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Decay Rate Assignment through Multiple Spectral Values in

Delay Systems

Islam Boussaada∗† Guilherme Mazanti∗ Silviu-Iulian Niculescu∗

Wim Michiels‡

Abstract

This paper focuses on a spectral property for linear time-invariant (LTI) dynamical
systems represented by delay-differential equations (DDEs) entitled multiplicity-induced-
dominancy (MID), which consists, roughly speaking, in the spectral abscissa of the system
being defined by a multiple spectral value. More precisely, we focus on the MID property
for spectral values with over-order multiplicity, i.e., a multiplicity larger than the order
of the DDE. We highlight the fact that a root of over-order multiplicity is necessarily
a root of a particular polynomial, called the elimination-produced-polynomial, and we
address the MID property using a suitable factorization of the corresponding characteristic
function involving special functions of Kummer type. Additional results and discussion are
provided in the case of the n-th order integrator, in particular on the local optimality of a
multiple root. The derived results show how the delay can be further exploited as a control
parameter and are applied to some problems of stabilization of standard benchmarks with
prescribed exponential decay.

Keywords: delay, characteristic function, exponential stability, Kummer functions, hyper-
geometric functions, Green–Hille transformation, partial pole placement.

1 Introduction

Since Hazen’s paper [32] on the theory of servomechanisms in the 1930s, it is commonly ac-
cepted that the delays in systems’ dynamics are at the origin of dynamics oscillations and
instabilities. As a consequence, modeling delays, understanding the effects induced by the de-
lays and controlling delay systems represented a problem of recurring interest during the last
century. More precisely, one of the ways to describe time heterogeneity of processes and/or
phenomena is to use mathematical models based on delay-differential equations (DDEs). For
example, transport and propagation phenomena, signal transmission in communication net-
works, or age structure in population dynamics are typical classes of processes and/or phe-
nomena where delay can be used to model time heterogeneity leading to DDEs. For further
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examples, we refer to [27, 36, 39, 42, 49, 58] and the references therein. Finally, for an appro-
priate definition and related classification of DDEs, the reader is referred to [4, 26,30,37,39].

As pointed out in [63], a delay can induce stability (stabilizing effect) in some cases, and
a lack of stability (destabilizing) in other cases. These stability issues have been extensively
discussed in the open literature, and there exists a systematic methodological and numerical
treatment for the stability analysis of most cases (see, e.g., [23,29,41,49,53,55,64]). To the best
of the authors’ knowledge, in the control area, the the beneficial effect of the delay in closed-
loop appears in the 1970s within the framework of the approximation of the derivative action of
PID controllers by a delay-difference operator [65,66]. Moreover, the τ -decomposition method,
proposed a decade earlier by [40], enables the computation of the delay intervals guaranteeing
asymptotic stability, explicitly showing that, in certain cases, augmentation of the delay leads
to stability. In this context, the idea of using the delay as a control parameter came naturally.
For instance, a chain of n integrators can be stabilized by a controller including n delays
[38, 54]. If the main advantage of exploiting delays in the controllers is the simplicity of
their implementation, their infinite-dimensional character, however, yields some unexpected
behaviors of the corresponding closed-loop systems which imposes, as a consequence, some
limitations in the choice of the parameters. For an overview of some of the methods and
techniques, we refer to [24,49,63].

A classical approach in the stability analysis and stabilization of linear time-invariant
(LTI) dynamical systems including delays is the application of spectral methods (see, e.g.,
[49]). The spectrum of a DDE can be characterized as the set of complex roots of its charac-
teristic function, which presents itself under the form of a quasipolynomial, i.e., a finite sum of
polynomials multiplied by exponentials. These roots are usually referred to as spectral values
or characteristic roots of the system. The analysis of quasipolynomials and, in particular, the
location of their roots, is of fundamental importance for the spectral analysis of DDEs, and
many works have addressed this question. For instance, the origin of a LTI DDE is exponen-
tially stable if, and only if, the spectral abscissa1 of the system, defined as the supremum of the
real parts of the roots of its characteristic function, is negative. We refer the interested reader
to [49] and [8, Chapter 3] (where these functions are referred to as exponential polynomials).
In particular, an important fact about a quasipolynomial is that the multiplicity of any of its
roots is upper bounded by some positive integer, known as the degree of the quasipolynomial,
as stated, for instance, in [60, Part Three, Problem 206.2], [18, 19].

In the case of LTI systems represented by DDEs, recent works have highlighted a par-
ticularly interesting spectral property, called multiplicity-induced-dominancy (MID), which
consists in conditions on the system’s parameters under which a multiple spectral value corre-
sponds to the spectral abscissa [20,62] (see Section 4 below for a more detailed presentation of
the MID property). The first analytic proof of this property has been proposed for first-order
DDEs in [22], and it relies on an integral representation of the corresponding characteris-
tic function and a contradiction argument. In particular, it appears that a characteristic
root of maximal multiplicity (i.e., equal to the degree of the corresponding quasipolynomial)
necessarily defines the spectral abscissa of the system.

To the best of the authors’ knowledge, such a systematic study of the links between roots of
large multiplicity and the spectral abscissa was not sufficiently addressed in the literature until
the early work [22], even though some hints in this direction are provided in [58] in the case of

1Also called the rightmost characteristic root
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low-order systems. Since these works, the case of the assignment of a characteristic root with
maximal multiplicity, called generic MID property , was recently addressed and completely
characterized in [45] (retarded case) and in [10] (unifying retarded and neutral cases) for LTI
DDEs including a single delay in their models. As discussed in [10,45], this property opens an
interesting perspective in control through the so-called partial pole placement method, that is,
imposing the multiplicity of a characteristic root of the closed-loop system by an appropriate
choice of the controller gains guarantees the exponential stability of the closed-loop system
with a prescribed decay rate.

The arguments used to prove the generic MID property in [10, 45] are based on some
analytical properties of Kummer and Whittaker confluent hypergeometric functions, which
cannot be extended straightforwardly to treat the case of spectral values with intermediate
multiplicity, i.e., of multiplicity strictly smaller than the degree of the quasipolynomial; a
fact that represents a drawback of the method. However, as shown in [3], by way of different
arguments that exploit the structure of the system, the MID property still holds in some cases
with lower multiplicity, but to the best of the authors’ knowledge, there does not exist any
systematic procedure to treat them.

The aim of this paper is to address these problems and to outline the ideas of a new
method that could also encompass the MID with intermediate over-order multiplicities, i.e.,
multiplicities greater than the order of the DDE. More precisely, the contribution of the paper
is threefold.

First, we provide conditions under which spectral values with the lowest over-order (alge-
braic) multiplicity are dominant, i.e., the have the largest real part among all spectral values.
To prove the proposed results, we compute and exploit explicitly the properties of the so-
called elimination-produced polynomial. To guarantee the dominancy of the multiple root,
one makes use of the Green–Hille (integral) transformation introduced by Hille one century
ago [33] for characterizing the location of the non-asymptotic zeros of Whittaker hypergeo-
metric functions. It should be noted that these ideas complete the previous approaches based
on the properties of Kummer hypergeometric functions to handle generic MID in the retarded
and neutral cases (see, e.g., [10, 45]). To the best of the authors’ knowledge, this a method
represents a novelty in the open literature, which was only explored recently by some of the
authors in [13] in the context of the MID property for the largest over-order multiplicity
strictly smaller than the degree, in which computations turned out to be simpler than in the
present setting.

Second, we show that the spectral abscissa function reaches a strict local minimum in
the configuration corresponding to a root with the lowest over-order multiplicity. Finally,
as a byproduct of the analysis, new insights on MID control of the dynamics of a chain of
integrators and of a pendulum are proposed.

The remainder of the paper is organized as follows. Some elementary results on the dis-
tribution of the spectrum of DDEs are recalled in Section 2. In particular, a discussion on
frequency bounds in the right-half plane for the spectra of dynamical systems represented
by DDEs is proposed. Next, some basic properties of Kummer and Whittaker special func-
tions are also presented. A motivating example (controlling the double integrator) is pre-
sented in Section 3. The formulation of the problem addressed in the paper is presented in
Section 4. The main results are derived in Section 5 and Section 6. In Section 5, the con-
cept of Elimination-produced polynomial is introduced and the systematic representation of
quasipolynomials in terms of a linear combination of two Kummer functions is carried out.
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Then, sufficient conditions for the MID property to hold for the considered intermediate mul-
tiplicity are established. In Section 6, a focus on the prescribed stabilization of a chain of
integrators of arbitrary length is provided. Next, the link between the proposed partial pole
placement and the problem of minimizing the spectral abscissa is investigated. An illustra-
tive example is discussed in Section 7 and novelties and perspectives on the P3δ software are
stated in Section 8. Some concluding remarks in Section 9 end the paper.

