linear differential equation (12), then any
nontrivial root of Mk,l is simple.

In the pioneering work by E. Hille [35], some oscillation
theorems in the complex domain have been proposed. Among
others, Hille studied the distribution of zeros of functions of a
complex variable satisfying linear second-order homogeneous
differential equations with variable coefficients, as is the case
for the Whittaker function Mk,l, which satisfies (12). In partic-
ular, Hille introduced an integral transformation called Green–
Hille transformation ensuing from the differential equation and

allowing the removal of regions in the complex plane that do
not contain complex roots. To illustrate the idea, consider the
general homogeneous second-order differential equation

d

dz

[
K(z)

dφ

dz
(z)

]
+G(z)φ(z) = 0, (13)

where z is the complex independent variable, and the functions
G and K are assumed to be analytic in some region Θ such
that K does not vanish in that region. Equation (13) can
be written in Θ as a first-order system by introducing the
dependent variables φ1(z) = φ(z) and φ2(z) = K(z) dφ

dz (z).
The Green–Hille transformation consists in multiplying the
equation for φ1 by φ2(z), the one for φ2 by φ1(z), and
integrating in z along a path in Θ, which yields[

φ1(z)φ2(z)
]z2
z1

−
∫ z2

z1

|φ2(z)|2
dz

K(z)

+

∫ z2

z1

|φ1(z)|2G(z) dz = 0, (14)

where z1, z2 ∈ Θ and both integrals are taken along the same
arbitrary smooth path in Θ connecting z1 to z2.

The following result, which is proved in [48] using the
Green–Hille transformation from [35], gives insights on the
distribution of the nonasymptotic zeros of Kummer hyperge-
ometric functions with real arguments a and b.

Proposition 2 ([48]): Let a, b ∈ R be such that b ≥ 2.
1) If b = 2a, then all nontrivial roots z of Φ(a, b, ·) are

purely imaginary;
2) If b > 2a (resp., b < 2a), then all nontrivial roots z of

Φ(a, b, ·) satisfy ℜ(z) > 0 (resp., ℜ(z) < 0);
3) If b ̸= 2a, then all nontrivial roots z of Φ(a, b, ·) satisfy

(b− 2a)2ℑ(z)2 − (4a(b− a)− 2b)ℜ(z)2 > 0.

III. MOTIVATING EXAMPLE AND PROBLEM FORMULATION

The problem of stabilization of a chain of integrators is
considered in [22], where it is shown that a single integrator
can be stabilized by a single delay state-feedback. Indeed, a
positive gain guarantees the closed-loop stability of the system
free of delay, and, by continuity, there exists a (sufficiently
small) delay in the output preserving the stability of the closed-
loop system. However, the situation is completely different for
a chain of integrators of order n when n > 1.

A. Controlling the Double Integrator
Let us revisit the standard control problem y′′(t) = u(t)

with a delayed output feedback controller u(t) = −α y(t−τ).
The closed-loop characteristic quasipolynomial writes as

∆(λ) = λ2 + α e−τ λ. (15)

With the notations of (3), one has P0(λ) = λ2 and Pτ (λ) = α.
Thus, for α ̸= 0, the degree of the quasipolynomial (15) is
deg(∆) = 3. However, one can show that, due to the particular
structure of ∆, it cannot admit roots of multiplicity 3, and the
largest multiplicity that a root λ0 of (15) can have is 2. Such
multiplicity is attained if, and only if,

α = −4
e−2

τ2
, λ0 = −2

τ
. (16)
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Fig. 1. Illustration of the roots of (17): solid blue curves represent
the region ℜ(∆(λ)) = 0, dashed red curves represent the region
ℑ(∆(λ)) = 0, so that the roots of ∆ correspond to the intersections
between solid blue curves and dashed red curves. This quasipolynomial
∆ admits a double root at λ0 = −2, which is not its rightmost root,
since ∆ also admits a real root λ1 ≈ 0.557. The figure was produced
using the QPmR toolbox from [49].

It was shown in [22], [23] that, for the problem of control-
ling the chain of n integrators y(n)(t) = u(t) with a delayed
controller u(t) = −

∑N
k=1 αky(t − τk) with 0 ≤ τ1 < · · · <

τN , a necessary and sufficient condition for stabilizability is
that N ≥ n. Since (15) contains only a single delay, we deduce
that it admits at least one spectral value with a positive real
part. Consequently, λ0 = − 2

τ , while being a multiple root, is
not dominant. Indeed, consider (15)–(16) with τ = 1, that is,

∆(λ) = λ2 − 4e−(λ+2). (17)

As illustrated in Figure 1, the dominancy property is lost since
λ1 ≈ 0.557 is also a root of the function (17). This is justified
by the sparsity of (17), i.e., the delay-free polynomial P0

has some null coefficients. In accordance with the previous
observation, consider now the same problem but using a
delayed PD controller, which, in frequency domain, gives the
closed-loop characteristic function:

∆(λ) = λ2 + (α1λ+ α0) e−λ τ , (18)

which is a quasipolynomial of degree 4. Following [29,
Theorem 4.2] it has been shown that, for an arbitrary positive
delay τ , the quasipolynomial (18) admits a real spectral value
at λ = λ± with algebraic multiplicity 3 if, and only if,

λ± =
−2±

√
2

τ
, (19)

and the system parameters satisfy:

α0 =
6 + 10λ± τ

τ2
eλ±τ , α1 =

2 + 2λ± τ

τ
eλ±τ . (⋆±)

Furthermore, it has been shown in [29, Theorem 4.2] that the
MID property is valid for λ+, that is, the triple spectral value
corresponds to the spectral abscissa only if (⋆+) is satisfied.
It has also been emphasized in [29] that the multiple spectral
value at λ− is always dominated by a single real root. In
conclusion, independently from the chosen delay τ > 0, the
closed-loop solution is always exponentially stable with a
decay rate corresponding to λ+ < 0.

As emphasized in the aforementioned example, in such
cases, multiple spectral values are not necessarily dominant
and a deeper investigation to understand when such roots are
dominant is needed, which is the aim of this article.

B. Problem Formulation
Consider the DDE (1) and its characteristic function ∆ given

by (3)–(4). As recalled in Section II-A, the degree of the
characteristic function ∆ is deg(∆) = n+m+ 1.

We say that a characteristic root λ0 of ∆ satisfies the MID
property if (i) its algebraic multiplicity (denoted by M(λ0))
is larger than one, and (ii) it is dominant, meaning that all
the characteristic roots λσ of ∆ satisfy ℜ(λσ) ≤ ℜ(λ0). Such
a root λ0 corresponds to the rightmost root of the spectrum
and defines the spectral abscissa of ∆. In addition, we say
that the root λ0 is overorder if its algebraic multiplicity is
strictly greater than the order n, which corresponds to the
degree of the characteristic function in the delay-free case.
In this situation, we refer to the MID property as overorder
MID. In the case M(λ0) = deg(∆), it was shown in [32] (case
m = n−1) and [33] (general case m ≤ n) that λ0 satisfies the
MID property. This “limit” case corresponding to the maximal
possible multiplicity is also called generic MID (or GMID for
short). Finally, with the aforementioned notions and notations,
the lowest overorder (algebraic) multiplicity corresponds to the
case when the multiplicity of λ0 is M(λ0) = n+ 1.

