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Analysis and Control of Multi-timescale
Modular Directed Heterogeneous Networks

Anes Lazri Elena Panteley Antonio Lorı́a

Abstract— We study the collective behavior of hetero-
geneous nonlinear systems, interconnected over generic
directed graphs and in the scenario that, due to the na-
ture of their interconnections, the agents self-organize in
modules. These are sub-networks composed of agents that
are densely connected with a strong coupling, while the
modules themselves are sparsely interconnected. As we
show, beyond certain coupling thresholds, the systems
within each module synchronize rapidly with a weighted-
average dynamical system that evolves more slowly than
the individual systems. Then, the average dynamical sys-
tems corresponding to each and all the modules synchro-
nize among themselves. Furthermore, we establish global
asymptotic stability for the overall network under the condi-
tions that the average dynamics admit the origin as a glob-
ally asymptotically stable equilibrium and each system be
semi-passive. Finally, we explore stabilization techniques
that consist in controlling the average dynamics to make
the origin globally asymptotically stable.

I. INTRODUCTION

Diverse factors determine the collective behavior of net-
worked systems, including: the network’s topology, the nature
of the interconnections, the nodes’ individual dynamics, and
the coupling strength. Each of these aspects imposes different
challenges that can hardly be addressed simultaneously. For
instance, earlier works addressing synchronization of hetero-
geneous nonlinear systems focus on undirected [1]–[3] or
directed-and-balanced-graph networks [4], in which case the
Laplacian matrix possess properties that ease the analysis.
Works allowing for the latter are more recent—see e.g., [5],
[6] and several references therein.

In regards to the network’s topology and the coupling
strength, we single out the so-called modular networks. These
consist in networks of modules of densely interconnected
nodes, while the interconnections amongst these modules are
comparatively weaker [5], [7]. Modular networks appear natu-
rally in very large-scale systems in varied domains, including
neuroscience applications [8], social networks [9], or power
networks [10], [11], to mention a few.

When the coupling gain is sufficiently high, the synchro-
nized behavior of the network can be approximated by a
reduced-order system. This reduction in complexity allows for
a simplified analysis of the network dynamics. Indeed, when
the interconnection within the modules are sufficiently high,
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it is possible to obtain a reduced model that represents the
overall emerging dynamics [9], [10].

Grouping multiple agents in one module has been employed
in diverse contexts, whether for undirected networks [10],
[12], and [13], or directed ones [14], [15]. On the other hand,
empirical observations have consistently revealed that, subject
to certain topological conditions, agents within a module
tend to converge toward local consensus among themselves
rapidly. However, achieving global consensus among modules
transpires at a relatively slower pace when compared to intra-
modular convergence. This suggests to adopt a multi-time-
scale approach for the analysis of modular networks.

In [16] singular-perturbations theory is used to model a
heterogeneous network with high coupling gain. In [17] the
authors study modular undirected networks with linear dy-
namics and emphasize the presence of three-time scales in the
synchronization of interconnected agents in modular networks.
Then, under some assumptions, the network dynamics can
be approximated using a two-parameter singular-perturbation
form. The mean-field dynamics evolve on the slowest time
scale, the intra-modular dynamics on the fastest, and the inter-
modular dynamics are faster than mean-field but slower than
the intra-modular dynamics.

In this paper, which is the outgrowth of [18], we ana-
lyze modular networks using a triple-time-scale model and
give mild sufficient conditions for global asymptotic stability
(GAS) of the origin. Relative to [14] we consider nonlinear
heterogeneous systems; relative to [1]–[4] we consider generic
directed-graph networks. For the purpose of modeling, our
results follow the framework explained in [6] and for analysis,
we use singular-perturbations theory. Our main assumptions
are that the individual systems are semi-passive [19] and that
the average dynamics admit a GAS equilibrium, but if the lat-
ter does not hold, we describe a control method to stabilize the
network. The method is conceptually reminiscent of pinning
control [3], but such a strategy does not necessarily consider
the multiple time-scale behavior of modular networks.

II. MODEL AND PROBLEM FORMULATION

Let us consider N nonlinear dynamical systems

χ̇i = fi(χi) + νi, i ≤ N, χi ∈ Rn, (1)

where the functions fi are continuously differentiable and νi
are inputs defined as

νi := −
N∑
j=1

σijaij(χi − χj), (2)
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where aij represents the (in)existence of a link between
two agents and σij represents the coupling strength. More
precisely, aij > 0 and σij > 0 if there is an interconnection arc
from the jth node to the ith one and aij = σij = 0 otherwise.
In the case that all the interconnection strengths σij are equal,
say σij =: σ, the networked system, in compact form, reads1

χ̇ = F(χ)− σ[L ⊗ In]χ, (3)

where χ := [χ>1 · · · χ>N ]>, F(χ) := [f1(χ1)> · · · fN (χN )>]>,
and L is a Laplacian matrix, whose elements are defined as

`i,j =


−aij , i 6= j
N∑

` = 1
` 6= i

ai`, i = j, i, j ≤ N.

We consider the case in which certain links have an inter-
connection strength σij := σI and for others σij := σE , where
σI � σE ≥ σ∗, where σ∗ > 0 is a certain threshold. In addi-
tion, it is assumed that there are many more arcs with strength
σI than with strength σE . By virtue of this, the networked
systems are naturally organized into densely interconnected
modules that are sparsely interconnected among themselves.

M1

x1,1

x1,3

aI11,3

M2

Mm xm,2χ1

xm,1 Mk

Fig. 1. Schematic representation of a directed modular network
composed of m modules Mk, each constituting a sub-network. Within
each module the interconnections are “strong” and dense (represented
by thick arrows) while among modules the interconnections are of lesser
strength and more sparse (represented by thinner arrows). Each module
contains a directed spanning tree—represented by red arrows within
the modules and with a root node also in red. The overall network
also contains a directed spanning tree—represented by dashed blue
and solid red arrows and with an overall root node represented in blue.
This node is first in the overall network so it is originally labeled χ1—
see Eq. 1, but it does not necessarily correspond to the root of a
module’s spanning tree. Indeed, it corresponds to the 2nd node in the
mth module, so its state is xm,1 in Eq. (4).

We are primarily interested in investigating sufficient con-
ditions to guarantee global asymptotic stability of the origin
for modular networks, but also in devising control design

1In this paper we focus on the role of the coupling gain σ, so for simplicity
we only consider state coupling. For networks under output coupling, e.g.,
with respect to the outputs yi = Hχi the second term in (3) would read
σ[L ⊗HH>]χ, but such systems are beyond the scope of this paper.

strategies to stabilize the origin. To those ends, we start
by introducing a more suitable model that consists in a
(non-unique) modular network decomposition. Such model is
defined by relabeling the network’s nodes and the systems’
states and introducing an adequate notation.