Notations. Throughout the paper, the following notations are used: N∗, R, C denote the
sets of positive integers, real numbers, and complex numbers, respectively, and we set N =
N∗∪{0}. The set of all integers is denoted by Z and, for a, b ∈ R, we denote Ja, bK = [a, b]∩Z,
with the convention that [a, b] = ∅ if a > b. For a complex number λ, ℜ(λ) and ℑ(λ) denote its
real and imaginary parts, respectively. The open left and right complex half-planes are the sets
C− and C+ defined respectively by C− = {λ ∈ C | ℜ(λ) < 0} and C+ = {λ ∈ C | ℜ(λ) > 0}.

2 Prerequisites

2.1 Spectral Properties of DDEs

Consider the LTI dynamical system described by the DDE

y(n)(t) +
n−1∑
k=0

aky
(k)(t) +

m∑
k=0

αky
(k)(t− τ) = 0, (1)

under appropriate initial conditions, where y(·) is the real-valued unknown function, τ > 0
is the delay, and a0, . . . , an−1, α0, . . . , αm are real coefficients. The DDE (1) is said to be of
retarded type if2 m < n, or of neutral type if m = n. The goal of this section is to provide
elementary results on the spectral properties of (1) that will be useful in the sequel, and we
refer to [30,49] for a deeper discussions on DDEs and related results and properties.

Notice that (1) is a particular case of the time-delay system

ξ̇(t) +Bτ ξ̇(t− τ) = A0ξ(t) +Aτξ(t− τ), (2)

where ξ(t) = (y(t), y′(t), . . . , y(n−1)(t))T ∈ Rn is the state vector and A0, Aτ , Bτ ∈ Mn(R)
are real-valued matrices which can be easily constructed from (1).

2.1.1 Characteristic Function and its Properties

The characteristic function associated with (1) is the quasipolynomial ∆: C → C defined by

∆(λ) = P0(λ) + Pτ (λ)e
−λτ , (3)

where P0 and Pτ are the polynomials with real coefficients given by

P0(λ) = λn +
n−1∑
k=0

akλ
k, Pτ (λ) =

m∑
k=0

αkλ
k. (4)

Roots of ∆ are usually called characteristic roots or spectral values of (1), and they are
infinite in number, except in the trivial case where ∆ reduces to a polynomial. The interest

2i.e., the highest order of derivation appears only in the non-delayed term y(n)(t).
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in introducing the characteristic function ∆ is that the exponential stability of the trivial
solution of (1) can be described by the location of the roots of ∆: exponential stability holds
true if, and only if, there exists γ > 0 such that ℜ(λ) ≤ −γ for every root λ of ∆ (see, e.g.,
[5, 49]).

The degree of the quasipolynomial ∆ from (3) is the integer deg(∆) = n + m + 1.
As discussed in [17], this integer, which is larger than the degrees of the polynomials P0

(deg(P0) = n) and Pτ (deg(Pτ ) = m), is nothing but the integer appearing in the Pólya–
Szegő bound from [60, Part Three, Problem 206.2], and also corresponds to the maximal
multiplicity that a characteristic root of (3)–(4) may have. In addition, a characteristic root
reaching this a bound is necessarily real.

Remark 1. On the imaginary axis, the characteristic roots of the quasipolynomial ∆ defined
by (3) admit a bounded frequency, i.e., a bounded imaginary part. Indeed, any imaginary root
λ0 = ι̇ ω0 of ∆ necessarily satisfies

|P0(ι̇ ω0)|2 = |Pτ (ι̇ ω0)|2.

The function F defined by F(ω) = |P0(ι̇ ω)|2 − |Pτ (ι̇ ω)|2 is a polynomial on ω with real
coefficients, and thus all its positive roots can be bounded in terms of its coefficients (see, for
instance, [43]). However, this observation does not provide insights on frequency bounds for
other roots, in particular roots in C+.

Despite the fact that the characteristic function of some DDE has an infinite number
of characteristic roots, retarded systems, that is, (1) with m < n or, equivalently, (2) with
Bτ = 0, admit finitely many roots on any vertical strip in the complex plane [30, Chapter 1,
Lemma 4.1]. Several general results on the location of roots of (3) can be found in the
literature, and we refer the interested reader to [9].

The next proposition collects two interesting properties, proofs of which can be found,
respectively, in [49] and [57].

Proposition 2. Consider the LTI system (1), the corresponding system (2), and their char-
acteristic quasipolynomial ∆ given by (3)–(4).

1. If m < n and λ is a characteristic root of system (2) with Bτ = 0, then it satisfies

|λ| ≤ ∥A0 +Aτ e
−τλ∥, (5)

where ∥·∥ is any induced matrix norm.

2. If m = n and lim
|λ|→∞

|Pτ (λ)/P0(λ)| < 1, then the characteristic equation ∆ defined by (4)

has a finite number of roots in the right half-plane.

Remark 3. Inequality (5), combined with the triangular inequality, provides a generic enve-
lope curve around the characteristic roots corresponding to system (2). In other words, the
equality case in (5) defines a curve in the complex plane where all characteristic roots of ∆ are
located to the left of it. We refer to [52] for further insights on spectral envelopes for retarded
time-delay systems with a single delay.
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2.1.2 DDEs Frequency Bound in the Right Half-Plane

In many situations, it is useful to obtain a priori information on the location of roots of a
given quasipolynomial ∆ of the form (3). In this section, we describe a procedure from [6],
inferred from ideas used in the analysis of particular cases in [7, 44, 47], that, given a real
number λ0 and a positive real number ω0, checks whether it is possible for ∆ to admit a
root λ of ∆ with ℜ(λ) ≥ λ0 and |ℑ(λ)| > ω0. We are interested, more precisely, in the case
in which this procedure provides a negative answer, as it implies that any root λ of ∆ with
ℜ(λ) ≥ λ0 necessarily satisfies |ℑ(λ)| ≤ ω0, providing thus some a priori information on the
location of such roots.

To do so, we first notice that one may assume, without loss of generality, that λ0 = 0
and τ = 1, since one can replace ∆ by the normalized quasipolynomial ∆̃(z) = τn∆(λ0 +

z
τ ),

which can be written as ∆̃(z) = P̃0(z) + e−zP̃τ (z) for some suitable polynomials P̃0 and P̃τ

of degrees n and m, respectively. Hence, verifying the presence of roots of ∆ with real part
larger than or equal to λ0 reduces to verifying the presence of roots of ∆̃ with nonnegative
real part.

A possible strategy is to follow ideas similar to those proposed in Remark 1, i.e., to notice
that any root z of ∆̃ satisfies

|P̃0(x+ ι̇ω)|2e2x = |P̃τ (x+ ι̇ω)|2,

where x = ℜ(z) and ω = ℑ(z). If x ≥ 0, then e2x ≥ Tℓ(x), where, for ℓ ∈ N, the polynomial

Tℓ is the truncation of the Taylor expansion of e2x at order ℓ, i.e., Tℓ(x) =
∑ℓ

k=0
(2x)ℓ

ℓ! . Hence,

any root z = x+ ι̇ω of ∆̃ with nonnegative real part satisfies

F(x, ω) ≥ 0,

where F is the polynomial given by

F(x, ω) = |P̃τ (x+ ι̇ω)|2 − |P̃0(x+ ι̇ω)|2Tℓ(x).

In addition, F only depends on ω through ω2 (which is a consequence of the fact that P̃0 and
P̃τ are polynomials with real coefficients), and one may thus introduce the variable Ω = ω2

and define the polynomial H by setting H(x,Ω) = F (x,
√
Ω) for Ω ≥ 0. Hence, any root

z = x+ ι̇ω of ∆̃ with nonnegative real part satisfies

H(x,Ω) ≥ 0, (6)

where Ω = ω2. One can thereby establish a bound on the imaginary parts of roots of ∆̃
by exploiting the polynomial inequality (6). This has been done for some low-order cases in
[6, 7, 44, 47], where this a procedure was applied in order to show that any possible root of
the normalized quasipolynomial with nonnegative real part has an imaginary part bounded
in absolute value by π. Such a priori information on the imaginary part was valuable in those
references, since, coupled with further arguments, one is able to exclude the possibility of
existence of such roots.

