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Dynamic Consensus under Weak Coupling:
a case study of nonlinear oscillators

Anes Lazri Elena Panteley Antonio Lorı́a

Abstract— Dynamic consensus is a term coined in1 [1] to
denote the state of synchronization of complex networked
systems. It covers the common paradigm of consensus in which
case all the systems stabilize at a common equilibrium point.
It is known that for certain networks (e.g., of homogeneous
systems) dynamic consensus is achievable provided the inter-
connection gain is elevated. In this case, all the systems behave
as one average dynamical system. In this paper we analyze the
collective behavior of heterogeneous Stuart-Landau oscillators
under weak coupling. We show that their behavior cannot be
characterized by a single average system, but by a reduced-
order network. We give a detailed characterization of the latter
and establish a relation with the eigenvalues of the underlying
Laplacian matrix, hence, with the network’s topology.

I. INTRODUCTION

Interconnected systems have garnered increasing interest
across scientific communities over the years. One thoroughly
studied problem pertains to the synchronization of nonlinear
oscillators, at least since [2]; see also [3]–[5].

We study networks of Stuart Landau oscillators, which
represent a generic model of nonlinear oscillators near a Hopf
bifurcation [2], [6]. They are often used as a prototype model
of different oscillatory systems, such as in LASERs [7],
genetic networks [8], and neuronal networks [9], [10], etc.
Networks of Stuart Landau’s oscillators are very intriguing
because of the rich behavior they may exhibit under different
conditions pertaining to their parameters and the coupling
strength, even in the case of “networks” of as few as two
oscillators—see [2], let alone for networks of higher order
(containing many more than two nodes).

One of the possible collective behaviors observed in
networks of Stuart Landau oscillators includes total synchro-
nization. In [1] we introduce the term “dynamic consensus”
to denote the collective behavior consisting in all the os-
cillators achieving total synchronization with respect to an
average oscillator [12]. Such behavior, however, is possible
only for relatively high coupling—we specify farther below
the meaning of “high”.

If the coupling gain is relatively low, other phenomena,
such as partial synchronization, (also known as ‘clustering’)
may appear. That is, subgroups of oscillators synchronize
among themselves, but with behaviors differing from one
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1The term dynamic consensus is also used in other instance in the
literature, but with a completely different meaning—see e.g., [11]

cluster to another, even if the nodes are not directly inter-
connected (remote synchronization)—see e.g., [9] and [10].
As explained in [13] and [14], clusters typically appear for
identical oscillators due to low coupling gain and symmetries
in the interconnection graph. The spectral properties of the
graph Laplacian may also strongly affect such emergent
behavior. This particular behavior is also evoked in [15],
where the authors analyze the remote synchronization in a
star network of Stuart Landau oscillators, with mismatched
parameters.

To ascertain the collective behavior of networked Stuart-
Landau oscillators, [15] presents a bifurcation diagram by
analyzing the behavior of the network of N units. The
analysis applies, notably, to weakly-coupled oscillators. A
different technique relies on model reduction. In [16], the
authors present a reduced system comprising NR < N
oscillators for a network of N nodes. However, the proposed
reduced-order model therein is defined on the basis of a
complex nonlinear coupling, even if, initially, the oscillators
are interconnected via a diffusive (linear) coupling. The
nonlinearities in the reduced-order model stymie the analysis
of the overall collective behavior. In contrast, a model
reduction of order one, as in [12], easens the analysis based
on the properties of the network (invariant sets, bounds of
the solutions, frequency of oscillations), but it is restricted
to the case of high gain. In this article, for networks with
weak coupling, we propose a moderately complex model
of reduced order, but larger than one, which nevertheless
involves linear interconnections, which favors the analysis.

