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I. INTRODUCTION

Modular networks consist in sub-networks, called modules, of densely interconnected nodes, while the interconnections amongst these modules are comparatively weaker [START_REF] Steur | Coupling-modulated multi-stability and coherent dynamics in directed networks of heterogeneous nonlinear oscillators with modular topology[END_REF]- [START_REF] Morȃrescu | Coordination in networks of linear impulsive agents[END_REF]. The notion of grouping multiple agents in a single module has been employed extensively in diverse contexts, whether for undirected networks [START_REF] Biyik | Area aggregation and time scale modeling for sparse nonlinear networks[END_REF], [START_REF] Gfeller | Spectral coarse graining and synchronization in oscillator networks[END_REF], [START_REF] Romeres | Novel results on slow coherency in consensus and power networks[END_REF], or for directed networks [START_REF] Martin | Time scale modeling for consensus in sparse directed networks with time-varying topologies[END_REF], [START_REF] Morȃrescu | Dimension reduction for large-scale networked systems[END_REF]. Empirical observations have consistently revealed that, subject to certain topological conditions, agents within the same module tend to converge toward local consensus among themselves rapidly. However, achieving global consensus among modules transpires at a relatively slower pace when compared to intra-modular convergence. When the interconnection within modules is sufficiently high, obtaining a reduced model representing the overall emerging dynamics becomes feasible [START_REF] Romeres | Novel results on slow coherency in consensus and power networks[END_REF], [START_REF] Varma | Analysis and control of multileveled opinions spreading in social networks[END_REF].

In [START_REF] Maghenem | Singular-perturbations-based analysis of synchronization in heterogeneous networks: a case-study[END_REF] singular-perturbations theory is used to model a heterogeneous network with high coupling gain. As it is explained therein, the network dynamics can be separated into a slow system representing the emergent behavior of the network and a fast one representing synchronization errors. This two-time scale modeling approach provides insights into the emergent behavior of the network. Similarly, in [START_REF] Adhikari | An emerging dynamics approach for synchronization of linear heterogeneous agents interconnected over switching topologies[END_REF], singularperturbation techniques are applied to study interconnected A. Lazri is with L2S, CNRS, Univ Paris-Saclay, France (e-mail: anes.lazri@centralesupelec.fr) E. Panteley and A. Loría are with L2S, CNRS, (e-mail: {elena.panteley,antonio.loria}@cnrs.fr).

linear systems with switching interconnection topology and linear coupling. It is showed therein that when the coupling gain is sufficiently high, the synchronized behavior of the network can be approximated by a reduced-order switching system. This reduction in complexity allows for a simplified analysis of the network dynamics.

The idea of using time scale separation for sparse dynamic networks probably originates from [START_REF] Chow | Time scale modeling of sparse dynamic networks[END_REF], where a two-time scale model is developed to approximate the behavior of a modular network or sparsely connected modules of densely connected agents, specifically focusing on the consensus problem for linear systems. This concept is further expanded in [START_REF] Biyik | Area aggregation and time scale modeling for sparse nonlinear networks[END_REF], which investigates nonlinear networks with internally dense and externally sparse interconnections. The study emphasizes the synchronization of densely connected nodes within certain areas, which dominate the slow dynamics of the network.

In [START_REF] Adhikari | Three time scales modeling of the undirected clustered network[END_REF], for undirected networks of linear systems, the authors explore modular networks with linear dynamics and emphasize the presence of three-time scales in the synchronization of interconnected agents in modular networks. Then, under some assumptions, the network dynamics can be approximated using a two-parameter singular-perturbation form. The mean-field dynamics evolve on the slowest time scale, intra-modular dynamics on the fastest, and inter-modular dynamics are faster than mean-field but slower than intramodular dynamics. These insights enhance the understanding of multi-scale synchronization in modular networks.