We consider that under the assumptions made above on the
coupling strength, m modules are formed, labeled Mk with
k ≤ m, and each containing Nk systems densely connected
with high coupling strength. That is, each of such modules
forms a sub-network of Nk nonlinear systems, whose models
(1) are rewritten using a notation that makes explicit the
module dependency. Let

ẋk,i = fk,i(xk,i) + uk,i, k ≤ m, i ≤ Nk, (4)

where xk,i ∈ Rn denotes the state of the ith system within
the kth module, and fk,i and uk,i define its dynamics and
input respectively. Then, to distinguish the interconnection
links depending on the coupling strength, the inputs are split
in two parts as follows:

uk,i = uIk,i + uEk,i (5a)

uIk,i = −σI
Nk∑
j=1

aIkij (xk,i − xk,j), (5b)

uEk,i = −σE
m∑

` 6= k
` = 1

N∑̀
j=1

aEij(xk,i − x`,j). (5c)

In the previous expressions, aIkij and aEij are positive- or
zero-valued, depending on the existence or absence of a
link between two nodes within one module or between two
modules respectively—see Figure 1 for an illustration.

Then, in compact form, we define the vectors of rearranged
nodes’ states and dynamics, as follows:

x :=



 x1,1

...
x1,N1


... xm,1
...

xm,Nm




∈ RNn, F (x) :=



 f1,1(x1,1)
...

f1,N1
(x1,N1

)


... fm,1(xm,1)
...

fm,Nm(xm,Nm)




(6)

These vectors contain all the states χi and respective dynamics
fi in (1), but not necessarily in the original order [χ>1 · · · χ>N ]>.
Note that x = Tχ where T is a permutation matrix (hence
invertible). With this notation, the closed-loop networked
system (4)–(5), takes the form,

ẋ = F (x)− σI [LI ⊗ In]x− σE [LE ⊗ In]x (7)

where LI and LE are the Laplacian matrices

LI := blockdiag
[
LI1 L

I
2 · · · LIm

]
, (8a)

LIk :=
[
`Iki,j
]

(8b)
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`Iki,j :=


−aIkij , i 6= j
Nk∑
` = 1
` 6= i

aIki` , i = j , (8c)

where, for each fixed k ≤ m, aIkij > 0 if there is an
interconnection arc from the jth node to the ith one within
the kth module and aIkij = 0 otherwise; LE ∈ RN×N ,
which corresponds to the intra-modular Laplacian, is defined
as LE = L− LI , where L = TLT−1. Both matrices LI and
LE are Laplacians. Moreover, under the following assumption,
LIk has exactly one eigenvalue with null real part.

Assumption 1 (topology): Each module Mk individually
forms a strongly-connected sub-network; its topology is cap-
tured by the Laplacian LIk with elements defined in (8c).
Furthermore, both the overall network and the network of
modules, contain a spanning tree. In addition, the interconnec-
tion strengths satisfy σE |LE | < σI |LI |, where | · | denotes
the induced L2 norm. �

Remark 1: There is little loss of generality in assuming
that each module Mk is strongly connected because in the
primary setting the modules are densely connected. The last
part of Assumption 1 means that, for each agent, the intra-
modular influence is higher than the inter-modular influence.
In other words, either the interconnections within modules are
denser than the interconnections among them or the interaction
weights inside modules is higher than among them.

The rest of the paper is devoted to the stability analysis
of, and control design for, Equation (7) under Assumption 1.
To that end, we also pose the following hypothesis on the
individual systems’ dynamics.

Assumption 2 (regularity and passivity): For each pair
(k, i), the function fk,i in (4) is continuously differentiable
and admits the origin as a unique equilibrium. In addition, all
the units (1) are semi-passive [19] with respect to the input
uk,i and the output xk,i, with continuously differentiable and
radially unbounded storage functions Vk,i : R → R≥0. That
is, there exist positive definite and radially unbounded storage
functions Vk,i, positive constants ρk,i, continuous functions
Hk,i, and non-negative continuous functions ψk,i such that

V̇k,i(xk,i) ≤ xk,iuk,i −Hk,i(xk,i)

and Hk,i(xk,i) ≥ ψk,i(|xk,i|) for all |xk,i| ≥ ρk,i. �

In Assumption 2, the requirement that the origin is a
common equilibrium point is imposed by the problem setting,
that of establishing global asymptotic stability. Such assump-
tion is not a priori needed in the context of analysis of
synchronization—see e.g., [2]–[4]. The hypothesis of semi-
passivity, which is satisfied by many physical systems, such
as neuronal networks [20], is useful to establish that the so-
lutions are bounded, which is necessary for global asymptotic
stability, but not for synchronization. Boundedness of solutions
may also be established by imposing a stronger condition rem-
iniscent of uniform global stability on the individual systems
[21].

The following statement generalizes [6, Proposition 2] by
establishing boundedness of the network’s trajectories, for
arbitrary directed networks of heterogeneous semi-passive

systems, containing a spanning tree. The proof is provided
in [22].

Lemma 1: Consider a network of N interconnected dynam-
ical systems as in (1)-(2), with fi continuously differentiable,
admitting the origin as the unique equilibrium, and such that
each map νi 7→ χi is semi-passive. Assume, in addition, that
the network’s graph contains a directed spanning tree. Then,
the trajectories t 7→ χi(t), for all i ≤ N , solutions to (1)-(2),
are globally bounded . �

The statement of Lemma 1 follows from the observation that
by reordering the network’s states, in similar fashion as done
in [23] for weakly connected graphs, the Laplacian matrix
L may be transformed into that of a connected network that
consists in a spanning-tree of strongly-connected sub-graphs,
so the transformed Laplacian matrix possesses a convenient
lower-block-triangular form (see [22, Lemma 2]). Then, the
statement follows using a cascades argument, from the fact
that the trajectories of each strongly-connected sub-graph are
bounded (see the proof of [6, Proposition 2]) and remain
bounded under the effect of the interconnections (see [22,
Lemma 3]).

Assumptions 1 and 2 are also instrumental to cast the
analysis of (7) within the framework established in [6], which
builds on the recognition that the networked systems’ col-
lective behavior is dichotomous. It consists in two distinct
dynamical components that evolve in orthogonal spaces, that
of an emerging average system with state χs and that of the
synchronization errors ei, defined as the difference between the
dynamics of each individual system and the average dynamics,
i.e., ei := χi − χs. More precisely, χs is a weighted average
of χis, defined via the left-eigenvector corresponding to the
unique null eigenvalue of L. In particular, if the synchroniza-
tion manifold {i ≤ N : ei = 0} is asymptotically stable the
origin for the network system (7) is asymptotically stable if
and only if so is {χs = 0}.