The problem addressed in this article can be formulated as
follows: finding, on the one hand, conditions on the parameters
of the dynamical system (1) ensuring that a characteristic
root λ0 has overorder (intermediate) algebraic multiplicity6,
and determining, on the other hand, if such a root satisfies
the MID property. For the sake of brevity, our focus will
be to infer appropriate conditions guaranteeing that λ0 has
multiplicity M(λ0) = n+1, which corresponds to the smallest
possible overorder multiplicity, and that it satisfies the MID
property, in the particular case where m = n − 1. It should
be mentioned that this configuration has been investigated in
[34], in the particular case where the delay-free polynomial P0

of ∆ is real-rooted. The approach proposed hereafter relaxes
the former assumption.

In the aforementioned motivating example, we have that
deg(∆) = 4. Since n = 2, the only possible intermediate
multiplicity is M(λ0) = 3, which, in our terminology, coin-
cides with the lowest overorder (algebraic) multiplicity.

We shall study the MID property in this article only for real
characteristic roots λ0. The main motivation for this restriction
is that it is known that, if a function ∆ of the form (3)–
(4) has real coefficients, then a root λ0 satisfying the MID

6That is, the multiplicity M(λ0) of λ0 verifies n+1 ≤ M(λ0) ≤ n+m.
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property with maximal multiplicity M(λ0) = n + m + 1 is
necessarily real (see, e.g., [28, Corollaries 1 and 2] and [33,
Remark 15]). Such a result has also been extended to roots
with smaller overorder multiplicities in some particular cases,
including roots with the smallest overorder multiplicity n+ 1
(see, e.g., [50], [51]).

IV. MAIN RESULTS

Our first results, presented in Section IV-A, provide a neces-
sary condition for the existence of a root of ∆ with the lowest
overorder multiplicity, in terms of the so-called elimination-
produced polynomial. Exploiting this result, necessary and
sufficient conditions for the existence of such a root are derived
in Section IV-B, in terms of the elimination-produced polyno-
mial and a suitable factorization of ∆. We then highlight the
links between quasipolynomials ∆ with a root of overorder
multiplicity and Kummer confluent hypergeometric functions
in Section IV-C. Finally, sufficient conditions guaranteeing the
dominance of the overorder root are derived in Section IV-D.

A. Elimination-Produced Polynomial
In the sequel, we provide an appropriate necessary condition

for a given real number λ0 to be a root of multiplicity at least
n+1 of a given quasipolynomial ∆ under the form (3)–(4) with
m = n − 1. The necessary condition consists in stating that
λ0 must be a root of a polynomial, known as the elimination-
produced polynomial.

The main ideas underlying the construction of the eli-
mination-produced polynomial can be resumed as follows:
Imposing that a real number λ0 is a root of ∆ of multiplicity at
least n+1 amounts to imposing that the following conditions
hold simultaneously:

∆(λ0) = ∆′(λ0) = · · · = ∆(n)(λ0) = 0. (20)

On the other hand, if we consider, in (3)–(4), that the coef-
ficients a0, . . . , an−1 of P0 are “fixed” and known and the
coefficients α0, . . . , αn−1 of Pτ are “free” and available for
choice, then (20) imposes n + 1 linear equality constraints
on the n free parameters α0, . . . , αn−1. While n of those
constraints should be sufficient to determine the values of the n
free parameters α0, . . . , αn−1 in terms of the fixed parameters
a0, . . . , an−1, the delay τ , and the root λ0, the additional
constraint will express a relation that must be satisfied between
a0, . . . , an−1, the delay τ , and the root λ0 in order for the
multiplicity n+1 to be attained. This relation is precisely the
elimination-produced polynomial, as described below:

Proposition 3: Consider the quasipolynomial ∆ from (3)–
(4) with m = n − 1. If the real number λ0 is a root of
multiplicity at least n+ 1 of ∆, then

P(λ0, τ) = 0,

where P is the elimination-produced polynomial, defined by

P(λ, τ) =
n∑

k=0

(
n

k

)
P

(k)
0 (λ)τn−k. (21)

Proof: Note that λ0 is a root of ∆(·) with multiplicity at
least n+1 if, and only if, it is a root of ∆̂ : λ 7→ eλτ∆(λ) with

the same multiplicity. In particular, we have ∆̂(n)(λ0) = 0.
Since ∆̂(λ) = eλτP0(λ) + P1(λ) and P1 is a polynomial of
degree n− 1, we deduce that

∆̂(n)(λ) = eλτ
n∑

k=0

(
n

k

)
P

(k)
0 (λ)τn−k,

yielding the conclusion since eλ0τ ̸= 0.
Before turning to our next result, we recall the statement

of the Hermite–Poulain Theorem on roots of polynomials. Its
proof can be found, for instance, in [52, Theorem 7.3.3].

Theorem 1 (Hermite–Poulain): Let h(x) = c0+c1x+ . . .+
cnx

n be a real-rooted polynomial. If f(x) is a polynomial with
real coefficients, then the polynomial

F (x) = c0f(x) + c1f
′(x) + . . .+ cnf

(n)(x)

has at least as many real roots as f(x) has.
To deduce a link between the number of real roots of P(·, τ)
and that of P0(·), we exploit the Hermite–Poulain Theorem.

Proposition 4: Let P0 be a polynomial of degree n with
real coefficients and P be defined from P0 as in (21). Then,
for every τ ∈ R, the polynomial λ 7→ P(λ, τ) has at least as
many real roots as P0 (counted with their multiplicities).

Proof: This is an immediate consequence of (21) and the
Hermite–Poulain Theorem applied to the real-rooted polyno-
mial h given by h(x) = (x+ τ)n =

∑n
k=0

(
n
k

)
τn−kxk and to

f = P0.

B. Necessary and Sufficient Conditions for the Lowest
Overorder Multiplicity

We now provide a characterization of the situations under
which a quasipolynomial ∆ under the form (3)–(4) with m =
n − 1 admits a root with an overorder multiplicity. Given a
delay τ > 0, we denote by V the set of all functions ∆ of the
form ∆(λ) = P0(λ) + e−λτPτ (λ) with P0 and Pτ given by
(4) and m = n− 1, i.e.,

V =

{
∆: C → C

∣∣∣∣ ∃ a = (a0, . . . , an−1) ∈ Rn,

∃ α = (α0, . . . , αn−1) ∈ Rn such that

∆(λ) = λn +

n−1∑
k=0

anλ
k + e−λτ

n−1∑
k=0

αkλ
k

}
.