In this paper we analyze modular networks using a tripletime-scale model and give mild sufficient conditions for global asymptotic stability of the origin. Relative to [START_REF] Adhikari | Three time scales modeling of the undirected clustered network[END_REF] we consider directed networks of heterogeneous nonlinear semi-passive [START_REF] Pogromsky | Synchronization and adaptive synchronization in semipassive systems[END_REF] systems. Relative to [START_REF] Maghenem | Singular-perturbations-based analysis of synchronization in heterogeneous networks: a case-study[END_REF] we consider networks evolving in three time scales. Moreover, we provide a control method to stabilize the network. The method is conceptually reminiscent of pinning control, which is a technique that involves controlling a subset of nodes to synchronize the entire network [START_REF] Yu | Synchronization via pinning control on general complex networks[END_REF]. However, such a strategy does not consider the multiple time-scale behavior of modular networks.

In Section II we present our standing hypotheses and give a preliminary statement on boundedness of solutions for generic directed networks; in Section III we describe the three-timescale model. Section IV we present our main statement on stability analysis; in Section V we describe our control method and provide illustrative examples. The paper is wrapped up with some concluding remarks, given in Section VI.

II. MODEL AND PROBLEM FORMULATION

Let us consider N nonlinear dynamical systems

χi = f i ( χ i ) + ν i , i ≤ N, χ i ∈ R n , (1) 
where the functions f i are continuously differentiable and ν i are inputs defined as

ν i := - N j=1 σ ij a ij ( χ i -χ j ), (2) 
where a ij represents the (in)existence of a link between two agents and σ ij represents the coupling strength. More precisely, a ij > 0 and σ ij > 0 if there is an interconnection arc from the jth node to the ith one and a ij = σ ij = 0 otherwise. In the case that all the interconnection strengths σ ij are equal, say σ ij =: σ, the networked system, in compact form, reads

χ = F( χ ) -σL χ , (3) 
where χ and F are vectors whose elements are χ i and f i , L is a Laplacian matrix, whose elements are defined as

i,j =          -a ij , i = j N = 1 = i a i , i = j, i, j ≤ N.
In this paper we consider the case in which certain links have an interconnection strength σ ij := σ I and for others σ ij := σ E , where σ I σ E ≥ σ * , where σ * > 0 is a certain threshold. In addition, it is assumed that there are many more arcs with strength σ I than with strength σ E . By virtue of this, the networked systems are naturally organized into densely interconnected modules that are sparsely interconnected among themselves. A well-known example of such network, which we refer to as modular, is that of power distribution [START_REF] Chow | Time scale modeling of sparse dynamic networks[END_REF].

We are primarily interested in investigating sufficient conditions to guarantee global asymptotic stability of the origin for modular networks, but also in devising control design strategies to stabilize the origin. To those ends, we start by introducing a more suitable model that consists in a (non-unique) modular network decomposition. Such model is defined by relabeling the network's nodes and the systems' states and introducing an adequate notation.

We consider that under the assumptions made above on the coupling strength, m modules are formed, labeled M k with k ≤ m, and each containing N k systems densely connected with high coupling strength. That is, each of such modules forms a sub-network of N k nonlinear systems, whose models (1) are rewritten using a notation that makes explicit the module-dependency, i.e.,

ẋk,i = f k,i (x k,i ) + u k,i , k ≤ m, i ≤ N k , (4) 
where x k,i ∈ R n denotes the state of the ith system within the kth module, and f k,i and u k,i define its dynamics and input respectively. Then, to distinguish the interconnection links depending on the coupling strength, the inputs are split in two parts as follows:

u k,i = u I k,i + u E k,i (5a) 
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Schematic representation of a directed modular network composed of m modules M k , each constituting a sub-network. Within each module the interconnections are "strong" and dense (represented by thick arrows) while among modules the interconnections are of lesser strength and more sparse (represented by thinner arrows). Each module contains a directed spanning tree-represented by red arrows within the modules and with a root node also in red. The overall network also contains a directed spanning tree-represented by dashed blue and solid red arrows and with an overall root node represented in blue. This node is first in the overall network so it is originally labeled χ 1see Eq. 1, but it does not necessarily correspond to the root of a module's spanning tree. Indeed, it corresponds to the 2nd node in the mth module, so its state is x m,1 in Eq. (4).

u I k,i = -σ I N k j=1 a Ik ij (x k,i -x k,j ), (5b) 
u E k,i = -σ E m = k = 1 N k j=1 a E ij (x k,i -x ,j ). (5c) 
In the previous expressions, a Ik ij and a E ij are zero-or positivevalued, depending on the existence or absence of a link between two nodes within one module or between two modules respectively-see Figure 1 for an illustration.