In [24] it is recognized that global asymptotic stability of
the origin for (3) is possible for sufficiently large values of
σ. The analysis in this reference is based on the fact that the
average dynamics ẋs = fs(xs) evolves in scaled time t/σ,
that is, much slower than the synchronization dynamics. For
modular networks (7) the analysis starts with recognizing that
the presence of two different coupling strengths entails two
average dynamical systems, in addition to the synchronization
dynamics of the individual systems. The precise modeling
of these three dynamical systems is the subject of the next
section.

III. THREE-TIME-SCALES MODELING

We derive an equivalent representation of the modular-
network dynamics (7), under Assumptions 1 and 2, that is
suitable for a singular-perturbations-based analysis (see Sec-
tion IV). More precisely, we show that the following statement
holds. bk

Proposition 1: Consider the system (7) under Assumptions
1 and 2. Then, there exists a globally invertible transformation
x 7→ T (x) such that X := T (x) may be split as X =:
[x>e ζ> ξ>]>, with xe ∈ Rn, η ∈ R(m−1)n, and ξ ∈
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Rn(Nk−1)m, and the dynamics of X has the form

ẋe = fe(xe, η, ξ) (9a)

εE η̇ = −Λ̄Eη + εEfη(xe, η, ξ) (9b)

εI ξ̇ = − 1

λm(Λ̄I 2)
Λ̄Iξ + εIfξ(xe, η, ξ), (9c)

where fe, fη and fξ are continuously differentiable and
admit the origin {X = 0} as unique equilibrium, Λ̄E ∈
R(m−1)n×(m−1)n and Λ̄I ∈ R(N−m)n×(N−m)n are block-
diagonal positive-definite matrices, εE := 1/σE and εI :=

1

σIλm(Λ̄I 2)
. Thus, the dynamical system (7) admits the equiv-

alent representation (9) and the origin {X = 0} for (9) is
globally asymptotically stable if and only if so is the origin
{x = 0} for (7). �

The importance of Proposition 1, whose proof is presented
in Subsection C farther below, resides in the second statement,
which follows directly from the first, but is added for clarity
since it is used in Section IV to establish global asymptotic
stability for (3). The proof of the existence of T is constructive
and follows from the contents of the following two subsections
in which we exhibit the existence of the three dynamical
systems in (9), evolving in three different time-scales. The
fastest one corresponds to that in which the synchronization
errors within each module evolve; as we show in Subsection
III-A such errors are defined as a projection of the state ξ
in (9c) and are defined relative to a module’s average state.
We refer to the latter average dynamics and that of ξ as
the intra-modular dynamics. The second time scale, which is
moderately fast, corresponds to that of the synchronization
errors among the modules. Technically, these errors are a
projection of the state η in (9b). Then, a third and slowest
time scale corresponds to that in which the average of the
modules’ averages, represented by xe, evolves. The dynamics
evolving in the second and third time-scales constitute what
we call inter-modular dynamics.

A. Intra-modular dynamics

Let k be arbitrarily fixed and let us focus our attention
on the kth module. It consists in a connected (sub)network
with Laplacian LIk, Nk nodes, and contains a spanning tree
(Assumption 1). Therefore, LIk has a unique zero eigenvalue
and Nk− 1 others with positive real part. The null eigenvalue
has as an associated left eigenvector v`k := 1

Nk
1Nk , with

1Nk := [1 1 · · · 1]> and the other Nk − 1 eigenvalues admit
associated linearly independent eigenvectors that are gathered
in the matrix Qk ∈ RNk×(Nk−1). Therefore, LIk admits the
Jordan decomposition

LIk = Vk

[
0 0
0 ΛIk

]
V −1
k (10)

where ΛIk ∈ R(Nk−1)×(Nk−1) is positive definite and Vk ∈
RNk×Nk is the invertible transformation matrix Vk :=
[1Nk Qk]. Therefore,

V −1
k =:

[
v>`k
Q†k

]
. (11)

Then, akin to [24], we introduce a set of new state variables,
ζk ∈ Rn and ξk ∈ Rn(Nk−1), defined as[

ζk

ξk

]
:=

[
[v>`k ⊗ In]

[Q†k ⊗ In]

]
x̄k,

where x̄k := [x>k,1 x
>
k,2 . . . x>k,Nk ]>.

The state variable ζk may be regarded as the weighted
average of the kth module’s nodes’ states while, ξk is a
projection of the synchronization errors, ek, relative to that
average. More precisely, we define ek ∈ RnNk as

ek := x̄k − [1Nk ⊗ In]ζk (12)
= [Qk ⊗ In]ξk. (13)

Note that all the systems within the module synchronize
(that is, xk,i → xk,j) if and only if ek → 0 or, equivalently,
if and only if ξk → 0. If, in addition, for the average system
ζ̇k = [v>`k⊗In]x̄k we have ζk → 0, we conclude that xk,i → 0.
The same reasoning applies to the stronger property of global
asymptotic stability. Therefore, for our problem of interest, it
is crucial to study the dynamic evolution of ζk and ξk. To
that end, we gather these variables into the vectors ζ ∈ Rnm
and ξ ∈ Rn(Nk−1)m, defined as ζ := [ζ1 · · · ζm] and ξ :=
[ξ>1 · · · ξ>m]>. The latter satisfy[

ζ
ξ

]
=:

[
P † ⊗ In
Q† ⊗ In

]
x, (14)

where x is defined in (6), P ∈ RN×m is defined as

P = blockdiagk≤m{1Nk} (15)

—cf. [25], Q = blockdiagk≤m{Qk}, P = blockdiagk≤m{v`k}
and Q† = blockdiagk≤m{Q

†
k}. Note that, since 1Nk and the

columns of Qk form the orthogonal transformation Vk in (10),
we have 1>NkQk = 0, so P †Q = 0 and Q†P = 0, i.e., these
are zero-matrices of dimensions m × (Nk − 1)m and (Nk −
1)m×m, respectively. In turn, after (14) it follows that

x = P̄ ζ + Q̄ξ, (16)

where we defined P̄ := [P ⊗ In] and Q̄ := [Q ⊗ In]. Now,
differentiating on both sides of (14) and using (7) and (16),
we obtain

ζ̇ = P̄ †F
(
P̄ ζ + Q̄ξ

)
− σI P̄ †L̄I [P̄ ζ + Q̄ξ]

−σEP̄ †L̄E [P̄ ζ + Q̄ξ], (17)
ξ̇ = Q̄†F

(
P̄ ζ + Q̄ξ

)
− σIQ̄†L̄I [P̄ ζ + Q̄ξ

]
−σEQ̄†L̄E [P̄ ζ + Q̄ξ], (18)

where L̄I := [LI ⊗ In], and L̄E := [LE ⊗ In]. However, note
that LIk1Nk = 0, so LIP = P †LI = 0, while Q̄†L̄IQ̄ξ =
Λ̄Iξ. Thus, (17) and (18) become