Note that V is a real vector space with dimV = 2n, which
is a subspace of the space of all entire complex functions,
seen as a real vector space. In addition, V can be canonically
identified with R2n by identifying a quasipolynomial ∆ with
its coefficients a0, . . . , an−1, α0, . . . , αn−1. In this setting, our
first result provides a factorization of ∆ in terms of such a root
and an appropriate integral expression.

Proposition 5: Consider the quasipolynomial ∆ from (3)–
(4) with m = n−1. The real number λ0 is a root of multiplicity
at least n + 1 of ∆ if, and only if, there exists a polynomial
p of degree n− 1 with p(0) = 1 such that

∆(λ) = τ(λ− λ0)
n+1

∫ 1

0

(1− t)p(t)e−t(λ−λ0)τ dt. (22)
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Proof: Denote by Vλ0
the subset of V of those functions

∆ admitting λ0 as a root of multiplicity at least n+ 1, i.e.,

Vλ0 =
{
∆ ∈ V

∣∣∣ ∆(k)(λ0) = 0 for all k ∈ {0, . . . , n}
}
.

Each equation ∆(k)(λ0) = 0, k ∈ {0, . . . , n}, defines a hyper-
plane in V , and, when identifying V with the Euclidean space
R2n, the normal vectors to all such hyperplanes are linearly
independent. Hence Vλ0 is a subspace of V of codimension
n+1, i.e., dimVλ0

= n−1. Introduce now Wλ0
as the space

of all functions ∆ of the form (22) for some polynomial p
of degree n − 1 with p(0) = 1. The set Wλ0

is an affine
subspace of the space of all entire complex functions, with
dimWλ0 = n− 1.

As a first step, we will prove that Wλ0 ⊆ V , i.e., that
every function ∆ of the form (22) is indeed a quasipolynomial
of the form (3)–(4). To do so, we first observe that, by an
immediate inductive integration by parts, we have (see also
[32, Proposition 2.1])

∫ 1

0

q(t)e−zt dt =

d∑
k=0

q(k)(0)− q(k)(1)e−z

zk+1
(23)

for every z ∈ C \ {0}, d ∈ N, and q a polynomial of degree
d. Next, let ∆ ∈ Wλ0

and p be a polynomial of degree n− 1
with p(0) = 1 be such that ∆ is given by (22). Define q(t) =
(1−t)p(t) and notice that q(1) = 0. By using (23), we deduce:

∆(λ) = τ(λ− λ0)
n+1

n∑
k=0

q(k)(0)− q(k)(1)e−τ(λ−λ0)

τk+1(λ− λ0)k+1

= (λ− λ0)
n +

n−1∑
k=0

q(n−k)(0)

τn−k
(λ− λ0)

k

− e−τ(λ−λ0)
n−1∑
k=0

q(n−k)(1)

τn−k
(λ− λ0)

k,

(24)

so that ∆ ∈ V , as required.
We now notice that Wλ0 ⊆ Vλ0 , since, for any ∆ given by

(22), λ0 is clearly a root of multiplicity at least n + 1 of ∆.
Moreover, Wλ0

and Vλ0
are both affine spaces with the same

dimension, so that Wλ0
= Vλ0

, yielding the conclusion.
Remark 3: The integral representation in Proposition 5 is

different from the one proposed in [36] since the latter
considers the case of multiplicity M(λ0) = n+m = 2n− 1.
In fact, the polynomial p̂ obtained in [36, Theorem 9] can
be written as p̂(t) = tm−1(1 − t)n−2(1 − A t) where A is a
specified real number. It is easy to observe that for all n ≥ 2,
deg p̂ = n + m − 2 = 2n − 3 while deg(p) = n − 1 with
p given by (22). Interestingly, the polynomials p and p̂ have
degree one and coincide when n = 2, and the only overorder
multiplicities are 3 and 4.

Remark 4: Note that (24) provides explicit expressions for
the polynomials P0 and Pτ from (4) in terms of the polynomial
q introduced in the aforementioned proof. More precisely, we

have

P0(λ) = (λ− λ0)
n +

n−1∑
k=0

q(n−k)(0)

τn−k
(λ− λ0)

k,

Pτ (λ) = −eτλ0

n−1∑
k=0

q(n−k)(1)

τn−k
(λ− λ0)

k.

Since q(t) = (1 − t)p(t), one may also provide similar
expressions of P0 and Pτ in terms of p. Indeed, we have

P0(λ) = (λ− λ0)
n (25a)

+

n−1∑
k=0

p(n−k)(0)− (n− k)p(n−k−1)(0)

τn−k
(λ− λ0)

k,

Pτ (λ) = eτλ0

n−1∑
k=0

(n− k)p(n−k−1)(1)

τn−k
(λ− λ0)

k. (25b)

Let us now identify the link between the polynomial p from
(22) and the elimination-produced polynomial P from (21).

Proposition 6: Consider the quasipolynomial ∆ from (3)–
(4) with m = n−1. The real number λ0 is a root of multiplicity
at least n+ 1 of ∆ if, and only if, P(λ0, τ) = 0 and

∆(λ) =
τ

n!
(λ− λ0)

n+1

∫ 1

0

P(λ0, τ t)e−t(λ−λ0)τ dt, (26)

where P is the elimination-produced polynomial (21).
Proof: First, assume that P(λ0, τ) = 0 and that ∆ is

given by (26). In step with (21), the function t 7→ 1
n!P(λ0, τ t)

is a polynomial in t of degree n with 1
n!P(λ0, 0) =

P
(n)
0 (λ0)
n! =

1 and 1
n!P(λ0, τ) = 0, so that 1

n!P(λ0, τ t) = (1 − t)p(t) for
some polynomial p of degree n− 1 with p(0) = 1. Hence, by
Proposition 5, λ0 is a root of multiplicity at least n+1 of ∆.

Conversely, assume that λ0 is a root of multiplicity at least
n + 1 of ∆. Proposition 3 states that P(λ0, τ) = 0 and, by
Proposition 5, there exists a polynomial p of degree n − 1
with p(0) = 1 such that ∆ is given by (22). In addition, due
to Remark 4, we have

P0(λ) =

n∑
k=0

q(n−k)(0)

τn−k
(λ− λ0)

k, (27)

where q is the polynomial defined by q(t) = (1−t)p(t). On the
other hand, since P0 is a polynomial of degree n, it coincides
with its Taylor expansion of order n at λ0, i.e.,

P0(λ) =

n∑
k=0

P
(k)
0 (λ0)

k!
(λ− λ0)

k. (28)

Using the uniqueness of the Taylor expansion at a given point
and combining (27) and (28), we deduce that P

(k)
0 (λ0) =

k!
τn−k q

(n−k)(0). Hence, by (21), we have

P(λ0, τ t) =

n∑
k=0

(
n

k

)
k!