The passage from a network of N agents to a re-
duced network has been treated before in the literature,
but differs from our approach. For instance, in [17]–[19]
the model reduction involves graph partition. In [20], a
method based on eigenvalue assignment is derived for a
structure-preserving model-reduction for linear multi-agent
systems. Alternatively, balanced truncation is used in [21]
and [22]. In this paper, we use the spectral properties of the
network’s Laplacian to provide a detailed characterization
of the model’s order and, most importantly, we show that
the systems conforming the reduced network correspond
to Stuart Landau oscillators themselves, interconnected via
diffusive coupling. Our results apply to systems with certain
heterogeneity but, as in [15], [16], they are restricted to
network topologies satisfying specific structural properties.
The problem in greater generality is, to the best of our
knowledge, open.

In the next section we describe the problem formulation.
In Section III we describe our model-reduction approach; in



Section IV we present our main statements. Our theoretical
findings are illustrated with numerical simulations in Section
V and we provide some closing remarks in Section VI.

II. PROBLEM FORMULATION

Consider N interconnected Stuart-Landau oscillators,

ẋi = αxi − ωiyi − xi(x2
i + y2

i ) + u1i (1a)

ẏi = ωixi + αyi − yi(x2
i + y2

i ) + u2i, (1b)

where α, ωi, xi, and yi ∈ R for all i ∈ {1, 2, · · · , N},
and xi, yi are Cartesian coordinates on the plane. Stuart
Landau oscillators may also be modeled using complex state
variables—see, e.g., [6]. Relative to such models, xi and yi
represent, respectively, the real and the imaginary parts of
each oscillator’s state.

We assume that the network units are connected via
diffusive coupling over an undirected and connected graph.
For the ith unit the coupling ui = [u1i u2i]

> is given by

u1i = −γ̄
N∑
j=1

aij(xi − xj) (2a)

u2i = −γ̄
N∑
j=1

aij(yi − yj), (2b)

where the scalar γ̄ > 0 corresponds to the coupling gain. The
weights of the interconnections amongst the nodes define
the adjacency matrix, A = [aij ]i,j∈{1,2,··· ,N}, as well as the
Laplacian matrix L =

[
lij
]

where

lij =

−aij if i 6= j∑N
i=1
i 6=j

aij if i = j.

More precisely, we are interested in the possible syn-
chronized behavior of the oscillators (1), under the effect
of the inputs defined in (2). Two factors intervene. On
one hand, the network’s topology, which is defined by the
coefficients aij , and, on the other hand, the magnitude of
the coupling strength. For instance, for networks with an
underlying undirected connected graph topology and with
γ̄ > 0 sufficiently large, the networked systems’ trajectories
zi(t) =

[
xi(t) yi(t)

]>
converge, in a practical sense, to the

solution of an averaged dynamical system,

żm = Fm(zm, e), (3)

where zm = 1
N

∑N
k=1 zk and e is a synchronization error

defined as

e := z − 1

N

[
1N ⊗ I2

][
1N ⊗ I2

]>
z ⇐⇒ e =

 z1 − zm
...

zN − zm

 .
(4)

That is, on the manifold {e = 0}, the trajectories are all
synchronized with the averaged dynamical system żm =
Fm(zm, 0)—cf [1], [12].

This paper is devoted to analyzing networks whose cou-
pling gain is not high enough to entail synchronization. It is

known that in this case many possible behaviors may appear,
even for small networks [2]. As we show in this paper, in the
case of weakly coupled networks, the emergent dynamical
system consists of a network itself, albeit of reduced order.
Hence, with state zm =

[
z>m1 z

>
m2 · · · z>mNR

]>
, with zmi

corresponding to the state of one oscillator in the emergent
network. Such a model, which generalizes the one based on
(3)-(4), is described next.

III. MODEL DESCRIPTION

The first step to describe the reduced-order model is to
define the order NR, i.e., the number of nodes that constitute
the reduced-order network. To that end, akin to [1] we define
the synchronization error. Then, let zi = [xi yi]

>,

z :=


z1

z2

...
zN

 , F (z) :=


f(x1, y1)
f(x2, y2)

...
f(xN , yN )

 , (5)

where f(xi, yi) =
[
− xi(x2

i + y2
i ) − yi(x2

i + y2
i )
]>

. With
this notation, the diffusive coupling inputs ui, defined in (2),
can be re-written in the compact form u = −γ̄

[
L ⊗ I2

]
z.