Then, in compact form, we define the vectors of rearranged nodes' states and dynamics,

x :=                 x 1,1 . . . x 1,N1    . . .    x m,1 . . . x m,Nm                 ∈ R N n , F (x) :=                 f 1,1 (x 1,1 ) . . . f 1,N1 (x 1,N1 )    . . .    f m,1 (x m,1 ) . . . f m,Nm (x m,Nm )                 (6) 
which contain all the states χ i and respective dynamics f i in (1), but not necessarily in the original order

[ χ 1 • • • χ N ] .
Note that x = T χ where T is a permutation matrix (hence invertible). With this notation, the closed-loop networked system (4)-( 5), takes the form,

ẋ = F (x) -σ I [L I ⊗ I n ]x -σ E [L E ⊗ I n ]x (7) 
where

v := [v 1,1 • • • v 1,N1 ] • • • [v m,1 • • • v m,Nm ] ,
and L I

and L E are Laplacian matrices defined as follows.

L I := blockdiag L I 1 L I 2 • • • L I m , (8a) 
L I k := Ik i,j (8b) 
Ik i,j :=          -a Ik ij , i = j N k = 1 = i a Ik i , i = j , (8c) 
where, for each fixed k ≤ m, a Ik ij > 0 if there is an interconnection arc from the jth node to the ith one within the kth module and a Ik ij = 0 otherwise; L E ∈ R N ×N , which corresponds to the intra-modular Laplacian, is defined as L E = L -L I , where L = T LT -1 . Both matrices L I and L E are Laplacians. Moreover, under the following assumption, L I k contains exactly one eigenvalue with null real part. Assumption 1 (topology): Each module M k individually forms a strongly-connected sub-network; its topology is captured by the Laplacian L I k with elements defined in (8c). Furthermore, both, the overall network and the network of modules, contain a spanning tree. In addition, the interconnection strengths satisfy

σ E |L E | < σ I |L I |, where | • | denotes the induced L 2 norm.
Remark 1: There is little loss of generality in assuming that each module M k is strongly connected because in the primary setting the modules are densely connected. The last part of Assumption 1 means that, for each agent, the intramodular influence is higher than the inter-modular influence. In other words, either the interconnections within modules are denser than the interconnections among them or the interaction weights inside modules is higher than among them.

The rest of the paper is devoted to the stability analysis of, and control design for, Equation [START_REF] Romeres | Novel results on slow coherency in consensus and power networks[END_REF] under Assumption 1.

To that end, we also pose the following hypothesis on the individual systems' dynamics.

Assumption 2 (regularity and passivity): For each pair (k, i), the function f k,i in (4) is continuously differentiable and admits the origin as a unique equilibrium. In addition, all the units (1) are semi-passive [START_REF] Pogromsky | Synchronization and adaptive synchronization in semipassive systems[END_REF] with respect to the input u k,i and the output x k,i , with continuously differentiable and radially unbounded storage functions V k,i : R → R ≥0 . That is, there exist positive definite and radially unbounded storage functions V k,i , positive constants ρ k,i , continuous functions H k,i , and non-negative continuous functions ψ k,i such that

Vk,i (x k,i ) ≤ x k,i u k,i -H k,i (x k,i ) and H k,i (x k,i ) ≥ ψ k,i (|x k,i |) for all |x k,i | ≥ ρ k,i .
The hypothesis of semi-passivity, which is little restrictive since it is satisfied by a number of physical systems, is useful to establish that the solutions of the networked system are bounded. The following self-contained statement generalizes [1, Proposition 2] by establishing boundedness of the network's trajectories, for arbitrary directed networks of heterogeneous semi-passive systems, containing a spanning tree. The proof is provided in [START_REF] Lazri | On the robustness of networks of heterogeneous semi-passive systems interconnected over directed graphs[END_REF].