The procedure described in this subsection is synthesized in Algorithm 1, adapted from [6],
which consists in increasing the order of the Taylor expansion of e2x until a suitable bound is
found or a maximal truncation order is reached. We refer the interested reader to [6,7,44,47]
for examples of applications of this procedure.
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Algorithm 1: Estimation of a frequency bound for time-delay differential equations
with a single delay

Input: ∆̃(z) = P̃0(z) + P̃τ (z) e
−z; // Normalized quasipolynomial

Input: ω0 > 0; // Desired frequency bound

Input: maxOrd; // Maximal truncation order

// Initialization

1 ord = 0; // ord: order of truncation of the Taylor expansion of e2 x;

2 Bound = false;
3 while (not Bound) and (ord ≤ maxOrd) do

4 Set F(x, ω) = |P̃τ (x+ ι̇ω)|2 − |P̃0(x+ ι̇ω)|2Tord(x);
// Tord(x): Taylor expansion of e2x of order = ord

5 Set H(x,Ω) = F(x,
√
Ω); // H is a polynomial

6 Set Ωk(x) as the k-th real root of H(x, ·);
7 if sup

x≥0
max
k

Ωk(x) ≤ ω2
0 then

8 Bound = true;

9 ord = ord+ 1;

Output: Frequency bound: If Bound is true, then |ω| ≤ ω0 for every root z = x+ iω
of ∆̃ with x ≥ 0;

2.2 Kummer and Whittaker Functions and the Hille Oscillation Theorem

The main ingredient of the partial pole placement method proposed is a particular class of
hypergeometric functions, namely, Kummer confluent hypergeometric functions, which, for
a, b ∈ C such that −b /∈ N, is the entire function Φ(a, b, ·) : C → C defined by the series

Φ(a, b, z) =
∞∑
k=0

(a)k
(b)k

zk

k!
, (7)

where, for α ∈ C and k ∈ N, (α)k is the Pochhammer symbol for the ascending factorial,
defined inductively as (α)0 = 1 and (α)k+1 = (α+ k)(α)k.

The series in (7) converges for every z ∈ C and, as presented in [25, 28, 56], the Kummer
function satisfies the Kummer differential equation, that is,

z
∂2Φ

∂z2
(a, b, z) + (b− z)

∂Φ

∂z
(a, b, z)− aΦ(a, b, z) = 0. (8)

As emphasized in [25, 28, 56], for every a, b, z ∈ C such that ℜ(b) > ℜ(a) > 0, Kummer
functions also admit the integral representation

Φ(a, b, z) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0
eztta−1(1− t)b−a−1 dt, (9)

where Γ denotes the Gamma function. This integral representation has been used in [10,12,45]
to characterize the spectrum of some DDEs.

Kummer functions exhibit a range of remarkable properties. In particular, they satisfy
some recurrence relations, often called contiguous relations, which will be exploited in the
sequel, see for instance [56].
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Lemma 4 ([56, p. 325]). Let a, b, z ∈ C with a ̸= b, z ̸= 0, and −b /∈ N. The following
relations hold:

Φ(a, b+ 1, z) =
−b (a+ z) Φ(a, b, z) + abΦ(a+ 1, b, z)

z (a− b)
,

Φ(a+ 1, b+ 1, z) = −−bΦ(a+ 1, b, z) + bΦ(a, b, z)

z
.

(10)

Kummer functions are strongly related to another interesting class of hypergeometric
functions called Whittaker functions. In fact, for k, l ∈ C with −2l /∈ N∗, the Whittaker
function Mk,l is defined for z ∈ C by

Mk,l(z) = e−
z
2 z

1
2+lΦ(12 + l − k, 1 + 2l, z), (11)

(see, e.g., [56]). Note that, if 1
2 + l is not an integer, then the function Mk,l is a multi-valued

complex function with branch point at z = 0. In addition, the nontrivial roots ofMk,l coincide
with those of Φ(12 + l − k, 1 + 2l, ·) and Mk,l satisfies the Whittaker differential equation

φ′′(z) =

(
1

4
− k

z
+

l2 − 1
4

z2

)
φ(z). (12)

Taking into account that Mk,l is a nontrivial solution of the second-order linear differential
equation (12), then any nontrivial root of Mk,l is simple.

In the pioneering work by E. Hille [33], some oscillation theorems in the complex domain
have been proposed. Among others, Hille studied the distribution of zeros of functions of
a complex variable satisfying linear second-order homogeneous differential equations with
variable coefficients, as is the case for the Whittaker function Mk,l, which satisfies (12).
In particular, Hille introduced an integral transformation called Green–Hille transformation
ensuing from the differential equation and allowing the removal of regions in the complex
plane that do not contain complex roots. To illustrate Hille’s idea, consider the general
homogeneous second-order differential equation

d

dz

[
K(z)

dφ

dz
(z)

]
+G(z)φ(z) = 0, (13)

where z is the complex independent variable, and the functions G and K are assumed to be
analytic in some region Θ such that K does not vanish in that region.

Equation (13) can be written in Θ as a planar system by introducing the dependent
variables φ1(z) = φ(z) and φ2(z) = K(z) dφ

dz (z), and the Green–Hille transformation consists

in multiplying the equation for φ1 by φ2(z), the one for φ2 by φ1(z), and integrating z along
a path in Θ, which yields[

φ1(z)φ2(z)
]z2
z1

−
∫ z2

z1

|φ2(z)|2
dz

K(z)
+

∫ z2

z1

|φ1(z)|2G(z) dz = 0, (14)

where z1, z2 ∈ Θ and both integrals are taken along the same arbitrary smooth path in Θ,
connecting z1 to z2.

The following result, which is proved in [12] using the Green–Hille transformation from
[33], gives insights on the distribution of the nonasymptotic zeros of Kummer hypergeometric
functions with real arguments a and b.
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Proposition 5 ([12]). Let a, b ∈ R be such that b ≥ 2.

1. If b = 2a, then all nontrivial roots z of Φ(a, b, ·) are purely imaginary;

2. If b > 2a (resp., b < 2a), then all nontrivial roots z of Φ(a, b, ·) satisfy ℜ(z) > 0 (resp.,
ℜ(z) < 0);

3. If b ̸= 2a, then all nontrivial roots z of Φ(a, b, ·) satisfy

(b− 2a)2ℑ(z)2 − (4a(b− a)− 2b)ℜ(z)2 > 0.

3 Motivating Example: Controlling the Double Integrator

The problem of stabilization of a chain of integrators is considered in [54], where it is shown
that a single integrator can be stabilized by a single delay state-feedback. Indeed, a positive
gain guarantees the closed-loop stability of the system free of delay, and, by continuity, there
exists a (sufficiently small) delay in the output preserving the stability of the closed-loop
system. However, the situation is completely different for a chain of integrators of order
n when n > 1. For instance, consider the time-delay system y′′(t) + αy(t − τ) = 0, the
characteristic quasipolynomial of which is

∆(λ) = λ2 + α e−τ λ. (15)

Note that the degree of ∆ is 3. It can be checked that the maximal multiplicity that a root
λ0 of (15) can have is 2, and it is attained if, and only if,

α = −4
e−2

τ2
, λ0 = −2

τ
. (16)

The main result from [54] asserts that either n distinct delays or a proportional+delay
compensator with n−1 distinct delays are sufficient to stabilize a chain including n integrators.
Later, in [38], it is shown that this number of terms is also necessary to stabilize the chain
of n integrators. Therefore, in our case, either 2 distinct delays or a proportional+delay are
necessary and sufficient to stabilize the double integrator. Since (15) contains only a single
delay, the result of [38] implies that there exists at least one spectral value for (15) with a
positive real part. Consequently, λ0 = − 2

τ , while being a multiple root, is not dominant.
Indeed, consider (15)–(16) with τ = 1, that is,

∆(λ) = λ2 − 4e−(λ+2). (17)

As illustrated in Figure 1, the dominancy property is lost since λ1 ≈ 0.557 is a root of the
function (17). This is justified by the sparsity of (17), i.e., the corresponding polynomial P0,
when (15) is written under the form (3), has some null coefficients.

In accordance with the previous observation, let us now consider the problem of stabiliza-
tion of the double integrator using a delayed PD controller, which, in the frequency domain,
gives the closed-loop characteristic function:

∆(λ) = λ2 + (α1λ+ α0) e
−λ τ , (18)

9
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Figure 1: Illustration of the roots of (17): solid blue curves represent the region ℜ(∆(λ)) = 0,
dashed red curves represent the region ℑ(∆(λ)) = 0, so that the roots of ∆ correspond to
the intersections between solid blue curves and dashed red curves. This quasipolynomial ∆
admits a double root at λ0 = −2, which is not its rightmost root, since ∆ also admits a real
root λ1 ≈ 0.557. The figure was produced using the QPmR toolbox from [68].

which is a quasipolynomial of degree 4. Following [20, Theorem 4.2] it has been shown that
for an arbitrary positive delay τ , the quasipolynomial (18) admits a real spectral value at
λ = λ± with algebraic multiplicity 3 if, and only if,

λ± =
−2±

√
2

τ
, (19)

and the system parameters satisfy:
α0 =

6 + 10λ± τ

τ2
eλ±τ ,

α1 =
2 + 2λ± τ

τ
eλ±τ .