Hence, the network dynamics become

ż = F (z) +Mz − γ̄
[
L⊗ I2

]
z, (6)

where M ∈ R2N×2N corresponds to the block diagonal
matrix

M :=


M1 0 · · · 0

0 M2
. . . 0

...
. . .

...
0 0 0 MN

 ,
with Mi ∈ R2×2 such that

Mi =

[
α −ωi
ωi α

]
. (7)

Characterizing the collective emergent behavior and multi-
agent synchronization for heterogeneous systems intercon-
nected over generic graphs remains an open problem. In what
follows, focus on networked systems with underlying graphs
satisfying the following hypotheses.

Assumption 1: The eigenvalues λi(L) of the Laplacian L
and their associated eigenvectors vi are such that:

λ1(L) = 0 < λ2(L) < λ3(L) ≤ · · · ≤ λN (L),

v1 =


1
1
...
1

 , and v2 =


−1
1
...
1

 .
•

We stress that many networks with weighted links pos-
sess these properties. This class of networks contains, for
example, weighted small-world networks and weighted grid
networks—see Fig 1 in the following page.
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Fig. 1. Example of topologies satisfying hypothesis 1 when the inner
parameters of the yellow unit and its coupling gain differ from the remaining
nodes’ parameters. The left network corresponds to a grid topology, while
the one on the right corresponds to the small-world topology.

Next, we pose a hypothesis on the units’ individual pa-
rameters.

Assumption 2: For i ∈ {2, 3, · · · , N}, Mi =M2. •
Assumption 2 allows for only one system in the network
to be different from the others. Although this may appear
restrictive, it is fairly common in the context of problems
concerning “parameters mismatch”. In other words, one
system in the network has completely different parameters
from the rest of the network, and the effect of this dis-
crepancy is studied —see, e.g. [23], [24], [25]. The fact
that a part of the network is homogeneous is helpful in
characterizing emergent dynamics; it has also been used in
[15] for bifurcation analysis in a star network.

A. Reduced order network

The definition of the order of the reduced network NR
is intrinsically related to the spectral properties of the linear
part of (6). To analyze this relationship, as it may become
clearer later, it is convenient to rewrite (6) as

ż = F (z) +Mz − γ
[
L ⊗ I2

]
z, (8)

where γ and L are scaled as follows:

L =
2

λ2(L)
L, γ =

λ2(L)

2
γ̄. (9)

Then, Eq. (6) becomes

ż = F (z) + γL̃z, (10)

where L̃ :=
[
−
[
L ⊗ I2

]
+ 1

γM
]
.

For the sake of argument, let us momentarily disregard the
nonlinear terms in (10), i.e., F (z). For the system ż = γL̃z,
the eigenvalues with positive real parts in L̃ generate unstable
modes. In contrast, those with negative real parts generate
stable ones. That is, the solution to ż = γL̃z takes the form

z(t) =
[
v1v
>
l1 ⊗ I2

]
z(t) +

[
v2v
>
l2 ⊗ I2

]
z(t)

+ · · ·+
[
vNR

v>lNR
⊗ I2

]
z(t) + e(t),

where vk and vlk, for all k ∈ {1, 2, . . . ,M}, are respectively
the right and the left eigenvectors of L̃ associated with the
M pairs of positive real part eigenvalues of L̃. On the other
hand, e(t) contains the contributions to the solution generated
by the stable modes. As e(t)→ 0, only the contributions of
the unstable modes remain. The number of pairs of positive
real part eigenvalues M defines therefore the order NR of
the reduced order network, and the unstable modes determine
the asymptotic behavior of the network.

Now, to determine NR we observe that, under Assumption
1, L has a unique zero eigenvalue and admits the decompo-
sition

L = V


0 0 0 · · · 0
0 λ2(L) 0 · · · 0
0 0 λ3(L) 0

0 0 0
. . .