τn−k
q(n−k)(0)(τt)n−k

= n!

n∑
k=0

q(n−k)(0)
tn−k

(n− k)!
= n!q(t),

since the last sum is the Taylor expansion of q at 0 of order
n and q is a polynomial of degree n. Consequently, q(t) =
1
n!P(λ0, τ t) and ∆ is given by (26).
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C. Some Insights on Linear Combinations of Kummer
Functions

Here, our goal is to establish links between a quasipoly-
nomial ∆ of the form (3)–(4) with m = n − 1 admitting
a root of multiplicity at least n + 1 and Kummer confluent
hypergeometric functions. A first connection is stated below:

Proposition 7: Consider the quasipolynomial ∆ from (3)–
(4) with m = n−1. The real number λ0 is a root of multiplicity
at least n+ 1 of ∆ if, and only if, P(λ0, τ) = 0 and

∆(λ) = (λ−λ0)
n+1

n−1∑
k=0

σk Φ(k+1, k+3, −τ (λ−λ0)) (29)

where, for k ∈ J0, n− 1K, we have

σk =
−τ

(k + 1) (k + 2)n!

n−k−1∑
j=0

(
n

j

)
P

(j)
0 (λ0) τ

n−j . (30)

Proof: Note that, owing to Proposition 6, it suffices to
show that, if P(λ0, τ) = 0, then (26) can be rewritten as (29).

Let q(t) = τ
n!P(λ0, τ t), then q(1) = 0 since P(λ0, τ) = 0.

As a result, the polynomial q can be factorized as q(t) =
(1−t)p(t), where p is a polynomial of degree n−1. We write
p(t) =

∑n−1
k=0 σ̃kt

k for some real coefficients σ̃0, . . . , σ̃n−1,
and thus (26) can be rewritten as

∆(λ) = (λ− λ0)
n+1

n−1∑
k=0

σ̃k

∫ 1

0

tk(1− t)e−t(λ−λ0)τ dt.

Thanks to (9), the aforementioned equation takes the form (29)
after setting σk = σ̃k

(k+1)(k+2) for k ∈ J0, n− 1K.
In order to conclude, it suffices to compute σ̃k for k ∈

J0, n− 1K. To do that, from (21), we infer that

q(t) =
τ

n!

n∑
k=0

(
n

k

)
P

(k)
0 (λ0)τ

n−ktn−k,

and, since q(t) = (1− t)p(t), we also have

q(t) = σ̃0 +

n−1∑
k=1

(σ̃k − σ̃k−1)t
k − σ̃n−1t

n.

Hence, equating the coefficients of monomials of the same
degree in the aforementioned expressions of q, we deduce, for
every k ∈ J0, n− 1K, that

σ̃k = − τ

n!

n−1−k∑
j=0

(
n

j

)
P

(j)
0 (λ0)τ

n−j ,

which concludes the proof.
Note that (29) factorizes ∆ in terms of a linear combination

of n Kummer functions with real coefficients. One can also
express ∆ as a combination of two Kummer functions if one
allows for rational functions as coefficients.

Proposition 8: Consider the quasipolynomial ∆ from (3)–
(4) with m = n−1. The real number λ0 is a root of multiplicity
at least n+ 1 of ∆ if, and only if, P(λ0, τ) = 0 and

∆(λ) = β(λ) Φ(0, 1, −τ (λ− λ0))

+ γ(λ) Φ(1, 1, −τ (λ− λ0)),
(31)

with

β(λ) = −(λ− λ0)
n+1

n−1∑
k=0

σk(k + 2)!(k + 1− τ(λ− λ0))

(τ(λ− λ0))k+2

(32)

and

γ(λ) = (λ− λ0)
n+1

n−1∑
k=0

σk

(
(k + 1)2(k + 2)

(τ(λ− λ0))2

+

k−1∑
r=0

(k + 2)!(k + 1− τ(λ− λ0))

r!(τ(λ− λ0))k+2−r

)
, (33)

where σ0, . . . , σn−1 are defined as in (30).
Proof: According to Proposition 7, it suffices to show that

(29) is equivalent to (31). This can be done by exploiting the
Kummer functions’ contiguous relations recalled in Lemma
1. As a matter of fact, using (10), one obtains, for every k ∈
J0, n− 1K and z ∈ C \ {0}, that

Φ(k + 1, k + 3, z) = −k + 2

z
Φ(k, k + 2, z)

+
k + 2

z
Φ(k + 1, k + 2, z),

Φ(k, k + 2, z) =
(k + 1)(k + z)

z
Φ(k, k + 1, z)

− k(k + 1)

z
Φ(k + 1, k + 1, z),

Φ(k + 1, k + 2, z) = −k + 1

z
Φ(k, k + 1, z)

+
k + 1

z
Φ(k + 1, k + 1, z).

Next, we remark that, by (7), for every a ∈ C with −a /∈ N,
we have Φ(a, a, z) = Φ(1, 1, z) = ez . As a result,

Φ(k + 1, k + 3, z)

= − (k + 1)(k + 2)(z + k + 1)

z2
Φ(k, k + 1, z)

+
(k + 1)2(k + 2)

z2
Φ(1, 1, z). (34)

Again, (10) entails, for every j ∈ N∗,

Φ(j, j + 1, z) = − j

z
Φ(j − 1, j, z) +

j

z
Φ(1, 1, z),

and, by an immediate inductive argument,

Φ(j, j + 1, z) =
j!

(−z)j
Φ(0, 1, z)

−

(
j−1∑
r=0

j!

r!(−z)j−r

)
Φ(1, 1, z).

(35)

Combining (35) with (34), we deduce that

Φ(k + 1, k + 3, z) = − (k + 2)!(z + k + 1)

(−z)k+2
Φ(0, 1, z)

+

(
k−1∑
r=0

(k + 2)!(z + k + 1)

r!(−z)k+2−r

)
Φ(1, 1, z)

+
(k + 1)2(k + 2)

z2
Φ(1, 1, z), (36)
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and the conclusion follows by inserting (36) in (29).
Remark 5: The formula for the Kummer function Φ(j, j +

1, z), j ∈ N∗, in (35) was derived by using an inductive argu-
ment and the fact that Φ(a, b, z) (a, b, z ∈ C) can be expressed
as a linear combination of the contiguous Kummer functions
Φ(a ± 1, b, z) and Φ(a, b ± 1, z), using also Φ(1, 1, z) = ez ,
and Φ(0, 1, z) = 1. Similar relations can be found in [53].

Beyond the standard contiguous relation, to the best of the
authors’ knowledge, there does not exist any result describing
the distribution of the nonasymptotic zeros of linear combi-
nations of Kummer functions. The next lemma provides a
partial step towards that goal, by providing a non-autonomous
second-order differential equation admitting a given linear
combination of Kummer functions as a solution.