ζ̇ = Fζ(ζ, ξ) (19a)

ξ̇ = −σI Λ̄Iξ + Fξ(ζ, ξ), (19b)

where Λ̄I := [ΛI ⊗ In] and ΛI ∈ R(N−m)×(N−m) is defined
as ΛI := blockdiagk≤m{ΛIk}, and

Fζ(ζ, ξ) = P̄ †F
(
P̄ ζ + Q̄ξ

)
− σEP̄ †L̄E

[
P̄ ζ + Q̄ξ

]
, (20)
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Fξ(ζ, ξ) = Q̄†F
(
P̄ ζ + Q̄ξ

)
− σEQ̄†L̄E

[
P̄ ζ + Q̄ξ

]
. (21)

Equation (19a) corresponds to the dynamics of a network of
modules, i.e., a network of sub-networks. On the synchroniza-
tion manifold {ξ = 0} each module may be assimilated to a
single node with dynamics2 ζ̇k = Fζk(ζ, 0), but note that the
dynamics of each module depend on that of other modules as
well, so Eq. (19a) constitutes a reduced network of m nodes—
cf. [26], [27], [28]. This is the inter-modular dynamics, which
we study in detail next.

B. Inter-modular dynamics
To assess the behavior of the reduced network (19a) we

start by applying on ζ a coordinate transformation similar
to that defined above and performed on x. To that end, we
observe that under Assumption 1 the network (19a) is also
connected and contains a directed spanning tree. Furthermore,
its associated Laplacian, which appears in the definition of
Fζ(ζ, ξ) above, is given by

L̃E :=


āE11 −āE12 · · · −āE1m

...
. . .

...
...

. . .
...

−āEm1 −āEm2 · · · āEmm

 , (22)

where, for any two modules indexed i and j, āEij := v>`iAij1nj
and Aij is the Ni×Nj block of LE gathering the edges from
the ith to the jth module.

Thus, since there exists a directed spanning tree in the
modules’ interconnection graph, L̃E admits the Jordan decom-
position

L̃E = W

[
0 0
0 ΛE

]
W−1, (23)

where W ∈ Rm×m is nonsingular, and ΛE ∈ R(m−1)×(m−1)

is the diagonal matrix defined by the eigenvalues of L̃E with
positive real part, that is, ΛE := diagi∈{2,3,··· ,m}{λi(L̃E)}.
As a matter of fact,

W = [1m W1], (24)

where W1 is full-column-rank, so it is left-invertible and W
has full rank. Therefore,

W−1 =:

[
w>`
W †1

]
. (25)

Next, we introduce the new state variables[
xe
η

]
=

[
w>` ⊗ In
W †1 ⊗ In

]
ζ, (26)

where xe ∈ Rn corresponds to the “weighted average of
averages ζk”, while η is a projection of all the synchroniza-
tion errors among modules, ζk − xe. That is, the vector of
synchronization errors corresponds to

eη := ζ − [1m ⊗ In]xe (27a)

2In [2] synchronization is defined as the property of individual systems
adopting a common trajectory s(t) which, in the present context, is solution
to ζ̇k = Fζk (ζ, 0), but s(t) is left undefined and is assumed to exist.

= [W1 ⊗ In]η. (27b)

All the states of the reduced network (of modules) reach
consensus with the xe-system if and only if η = 0. Thus,
the collective behavior of the reduced-network (19a) may be
fully assessed by studying the equivalent dynamical system
that results from differentiating on both sides of (26). That is,

ẋe = fe(xe, η, ξ) (28a)
η̇ = −σEΛ̄Eη + fη(xe, η, ξ), (28b)

where

fe(xe, η, ξ) = [w>` ⊗ In]Fζ(ζ, ξ), (29)

fη(xe, η, ξ) = W̄ †1 P̄
†Fζ(P̄ ζ + Q̄ξ)− σEW̄ †1 P̄ †L̄EQ̄ξ (30)

ζ = [1m ⊗ In]xe + [W1 ⊗ In]η, (31)

and Λ̄E := [ΛE ⊗ In]. Equation (28a) follows by direct
differentiation of xe = [w>` ⊗ In]ζ, using (26) and (19a). The
expression (31) follows from (27). Equation (28b), together
with (30), is obtained as follows. After (26), (19a), and (20),
we have

η̇ = W̄ †1 P̄
†F
(
P̄ ζ + Q̄ξ

)
− σEW̄ †1

[
P̄ †L̄EP̄ ζ + P̄ †L̄EQ̄ξ

]
.

Now, by definition—see (22)—P̄ †L̄EP̄ = [L̃E⊗In]. Then, af-
ter (31) and the fact that L̃E1m = 0, we have W̄ †1 P̄

†L̄EP̄ ζ =
W̄ †1 [L̃E ⊗ In]W̄1η. Then, after (23) and (24), we obtain
W̄ †1 [L̃E ⊗ In]W̄1 = Λ̄E .

C. Proof of Proposition 1
From the previous derivations we draw existence of two

positive-definite matrices Λ̄I and Λ̄E as required—see above
(20) and below (31), as well as below Eq. (23). Therefore, εE
and εI in the Proposition are positive. Furthermore, it is clear
that Eqs. (28) are equivalent to Eqs. (9a) and (9b) while Eq.
(9c), with

fξ(xe, η, ξ) = Fξ

(
[W ⊗ In]

[
xe
η

]
, ξ

)
, (32)

is equivalent to Eq. (19b). In addition, after (20), (21), (29),
(30), (32), and Assumption 2, it also follows that fe, fη , and
fξ are all continuously differentiable and admit the origin
as unique equilibrium point. It is left to show that after
the previous developments we have T (x) := T x, where
T ∈ RmNkn is a constant invertible matrix.

To that end, we observe that, on one hand, after (14), we
have ξ = [Q̄† ⊗ In]x and ζ = [P † ⊗ In]x, so from (26)
it follows that xe = [w>` ⊗ In][P † ⊗ In]x and η = [W †1 ⊗
In][P † ⊗ In]x. That is,xeη

ξ

 =

[w>` ⊗ In][P † ⊗ In]

[W †1 ⊗ In][P † ⊗ In]
Q† ⊗ In

x =: T x. (33)

On the other hand, after (27) we have ζ = [1m ⊗ In]xe +
[W1 ⊗ In]η, so using the latter in (16), we obtain that

x =
[

[P1m ⊗ In] [PW1 ⊗ In] [Q⊗ In]
]︸ ︷︷ ︸

=: T −1

xeη
ξ

 (34)
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Next, to verify that the product of the matrices in (33) and
(34) satisfy T T −1 = INkmn, we observe that

T T −1 =

w>` P †P1m w>` P
†PW1 w>` P

†Q

W †1P
†P1m W †1P

†PW1 W †1P
†Q

Q†P1m Q†PW1 Q†Q

⊗ In
and the 3 × 3 block-matrix on the right-hand side of the
expression above corresponds to INkm. The latter follows
from the fact that WW−1 = W−1W = P †P = Im and
Q†Q = I(Nk−1)m, so, after Eqs. (24) and (25), we have
w>` P

†P1m = 1, W †1P
†PW1 = Im−1, w>` P

†PW1 = 0 and
W †1P

†P1m = 0. All the other off-diagonal blocks also equal
to zero-matrices of appropriate dimensions since Q†P = 0
and P †Q = 0.