(⋆±)

Furthermore, it has been shown in [20, Theorem 4.2] that the MID property is valid for λ+,
that is, the triple spectral value corresponds to the spectral abscissa only if (⋆+) is satisfied.
It has also been emphasized in [20] that the multiple spectral value at λ− is always dominated
by a single real root. Stability wise, it is clear that, independently from the chosen delay
τ > 0, the closed-loop solution is always exponentially stable with a decay rate corresponding
to λ+ < 0.

In what follows, we consider the effect of spectral values of intermediate multiplicities, i.e.,
multiplicities which are less than the degree of the quasipolynomial. As emphasized in the
above examples, in such cases, multiple spectral values are not necessarily dominant and an
answer to this question needs a deeper investigation, which is the aim of this paper.
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4 Problem Formulation

Consider the DDE (1) and its characteristic function ∆ given by (3)–(4). As recalled in
Section 2.1, the degree of the characteristic function ∆ is deg(∆) = n+m+ 1.

We say that a characteristic root λ0 of ∆ satisfies the MID property if (i) its algebraic
multiplicity (denoted by M(λ0)) is larger than one, and (ii) it is dominant , meaning that all
the characteristic roots λσ of ∆ satisfy ℜ(λσ) ≤ ℜ(λ0). In other words, λ0 corresponds to
the rightmost root of the spectrum and defines the spectral abscissa of the quasipolynomial
∆. In addition, we say that the root λ0 is over-order if its algebraic multiplicity is strictly
greater than the order n, which corresponds to the degree of the characteristic function in
the delay-free case. In this situation, we refer to the MID property as over-order MID. In the
case M(λ0) = deg(∆), it was shown in [45] (case m = n − 1) and [10] (general case m ≤ n)
that λ0 satisfies the MID property. This “limit” case corresponding to the maximal possible
multiplicity is also called generic MID (or GMID for short). Finally, with the notions and
notations above, the lowest over-order (algebraic) multiplicity corresponds to the case when
the intermediate multiplicity of λ0 is M(λ0) = n+ 1.

The problem addressed in this paper can be formulated as follows: finding, on the one
hand, conditions on the parameters of the dynamical system (1) ensuring that a characteristic
root λ0 has over-order (intermediate) algebraic multiplicity3, and determining, on the other
hand, if such a root satisfies the MID property. More precisely, and for the sake of brevity, our
focus will be to infer appropriate conditions guaranteeing that λ0 has multiplicity M(λ0) =
n+ 1, which corresponds to the smallest possible over-order multiplicity, and that it satisfies
the MID property, in the particular case where m = n + 1. It should be mentioned that
this configuration has been investigated in [3], in the particular case where the delay-free
polynomial P0 of ∆ is real-rooted. The approach proposed hereafter relaxes the the former
assumption.

Note that the PD control of the double integrator in the case of intentional delay in the
input/output channel, considered as a motivating example in Section 3, corresponds to such
a situation. Namely, for the quasipolynomial ∆ from (18), we have deg(∆) = 4, n = 2, and so
the only possible intermediate multiplicity is M(λ0) = 3, which, in our terminology, coincides
with the lowest over-order (algebraic) multiplicity.

5 Main Results

Our first set of main results, presented in Section 5.1, provides a necessary condition for the
existence of a root of ∆ with the lowest over-order multiplicity, in terms of the so-called
elimination-produced polynomial. Exploiting this result, necessary and sufficient conditions
for the existence of a root with the lowest over-order multiplicity are derived in Section 5.2,
in terms of the elimination-produced polynomial and suitable factorizations of ∆. We then
exploit the links between quasipolynomials ∆ with a root of over-order multiplicity and Kum-
mer confluent hypergeometric functions in Section 5.3, and sufficient conditions under which
the MID property for a root of over-order multiplicity are finally provided in Section 5.4.

3That is, the multiplicity M(λ0) of λ0 verifies n+ 1 ≤ M(λ0) ≤ n+m.

11



5.1 Elimination-Produced Polynomial

The aim of this section is to provide an appropriate necessary condition for a given real
number λ0 to be a root of multiplicity at least n+ 1 of a given quasipolynomial ∆ under the
form (3)–(4) with m = n − 1. The said necessary condition consists in stating that λ0 must
be a root of a polynomial, known as the elimination-produced polynomial.

Let us briefly describe the main ideas underlying the construction of the elimination-
produced polynomial. Imposing that a real number λ0 is a root of ∆ of multiplicity at least
n+ 1 amounts to imposing that the following conditions hold simultaneously:

∆(λ0) = ∆′(λ0) = · · · = ∆(n)(λ0) = 0. (20)

On the other hand, if we consider, in (3)–(4), that the coefficients a0, . . . , an−1 of P0 are “fixed”
and known and the coefficients α0, . . . , αn−1 of Pτ are “free” and available for choice, then
(20) imposes n + 1 linear equality constraints on the n free parameters α0, . . . , αn−1. While
n of those constraints should be sufficient to determine the values of the n free parameters
α0, . . . , αn−1 in terms of the fixed parameters a0, . . . , an−1, the delay τ , and the root λ0, the
additional constraint will express a relation that must be satisfied between a0, . . . , an−1, the
delay τ , and the root λ0 in order for the multiplicity n + 1 to be attained. This relation is
precisely the elimination-produced polynomial, as described in our next result.

Proposition 6. Consider the quasipolynomial ∆ from (3)–(4) with m = n − 1. If the real
number λ0 is a root of multiplicity at least n+ 1 of ∆, then

P(λ0, τ) = 0,

where P is the elimination-produced polynomial, defined by

P(λ, τ) =
n∑

k=0

(
n

k

)
P

(k)
0 (λ)τn−k. (21)

Proof. Note that λ0 is a root of ∆(·) with multiplicity at least n+1 if, and only if, it is a root
of Q : λ 7→ eλτ∆(λ) with the same multiplicity. In particular, we have Q(n)(λ0) = 0. Since
Q(λ) = eλτP0(λ) + P1(λ) and P1 is a polynomial of degree n− 1, we deduce that

Q(n)(λ) = eλτ
n∑

k=0

(
n

k

)
P

(k)
0 (λ)τn−k,

yielding the conclusion since eλ0τ ̸= 0.

Before turning to our next result, we recall the statement of the Hermite–Poulain Theorem
on roots of polynomials. Its proof can be found, for instance, in [35, Theorem 7.3.3].

Theorem 7 (Hermite–Poulain). Let h(x) = c0+ c1x+ . . .+ cnx
n be a real-rooted polynomial.

If f(x) is a polynomial with real coefficients, then the polynomial

F (x) = c0f(x) + c1f
′(x) + . . .+ cnf

(n)(x)

has at least as many real roots as f(x) has.
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We now exploit the Hermite–Poulain Theorem to deduce a link between the number of
real roots of P(·, τ) and that of P0(·).

Proposition 8. Let P0 be a polynomial of degree n with real coefficients and P be defined
from P0 as in (21). Then, for every τ ∈ R, the polynomial λ 7→ P(λ, τ) has at least as many
real roots as P0 (counted with their multiplicities).

Proof. This is an immediate consequence of (21) and the Hermite–Poulain Theorem applied to
the real-rooted polynomial h given by h(x) = (x+ τ)n =

∑n
k=0

(
n
k

)
τn−kxk and to f = P0.

5.2 Necessary and Sufficient Conditions for the Lowest Over-Order Multi-
plicity

We now provide a characterization of the situations under which a quasipolynomial ∆ under
the form (3)–(4) with m = n−1 admits a root with an over-order multiplicity. Our first result
is the following, which provides a factorization of ∆ in terms of such a root and an integral
expression.

Proposition 9. Consider the quasipolynomial ∆ from (3)–(4) with m = n − 1. The real
number λ0 is a root of multiplicity at least n+1 of ∆ if, and only if, there exists a polynomial
p of degree n− 1 with p(0) = 1 such that

∆(λ) = τ(λ− λ0)
n+1

∫ 1

0
(1− t)p(t)e−t(λ−λ0)τ dt. (22)

Proof. Fix the delay τ and let V be the set of all functions ∆ of the form ∆(λ) = P0(λ) +
e−λτPτ (λ) with P0 and Pτ given by (4) and m = n− 1, i.e.,

V =

{
∆: C → C

∣∣∣∣ ∃ a = (a0, . . . , an−1) ∈ Rn, ∃ α = (α0, . . . , αn−1) ∈ Rn such that

∆(λ) = λn +

n−1∑
k=0

anλ
k + e−λτ

n−1∑
k=0

αkλ
k

}
.