...
0 0 · · · 0 λN (L)

V −1,

where V is the matrix whose columns contain the eigenvec-
tors associated with the eigenvalues of L.

Claim 1: Under Assumptions 1 and 2,[
V −1 ⊗ I2

]
M
[
V ⊗ I2

]
=

M1+M2

2
M1−M2

2 0 · · · 0
M1−M2

2
M1+M2

2 0 · · · 0
0 0 M2 0

0 0
. . . . . . 0

0 0 · · · · · · M2

 ,
(11)

where the matrices Mi are defined in (7). �
Then given the form of L̃ we obtain

[V −1 ⊗ I2]L̃[V ⊗ I2] = blockdiag
[

Ωi
]

(12)

where

Ω1 =

[
M1+M2

2γ
M1−M2

2γ
M1−M2

2γ
M1+M2

2γ − λ2(L)I2

]
,

Ωi =
1

γ
M2 − λi(L)I2,

for all i ∈ {3, 4, · · · , N}. Note that Ω1 ∈ R4×4, Ωi ∈ R2×2.
The eigenvalues associated to the blocks Ω3,Ω4, · · · ,ΩN ,

are given by

λi(L̃) =
α

γ
− λi(L)± iω2

γ
,

where i ∈ {5, 6, · · · , 2N}. We see that the number of eigen-
values with positive real parts for these blocks is inversely
proportional to the value of γ. Taking into account the change
of scale (9), we have λ2(L) = 2. On the other hand, the four
eigenvalues associated with the block Ω1 are given by

λi(L) =
α

γ
− 1±

[
4γ2 − 2ω2

1 − 2ω2
2 ± 2ω̃

[
ω̄2 − 4γ2

] 1
2
] 1

2

γ

for i ∈ {1, 2, 3, 4} and ω̃ = ω1 + ω2—cf [15]. The sign of
the real part of those eigenvalues depends on γ and also on
ω̄ = ω1 − ω2.

Note that the form of these eigenvalues is identical to those
obtained in [15, equation 20]. It is therefore possible to use
the results in the latter to determine the evolution of the sign
of these eigenvalues. We summarize the cases pertaining to
the number of eigenvalues with positive real parts (hence to
the order NR) in Fig 2 below. Since the real part of the
eigenvalues also depends on ω̄ = ω1−ω2, two cases emerge
depending on the value of this variable.



ω̄ ≤ 2α

γ0 α

λ3(L)
ω̄
2

M > 2 M = 2 M = 1

ω̄ > 2α

γ0
α

λ3(L)
α k(α,∆ω)

M > 2 M = 0 M = 1M = 2

Fig. 2. Variations of M , the number of positive real part eigenvalues of
the matrix L̃ depending on the value of γ. Intervals in red are those where
M = 2 and k(α, ω̄) :=

4α2+|ω̄|2
8α

.

We gather these two cases in the same figure by presenting
the evolution of M as a function of the gain γ.

The case of M = 0 corresponds to global asymptotic
stability of the linear part ż = γL̃z. Conversely, M = 1
brings us back to the known result of [12] on the practical
stability of the set {z1 = z2 = · · · = zN}. In this paper, we
focus on the case in which, given the relatively low values
of the coupling gain γ, we have M > 1. It would therefore
make sense for such a network to be modeled by a reduced
network of NR = 2 oscillators, since it can also represent
the two behaviors explained above (M = 0 and M = 1).

Remark 1: For the specific case of a star-topology net-
work, in [15] the authors give an analysis of the sign eigen-
values of the block Ω1 and identify the threshold k(α, ω̄),
between the cases of zero and one eigenvalue with positive
real part, for ω̄ > 2α and between the cases of two and one
such eigenvalue, for ω̄ ≤ 2α. •

B. Synchronization error characterization

We now unfold a natural definition of the synchronization
errors e. Let V = [V1 V2], where V1 ∈ RN×NR gathers
the eigenvectors associated to the NR positive real part
eigenvalues in Eq. (12) and V2 ∈ RN×(N−NR) the remaining
N −NR eigenvectors of L. Then,

V −1 =

[
V †1

V †2

]
.