IV. NETWORK STABILITY ANALYSIS

In Section II we remarked that the networked system under
study, given by (3), may be rewritten in the form (7) in
which the different coupling strengths are made explicit. This
is done by a simple permutation of the nodes’ states. In
turn, Proposition 1 establishes a less straightforward equivalent
representation of (7) and, therefore, of the network (3), in a
form that exhibits three time scales and is suitable for analysis
using singular perturbations theory. This is given by Eqs. (9).

In this section we present our main statement on stability for
the network (3). For this, we rely on the analysis of (9), via the
following statement that establishes asymptotic stability of the
origin for all initial conditions laying in arbitrary compacts of
the state. This is a corollary of, but not a statement equivalent
to, [29, Theorem 11.3], that we include for ease of reference.
The proof is straightforward, so it is omitted.

Lemma 2 (corollary of Theorem 11.3 in [29]): Consider
the nonlinear autonomous singularly-perturbed system,

ẋ = f(x, z) (35a)
εż = Az + εg(x, z), (35b)

where x ∈ Rnx , z ∈ Rnz and A ∈ Rnz×nz Hurwitz. Assume
that the equilibrium (x, z) = (0, 0) is an isolated equilibrium
point and, for any R > 0, f and g are Lipschitz for all (x, z) ∈
BR, with BR := {(x, z) ∈ Rnx×nz : |x|2 + |z|2 < R2}, with
a Lipschitz constant L(R). In addition, assume that for each
R > 0 there exist positive definite decrescent functions V and
W : BR → R≥0, positive constants α1, α2, β, as well as
positive-definite functions φ1 : BR → R and φ2 : BR → R,
given by φ1(x) = |x|, φ2(z) = |z|, such that, for all (x, z) ∈
BR,

∂V

∂x
f(x, 0) ≤ −α1φ1(x)2, (36)

∂W

∂z
Az ≤ −α2φ2(z)2, (37)

∂V

∂x
[f(x, z)− f(x, 0)] ≤ βφ1(x)φ2(z). (38)

Let L1(R) > 0 and L2(R) > 0 be Lipschitz constants
satisfying, for all x ∈ BR and z ∈ BR,

|g(x, z)− g(0, z)| ≤ L1(R)|x|, (39a)
|g(0, z)| ≤ L2(R)|z|. (39b)

Then, for all ε < ε∗ := α1α2

α1L2(R)+βL1(R) > 0, the origin of
(35) is asymptotically stable and attractive to all trajectories
that are contained in BR. �

We are ready to present our main statement.
Theorem 1: (GAS of the networked system) Consider the

networked system (3) in its first equivalent representation (7)
and let Assumptions 1 and 2 hold. Consider, in addition, the
second equivalent singular-perturbation form (9), established
in Proposition 1, and assume that for any R > 0, there exists a
positive-definite decrescent, once continuously differentiable,
function Ve : Rn → R≥0 and positive constants q1 and c1,
such that

∂Ve
∂xe

fe(xe, 0, 0) ≤ −q1|xe|2 (40)∣∣∣∣∂Ve∂xe

∣∣∣∣ ≤ c1|xe|, (41)

for all x ∈ BR. Then, there exist σE
∗
> 0 and σI

∗
> 0 such

that, for all σI > σI
∗

and σE > σE
∗
, the origin for (7), and

equivalently for (3), is globally asymptotically stable. �

Proof: By Lemma 1 the solutions of the closed-loop system
(1)-(2), given by Eq. (3), or equivalently those of (7), are
globally bounded. That is, for any r > 0 there exist R > 0
such that

|x◦| ≤ r =⇒ |x(t)| < R, ∀t ≥ 0. (42)

In turn, in view of (14) and (26), xe(t), η(t), ξ(t) are
also globally bounded. For simplicity, subject to a possible
redefinition of R, we shall say that |xe(t)| < R, |η(t)| < R,
and |ξ(t)| < R for all t ≥ 0.

Then, the rest of the proof consists in applying Lemma 2
twice consecutively. One first time to show global asymptotic
stability of the origin for the inter-modular dynamics on the
synchronization manifold,

ẋe = fe(xe, η, 0) (43a)

η̇ = −σEΛ̄Eη + fη(xe, η, 0), (43b)

where fe and fη are defined in (29) and (30) respectively, and
a second time for the intra-modular dynamics

ẏ = fy(y, ξ), (44a)

ξ̇ = −σI Λ̄Iξ + gξ(y, ξ), (44b)

where y = [x>e η>]>,

gξ(y, ξ) = Fξ([W
† ⊗ In]y, ξ),

fy(y, ξ) :=

[
fe(xe, η, ξ)

−σEΛ̄Eη + fη(xe, η, ξ),

]
.

1) Stability of the inter-modular dynamics: We analyze the
system (43). To that end, we apply Lemma 2 with x := xe,
z := η, ε := 1/σE , f(x, z) := fe(xe, η, 0), g(x, z) :=
fη(xe, η, 0), and A := −Λ̄E . Next, consider (42). To verify
(36) we pose V (x) := Ve(xe) so, after (40), (36) holds for all
xe ∈ BR, with φ1(x) :=

√
q1|xe|. Next, under Assumption

1, −Λ̄E is Hurwitz, so there exists Pη = P>η > 0, such that
Λ̄E>Pη + PηΛ̄E = 2I . Therefore, (37) holds with W (z) :=
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η>Pηη and φ2(z) := |η|. Finally, condition (38) holds under
Assumption 2 and after (41). Indeed, after (29) and (31)

fe(xe, η, 0) = [v>` ⊗In]Fζ

(
P̄ [1m⊗In]xe+ P̄ [W1⊗In]η, 0

)
,

so invoking the Mean-value Theorem on each component of
Fζ( · ) above, we see that there exists c(R) such that the left-
hand side of (38) satisfies

∂Ve
∂xe

[fe(xe, η, 0)− fe(xe, 0, 0)] ≤ c1c|xe||η| (45)

for all (xe, η) ∈ BR. Therefore, (38) holds with β := c1c,
α1 =

√
q1 and α2 = 1. We conclude that for sufficiently

large σE∗ and any σE ≥ σE∗, the origin (xe, η) = (0, 0)
is asymptotically stable and all solutions that satisfy xe, (t),
η(t) ∈ BR converge to zero. Furthermore, since σE∗ = 1

ε ,
σE∗ :=

α1Lη2(R)+βLη1(R)
α1

, given the continuous differentia-
bility of fη in BR and the existence of Lη1(R) and Lη2(R)
satisfying (39) for g(x, z) = fη(xe, η, 0) with fη(0, 0, 0) = 0.
In other words, the origin is asymptotically stable for the inter-
modular dynamics (the reduced-order network), and the origin
is attractive on BR, provided that the individual systems in
each module Mk synchronize with their respective averages.
This is established next.