Lemma 1: Consider a network of N interconnected dynamical systems as in ( 1)-( 2), with f i continuously differentiable, admitting the origin as the unique equilibrium, and such that each map ν i → χ i is semi-passive. Assume, in addition, that the network's graph contains a directed spanning tree. Then, the trajectories t → χ i (t), for all i ≤ N , solutions to (1)-( 2), are globally bounded .

The statement of Lemma 1 follows from the observation that by reordering the network's states, in similar fashion as done in [START_REF] Monaco | On multi-consensus and almost equitable graph partitions[END_REF] for weakly connected graphs, the Laplacian matrix L may be transformed into that of a connected network that consists in a spanning-tree of strongly-connected sub-graphs, so the transformed Laplacian matrix possesses a convenient lower-block-triangular form (see [START_REF] Lazri | On the robustness of networks of heterogeneous semi-passive systems interconnected over directed graphs[END_REF]Lemma 2]). Then, the statement follows using a cascades argument, from the fact that the trajectories of each strongly-connected sub-graph are bounded (see the proof of [1, Proposition 2]) and remain bounded under the effect of the interconnections (see [START_REF] Lazri | On the robustness of networks of heterogeneous semi-passive systems interconnected over directed graphs[END_REF]Lemma 3]).

Assumptions 1 and 2 are also instrumental to cast the analysis of ( 7) within the framework established in [START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF], which builds on the recognition that the networked systems' collective behavior is dichotomous. It consists in two distinct dynamical components that evolve in orthogonal spaces, that of an emerging average system with state χ s and that of the synchronization errors e i , defined as the difference between the dynamics of each individual system and the average dynamics, i.e., e i := χ i -χ s . More precisely, χ s is a weighted average of χ i s, defined via the left-eigenvector corresponding to the unique null eigenvalue of L. In particular, if the synchronization manifold {i ≤ N : e i = 0} is asymptotically stable the origin for the network system ( 7) is asymptotically stable if and only if so is { χ s = 0}.

In [START_REF] Maghenem | Singular-perturbations-based analysis of dynamic consensus in directed networks of heterogeneous nonlinear systems[END_REF] it is recognized that global asymptotic stability of the origin for (3) is possible for sufficiently large values of σ. The analysis in this reference is based on the fact that the average dynamics ẋs = f s (x s ) evolves in scaled time t/σ, that is, much slower than the synchronization dynamics. For modular networks [START_REF] Romeres | Novel results on slow coherency in consensus and power networks[END_REF] the analysis starts with recognizing that the presence of two different coupling strengths entails two average dynamical systems, in addition to the synchronization dynamics of the individual systems. Each of these three dynamics evolves in a different time-scale. The fastest time-scale corresponds to that in which the synchronization errors within modules evolve; we call this the intra-modular dynamics. The second time-scale, which is moderately fast, corresponds to that of the synchronization errors amongst the modules. Then, a third and slowest time scale, corresponds to that in which evolves the average of the modules' averages. The dynamics evolving in the second and third time-scales constitute what we call inter-modular dynamics. The precise modeling of these three dynamical systems is the subject of the next section.

III. THREE-TIME-SCALES MODELING

Consider the system (7) under Assumptions 1 and 2.

A. Intra-modular dynamics

Let k be arbitrarily fixed and let us focus our attention on the kth module. It consists in a connected (sub)network with Laplacian L I k , N k nodes, and contains a spanning tree (Assumption 1). Therefore, L I k has a unique zero eigenvalue and N k-1 others with positive real part. The null eigenvalue has as an associated left eigenvector

v k := 1 N k 1 N k , with 1 N k := [1 1 • • • 1]
and the other N k-1 eigenvalues admit associated linearly independent eigenvectors that are gathered in the matrix 1) . Therefore, L I k admits the Jordan decomposition

Q k ∈ R N k ×(N k -
L I k = V k 0 0 0 Λ I k V -1 k (9)
where

Λ I k ∈ R (N k -1)×(N k -1) is positive definite and V k ∈ R N k ×N k is the invertible transformation matrix V k := [1 N k Q k ]. Therefore, V -1 k =: v k Q † k . (10) 
Then, akin to [START_REF] Maghenem | Singular-perturbations-based analysis of dynamic consensus in directed networks of heterogeneous nonlinear systems[END_REF], we introduce a set of new state variables,