Lemma 2: Let β̃ and γ̃ be two meromorphic functions.
Then, the complex function F defined by

F (z) = β̃(z) Φ(0, 1, z) + γ̃(z) Φ(1, 1, z), (37)

with β̃ (z) γ̃′ (z) + γ̃ (z)
(
β̃ (z) τ − β̃′ (z)

)
̸= 0 satisfies the

following second-order differential equation

F ′′(z) +Q(z)F ′(z) +R(z)F (z) = 0, (38)

where Q and R are given by

Q(z) =
ϑ(z)γ̃ (z)− γ̃′′ (z) β̃ (z)

β̃ (z) γ̃′ (z) + γ̃ (z)
(
β̃ (z) τ − β̃′ (z)

) ,
R(z) =

(
−β̃ (z) τ + β̃′ (z)

)
γ̃′′ (z)− γ̃′ (z)ϑ(z)

β̃ (z) γ̃′ (z) + γ̃ (z)
(
β̃ (z) τ − β̃′ (z)

) ,

(39)

with ϑ(z) =
(
β̃′′ (z) + τ

(
β̃ (z) τ − 2 β̃′ (z)

))
.

Lemma 2 may be proved by using that ∂Φ
∂z (a, b, z) =

a
bΦ(a+1, b+1, z), which follows immediately from (7), and
exploiting the contiguous relations from Lemma 1. In what
follows, we shall refer to functions F of the form (37) as
Kummer-type functions.

Note that Whittaker functions are defined in terms of
Kummer functions in (11) by applying the multiplicative factor
e−

z
2 z

1
2+l, thanks to which the Whittaker differential equa-

tion (12) has no first-order term. We now proceed similarly
from Kummer-type functions in order to define Whittaker-type
functions. The next lemma can be shown by straightforward
computations.

Lemma 3: Let β̃, γ̃ be two meromorphic functions, F be
the function defined in (37), and Q and R be given by (39).
Let Q be a primitive of Q

2 and define the function W by

W (z) = eQ(z)F (z). (40)

Then, W satisfies the second-order differential equation

W ′′(z) +G(z)W (z) = 0, (41)

where

G(z) = R(z)− (Q(z))2

4
− 1

2
Q′(z). (42)

In the sequel, we refer to functions W of the form (40) as
Whittaker-type functions.

D. MID Validity for the Lowest Overorder Multiplicity

Now, we shall use the results of Section IV-C relating
quasipolynomials with roots of overorder multiplicity and
Kummer and Whittaker functions in order to provide suffi-
cient conditions under which the MID property is valid for
characteristic roots of ∆ of multiplicity at least n+ 1.

Theorem 1: Consider the quasipolynomial ∆ from (3)–(4)
with m = n− 1, and assume that ∆ admits a real root λ0 of
multiplicity at least n + 1. Let β and γ be the meromorphic
functions defined in (32) and (33), respectively, and define the
meromorphic functions β̃ and γ̃ by

β̃(z) = β
(
λ0 −

z

τ

)
, γ̃(z) = γ

(
λ0 −

z

τ

)
.

Let F , Q, R, and G be defined by (37), (39) and (42),
respectively. Assume that, for every t ∈ (0, 1) and every root z
of F in C−, we have ℜ[zG(tz)] ≥ 0. Then, λ0 is a dominant
root of ∆, i.e., λ0 satisfies the MID property.

Remark 6: A result similar to Theorem 1 was already
shown in [36, Theorem 10] for the case of roots of multiplicity
n +m. The proof of the former can be obtained by an easy
adaptation of that of the latter, and we detail this argument
here for the sake of completeness.

Proof: We deduce from Proposition 8 that

∆(λ) = F (−τ(λ− λ0)). (43)

In particular, the result is thereby proved if we show that all
roots of the Kummer-type function F have nonnegative real
part. To do so, we consider the Whittaker-type function W (·)
defined from F as in (40). Note that the differential equation
(41) satisfied by W is of the form (13), with K(z) = 1. As a
consequence, one can apply Hille’s method to (41). By taking
z1 = 0 and z2 equal to a root z∗ of F (·) in (14), we obtain:∫ z∗

0

|W ′(z)|2dz =

∫ z∗

0

|W (z)|2G(z) dz.

We choose as integration path the line segment from 0 to z∗.
Hence

z∗

∫ 1

0

|W ′(tz∗)|
2
dt = z∗

∫ 1

0

|W (tz∗)|2G(tz∗) dt.

Taking the real part, we get

x∗

∫ 1

0

|W ′(tz∗)|
2
dt =

∫ 1

0

|W (tz∗)|2ℜ [z∗G(tz∗)] dt, (44)

where x∗ = ℜ(z∗) and y∗ = ℑ(z∗).
Assume now, by contradiction, that F (·) admits a root with

negative real part, and take z∗ in (44) as equal to this root. The
left-hand side of (44) is negative, however its right-hand side is
nonnegative by assumption, yielding the desired contradiction.
Hence, all roots of F have nonnegative real parts, entailing the
conclusion thanks to (43).

Remark 7: As standard pole placement methods, the partial
pole placement approach proposed for controlling dynamical
systems is subject to the same sensitivity issues with respect to
parameters’ changes. However, the computational effort of the
control scheme is low, emphasizing the interest in using such
an approach for infinite-dimensional systems. As discussed in
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[5], the spectral abscissa is a continuous function and, under
small variations of the parameters, the stability of the closed-
loop system is conserved. Finally, there exist several results
describing the asymptotic behavior of multiple characteristic
roots subject to parameter variation. In particular, in the case
when the delay is the parameter subject to changes, we refer
to [54]–[56] (see also [57] for further discussions).

V. PRESCRIBED STABILIZATION OF THE CHAIN OF n
INTEGRATORS

This section focuses on the problem of stabilization of a
chain of n integrators with a prescribed exponential decay. In
this particular configuration, we are able to establish necessary
and sufficient conditions for the MID property to hold for a
root with the lowest overorder multiplicity. The section closes
on the presentation of a link between multiple roots and a
local minimizer for the spectral abscissa.

A. MID Property for the Chain of n Integrators
Let us consider the chain of n integrators, i.e., we consider

the function ∆ from (3)–(4) with P0(λ) = λn. In this case,
we have the following characterization of the elimination-
produced polynomial.

Proposition 9: Consider the quasipolynomial ∆ from (3)–
(4) in the case P0(λ) = λn and m = n− 1. The elimination-
produced polynomial P defined by (21) is given by

P(λ, τ) = P̂(λτ), (45)

where P̂ is the polynomial defined by

P̂(s) =
n∑

k=0

k!

(
n

k

)2

sn−k. (46)

In addition, all roots of P̂ are negative real numbers.
Proof: Since P0(λ) = λn, we have P

(k)
0 (λ) =

n!
(n−k)!λ

n−k and thus, inserting these expressions into (21),
we deduce (45)–(46).