2) Stability of the intra-modular dynamics: We turn now our
attention to the overall system (28)-(44b), rewritten in the
equivalent form (9), so we can apply Lemma 2; this time,
with x := [x>e η>]>, z := ξ, g(x, z) := fξ(xe, η, ξ) in (32),
and

f(x, z) :=

[
fe(xe, η, ξ)

−σEΛ̄Eη + fη(xe, η, ξ)

]
.

Let V (x) := Ve(xe) + 1
2η
>Pηη, where Pη is defined in the

previous paragraph and Ve is defined in the statement of the
Theorem. Then, the left-hand side of Inequality (36) reads

∂V

∂x
f(x, 0) =

∂Ve
∂xe

fe(xe, 0, 0)

+
∂Ve
∂xe

[
fe(xe, η, 0)− fe(xe, 0, 0)

]
− σE

2
η>
[
Λ̄E>Pη + PηΛ̄E

]
η + η>Pηfη(0, η, 0)

+ η>Pη
[
fη(xe, η, 0)− fη(0, η, 0)

]
. (46)

The first term on the right-hand side of (46) satisfies (40) by
assumption; the second term satisfies (45); the third is bounded
by −σE |η|2. Then, under Assumption 2, fη(0, · , 0) is smooth
and fη(0, 0, 0) = 0, so by the Mean-value theorem (applied
component-wise) it follows that for any R > 0 and all η ∈ BR,
|fη(0, η, 0)| ≤ c3(R)|η|. After similar arguments and using
(30) and (31), we conclude that the last term on the right-
hand side of (46) satisfies

η>Pη[fη(xe, η, 0)− fη(0, η, 0)] ≤ c4|Pη||xe||η| (47)

for all (xe, η) ∈ BR. Thus, putting all these bounds together,
we obtain

∂V

∂x
f(x, 0) ≤ − q1|xe|2 + c1c|xe||η| − σE |η|2

+ c3|Pη||η|2 + c4|Pη||η||xe|,

so there exists β < 1, such that (36) holds with φ1(x) :=√
βmin{q1, σE}

∣∣[x>e η>]>
∣∣ and α1 =

√
βmin{q1, σE}.

The second inequality, (37), follows trivially with W (z) :=
1
2ξ
>Pξξ where Pξ = P>ξ solves the Lyapunov equation

Λ̄I>Pξ+PξΛ̄
I = 2I , which holds since −Λ̄I is Hurwitz. More

precisely, since σI = 1

λm(Λ̄I 2)εI
it follows that α2 = 1

λm(Λ̄I 2)
.

Finally, to see that Inequality (38) holds, we first observe
that the left-hand side of (38) equals to

∂Ve
∂xe

[
fe(xe, η, ξ)−fe(xe, η, 0)

]
+ η>Pη

[
fη(xe, η, ξ)− fη(xe, η, 0)

]
,

both of which, again by virtue of the differentiability of fe and
fη , satisfy upper bounds that are linear in |ξ| for all x ∈ BR
and all ξ ∈ BR. Thus, after (41), we have

∂V

∂x
[f(x, z)− f(x, 0)] ≤ c

[
c1|xe|+ |Pη||η|

]
|ξ|,

so, since max{|η|, |xe|} ≤ |x|, (38) follows with φ1(x) :=
α1|x|, φ2(z) := |ξ|, and β := cmax{c1, |Pη|}.

Finally, given the continuous differentiability of fξ in BR,
there exist Lξ1(R) and Lξ2(R) such that g(x, z) = fξ(xe, η, ξ)
with fξ(0, 0, 0) = 0 satisfies (39). Thus, we set σI∗ :=
α1Lξ2(R)+βLξ1(R)

α1α2
.

The statement of Theorem 1 follows. �

V. APPLICATION TO NETWORK STABILIZATION

Theorem 1 guarantees global asymptotic stability of the
origin, provided that Inequality (40) holds. In other words, if
the origin for the average dynamics (9a) on the synchronization
manifold {(η, ξ) = (0, 0)},

ẋe = fe(xe, 0, 0), (48)

is globally asymptotically stable. In this section we explore
two control methods to stabilize the origin for (7) in the case
that the average dynamics (48) is not GAS. The standing
assumption is that each control uk,i in (5a) may be endowed
with an additional input vk,i. That is, we redefine

uk,i = uIk,i + uEk,i + vk,i, (49)

so, in compact form, the network equation (7) becomes

ẋ = F (x)−σI [LI⊗In]x−σE [LE⊗In]x+v(x, xc), (50)

where the new input

v :=
[

[v>1,1 · · · v>1,N1
] · · · [v>m,1 · · · v>m,Nm ]

]>
depends on the network’s state x and a distributed dynamics
controller’s state xc to be defined.

We describe below two approaches that rely on modifying
both the network’s topology (and dimension) and the dynamics
of (48) to render the origin GAS. We do this by adding control
nodes to the network owing to two different strategies. The first
consists in adding nodes to selected modules and the second
consists in adding one or several whole control modules. The
new nodes may be regarded as dynamic controllers that are
added strategically using the coupling control inputs vk,i.

These control approaches are explained in further detail
below and illustrated in Figure 2.
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Fig. 2. Illustration of network control methods. Given a network of
three modules M1, M2 and M3 containing eight nodes each, one
control node is added to each module, and a whole control module,
M4, is added to the network. Original nodes are in red, while added
control nodes are in gray. Each module contains a directed spanning
tree (emphasized in red) and, also, there is a spanning tree connecting
M1 to modules M2 and M3. The two arcs colored in blue denote
interconnections added by control design to ensure that the overall
network is connected through a spanning tree.