ζ k ∈ R n and ξ k ∈ R nN k-1 , defined as ζ k ξ k := [v k ⊗ I n ] [Q † k ⊗ I n ]
xk ,

where xk := [x k,1 x k,2 . . . x k,N k ] .
The state variable ζ k may be regarded as the weighted average of the kth module's nodes' states while, ξ k is a projection of the synchronization errors, e k , relative to that average. More precisely, we define e k ∈ R nN k as

e k := xk -[1 N k ⊗ I n ]ζ k (11) = [Q k ⊗ I n ]ξ k . ( 12 
)
Note that all the systems within the module synchronize (that is, x k,i → x k,j ) if and only if e k → 0 or, equivalently, if and only if ξ k → 0. If, in addition, for the average system ζk = [v k ⊗I n ]x k we have ζ k → 0, we conclude that x k,i → 0. The same reasoning applies to the stronger property of global asymptotic stability. Therefore, for our problem of interest, it is crucial to study the dynamic evolution of ζ k and ξ k . To that end, we gather these variables into the vectors ζ ∈ R nm and ξ ∈ R nN k-1 m , defined as

ζ := [ζ 1 • • • ζ m ] and ξ := [ξ 1 • • • ξ m ] . The latter satisfy ζ ξ =: P † ⊗ I n Q † ⊗ I n x, ( 13 
)
where x is defined in (6), P ∈ R N ×m is defined as

P = blockdiag k≤m {1 N k } (14) 
-cf. [START_REF] Monshizadeh | Projectionbased model reduction of multi-agent systems using graph partitions[END_REF],

Q = blockdiag k≤m {Q k }, P = blockdiag k≤m {v k } and Q = blockdiag k≤m {Q † k }. Note that, since 1 N k and the columns of Q k form the orthogonal transformation V k in (9), we have 1 N k Q k = 0, so P † Q = Q † P = 0.
In turn, after (13) it follows that

x = P ζ + Qξ, (15) 
where we defined P := [P ⊗ I n ] and

Q := [Q ⊗ I n ]
. Now, differentiating on both sides of (13) and using ( 7) and ( 15), we obtain

ζ = P † F P ζ + Qξ -σ I P † LI [ P ζ + Qξ] -σ E P † LE [ P ζ + Qξ], (16) ξ 
= Q † F P ζ + Qξ -σ I Q † LI [ P ζ + Qξ -σ E Q † LE [ P ζ + Qξ], (17) 
where LI := [L I ⊗ I n ], and LE := [L E ⊗ I n ]. However, note that L I k 1 N k = 0, so L I P = P † L I = 0, while Q † LI Qξ = ΛI ξ. Thus, ( 16) and ( 17) become

ζ = F ζ (ζ, ξ) (18a) ξ = -σ I ΛI ξ + F ξ (ζ, ξ), (18b) 
where

ΛI := [Λ I ⊗ I n ] and Λ I ∈ R (N -m)×(N -m) is defined as Λ I := blockdiag k≤m {Λ I k }, and F ζ (ζ, ξ) = P † F P ζ + Qξ -σ E P † LE P ζ + Qξ , (19) F ξ (ζ, ξ) = Q † F P ζ + Qξ -σ E Q † LE P ζ + Qξ . (20)
Equation (18a) corresponds to the dynamics of a network of modules, i.e., a network of sub-networks. On the synchronization manifold {ξ = 0} each module may be assimilated to a single node with dynamics ζk = F ζ k (ζ, 0), but note that the dynamics of each module depends on that of other modules as well, so Eq. (18a) constitutes a reduced network of m nodescf. [START_REF] Yu | Synchronization preserving model reduction of multi-agent network systems by eigenvalue assignments[END_REF], [START_REF] Besselink | Clustering-based model reduction of networked passive systems[END_REF], [START_REF] Cheng | Balanced truncation of networked linear passive systems[END_REF]. This is the inter-modular dynamics, which we study in detail next.