Note that V is a real vector space with dimV = 2n, which is a subspace of the space of all entire
complex functions, seen as a real vector space. In addition, V can be canonically identified
with R2n by identifying a quasipolynomial ∆ with its coefficients a0, . . . , an−1, α0, . . . , αn−1.

Let us denote by Vλ0 the subset of V of those functions ∆ admitting λ0 as a root of
multiplicity at least n+ 1, i.e.,

Vλ0 =
{
∆ ∈ V

∣∣∣ ∆(k)(λ0) = 0 for all k ∈ {0, . . . , n}
}
.

Each equation ∆(k)(λ0) = 0, k ∈ {0, . . . , n}, defines a hyperplane in V, and, when identifying
V with the Euclidean space R2n, the normal vectors to all such hyperplanes are linearly
independent. Hence Vλ0 is a subspace of V of codimension n+ 1, i.e., dimVλ0 = n− 1.

Now, we introduceWλ0 as the space of all functions ∆ of the form (22) for some polynomial
p of degree n − 1 with p(0) = 1. The set Wλ0 is an affine subspace of the space of all entire
complex functions, with dimWλ0 = n− 1.
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As a first step, we will prove that Wλ0 ⊆ V, i.e., that every function ∆ of the form (22) is
indeed a quasipolynomial of the form (3)–(4). To do so, we first observe that, by an immediate
inductive integration by parts, we have (see also [45, Proposition 2.1])∫ 1

0
q(t)e−zt dt =

d∑
k=0

q(k)(0)− q(k)(1)e−z

zk+1
(23)

for every z ∈ C \ {0}, d ∈ N, and q a polynomial of degree d. Next, let ∆ ∈ Wλ0 and
p be a polynomial of degree n − 1 with p(0) = 1 be such that ∆ is given by (22). Define
q(t) = (1− t)p(t) and notice that q(1) = 0. By using (23), we deduce that

∆(λ) = τ(λ− λ0)
n+1

n∑
k=0

q(k)(0)− q(k)(1)e−τ(λ−λ0)

τk+1(λ− λ0)k+1

= (λ− λ0)
n +

n−1∑
k=0

q(n−k)(0)

τn−k
(λ− λ0)

k − e−τ(λ−λ0)
n−1∑
k=0

q(n−k)(1)

τn−k
(λ− λ0)

k,

(24)

so that ∆ ∈ V, as required.
We now notice that Wλ0 ⊆ Vλ0 , since, for any ∆ given by (22), λ0 is clearly a root of

multiplicity at least n+1 of ∆. Moreover, Wλ0 and Vλ0 are both affine spaces with the same
dimension, so that Wλ0 = Vλ0 , yielding the conclusion.

Remark 10. Note that (24) provides explicit expressions for the polynomials P0 and Pτ from
(4) in terms of the polynomial q introduced in the above proof. More precisely, we have

P0(λ) = (λ− λ0)
n +

n−1∑
k=0

q(n−k)(0)

τn−k
(λ− λ0)

k,

Pτ (λ) = −eτλ0

n−1∑
k=0

q(n−k)(1)

τn−k
(λ− λ0)

k.

Since q(t) = (1 − t)p(t), one may also provide similar expressions of P0 and Pτ in terms of
p. Indeed, we have

P0(λ) = (λ− λ0)
n +

n−1∑
k=0

p(n−k)(0)− (n− k)p(n−k−1)(0)

τn−k
(λ− λ0)

k, (25a)

Pτ (λ) = eτλ0

n−1∑
k=0

(n− k)p(n−k−1)(1)

τn−k
(λ− λ0)

k. (25b)

Let us now identify the link between the polynomial p from (22) and the elimination-
produced polynomial P from (21).

Proposition 11. Consider the quasipolynomial ∆ from (3)–(4) with m = n − 1. The real
number λ0 is a root of multiplicity at least n+ 1 of ∆ if, and only if, P(λ0, τ) = 0 and

∆(λ) =
τ

n!
(λ− λ0)

n+1

∫ 1

0
P(λ0, τ t)e

−t(λ−λ0)τ dt, (26)

where P is the elimination-produced polynomial defined in (21).
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Proof. First, assume that P(λ0, τ) = 0 and that ∆ is given by (26). In step with (21), the

function t 7→ 1
n!P(λ0, τ t) is a polynomial in t of degree n with 1

n!P(λ0, 0) =
P

(n)
0 (λ0)
n! = 1 and

1
n!P(λ0, τ) = 0, so that 1

n!P(λ0, τ t) = (1 − t)p(t) for some polynomial p of degree n − 1 with
p(0) = 1. Hence, by Proposition 9, λ0 is a root of multiplicity at least n+ 1 of ∆.

Conversely, assume that λ0 is a root of multiplicity at least n + 1 of ∆. Proposition 6
states that P(λ0, τ) = 0 and, To proceed Proposition 9, there exists a polynomial p of degree
n− 1 with p(0) = 1 such that ∆ is given by (22). In addition, due to Remark 10, we have

P0(λ) =
n∑

k=0

q(n−k)(0)

τn−k
(λ− λ0)

k, (27)

where q is the polynomial defined by q(t) = (1 − t)p(t). On the other hand, since P0 is a
polynomial of degree n, it coincides with its Taylor expansion of order n at λ0, i.e.,

P0(λ) =

n∑
k=0

P
(k)
0 (λ0)

k!
(λ− λ0)

k. (28)

Using the uniqueness of the Taylor expansion at a given point and combining (27) and (28),

we deduce that P
(k)
0 (λ0) =

k!
τn−k q

(n−k)(0). Hence, by (21), we have

P(λ0, τ t) =
n∑

k=0

(
n

k

)
k!

τn−k
q(n−k)(0)(τt)n−k

= n!
n∑

k=0

q(n−k)(0)
tn−k

(n− k)!
= n!q(t),

since the last sum is the Taylor expansion of q at 0 of order n and q is a polynomial of degree
n. Consequently, q(t) = 1

n!P(λ0, τ t) and ∆ is given by (26).

5.3 Some Insights on Linear Combinations of Kummer Functions

Here, our goal is to establish links between a quasipolynomial ∆ of the form (3)–(4) with
m = n−1 admitting a root of multiplicity at least n+1 and Kummer confluent hypergeometric
functions. A first connection is stated in the next result.

Proposition 12. Consider the quasipolynomial ∆ from (3)–(4) with m = n − 1. The real
number λ0 is a root of multiplicity at least n+ 1 of ∆ if, and only if, P(λ0, τ) = 0 and

∆(λ) = (λ− λ0)
n+1

n−1∑
k=0

σk Φ(k + 1, k + 3, −τ (λ− λ0)) (29)

where, for k ∈ J0, n− 1K, we have

σk =
−τ

(k + 1) (k + 2)n!

n−k−1∑
j=0

(
n

j

)
P

(j)
0 (λ0) τ

n−j . (30)
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Proof. Note that, owing to Proposition 11, it suffices to show that, if P(λ0, τ) = 0, then (26)
can be rewritten as (29).

Let q(t) = τ
n!P(λ0, τ t), then q(1) = 0 since P(λ0, τ) = 0. As a result, polynomial q

can be factorized as q(t) = (1 − t)p(t), where p is a polynomial of degree n − 1. We write
p(t) =

∑n−1
k=0 σ̃kt

k for some real coefficients σ̃0, . . . , σ̃n−1, and thus (26) can be rewritten as

∆(λ) = (λ− λ0)
n+1

n−1∑
k=0

σ̃k

∫ 1

0
tk(1− t)e−t(λ−λ0)τ dt.

Thanks to (9), the above equation takes the form (29) after setting σk = σ̃k
(k+1)(k+2) for

k ∈ J0, n− 1K.
In order to conclude, it suffices to compute σ̃k for k ∈ J0, n − 1K. To do that, from (21),

we infer that

q(t) =
τ

n!

n∑
k=0

(
n

k

)
P

(k)
0 (λ0)τ

n−ktn−k,

and, since q(t) = (1− t)p(t), we also have

q(t) = σ̃0 +
n−1∑
k=1

(σ̃k − σ̃k−1)t
k − σ̃n−1t

n.

Hence, equating the coefficients of monomials of the same degree in the two above expressions
of q, we deduce, for every k ∈ J0, n− 1K, that

σ̃k = − τ

n!

n−1−k∑
j=0

(
n

j

)
P

(j)
0 (λ0)τ

n−j ,

which concludes the proof.

Note that (29) factorizes ∆ in terms of a linear combination of n Kummer functions with
real coefficients. One can also express ∆ as a combination of two Kummer functions if one
allows for rational functions as coefficients.