Then, we use V1 and V2 these two matrices to introduce the
new coordinate z̄ =

[
V −1 ⊗ I2

]
z. Then, using the partition

z̄ =

[
ξ1
ξ2

]
:=

[[
V †1 ⊗ I2

]
z[

V †2 ⊗ I2
]
z

]
, (13)

with ξ1 ∈ R2NR , ξ2 ∈ R2(N−NR). Using V V −1 = V1V
†
1 +

V2V
†
2 = IN we deduce the relation[

V2 ⊗ I2
]
ξ2 = z −

[
V1 ⊗ I2

]
ξ1, (14)

which is useful to define the synchronization errors e :=
[V2 ⊗ I2

]
ξ2, as

e = z −
[
V1 ⊗ I2

]
ξ1.

That is, e = 0 if and only if ξ2 = 0 and z =
[
V1 ⊗ I2

]
ξ1.

Consequently, for NR = 2, we have V1 = [v1 v2] and V †1 =
[v>l1 v

>
l2] , which makes e take the form

e = z −
[
v1 ⊗ I2

][
v>l1 ⊗ I2

]
z −

[
v2 ⊗ I2

][
v>l2 ⊗ I2

]
z. (15)

This definition of e covers the cases treated previously in
the literature where the emerging dynamic is assimilated to
a single system and in which case the synchronization error
is defined as in (4). Explicitly, (15) yields

e = z −
([

1 0>K
0K

1
K1K1>K

]
⊗ I2

)
z,

where 1K is a vector of ones of size K and 0K a vector of
size K = N − 1 where all entries are equal to zero. With
this definition of e, we see that on {e = 0}, z1 is unchanged
and, for each i ∈ {2, 3, · · · , N}, zi converges to the average
of the latter. Defining zR =

[
z>1 z>2

]>
as the state of the

reduced order network, on {e = 0}, we have

zR =
[
W> ⊗ I2

]
z, z =

[
Q⊗ I2

]
zR (16)

where

W> :=

[
1 0 0 · · · 0
0 1

K
1
K · · · 1

K

]
Q> :=

[
1 0 · · · 0
0 1 · · · 1

]
.

Thus, on the synchronization manifold {e = 0}, we have
z2 = z3 = · · · = zN = 1

K

∑N
i=2 zi. We see that when

the coupling gain is not sufficiently high, two dynamics de-
scribed by the state zR =

[
z>1 z>2

]>
=
[
z>1

1
K

∑N
i=2 z

>
i

]>
persist asymptotically.

We are ready to present our main statements regarding
the dynamics of the synchronization errors e and those of
the reduced-order network, with state zR.

IV. MAIN RESULT

Since the partial synchronization studied holds when the
set {e = 0} is globally asymptotically stable, our first result
concerns the analysis of the stability of this set.

Proposition 1: For a network of systems with dynamics
(1) in closed loop with (2), under Assumptions 1 and 2,
the set {e = 0}, where e is defined in (15), is globally
exponentially stable, for any γ > γm = α

λ3(L) . �

Our second, and main statement pertains to the dimension
and nature of a reduced-order network that exists for values
of the coupling gain satisfying γ > γm.

Proposition 2 (Main result): Consider a network of N
Stuart-Landau oscillators with dynamics (1), in closed loop
with (2) and under Assumptions 1 and 2. Then, on the
synchronization manifold {e = 0}, if γ > γm = α

λ3(L) , there
exists a network of reduced order NR = 2, whose nodes are
dynamical systems of the form

ẋi = αxi − ωiyi − xi(x2
i + y2

i )− γ
2∑
j=1

(xi − xj) (17a)

ẏi = ωixi + αyi − yi(x2
i + y2

i )− γ
2∑
j=1

(yi − yj), (17b)



where i ∈ {1, 2}. �

This reduction of the network of N units to a network of
NR = 2 units has the benefit of providing a characterization
of different behaviors that the original network may exhibit.