Furthermore, since P0 has n real roots, all equal to 0, it
follows from Proposition 4 that the polynomial λ 7→ P(λ, τ)
is real rooted, and hence so is P̂. Since all coefficients of P̂ are
positive, we infer that all its real roots are necessarily negative,
yielding the conclusion.

Recall that, by Proposition 6, when ∆ admits a root of
multiplicity at least n+1, the elimination-produced polynomial
P appears in the factorization (26) under the form P(λ0, τ t).
We now study the behavior of this expression, seen as a
function of t on the interval (0, 1).

Proposition 10: Consider the quasipolynomial ∆ from (3)–
(4) in the case P0(λ) = λn and m = n− 1, let P̂ be defined
by (46), and define q(t) = 1

n! P̂(λ0τt). Assume, in addition,
that λ0τ = c0, where c0 is the rightmost root of P̂. Then, for
every t ∈ (0, 1), we have q(t) > 0 and q′(t) < 0.

Proof: By Proposition 9, the polynomial P̂ is real rooted
and all its roots are negative, hence its rightmost root c0 is
negative. In addition, the coefficient of the leading monomial
of P̂ is positive, thus we also have that P̂ and P̂′ are positive
in (c0,+∞), and in particular in (c0, 0). As λ0τ = c0 < 0,

this entails that q is positive and its derivative is negative in
(0, 1), as required.

Note that the factorization (26) involves an integral of the
form

F (s) =

∫ 1

0

f(t)e−st dt, (47)

which can be seen as the Laplace transform of a (real) function
f with support included in [0, 1]. The study of the distribution
of the zeros of functions F under the form (47) is related to
a wide range of problems related to Physics and Engineering,
and goes back to the pioneering works by Hardy [58], Pólya
[59], and Titchmarsh [60] in the first decades of the 20th
century. In particular, we have the following result from [59]
(see also [61, Part Five, Chapter 3, Problem 177, page 66]).

Theorem 2 (G. Pólya, 1918): Let f be a positive and con-
tinuously differentiable function defined in the interval [0, 1]
and satisfying f ′(t) < 0 for every t ∈ [0, 1]. Consider the
function F : C → C defined in terms of f as in (47). Then,
all the zeros of F lie in the open left half-plane C−.

As a consequence of Theorem 2, we infer the following
result on the dominance of a root λ0 of multiplicity n+ 1 in
the case of the n-th order integrator.

Theorem 3: Consider the quasipolynomial ∆ from (3)–(4)
in the case P0(λ) = λn and m = n − 1, and let P̂ be the
polynomial defined in (46). Assume that ∆ admits a root λ0

of multiplicity n+ 1 and that λ0τ is the rightmost root of P̂.
Then λ0 is the rightmost root of ∆.

Proof: Owing to Propositions 6, 9, and 10, we have the
following factorization,

∆(λ) = τ(λ− λ0)
n+1

∫ 1

0

q(t)e−t(λ−λ0)τ dt, (48)

where q is the polynomial defined in the statement of Propo-
sition 10. Since q is positive and q′ is negative in (0, 1), it
follows from Theorem 2 that all roots of s 7→

∫ 1

0
q(t)ets dt

have positive real parts, and, consequently, all roots of ∆
different from λ0 have real parts strictly less than λ0, as
required.

Remark 8: Note that, if λ0 is a root of multiplicity n +
1 of ∆, then λ0 is one of the n roots of the elimination-
produced polynomial P(·, τ). The previous theorem ensures
that, by selecting λ0 as the rightmost root of P(·, τ), it will
also be a dominant root of ∆.

B. Link With an Optimization Problem
An intriguing research question concerns whether and when

the assignment of a root satisfying the MID property can be
recast in terms of minimizing the spectral abscissa function.
We shed light on this question by considering a chain of
n integrators with input delay, controlled with static state
feedback. We start with a theorem.

Theorem 4: Consider the characteristic function

∆(λ; α0, . . . , αn−1) = λn + (αn−1λ
n−1 + · · ·
+ α1λ+ α0)e−λτ .

and the choice of gain parameters (α0, . . . , αn−1) = (α∗
0, . . . ,

α∗
n−1), which are determined by (25) and assign a rightmost
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root λ0 of multiplicity n + 1. Then in any direction in
the parameter space, taken from (α∗

0, . . . , α
∗
n−1), the spectral

abscissa function c : Rn → R,

(α0, . . . αn−1) 7→ c(α0, . . . , αn−1) =

max
λ∈C

{ℜ(λ) | ∆(λ; α0, . . . , αn−1) = 0},
(49)

is strictly increasing.
Proof: We denote by (d0, . . . , dn−1) ∈ Rn, (d0, . . . ,

dn−1) ̸= (0, . . . , 0), the considered direction, and by ϵ ∈ R+

a perturbation parameter that determines the step taken in
the considered direction. For fixed (d0, . . . , dn−1), we then
analyze the zeros of the perturbed quasi-polynomial

H(λ; ϵ) = ∆(λ) + ϵ(dn−1λ
n−1 + · · ·+ d1λ+ d0)e−λτ

as a function of ϵ, around ϵ = 0. Due to the continuity of
the spectral abscissa function with respect to parameter ϵ and
the property that λ0 is the unique rightmost characteristic root
for ϵ = 0, for sufficiently small ϵ > 0 the spectral abscissa is
induced by one of the roots that emerge from the splitting of
the n+ 1-th order root λ0 as ϵ is increased from zero.

We can always write H in the form

H(λ; ϵ) = ∆(λ) + ϵ
[
f0 + f1(λ− λ0) + · · ·

+ fn−1(λ− λ0)
n−1
]
e−λτ ,

where the n-tuple (f0, . . . , fn−1) is induced by (d0, . . . ,
dn−1). Let j ∈ {0, . . . , n− 1} be the index such that

f0 = · · · = fj−1 = 0, fj ̸= 0.

Then we can factorize

H(λ; ϵ) = (λ− λ0)
j
(
Ĥ(λ) + ϵ

[
fj + fj+1(λ− λ0) + · · ·

+ fn−1(λ− λ0)
n−1−j

]
e−λτ

)
,

where the entire function Ĥ is the analytic extension of the
function λ 7→ H(λ; 0)

(λ−λ0)j
, which has a removable singularity

at λ0. Note that, due to the deflation, Ĥ has a zero with
multiplicity n+ 1− j at λ0. The roots of

Ĥ(λ) + ϵ
[
fj + fj+1(λ− λ0) + · · ·

+ fn−1(λ− λ0)
n−1−j

]
e−λτ = 0

(50)

satisfy the complete regular splitting property at λ = λ0

and ϵ = 0 because ∂Ĥ
∂ϵ (λ0, 0) = fj ̸= 0 (see [62], [63]).

Consequently, they can be expanded as Puiseux series in
powers of ϵ

1
n+1−j as

λi(ϵ) = λ0

+

(
−(n+ 1− j)!