Proposition 13. Consider the quasipolynomial ∆ from (3)–(4) with m = n − 1. The real
number λ0 is a root of multiplicity at least n+ 1 of ∆ if, and only if, P(λ0, τ) = 0 and

∆(λ) = β(λ) Φ(0, 1, −τ (λ− λ0)) + γ(λ) Φ(1, 1, −τ (λ− λ0)), (31)

with

β(λ) = −(λ− λ0)
n+1

n−1∑
k=0

σk(k + 2)!(k + 1− τ(λ− λ0))

(τ(λ− λ0))k+2
(32)

and

γ(λ) = (λ− λ0)
n+1

n−1∑
k=0

σk

(
(k + 1)2(k + 2)

(τ(λ− λ0))2
+

k−1∑
r=0

(k + 2)!(k + 1− τ(λ− λ0))

r!(τ(λ− λ0))k+2−r

)
, (33)

where σ0, . . . , σn−1 are defined as in (30).
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Proof. According to Proposition 12, it suffices to show that (29) is equivalent to (31). To do
so, thanx to (10), we obtain, for every k ∈ J0, n− 1K and z ∈ C \ {0}, that

Φ(k + 1, k + 3, z) = −k + 2

z
Φ(k, k + 2, z) +

k + 2

z
Φ(k + 1, k + 2, z),

Φ(k, k + 2, z) =
(k + 1)(k + z)

z
Φ(k, k + 1, z)− k(k + 1)

z
Φ(k + 1, k + 1, z),

Φ(k + 1, k + 2, z) = −k + 1

z
Φ(k, k + 1, z) +

k + 1

z
Φ(k + 1, k + 1, z).

Next, we remark that, by (7), for every a ∈ C with −a /∈ N, we have Φ(a, a, z) = Φ(1, 1, z) =
ez. As a result,

Φ(k+1, k+3, z) = −(k + 1)(k + 2)(z + k + 1)

z2
Φ(k, k+1, z)+

(k + 1)2(k + 2)

z2
Φ(1, 1, z). (34)

Again, (10) entails, for every j ∈ N∗,

Φ(j, j + 1, z) = − j

z
Φ(j − 1, j, z) +

j

z
Φ(1, 1, z),

wherefrom an immediate inductive argument shows that

Φ(j, j + 1, z) =
j!

(−z)j
Φ(0, 1, z)−

(
j−1∑
r=0

j!

r!(−z)j−r

)
Φ(1, 1, z).

Combining the above with (34), we deduce that

Φ(k + 1, k + 3, z) = −(k + 2)!(z + k + 1)

(−z)k+2
Φ(0, 1, z) +

(
k−1∑
r=0

(k + 2)!(z + k + 1)

r!(−z)k+2−r

)
Φ(1, 1, z)

+
(k + 1)2(k + 2)

z2
Φ(1, 1, z),

and the conclusion follows by inserting the above formula in (29).

Beyond the standard contiguous relation, to the best of the authors’ knowledge, there
does not exist any result describing the distribution of the nonasymptotic zeros of linear
combinations of Kummer functions. The next lemma provides a partial step towards that
goal, by providing a non-autonomous second-order differential equation admitting a given
linear combination of Kummer functions as a solution.

Lemma 14. Let β̃ and γ̃ be two meromorphic functions. Then, the complex function F
defined by

F (z) = β̃(z) Φ(0, 1, z) + γ̃(z) Φ(1, 1, z), (35)

with β̃ (z) γ̃′ (z) + γ̃ (z)
(
β̃ (z) τ − β̃′ (z)

)
̸= 0 satisfies the following second-order differential

equation
F ′′(z) +Q(z)F ′(z) +R(z)F (z) = 0, (36)

where Q and R are given in (37) and (38).

17



Q(z) =

(
β̃′′ (z) + τ

(
β̃ (z) τ − 2 β̃′ (z)

))
γ̃ (z)− (γ̃′′ (z)) β̃ (z)

β̃ (z) γ̃′ (z) + γ̃ (z)
(
β̃ (z) τ − β̃′ (z)

) , (37)

R(z) =

(
−β̃ (z) τ + β̃′ (z)

)
γ̃′′ (z)− γ̃′ (z)

(
β̃′′ (z) + τ

(
β̃ (z) τ − 2 β̃′ (z)

))
β̃ (z) γ̃′ (z) + γ̃ (z)

(
β̃ (z) τ − β̃′ (z)

) . (38)

Lemma 14 may be proved by using that ∂Φ
∂z (a, b, z) = a

bΦ(a + 1, b + 1, z), which follows
immediately from (7), and exploiting the contiguous relations from Lemma 4. In what follows,
we shall refer to functions F of the form (35) as Kummer-type functions.

Note that Whittaker functions are defined in terms of Kummer functions in (11) by ap-

plying the multiplicative factor e−
z
2 z

1
2
+l, thanks to which the Whittaker differential equation

(12) has no first-order term. We now proceed similarly from Kummer-type functions in or-
der to define Whittaker-type functions. The next lemma can be shown by straightforward
computations.

Lemma 15. Let β̃, γ̃ be two meromorphic functions, F be the function defined in (35), and
Q and R be given by (37) and (38), respectively. Let Q be a primitive of Q

2 and define the
function W by

W (z) = eQ(z)F (z). (39)

Then, W satisfies the second-order differential equation

W ′′(z) +G(z)W (z) = 0, (40)

where

G(z) = R(z)− (Q(z))2

4
− 1

2
Q′(z). (41)

In the sequel, we refer to functions W of the form (39) as Whittaker-type functions.

5.4 MID Validity for the Lowest Over-order Multiplicity

Now, we shall use the results of Section 5.3 relating quasipolynomials with roots of over-order
multiplicity and Kummer and Whittaker functions in order to provide sufficient conditions
under which the MID property is valid for characteristic roots of multiplicity at least n + 1
of ∆.

Theorem 16. Consider the quasipolynomial ∆ from (3)–(4) with m = n − 1, and assume
that ∆ admits a real root λ0 of multiplicity at least n + 1. Let β and γ be the meromorphic
functions defined in (32) and (33), respectively, and define the meromorphic functions β̃ and
γ̃ by

β̃(z) = β
(
λ0 −

z

τ

)
, γ̃(z) = γ

(
λ0 −

z

τ

)
.

Let F , Q, R, and G be defined by (35), (37), (38), and (41), respectively. Assume that, for
every t ∈ (0, 1) and every root z of F in C−, we have ℜ[zG(tz)] ≥ 0. Then, λ0 is a dominant
root of ∆, i.e., λ0 satisfies the MID property.
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A result similar to Theorem 16 was already shown in [11, Theorem 10] for the case of
roots of multiplicity n +m. The proof of the former can be obtained by an easy adaptation
of that of the latter, and we detail this argument here for the sake of completeness.

Proof. We deduce from Proposition 13 that

∆(λ) = F (−τ(λ− λ0)). (42)

In particular, the result is thereby proved if we show that all roots of the Kummer-type
function F have nonnegative real part.

To do so, we consider the Whittaker-type function W (·) defined from F as in (39). Note
that the differential equation (40) satisfied by W is of the form (13), with K(z) = 1. As a
consequence, one can apply Hille’s method to (40). By taking z1 = 0 and z2 equal to a root
z∗ of F (·) in (14), we obtain:∫ z∗

0

∣∣W ′(z)
∣∣2dz =

∫ z∗

0
|W (z)|2G(z) dz.

We choose as integration path the line segment from 0 to z∗. Hence

z∗

∫ 1

0

∣∣W ′(tz∗)
∣∣2 dt = z∗

∫ 1

0
|W (tz∗)|2G(tz∗) dt.

Taking the real part, we get

x∗

∫ 1

0

∣∣W ′(tz∗)
∣∣2 dt = ∫ 1

0
|W (tz∗)|2ℜ [z∗G(tz∗)] dt, (43)

where x∗ = ℜ(z∗) and y∗ = ℑ(z∗).
Assume now, by contradiction, that F (·) admits a root with negative real part, and take

z∗ in (43) as equal to this root. The left-hand side of (43) is negative, however its right-hand
side is nonnegative by assumption, yielding the desired contradiction. Hence, all roots of F
have nonnegative real parts, entailing the conclusion thanks to (42).

6 Prescribed Stabilization of the chain of n integrators

This section focuses on the problem of stabilization of a chain of n integrators with a pre-
scribed exponential decay. In this particular configuration, we are able to establish necessary
and sufficient conditions for the MID property to hold for a root with the lowest over-order
multiplicity. The section closes on the presentation of a link between multiple roots and a
local minimizer for the spectral abscissa.