B. Inter-modular dynamics

To assess the behavior of the reduced network (18a) we start by applying on ζ a coordinate transformation similar to that defined above and performed on x. To that end, we observe that under Assumption 1 the network (18a) is also connected and contains a directed spanning tree. Furthermore, its associated Laplacian, which appears in the definition of F ζ (ζ, ξ) above, is given by

LE :=       āE 11 -ā E 12 • • • -ā E 1m . . . . . . . . . . . . . . . . . . -ā E m1 -ā E m2 • • • āE mm       , (21) 
where, for any two modules indexed i and j, āE ij := v i A ij 1 nj and A ij is the N i × N j block of L E gathering the edges from the ith to the jth module.

Thus, since there exists a directed spanning tree in the modules' interconnection graph, LE admits the Jordan decomposition

LE = W 0 0 0 Λ E W -1 , (22) 
where W ∈ R m×m is nonsingular, and

Λ E ∈ R (m-1)×(m-1)
is the diagonal matrix defined by the eigenvalues of LE with positive real part, that is,

Λ E := diag i∈{2,3,••• ,m} {λ i ( LE )}.
As a matter of fact,

W = [1 m W 1 ], (23) 
where W 1 is full-column-rank, so it is left-invertible and W has full rank. Therefore,

W -1 =: w W † 1 . (24) 
Next, we introduce the new state variables

x e η = w ⊗ I n W † 1 ⊗ I n ζ, (25) 
where x e ∈ R n corresponds to the "weighted average of averages ζ k ", while η is a projection of all the synchronization errors among modules, ζ k -x e . That is, the vector of synchronization errors corresponds to

e η := ζ -[1 m ⊗ I n ]x e (26a) = [W 1 ⊗ I n ]η. ( 26b 
)
All the states of the reduced network (of modules) reach consensus with the x e -system if and only if η = 0. Thus, the collective behavior of the reduced-network (18a) may be fully assessed by studying the equivalent dynamical system that results from differentiating on both sides of (25). That is,

ẋe = f e (x e , η, ξ) (27a) η = -σ E ΛE η + f η (x e , η, ξ), (27b) 
where 

f e (x e , η, ξ) = [w ⊗ I n ]F ζ (ζ, ξ), (28) 
f η (x e , η, ξ) = W † 1 P † F ζ ( P ζ + Qξ) -σ E W † 1 P † LE Qξ (29) ζ = [1 m ⊗ I n ]x e + [W 1 ⊗ I n ]η, (30) 

C. Multi-timescale overall network dynamics

After the previous developments, we see that the network model ( 7) is equivalent to Eqs. ( 27) and (18b). Now we define the singular parameter ε E := 1/σ E and the ratio of influence among and within modules, µ :=

σ E σ I λm( ΛI 2
) , where λ m ( • ) denotes the smallest eigenvalue. Then, we introduce the second singular parameter ε

I := µε E = 1 σ I λm( ΛI 2
) , so the system may be written as ẋe = f e (x e , η, ξ) (31a)

ε E η = -ΛE η + ε E f η (x e , η, ξ) (31b) 
ε I ξ = - 1 λ m ( ΛI 2 ) ΛI ξ + ε I f ξ (x e , η, ξ), (31c) 
where f η is defined in (28) and, after ( 23), (33), and (30),

f ξ (x e , η, ξ) = F ξ [W ⊗ I n ] x e η , ξ (32) 
The system (31) is in standard singular-perturbation form [START_REF] Khalil | Nonlinear systems; 3rd ed[END_REF], albeit with three-time scales. As explained at the end of Section II, there co-exist three dynamical systems: Eq. (31a), which is the slowest, corresponds to the weighted average of all nodes' states; Eq. (31b), which is moderately fast, corresponds to the projection of the inter-modular synchronization errors e η -see (26). Eq. (31c), which is the fastest, corresponds to a projection of the intra-modular synchronization errors e k -see [START_REF] Maghenem | Singular-perturbations-based analysis of synchronization in heterogeneous networks: a case-study[END_REF].

In the next section we present our main statement on stability for [START_REF] Romeres | Novel results on slow coherency in consensus and power networks[END_REF]; we rely on the analysis of (31), via the following lemma that establishes asymptotic stability of the origin for (31), on arbitrary compacts of the state.