∂Ĥ
∂ϵ (λ0, 0)

∂n+1−jĤ
∂λn+1−j (λ0, 0)

) 1
n+1−j

eι̇
2πi

n+1−j ϵ
1

n+1−j

+O
(
ϵ

2
n+1−j

)
, i = J1, n+ 1− jK. (51)

The additional j rightmost roots of H are invariant with
respect to ϵ, that is, λi(ϵ) = λ0, i ∈ Jn+2−j, n+1K. In what
follows we can distinguish between two cases: j < n− 1 and
j = n− 1.

If j < n − 1, then n + 1 − j > 2 roots split according to
(51). It follows that there is a real number ϵ̄ > 0 such that(

max
i∈{1,...,n+1−j}

ℜ(λi(ϵ))

)
> ℜ(λ0), ∀ϵ ∈ (0, ϵ̄),

hence, the spectral abscissa is strictly increasing at ϵ = 0.
If j = n − 1, then the form of expansion (51) may

be inconclusive as two roots can possibly split along the
imaginary axis. To proceed, we employ the factorization (48)
and rewrite (50) as

τM(λτ)(λ− λ0)
2︸ ︷︷ ︸

Ĥ(λ)

+ϵfn−1e−λτ = 0, (52)

with

M(λ) =

∫ 1

0

q(t)e−t(λ−λ0τ) dt,

which implies M(λ0τ) > 0 and M ′(λ0τ) < 0. In case fn+1 <
0, then the double root of λ0 of (52) splits according to

λ±(ϵ) = λ0 ±

√
−fn−1e−λ0τ

M(λ0τ)

√
ϵ

τ
+O(ϵ), (53)

whose derivation relies on interpreting (52), after pre-multi-
plication by τ as an equation in the argument λτ . In case
fn+1 > 0, then the double root λ0 splits according to

λ±(ϵ) =λ0 ±

√
fn−1e−λ0τ

M(λ0τ)

√
ϵ

τ
ι̇

+
fn−1e−λ0τ

2M(λ0τ)

(
1 +

M ′(λ0τ)

M(λ0τ)

)
ϵ+O

(
ϵ

3
2

)
.

(54)

The coefficient of ϵ is positive since M(λ0τ) > 0 and

1 +
M ′(λ0τ)

M(λ0τ)
= 1−

∫ 1

0
tq(t) dt∫ 1

0
q(t) dt

> 0,

since q is positive on [0, 1] and the “weight” function t in the
top integral is smaller than one. Hence, if ϵ is increased from
zero, n− 1 characteristic roots are invariant, while two others
split along the imaginary axis but bend towards the open right
half plane. The proof is completed.

Observe that the (local) growth of the spectral abscissa in
a given direction, characterized by (51), (53), and (54), can
always be bounded from below by a strictly increasing linear
function. On the one hand, this argument is mathematically
not sufficient to conclude that (α∗

0, . . . , α
∗
n−1) is a strict local

minimizer of the spectral abscissa function, given that this
function is non-smooth. To see this, note that the function
s : R2 → R, defined by

s(α0, α1) =
√
|α1 − α2

0| − α4
0 − α4

1,

satisfies (with ϵ ≥ 0)

s(ϵd0, ϵd1) =

{ √
|d1|

√
ϵ+O(ϵ), d1 ̸= 0,

|d0|ϵ+O
(
ϵ2
)
, d1 = 0,

but (0, 0) is no local minimizer since s
(
ϵ, ϵ2

)
< 0 for

ϵ > 0. On the other hand, for the second-order integrator,
the assertion of Theorem 4 can be strengthened significantly.
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Theorem 5: For n = 2, the spectral abscissa function (49)
exhibits a strict global minimizer in (α0, α1) = (α∗

0, α
∗
1),

determined by (25).
Proof: The argument is by contradiction. Assume

that there exists (α̂0, α̂1) ̸= (α∗
0, α

∗
1) for which we have

c (α̂0, α̂1) ≤ c (α∗
0, α

∗
1). For n = 2, the spectral abscissa

function is quasi-convex, see [64, Proposition 1]. This implies
c (α∗

0 + θ(α̂0 − α∗
0), α

∗
1 + θ(α̂1 − α∗

1)) ≤ c (α∗
0, α

∗
1) for all

θ ∈ [0, 1], which contradicts Theorem 4.
For n = 2, 3, . . . , 10, we have done extensive numerical

experiments with the package TDS-CONTROL [65], whose
stabilization routine is based on minimizing the spectral ab-
scissa. For all considered initial values for the controller gains,
the optimization algorithm converged to

(
α∗
0, . . . , α

∗
n−1

)
. This

suggests that Theorem 5 can be generalized to n > 2, but a
proof is currently lacking.

VI. PRESCRIBED PENDULUM STABILIZATION AND
PARTIAL POLE PLACEMENT

A. GMID, Intermediate MID, and Pendulum Control
Let us revisit the classical control problem of the stabiliza-

tion of the friction-free pendulum [66], whose dynamics are
governed by the following second-order differential equation:

θ̈(t) +
g

L
sin(θ(t)) = u(t), (55)

where θ(t) is the angular displacement of the pendulum at
time t with respect to the stable equilibrium position, L the
pendulum length, g the gravitational acceleration, and u(t) the
control input, which stems from an applied external torque. We
follow in this section the control strategy proposed in [36].

Consider the standard delayed PD controller

u(t) = −kp θ(t− τ)− kd θ̇(t− τ), (56)

with (kp, kd) ∈ R2. The linear stability of the closed-loop
system is given by the location of the roots of the quasipoly-
nomial

∆(λ) = λ2 +
g

L
+ (kdλ+ kp) e

−λτ . (57)

Notice that deg(∆) = 4. Hence, if one exploits the GMID
property proved in [32] (i.e., if we consider a root of (57) with
multiplicity 4), it follows that the only admissible quadruple
root is λ0 = −

√
2g/L which is necessarily the corresponding

spectral abscissa and is achieved if the (kp, kd, τ) satisfy kd =
−e−2

√
2g/L, kp = −5 e−2g/L, τ =

√
2L/g.

As emphasized in [33], the GMID does not allow any degree
of freedom in assigning λ0, i.e., there is a single possible
choice of λ0 ensuring that it is a root of multiplicity 4. In
order to allow for some additional degrees of freedom when
assigning λ0, one can relax such a constraint by forcing the
root λ0 to have a multiplicity lower than the maximal one.
Consider for instance, the delay as a free tuning parameter.
This is the subject of the next result, extracted from [36],
which considers a root λ0 of multiplicity 3, which is nothing
else than the lowest overorder multiplicity for (57).