6.1 MID property for the chain of n integrators

Let us consider the chain of n integrators, i.e., we consider the function ∆ from (3)–(4) with
P0(λ) = λn. In this case, we have the following characterization of the elimination-produced
polynomial.
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Proposition 17. Consider the quasipolynomial ∆ from (3)–(4) in the case P0(λ) = λn and
m = n− 1. The elimination-produced polynomial P defined by (21) is given by

P(λ, τ) = P̂(λτ), (44)

where P̂ is the polynomial defined by

P̂(s) =
n∑

k=0

k!

(
n

k

)2

sn−k. (45)

In addition, all roots of P̂ are negative real numbers.

Proof. Since P0(λ) = λn, we have P
(k)
0 (λ) = n!

(n−k)!λ
n−k and thus, inserting these expressions

into (21), we deduce (44)–(45).
Furthermore, since P0 has n real roots, all equal to 0, it follows from Proposition 8 that

the polynomial λ 7→ P(λ, τ) is real rooted, and hence so is P̂. Since all coefficients of P̂ are
positive, we infer that all its real roots are necessarily negative, yielding the conclusion.

Recall that, by Proposition 11, when ∆ admits a root of multiplicity at least n + 1, the
elimination-produced polynomial P appears in the factorization (26) under the form P(λ0, τ t).
We now study the behavior of this expression, seen as a function of t on the interval (0, 1).

Proposition 18. Consider the quasipolynomial ∆ from (3)–(4) in the case P0(λ) = λn and
m = n − 1, let P̂ be defined by (45), and define q(t) = 1

n! P̂(λ0τt). Assume, in addition, that

λ0τ = c0, where c0 is the rightmost root of P̂. Then, for every t ∈ (0, 1), we have q(t) > 0
and q′(t) < 0.

Proof. By Proposition 17, the polynomial P̂ is real rooted and all its roots are negative, hence
its rightmost root c0 is negative. In addition, the coefficient of the leading monomial of P̂ is
positive, thus we also have that P̂ and P̂′ are positive in (c0,+∞), and in particular in (c0, 0).
As λ0τ = c0 < 0, this entails that q is positive and its derivative is negative in (0, 1), as
required.

Note that the factorization (26) involves an integral of the form

F (s) =

∫ 1

0
f(t)est dt, (46)

which can be seen as the Laplace transform of a (real) function f with support included
in [0, 1]. The study of the distribution of the zeros of functions F under the form (46) is
related to a wide range of problems related to Physics and Engineering, and goes back to the
pioneering works by Hardy [31], Pólya [59], and Titchmarsh [67] in the first decades of the
20th century. In particular, we have the following result from [59] (see also [61, Part Five,
Chapter 3, Problem 177, page 66]).

Theorem 19 (G. Pólya, 1918). Let f be a positive and continuously differentiable function
defined in the interval [0, 1] and satisfying f ′(t) < 0 for every t ∈ [0, 1]. Consider the function
F : C → C defined in termes of f as in (46). Then, all the zeros of F lie in the open right
half-plane C+.
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As a consequence of Theorem 19, we infer the following result on the dominance of a root
λ0 of multiplicity n+ 1 in the case of the n-th order integrator.

Theorem 20. Consider the quasipolynomial ∆ from (3)–(4) in the case P0(λ) = λn and
m = n − 1, and let P̂ be the polynomial defined in (45). Assume that ∆ admits a root λ0 of
multiplicity n + 1 and that λ0τ is the rightmost root of P̂. Then, λ0 is the rightmost root of
∆.

Proof. Owing to Propositions 11, 17, and 18, we have the following factorization,

∆(λ) = τ(λ− λ0)
n+1

∫ 1

0
q(t)e−t(λ−λ0)τ dt, (47)

where q is the polynomial defined in the statement of Proposition 18. Since q is positive and
q′ is negative in (0, 1), it follows from Theorem 19 that all roots of s 7→

∫ 1
0 q(t)ets dt have

positive real parts, and, consequently, all roots of ∆ different from λ0 have real parts strictly
less than λ0, as required.

Remark 21. Note that, if λ0 is a root of multiplicity n + 1 of ∆, then λ0 is one of the n
roots of the elimination-produced polynomial P(·, τ). The previous theorem ensures that, by
selecting λ0 as the rightmost root of P(·, τ), it will also be a dominant root of ∆.

6.2 A Link with an Optimization Problem

An intriguing research question concerns whether and when the assignment of a root satisfying
the MID property can be recast in terms of minimizing the spectral abscissa function. We
shed light on this question by considering a chain of n integrators with input delay, controlled
with static state feedback. We start with a theorem.

Theorem 22. Consider the characteristic function

∆(λ; α0, . . . , αn−1) = λn + (αn−1λ
n−1 + · · ·+ α1λ+ α0)e

−λτ .

and the choice of gain parameters (α0, . . . , αn−1) = (α∗
0, . . . , α

∗
n−1), which are determined

by (25) and assign a rightmost root λ0 of multiplicity n + 1. Then in any direction in the
parameter space, taken from (α∗

0, . . . , α
∗
n−1), the spectral abscissa function c : Rn → R,

(α0, . . . αn−1) 7→ c(α0, . . . , αn−1) = max
λ∈C

{ℜ(λ) | ∆(λ; α0, . . . , αn−1) = 0},

is strictly increasing.

Proof. We denote by (d0, . . . , dn−1) ∈ Rn, (d0, . . . , dn−1) ̸= (0, . . . , 0), the considered direction
and by ϵ ∈ R+ a perturbation parameter that determines the step taken in the considered di-
rection. For fixed (d0, . . . , dn−1), we then analyze the zeros of the perturbed quasi-polynomial

H(λ; ϵ) = ∆(λ) + ϵ(dn−1λ
n−1 + · · ·+ d1λ+ d0)e

−λτ

as a function of ϵ, around ϵ = 0. Due to the continuity of the spectral abscissa function with
respect to parameter ϵ and the property that λ0 is the unique rightmost characteristic root
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for ϵ = 0, for sufficiently small ϵ > 0 the spectral abscissa is induced by one of the roots that
emerge from the splitting of the n+ 1-th order root λ0 as ϵ is increased from zero.

We can always write H in the form

H(λ; ϵ) = ∆(λ) + ϵ
[
f0 + f1(λ− λ0) + · · ·+ fn−1(λ− λ0)

n−1
]
e−λτ ,

where the n-tuple (f0, . . . , fn−1) is induced by (d0, . . . , dn−1). Let j ∈ {0, . . . , n− 1} be the
index such that

f0 = · · · = fj−1 = 0, fj ̸= 0.

Then we can factorize

H(λ; ϵ) = (λ− λ0)
j
(
Ĥ(λ) + ϵ

[
fj + fj+1(λ− λ0) + · · ·+ fn−1(λ− λ0)

n−1−j
]
e−λτ

)
,

where the entire function Ĥ is the analytic extension of the function λ 7→ H(λ; 0)
(λ−λ0)j

, which has

a removable singularity at λ0. Note that, due to the deflation, Ĥ has a zero with multiplicity
n+ 1− j at λ0. The roots of

Ĥ(λ) + ϵ
[
fj + fj+1(λ− λ0) + · · ·+ fn−1(λ− λ0)

n−1−j
]
e−λτ = 0 (48)

satisfy the complete regular splitting property at λ = λ0 and ϵ = 0 because ∂H
∂ϵ (λ0, 0) = fj ̸= 0

(see [34,48]). Consequently, they can be expanded as Puiseux series in powers of ϵn+1−j as

λi(ϵ) = λ0 +

(
−(n+ 1− j)!

∂H
∂ϵ (λ0, 0)

∂n+1−jH
∂λn+1−j (λ0, 0)

) 1
n+1−j

e
ι̇ 2πi
n+1−j ϵ

1
n+1−j +O

(
ϵ

2
n+1−j

)
,

i = 1, . . . , n+ 1− j. (49)

The additional j rightmost roots of H are invariant with respect to ϵ, that is,

λi(ϵ) = λ0, i = n+ 2− j, . . . , n+ 1.