A. Stabilization via control nodes added to modules

Let k ≤ M be arbitrarily fixed and let N ′k be a number of
added nodes to the kth module. Then, the dynamics of each
node originally present in the module, becomes

ẋk,i = fk,i(xk,i) + uIk,i + uEk,i + vk,i (51)

vk,i = −σI
N ′k∑
j=1

a′k,i,j(xk,i − xk,Nk+j), (52)

where

a′k,i,j :=

{
1 if there is an edge from (k, i) to (k, j)

0 otherwise;
(53)

that is, vk,i 6= 0 only for existing nodes interconnected to new
nodes. Furthermore, by convention, the states of the N ′k added
control nodes are labeled xk,Nk+j ∈ Rn and their individual
dynamics are given by

ẋk,Nk+j = fk,Nk+j(xk,Nk+j)−σI
Nk∑
i=1

a′k,j,i(xk,Nk+j −xk,i).

(54)
Eq. (54) represents the dynamics of the control nodes, i.e.,

xc in (50) is defined by all the applicable states xk,Nk+j . As a
result, the network (50) is transformed as follows. In compact
form, the state vector, augmented by the states of the new
nodes, corresponds to

x̃ :=
[
x>1,1 · · ·x>1,N1+1 · · ·x>1,N1+N ′1

· · ·x>m,1 · · ·x>m,Nm+N ′m

]
.

Then, proceeding as in Section II, akin to Eq. (7), we obtain
the dynamics equation for the augmented network,

˙̃x = F̃ (x̃)− σI [LI ⊗ In]x̃− σE [LE ⊗ In]x̃, (55)

where F̃ corresponds to the function F in (6) augmented
by the corresponding functions fk,Nk+j in (54); while LI ,

LE ∈ RN×N , with N := N+
∑M
k=1N

′
k are, respectively, the

augmented internal and external Laplacians, as per the defi-
nition introduced in Section II. Thus, the augmented system
(55) has the same structure as (7). In particular, the stability
of the origin {x̃ = 0} depends on the dynamics of the added
nodes (54) rendering the origin globally asymptotically stable
for the augmented average system, with {ξ = 0} and {η = 0}.
That is, for the system

ẋe =

m∑
k=1

Nk+N ′k∑
i=1

w`kv`kifk,i(xe), (56)

where w`, v`k are defined in the same way as in Section III for
the new matrices LI , LE . We conclude this reasoning with the
following statement, which stems directly from Theorem 1.

Corollary 1: Consider the networked system (50) under
Assumptions 1 and 2, with modified individual dynamics as
in (51)-(52) and the dynamic control extensions (54). Assume,
in addition, that the origin for (56) is globally asymptotically
stable and there exists a continuously differentiable Lyapunov
function Ve : Rn → R≥0 satisfying (40)-(41), with fe(xe, 0, 0)
corresponding to the right-hand side of (56). Then, there exist
σE
∗
> 0 and σI

∗
> 0 such that, for all σI > σI

∗
and

σE > σE
∗
, the origin for (55) system is GAS. �

Illustrative example: Consider a network of N = 24 Lorenz
oscillators with state xk,i := [xk,i yk,i zk,i]

> and dynamics

ẋk,i = Hk,i(xk,i)xk,i, Hk,i :=

−σk,i σk,i 0
ρk,i −1 −xk,i
0 xk,i −βk,i


where σk,i, βk,i, ρk,i are positive constants. Let these systems
be interconnected over a strongly connected directed network
that can be compartmentalized into m = 3 modules containing
each Nk = 8 nodes. Let each module k ∈ {1, 2, 3} constitute
a strongly-connected sub-network with Laplacian

LIk =



4 −1 −1 0 −1 0 −1 0
−1 4 −1 −1 0 −1 0 0
0 −1 4 −1 0 −1 −1 0
−1 −1 0 5 −1 −1 0 −1
−1 0 0 −1 3 −1 0 0
0 −1 0 −1 −1 5 −1 −1
0 0 −1 0 −1 0 3 −1
−1 0 −1 0 0 −1 0 3


. (57)

On the other hand, the elements of the external Lapla-
cian LE ∈ R24×24 are set to [LE ]1,1 = 2, [LE ]i,i =
1 for i ∈ {9, 17}, [LE ]i,j = −1 for all (i, j) ∈
{(1, 9), (1, 17), (9, 17), (17, 1)}, and [LE ]i,j = 0 otherwise.
LE contains mostly zero entries since the modules are sparsely
connected. As matter of fact, the network may be represented
as a strongly-connected network of modules. Then, the aver-
aged dynamics xe for this network yields

ẋe =

m∑
k=1

Nk∑
i=1

w`kv`kiHk,i(xe1)xe. (58)

For certain values of σk,i, βk,i, ρk,i, set differently for all
oscillators, the network reach consensus. That is, all oscillators
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converge to a stable equilibrium point, but different from the
origin.

To enforce the global stabilization of the origin, to each
module we add one node (i.e., N ′k = 1) with dynamics ẋk,9 =[
−αxk,9 −αyk,i 0

]>
and we interconnect it to the first and

third nodes. That is, in (51) we set

vk,i = −σI(xk,i − xk,9) ∀ i ∈ {1, 3} (59)

and vk,i = 0 for all i ∈ {2, 4, 5, 6, 7, 8}. Then, we obtain the
modified averaged dynamics, corresponding to the augmented
network,

ẋe =

m∑
k=1

Nk∑
i=1

w`kv`kiHk,i(xe1)xe

+

m∑
k=1

Nk+N ′k∑
i=Nk+1

w`kv`ki

−α−α
0

xe1 (60)

which corresponds to Eq. (56).
Now, let

σ∗ :=

m∑
k=1

Nk∑
i=1

w`kv`kiσk,i, ρ∗ :=

m∑
k=1

Nk∑
i=1

w`kv`kiρk,i,

ω∗1 :=

m∑
k=1

Nk∑
i=1

w`kv`ki, ω∗2 :=

m∑
k=1

Nk+N ′k∑
i=Nk+1

w`kv`ki,

Then, using these definitions, (60) becomes

ẋe =

−σ∗ − αω∗2 σ∗ 0
ρ∗ −αω∗2 − ω∗1 −ω∗1xe1
0 ω∗1xe1 −β∗

xe. (61)

It is left to set α so that the origin for (61) is GAS. To
that end, we remark that σ∗, ρ∗, ω∗1 and ω∗2 are all positive
since, for this example, so are w`k and v`ki. A straightforward
computation, using the Lyapunov function V(xe) = 1

2 ||xe||
2,

shows that V̇(xe) ≤ −q||xe||2, with q > 0, for any α >

max{ (ρ∗+σ∗)2−2σ∗

2ω∗2
,

(ρ∗+σ∗)2−2ω∗1
2ω∗2

}.
In Figure 3, we show the result of a simulation of the

augmented network as described above, with α = 30. It is
appreciated that the origin is asymptotically stable.
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Fig. 3. Trajectories of the closed-loop system in logarithmic time scale.
The solid lines represent the synchronization errors of the individual
nodes relative to the modules’ averages. The dotted lines represent the
synchronization errors of each module relative to the modules’ average.
The dashed line depicts the overall average system’s trajectories. In this
simulation we used σI = 5000, σE = 300
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Fig. 4. Trajectories of the closed-loop system in logarithmic time
scale, with σI = 5000, σE = 12470 > σI |LI |

|LE| . Since the
difference between σI and σE is relatively small, we observe only a
two-time-scale behavior. First, the trajectories synchronize, and then,
they converge to zero.
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Fig. 5. Trajectories of the closed-loop system in logarithmic time scale,
with σI = 5000, σE = 300. A three-time-scales behavior arises
since the difference between σI and σE is relatively large. First, the
trajectories synchronize within each module, then the modules’ average
trajectories synchronize, and finally, all the trajectories converge to zero.