Lemma 2 (corollary of Theorem 11.3 in [START_REF] Khalil | Nonlinear systems; 3rd ed[END_REF]): Consider the nonlinear autonomous singularly-perturbed system,

ẋ = f (x, z) (33a) ε ż = Az + εg(x, z), (33b) 
where x ∈ R nx , z ∈ R nz and A ∈ R nz×nz Hurwitz. Assume that the equilibrium (x, z) = (0, 0) is an isolated equilibrium point and, for any R > 0, f and g are Lipschitz for all

(x, z) ∈ B R , with B R := {(x, z) ∈ R nx×nz : |x| 2 + |z| 2 < R 2 }, with a Lipschitz constant L(R).
In addition, assume that for each R > 0 there exist positive definite decrescent functions V and W : B R → R ≥0 , positive constants α 1 , α 2 , β, as well as positive-definite functions

φ 1 : B R → R and φ 2 : B R → R, given by φ 1 (x) = |x|, φ 2 (z) = |z|, such that, for all (x, z) ∈ B R , ∂V ∂x f (x, 0) ≤ -α 1 φ 1 (x) 2 , (34) 
∂W ∂z Az ≤ -α 2 φ 2 (z) 2 , ( 35 
) ∂V ∂x [f (x, z) -f (x, 0)] ≤ βφ 1 (x)φ 2 (z). (36) 
Let L 1 (R) > 0 and L 2 (R) > 0 be Lipschitz constants satisfying, for all x ∈ B R and z ∈ B R ,

|g(x, z) -g(0, z)| ≤ L 1 (R)|x|, (37a) |g(0, z)| ≤ L 2 (R)|z|. (37b) 
Then, for all ε < ε * := α1α2 α1L2(R)+βL1(R) > 0, the origin of (33) is asymptotically stable and attractive to all trajectories that are contained in B R .

Proof: Lemma 2 is a corollary of Theorem 11.3 in [START_REF] Khalil | Nonlinear systems; 3rd ed[END_REF]. First, we recall that for the singularly-perturbed system (33), h(x) , the quasi-steady-state, is obtained by solving equation (33b) for = 0. Since A is Hurwitz by assumption, h(x) = 0.

Next, [START_REF] Khalil | Nonlinear systems; 3rd ed[END_REF]Theorem 11.3] establishes the asymptotic stability of (x, y) = (0, 0), where y = z -h(x). Then, for h(x) = 0, the result is valid for (x, z) = (0, 0) and [START_REF] Khalil | Nonlinear systems; 3rd ed[END_REF]Theorem 11.3] can be used for the asymptotic stability of the origin (x, z) for the system (33).

Furthermore, notice that (11.39), (11.40) and (11.43) in [START_REF] Khalil | Nonlinear systems; 3rd ed[END_REF] are equivalent to (34)-(36), for h(x) = 0 and y = z. Hence, [START_REF] Khalil | Nonlinear systems; 3rd ed[END_REF]Eq. (11.44)] is satisfied since the boundary-layer system, dz dτ = Az with τ = t/ depends only on z and so does the function W (z) associated with it. Finally, given the particular form of the system (33) and the satisfaction of (37) by assumption, we recover [24, Eq. (11.46)] with β 2 = L 1 (R) and γ = L 2 (R).

IV. NETWORK STABILITY ANALYSIS

Theorem 1: Consider the networked system (7) under Assumptions 1 and 2, and in its equivalent form (27)-(18b). Assume that for any R > 0, there exists a positive-definite decrescent, once continuously differentiable, function V e : R n → R ≥0 and positive constants q 1 and c 1 , such that ∂V e ∂x e f e (x e , 0, 0) ≤ -q 1 |x e | 2 (38)

∂V e ∂x e ≤ c 1 |x e |, (39) 
for all x ∈ B R . Then, there exist σ E * > 0 and σ I * > 0 such that, for all σ I > σ I * and σ E > σ E * , the origin for ( 7) is globally asymptotically stable.

Proof: By Lemma 1 the solutions of ( 1)-( 2), equivalently those of [START_REF] Romeres | Novel results on slow coherency in consensus and power networks[END_REF], are globally bounded, that is, for any r > 0 there exist R > 0 such that

|x • | ≤ r =⇒ |x(t)| < R, ∀t ≥ 0. (40) 
In turn, in view of ( 13) and ( 25), x e (t), η(t), ξ(t) are also globally bounded. For simplicity, subject to a possible redefinition of R, we shall say that |x e (t)| < R, |η(t)| < R, and |ξ(t)| < R for all t ≥ 0.