Proposition 3: Consider a network of N Stuart-Landau
oscillators with dynamics (1), in closed loop with (2) and
satisfying Assumptions 1 and 2. Let ω̄ = ω1−ω2, k(α, ω̄) :=
α2+|ω̄|2

8α , and γ > γm = α
λ3(L) . Then,

if ω̄ > 2α,
(i) the origin {z = 0} is globally exponentially stable, for

all γ ∈
]
α, k(α, ω̄)

[
;

(ii) if γ ≤ α, the network shows two trajectories with a
phase drift, and,

(iii) if γ ≥ k(α, ω̄), the network shows two trajectories with
a phase lock.

If, otherwise, ω̄ ≤ 2α,
(iv) the network shows two trajectories with a phase drift

for all γ < ω̄
2 and

(v) the network shows two trajectories with a phase lock
for all γ ≥ ω̄

2 . �

V. SIMULATION RESULTS

To illustrate our theoretical findings, we present some
numerical simulation results. We consider a network of N =
5 Stuart Landau oscillators distributed over a grid network—
see Fig 3 below.

L =


1 − 1

4 − 1
4 − 1

4 − 1
4

−1 3 −1 0 −1
−1 −1 3 −1 0
−1 0 −1 3 −1
−1 −1 0 −1 3



1

Fig. 3. Graph topology considered in the simulations

For L above, the eigenvalues satisfy Assumption 2; indeed,
we have

λ1(L) = 0, λ2(L) = 2, λ3(L) = λ4(L) = 3, λ5(L) = 5;

idem for the corresponding eigenvectors v1 and v2. Further-
more, for all i ∈ {2, 3, · · · , N}, the dynamics of the system
corresponds to that given in Eq. (1), with α = 1, ω2 = 2.

As stated in Proposition 3, two possible cases emerge
depending on the value of ω̄ = ω1 − ω2. To highlight the
possible behaviors, we set two values for ω1, first satisfying
ω̄ ≤ 2α, then meeting ω̄ > 2α.

The third eigenvalue of L remains important to set the
lower bound γm in Proposition 1 of the coupling gain γ,
here λ3(L) = 3. Therefore, γm = α

λ3(L) = 1
3 .

Figure 4 presents the evolution of the error e(t) for ω̄ = 1
and ω̄ = 4 with γ = 0.8, in the first case, ω1 = 3, in
the second one ω1 = 6. Nevertheless, in both cases, the
synchronization error converges to the origin {e = 0}, which
is a globally asymptotically stable set as seen in Proposition
1.

0 2 4 6
-1.5

1.5

0 2 4 6
-1.5

1.5

Fig. 4. Evolution of the synchronization error e(t) for γ = 0, 8. In the
upper plot ω̄ = 1, in the lower plot ω̄ = 4.

This remark is in line with what is observed in Figures
5 and 6, which present the behavior of x(t) for each of the
two cases, for different values of the coupling gain γ. Fur-
thermore, we remind that in these figures, the dashed black
curves represent the behavior of the reduced model; after a
short transition interval, all the network units synchronize
their behavior with the behavior of the reduced network. On
the other hand, the higher the coupling gain γ, the faster
the synchronization of the initial network behavior with the
reduced network behavior.

-1.5

0

1.5

-1.5

0

1.5

0 10 20 30
-1.5

0

1.5

Fig. 5. Numerical results for ω̄ = 1, the dashed black curves stand for
the trajectories of the reduced order network. After a short transient, the
behavior of the initial network is identical to the behavior of the reduced
order network, which explains the superposition of the curves

Referring to Figure 2, for the cases that ω̄ > 2α, we see the
three behaviors mentioned in Proposition 3. For γ between
α