Figure 4 shows the trajectories of the systems in the network
when Assumption 1 is not satisfied. In this case, the system’s
three time-scale behavior is reduced to a two time-scale
behavior. In fact, we can see in the figure that the network
nodes find general agreement whether they are of the same
module or different modules. This is in contrast to Fig 5, in
which we see that, initially, nodes of the same module find
local agreement, leading to the formation of three clusters. In
a second phase, the three trajectories merge, before stabilizing
at the origin.

B. Stabilization via added control modules

We present now the second control approach to stabilize
the origin for the network (7). It consists in adding new whole
modules with the aim, as in the previous section, to render the
origin GAS for the resulting average system corresponding to
the augmented network, on the synchronization manifold.

Let m′ denote the number of new modules. For each k′ ≤
m′, the dynamics of the ith node within the k′th module is
given by

ẋm+k′,i =fm+k′,i(xm+k′,i)

− σI
Nm+k′∑
l=1

bm+k′,i,l(xm+k′,i − xm+k′,l)
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− σE
m∑
k=1

Nk∑
j=1

a′′(m+k′,i),(k,j)(xm+k′,i − xk,j) (62)

where the coefficients bm+k′,i,l represent internal interconnec-
tions within the (m+ k′)th module, i.e.,

bm+k′,i,l :=


1 if there is an edge from (m+ k′, i) to

(m+ k′, l)

0 if otherwise.

The coefficients a′′(m+k′,i),(k,j) represent external interconnec-
tions from nodes within the new control modules to nodes in
the original network. That is,

a′′(m+k′,i),(k,j) :=


1 if there is an edge from the node (k, j)

to the node (m+ k′, i)

0 if otherwise.

Correspondingly, the coupling

vk,i = −σE
m′∑
k′=1

Nm+k′∑
j=1

a′′k,k′,i,j(xk,i − xm+k′,j) (63)

is added to the existing nodes in the original network. Note
that only for those existing nodes that are interconnected to
nodes within new modules vk,i 6= 0.

The state of the resulting augmented network is now x̃ :=[
x>1,1 · · · x>1,N1

· · · x>m+1,1 · · · x>m+m′,Nm+m′

]
. That is, the

augmented network in closed loop yields

˙̃x = F̃ (x̃)− σI [MI ⊗ In]x̃− σE [ME ⊗ In]x̃, (64)

where F̃ corresponds to the function F in (6) augmented by
the corresponding functions fm+k′,i in (62), MI and ME

are, respectively, the new internal and external Laplacians,
akin to LI and LE as per the definition of the latter below
(7). Hence, since the closed-loop system (64) has the same
structure as (7), the arguments in Section III apply. Notably,
one can compute eigenvectors w`k and v`ki as defined in (25)
and (11) applying the appropriate transformations (as per in
Section III) toMI andME . Then, the new average dynamics,
on the synchronization manifold, is

ẋe =

m+m′∑
k=1

Nk∑
i=1

w`kv`kifk,i(xe). (65)

From this reasoning we draw the following statement, which
follows directly from Theorem 1.

Corollary 2: Consider the networked system (50) with
modified dynamics as in (51), additional inputs (63) and the
dynamic control extensions (62). Let Assumptions 1 and 2
hold for the resulting augmented closed-loop system (64) and
assume, in addition, that the origin for the average system
(65) is globally asymptotically stable and there exists a con-
tinuously differentiable Lyapunov function:Ve : Rn → R≥0

satisfying (40)-(41). Then, there exists σE
∗
> 0 and σI

∗
> 0

such that, for all σI > σI
∗

and σE > σE
∗
, the origin of the

closed-loop system (64) is GAS. �

Illustrative example: To enforce global stabilization with the
second strategy, we add a control module to the original
network. This 4th module contains N4 = 8 nodes with
dynamics ẋ4,i =

[
− αx4,i − αy4,i 0

]>
, furthermore, we

consider that within this module, nodes are connected with
respect to the Laplacian (57). A directed link is added from the
first node of the control module to the first node of the other
modules k ∈ {1, 2, 3} and a directed link from the first node
of the third module to the first node of the control module.
That is, in (51) we set

vk,1 = −σE(xk,1 − x9,1) ∀k ∈ {1, 2, 3}, (66)

and vk,i = 0 for all i ∈ {2, 3, 4, 5, 6, 7, 8}. Finally, in (62),
only a′′(4,1),(3,1) = 1 and all other coefficients are set to zero.
The value of the control parameter α may be computed as for
the previous example. The systems’ trajectories are shown in
Figure 6 below.
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Fig. 6. Trajectories of the closed-loop system in logarithmic time scale,
with σI = 9000, σE = 900. As in Figure 5 a three-time-scales
behavior is appreciated, in view of the large discrepancy between σI

and σE .

Thus, it may be appreciated from Figures 5 and 6 that, in
spite of their simplicity, both control methods are efficacious
to globally stabilize the origin for heterogeneous modular
networks. In both figures the three-time scales behavior is
well apparent. Indeed, in a first stage, the fastest trajectories
ξ(t) converge while η(t) and xe(t) remain “constant” (on a
logarithmic scale—see Figure 3). Then, as ξ(t) approaches the
origin, η(t) converges as well, and xe(t) remains “constant”.
Finally, xe(t) vanishes too, after η(t) is close to zero.

VI. CONCLUSION

In large-scale networks having weighted interconnections,
modules may be formed. Specifically if among groups of
nodes the interconnections are considerably stronger and more
dense than between such groups. In view of the weight
discrepancy, such networks exhibit three time scales and may
be analyzed via singular-perturbations theory. We showed that
if the individual systems are semi-passive and the slowest
underlying dynamics are globally asymptotically stable (stabi-
lizable), so is the whole network.

The appearance of modular networks leads to the study
of a whole range of new control problems for networked
systems that deserve attention. In particular, the study of
orbital stability for directed modular networks is pertinent in
the context of synchronization of oscillators. An important
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extension yet to establish concerns networks under output
coupling and output synchronization.
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