Proposition 11 ([36]): For any 0 < τ <
√

2L/g, let

λ0 =
−2 +

√
− g τ2

L + 2

τ
. (58)

0.00 0.25 0.50 0.75 1.00 1.25 1.50
τ
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Behavior of the triple root at λ0

g/L = 1
g/L = 2
g/L = 3
g/L = 4

g/L = 5
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Fig. 2. The behavior of the triple root (spectral abscissa) of (57) at
λ = λ0 given by (58) as a function of the tuning (“free”) delay parameter
0 < τ <

√
2L/g for g/L ∈ {1, . . . , 7}. Clearly, increasing the

ratio g/L decreases the assignment region as well as the delay margin.
Figure extracted from [36].

The delayed PD controller (56) with

kd =
2 (τλ0 + 1) eτλ0

τ
, kp =

2
(
5Lτλ0 + g τ2 + 3L

)
eτλ0

τ2L
(59)

and λ0 τ ≥ −1, locally exponentially stabilizes the dynamical
system (55). More precisely, λ0 is a root of multiplicity at
least 3 of (57) and it is dominant, i.e., the lowest overorder
(intermediate) MID property holds true.

To illustrate Proposition 11, we represent, in Fig. 2, the
value of the triple root λ0 given by (58) as a function of τ , for
some values of the ratio g/L. The proof of Proposition 11 can
be found in [36], which is concerned with the overorder MID
property with multiplicity M(λ0) = n+m. In our case, this
multiplicity coincides with the lowest overorder multiplicity of
(57). It is also a direct consequence of the results of this article
since, in the pendulum case under consideration, the only
intermediate multiplicity corresponds to the lowest overorder
multiplicity. It should be mentioned that Proposition 11 can
also be proven by using the argument principle as it is done
in [29].

B. P3δ Software
Partial pole placement via delay action (P3δ) is an intuitive

Python software [67]–[69] which enables the design of stabi-
lizing feedback control laws exploiting the delay effect on the
closed-loop dynamics. The pole placement methods exploited
in P3δ rely on two design strategies, the multiplicity-induced-
dominancy (MID) presented in this article and the coexistent-
real-roots-inducing-dominancy (CRRID), presented, for in-
stance in [70], and which consists in conditions on the system’s
parameters guaranteeing the dominance of coexistent real
spectral values. When using the MID strategy on P3δ, two
options are proposed: the GMID-based design and the control-
oriented MID-based design. The latter exploits the overorder
intermediate multiplicity M = n + 1, offering sufficient
freedom in parameters’ choice. The present work represents
the theoretical certification of the latter. Notice that both
strategies adopted in P3δ control design, MID and CRRID,
allow prescribing the exponential decay rate of the closed-loop
system.
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VII. CONCLUSION

This article discusses the spectral properties of linear time-
invariant dynamical systems represented by delay-differential
equations. It exploits links between spectral values of an
overorder intermediate admissible multiplicity for a quasipoly-
nomial and the distribution of zeros of linear combinations
of Kummer confluent hypergeometric functions. It proposes a
delay-based control design methodology enabling the closed-
loop system’s solution to obey a prescribed exponential decay
rate, opening perspectives in concrete applications including,
among others, vibration control (see, e.g., [71], [72]). Finally,
the proposed methodology is illustrated through the stabiliza-
tion problem of the pendulum as well as the stabilization of
chains of integrators.

APPENDIX
FREQUENCY BOUND ALGORITHM

Algorithm 1: Estimation of a frequency bound for
time-delay differential equations with a single delay,
see [41]–[44].

Input: ∆̃(z) = P̃0(z) + P̃τ (z) e−z; // Normalized

quasipolynomial

Input: ω0 > 0; // Desired frequency bound

Input: maxOrd; // Maximal truncation order

// Initialization

1 ord = 0; // ord: order of truncation of the

Taylor expansion of e2 x;

2 Bound = false;
3 while (not Bound) and (ord ≤ maxOrd) do
4 Set

F(x, ω) = |P̃τ (x+ ι̇ω)|2 − |P̃0(x+ ι̇ω)|2Tord(x);
// Tord(x): Taylor expansion of e2x of

order = ord

5 Set H(x,Ω) = F(x,
√
Ω); // H is a polynomial

6 Set Ωk(x) as the k-th real root of H(x, ·);
7 if sup

x≥0
max

k
Ωk(x) ≤ ω2

0 then

8 Bound = true;

9 ord = ord+ 1;
Output: Frequency bound: If Bound is true, then

|ω| ≤ ω0 for every root z = x+ iω of ∆̃ with
x ≥ 0;
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and Université Paris-Saclay, Gif-sur-Yvette, France. He is a member
of the “Dynamical Interconnected Systems in Complex Environments”
(DISCO), Inria and was the head of L2S for a decade, from 2010 to
2019. He is the author/coauthor of 11 books and of more than 625
scientific papers. His research interests include delay systems, robust
control, operator theory, and numerical methods in optimization, and
their applications to the design of engineering systems.

Dr. Niculescu is the Chair of the IFAC Technical Committee “Linear
Control Systems” (2017–2023), and has served as an Associate Editor
for several journals in control area, including the IEEE TRANSACTIONS
ON AUTOMATIC CONTROL (2003–2005). He was Doctor Honoris Causa
of the University of Craiova (Romania) in 2016 and the University
Low Danube of Galati (Romania) in 2023, the Founding Editor and
Editor-in-Chief of the Springer Nature Series “Advances in Delays and
Dynamics” since its creation in 2012. He was the recipient of the Ph.D.
Thesis Award from Grenoble INP (France), and CNRS Bronze and Silver
Medals for scientific research in 1996, 2001, and 2011, respectively.
For further information, see https://cv.archives-ouvertes.fr/
silviu-iulian-niculescu.

Wim Michiels (Senior Member, IEEE) received
the M.Sc. degree in electrical engineering and
the Ph.D. degree in computer science from KU
Leuven, Leuven, Belgium, in 1997 and 2002,
respectively.

He is currently a Full Professor with KU Leu-
ven, where he leads a research team within the
Numerical Analysis and Applied Mathematics
(NUMA) section. His work focuses on the anal-
ysis and control of systems described by func-
tional differential equations and other infinite-

dimensional systems, systems with a network structure, and on large-
scale linear algebra problems. He coordinated the H2020 Innovative
Training Network UCoCoS, on the analysis and control of complex
systems. He is a passionate teacher of six yearly courses with KU
Leuven and has vast experiences as a Lecturer in international Ph.D.
training programs. He has been member of the KU Leuven Research
Council. He currently leads the IFAC Time-Delay Systems Working
Group (with G. Orosz). He has authored and coauthored a variety
of journals in the area of computational and applied mathematics,
control theory, optimization, and dynamical systems. He is lead author
of the book Stability, Control and Computation of Time-Delay Systems,
2nd edition (SIAM, 2014). His research interests include mathematical
systems theory, dynamical systems, control and optimization, numerical
linear algebra, and scientific computing.

Dr. Michiels is an Associate Editor for the journals Calcolo, Kyber-
netika, and Systems & Control Letters.