λ3(L) and α, we see that the network is well represented
by a reduced order network of NR = 2 oscillators. There
are no eigenvalues with positive real parts for γ between
α and k(α, ω̄). This means that all the oscillators achieve
a consensus at the origin {x = 0}. Finally, with high
values of γ, the emergent behavior of the network is best
represented by a single oscillator, as mentioned in [12]. The
same remarks apply to the correspondence between Figures
2 and 5 for ω̄ ≤ 2α. This feature underlines the richness
of the behavior exhibited by such an oscillator network for
γ > γm.
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Fig. 6. Numerical results for ω̄ = 4, the dashed black curves stand for
the trajectories of the reduced order network. After a short transient, the
behavior of the initial network is identical to the behavior of the reduced
order network, which explains the superposition of the curves.

In Figures 5 and 6, for the interval between α
λ3(L) and

k(α, ω̄) we have a phase drift, a phase lock or even a con-
vergence to the origin as explained in Proposition 3, which
makes the behavior better represented by two oscillators. The
trajectories present a phase lock when the coupling gain is
more significant than k(α, ω̄). Therefore as explained in [12]
and shown in Figures 5 and 6 we can represent the behavior
with only one oscillator to which the convergence error is
practically stable. On the other side, besides confirming the
result concerning the order of the system, these figures also
allow us to observe the results of Proposition 3.

VI. CONCLUSION

This paper presents an approach to model reduction for a
network of nonlinear oscillators that allows modeling N units
by a network of only NR < N units. In the future, we plan
to go further in this direction by considering this method
for more general networks of nonlinear systems. On the
other side, since two oscillators networks of this type have
been extensively analyzed in the literature [2], this reduction
would also allow us to explore the different behaviors the
initial network could adopt based on the reduced model.
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patterns in stuart–landau networks: a reduced system approach,” The
European Physical Journal B, vol. 92, 05 2019.

[17] N. Monshizadeh, H. L. Trentelman, and M. K. Camlibel, “Projection-
based model reduction of multi-agent systems using graph partitions,”
IEEE Transactions on Control of Network Systems, vol. 1, no. 2, pp.
145–154, 2014.

[18] S. Monaco and L. R. Celsi, “On multi-consensus and almost equitable
graph partitions,” Automatica, vol. 103, pp. 53–61, 2019.

[19] B. Besselink, H. Sandberg, and K. H. Johansson, “Clustering-based
model reduction of networked passive systems,” IEEE Transactions
on Automatic Control, vol. 61, no. 10, pp. 2958–2973, 2016.

[20] L. Yu, X. Cheng, J. M. Scherpen, and J. Xiong, “Synchronization pre-
serving model reduction of multi-agent network systems by eigenvalue
assignments,” in 2019 IEEE 58th Conference on Decision and Control
(CDC), 2019, pp. 7794–7799.

[21] X. Cheng, J. M. Scherpen, and B. Besselink, “Balanced truncation of
networked linear passive systems,” Automatica, vol. 104, pp. 17–25,
2019.

[22] H. Sandberg and R. M. Murray, “Model reduction of interconnected
linear systems,” Optimal Control Applications and Methods, vol. 30,
no. 3, pp. 225–245, 2009.

[23] S. Jalan, A. Singh, S. Acharyya, and J. Kurths, “Impact of leader on
cluster synchronization,” Physical Review E, vol. 91, p. 022901, 02
2015.

[24] A. Bergner, M. Frasca, G. Sciuto, A. Buscarino, E. J. Ngamga,
L. Fortuna, and J. Kurths, “Remote synchronization in star networks,”
Phys. Rev. E, vol. 85, p. 026208, Feb 2012.

[25] M. Rosenblum, A. Pikovsky, and J. Kurths, “Phase synchronization of
chaotic oscillators,” Physical review letters, vol. 76, pp. 1804–1807,
04 1996.

https://www.sciencedirect.com/science/article/pii/S0005109821002703
https://www.sciencedirect.com/science/article/pii/S0005109821002703

	Introduction
	Problem formulation
	Model description
	Reduced order network
	Synchronization error characterization

	Main result
	Simulation results
	Conclusion
	References