In what follows we can distinguish between two cases:

• If j < n− 1, then n+ 1− j > 2 roots split according to (49). It follows that there is a
real number ϵ̄ > 0 such that(

max
i∈{1,...,n+1−j}

ℜ(λi(ϵ))

)
> ℜ(λ0), ∀ϵ ∈ (0, ϵ̄),

hence, the spectral abscissa is strictly increasing at ϵ = 0;

• If j = n − 1, then the form of expansion (49) may be inconclusive as two roots can
possibly split along the imaginary axis. To proceed, we employ the factorization (47)
and rewrite (48) as

τM(λτ)(λ− λ0)
2︸ ︷︷ ︸

Ĥ(λ)

+ϵfn−1e
−λτ = 0, (50)

with

M(λ) =

∫ 1

0
q(t)e−t(λ−λ0τ) dt,
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which implies M(λ0τ) > 0 and M ′(λ0τ) < 0. In case fn+1 < 0, then the double root of
λ0 of (50) splits according to

λ±(ϵ) = λ0 ±

√
−fn−1e−λ0τ

M(λ0τ)

√
ϵ

τ
+O(ϵ), (51)

whole derivation relies on interpreting (50), after pre-multiplication by τ as an equation
in the combined argument λτ . In case fn+1 > 0, then the double root λ0 splits according
to

λ±(ϵ) = λ0 ±

√
fn−1e−λ0τ

M(λ0τ)

√
ϵ

τ
ι̇+

fn−1e
−λ0τ

2M(λ0τ)

(
1 +

M ′(λ0τ)

M(λ0τ)

)
ϵ+O (ϵ)

3
2 . (52)

The coefficient of ϵ is positive since M(λ0τ) > 0 and

1 +
M ′(λ0τ)

M(λ0τ)
= 1−

∫ 1
0 tq(t) dt∫ 1
0 q(t) dt

> 0,

since q is positive on [0, 1] and the ‘weight’ function t in the top integral is smaller than
one. Hence, if ϵ is increased from zero, n − 1 characteristic roots are invariant, while
two others split along the imaginary axis but bend towards the open right half plane.

The proof is completed.

Observe that the (local) growth of the spectral abscissa in a given direction, characterized
by (49), (51) and (52), can always be bounded from below by a strictly increasing linear
function. On the one hand, this argument is mathematically not sufficient to conclude that
(α∗

0, . . . , α
∗
n−1) is a strict local minimizer of the spectral abscissa function, given that this

function is non-smooth (but numerical experiments for n up to 10 even point to a strict
global minimizer). For comparison, the function s : R2 7→ R, defined by

s(α0, α1) =
√

|α1 − α2
0| − α4

0 − α4
1,

satisfies (with ϵ ≥ 0)

s(ϵd0, ϵd1) =

{ √
|d1|

√
ϵ+O(ϵ), d1 ̸= 0,

|d0|ϵ+O
(
ϵ2
)
, d1 = 0,

but (0, 0) is no local minimizer since s
(
ϵ, ϵ2

)
< 0 for ϵ > 0.

On the other hand, for the second-order integrator, the assertion of Theorem 22 can be
strengthened to a strict global minimum at (α∗

0, α
∗
1), by using the additional property that

for n = 2, the spectral abscissa function is quasi-convex [50, Proposition 1]. This reference
also contains a complete numerical characterization of global minima of the spectral abscissa
function for all second-order input delay systems, controlled by state feedback. From the
characterization using TDS-CONTROL [1], global optima are always related to rightmost
characteristic roots with multiplicity larger than one.
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7 An Illustrative Example: GMID, Intermediate MID, and
the Prescribed Pendulum Stabilization

Let us revisit the classical control problem of the stabilization of the friction-free pendulum
[2], whose dynamics are governed by the following second-order differential equation:

θ̈(t) +
g

L
sin(θ(t)) = u(t), (53)

where θ(t) designates the angular displacement of the pendulum at time t with respect to
the stable equilibrium position, L is the pendulum length, g is the gravitational acceleration,
and u(t) is the control input, which stems from an applied external torque. We follow in this
section the control strategy for this problem proposed in [11].

Consider the standard delayed PD controller

u(t) = −kp θ(t− τ)− kd θ̇(t− τ), (54)

with (kp, kd) ∈ R2. The linear stability of the closed-loop system amounts to the location of
the roots of the corresponding quasipolynomial

∆(λ) = λ2 +
g

L
+ (kdλ+ kp) e

−λτ . (55)

Notice that the degree of the above quasipolynomial is equal to 4. Hence, if one exploits
the GMID property proved in [46] (i.e., if we consider a root of (55) with multiplicity equal
to the degree of the quasipolynomial), it follows that the only admissible quadruple root is
λ0 = −

√
2g/L which is necessarily the corresponding spectral abscissa and is achieved if the

system’s parameters (kp, kd, τ) satisfy kd = −e−2
√

2g/L, kp = −5 e−2g/L, τ =
√
2L/g.

As emphasized in [10], the GMID does not allow any degree of freedom in assigning λ0,
i.e., there is a single possible choice of λ0 ensuring that it is a root of multiplicity 4. In
order to allow for some additional degrees of freedom when assigning λ0, one can relax such a
constraint by forcing the root λ0 to have a multiplicity lower than the maximal, and consider,
for instance, the delay as a free tuning parameter. This is the subject of the next result,
extracted from [11], which considers a root λ0 of multiplicity 3. Note that, in this case, the
multiplicity 3 is also the lowest over-order multiplicity for (55).

Proposition 23 ([13]). For any 0 < τ <
√

2L/g, let

λ0 =
−2 +

√
−g τ2

L + 2

τ
. (56)

The delayed PD controller (54) with

kd =
2 (τλ0 + 1) eτλ0

τ
, kp =

2
(
5Lτλ0 + g τ2 + 3L

)
eτλ0

τ2L
(57)

and λ0 τ ≥ −1, locally exponentially stabilizes the dynamical system (53). Namely, λ0 is a root
of multiplicity at least 3 of (55) and it is dominant, i.e., the lowest over-order (intermediate)
MID property holds true.
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Figure 2: The behavior of the triple root (spectral abscissa) of (55) at λ = λ0 given by (56)
as a function of the tuning (“free”) delay parameter 0 < τ <

√
2L/g for g/L ∈ {1, . . . , 7}.

Clearly, increasing the ratio g/L decreases the assignment region as well as the delay margin.
Figure extracted from [11].

The proof of the above proposition can be found in [13], which is concerned with the over-
order MID property with multiplicity M(λ0) = m + n. This multiplicity coincides with the
lowest over-order multiplicity in the case of (55). It is also a direct consequence of the results
of the present paper since, in the pendulum case under consideration, the only intermediate
multiplicity corresponds to the lowest over-order multiplicity. It should be mentioned that
Proposition 23 can also be proven by using the argument principle as is done in [20].

8 P3δ Software

Partial pole placement via delay action (P3δ) is an intuitive Python software [14–16] which
enables the design of stabilizing feedback control laws exploiting the delay effect on the
closed-loop dynamics. Beyond the MID property, the software relies on another property
of quasipolynomial’s zeros distribution called CRRID. While the MID has been emphasized
through this paper, the CRRID property consists in conditions on the system’s parameters
guaranteeing the dominance of coexistent real spectral values. When using the MID strategy
on P3δ, two options are proposed: the GMID-based design and the control-oriented IMID-
based design. The latter exploits the over-order intermediate multiplicity M = n+1, offering
sufficient freedom in parameters’ choice. Notice that both strategies, MID and CRRID, allow
to prescribe the exponential decay rate of the closed-loop system solution.

9 Conclusion

This paper discusses the spectral abscissa of linear time-invariant dynamical systems repre-
sented by delay-differential equations. It exploits links between spectral values of intermediate
admissible multiplicity for a quasipolynomials and the distribution of zeros of linear combi-
nations of Kummer confluent hypergeometric functions. It proposes a delayed control design
methodology enabling the closed-loop system’s solution to obey a prescribed decay rate, open-
ing perspectives in concrete applications including, among others, vibration control (see, e.g.,
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[21, 51]). In particular, the proposed methodology is illustrated through the stabilization
problem of the classical pendulum as well as the stabilization of chains of integrators.
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[52] T. Mori and H. Kokame. Stability of ẋ(t) = Ax(t) + Bx(t − τ). IEEE Transactions on
Automatic Control, 34:460–462, 1989.

[53] S. Niculescu. Delay effects on stability: A robust control approach, volume 269 of Lect.
Notes Control. Inf. Sci. Springer-Verlag London Ltd., London, 2001.

[54] S.-I. Niculescu and W. Michiels. Stabilizing a chain of integrators using multiple delays.
IEEE Trans. Automat. Control, 49(5):802–807, 2004.

[55] N. Olgac and R. Sipahi. An exact method for the stability analysis of time-delayed linear
time-invariant (LTI) systems. IEEE Trans. Automat. Control, 47(5):793–797, 2002.

[56] F. Olver, D. Lozier, R. Boisvert, and C. Clark, editors. NIST Handbook of Mathematical
Functions. U.S. Department of Commerce, National Institute of Standards and Technol-
ogy, Washington, DC; Cambridge University Press, Cambridge, 2010.

[57] J. Partington and C. Bonnet. H∞ and BIBO stabilization of delay systems of neutral
type. Systems & Control Letters, 52(3-4):283–288, 2004.

29



[58] E. Pinney. Ordinary difference-differential equations. Univ. California Press, 1958.
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