Then, the rest of the proof consists in applying Lemma 2 twice consecutively. One first time to show global asymptotic stability of the origin for the inter-modular dynamics on the synchronization manifold, ẋe = f e (x e , η, 0) (41a)

η = -σ E ΛE η + f η (x e , η, 0), (41b) 
where f e and f η are defined in (28) and (29) respectively, and a second time for the intra-modular dynamics

ẏ = f y (y, ξ), (42a) ξ = -σ I ΛI ξ + ξ), (42b) 
where y = [x e η ] ,

g ξ (y, ξ) = F ξ ([W † ⊗ I n ]y, ξ), f y (y, ξ) := f e (x e , η, ξ) -σ E ΛE η + f η (x e , η, ξ), . 
1) Stability of the inter-modular dynamics: We analyze the system (41). To that end, we apply Lemma 2 with x := x e , z := η, ε := 1/σ E , f (x, z) := f e (x e , η, 0), g(x, z) := f η (x e , η, 0), and A := -ΛE . Next, consider (40). To verify (34) we pose V (x) := V e (x e ) so, after (38), (34) holds for all x e ∈ B R , with φ 1 (x) := √ q 1 |x e |. Next, under Assumption 1, -ΛE is Hurwitz, so there exists P η = P η > 0, such that ΛE P η + P η ΛE = 2I. Therefore, (35) holds with W (z) := η P η η and φ 2 (z) := |η|. Finally, condition (36) holds under Assumption 2 and after (39). Indeed, after (28) and ( 30) for all (x e , η) ∈ B R . Therefore, (36) holds with β := c 1 c, α 1 = √ q 1 and α 2 = 1. We conclude that for sufficiently large σ E * and any σ E ≥ σ E * , the origin (x e , η) = (0, 0) is asymptotically stable and all solutions that satisfy x e , (t), η(t) ∈ B R converge to zero. Furthermore, since

f e (x e , η, 0) = [v ⊗ I n ]F ζ P [1 m ⊗ I n ]x e + P [W 1 ⊗ I n ]η, 0 ,
σ E * = 1 ε , σ E * := α1Lη2(R)+βLη1(R) α1
, given the continuous differentiability of f η in B R and the existence of L η1 (R) and L η2 (R) satisfying (37) for g(x, z) = f η (x e , η, 0) with f η (0, 0, 0) = 0. In other words, the origin is asymptotically stable for the intermodular dynamics (the reduced-order network), and the origin is attractive on B R , provided that the individual systems in each module M k synchronize with their respective averages. This is established next.

2) Stability of the intra-modular dynamics: We turn now our attention to the overall system ( 27)-(42b), rewritten in the equivalent form (31), so we can apply Lemma 2; this time, with x := [x e η ] , z := ξ, g(x, z) := f ξ (x e , η, ξ) in (32), and η,ξ) .

f (x, z) := f e (x e , η, ξ) -σ E ΛE η + f η (x e ,
Let V (x) := V e (x e ) + 1 2 η P η η, where P η is defined in the previous paragraph and V e is defined in the statement of the Theorem. Then, the left-hand side of Inequality (34) reads

∂V ∂x f (x, 0) = ∂V e ∂x e f e (x e , 0 , 0) 
+ ∂V e ∂x e f e (x e , η, 0) -f e (x e , 0, 0)

- σ E 2 η ΛE P η + P η ΛE η + η P η f η (0, η, 0) + η P η f η (x e , η, 0) -f η (0, η, 0) . ( 44 
)
The first term on the right-hand side of (44) satisfies (38) by assumption; the second term satisfies (43); the third is bounded by -σ E |η| 2 . Then, under Assumption 2, f η (0, • , 0) is smooth and f η (0, 0, 0) = 0, so by the Mean-value theorem (applied component-wise) it follows that for any R > 0 and all η ∈ B R ,

|f η (0, η, 0)| ≤ c 3 (R)|η|.
After similar arguments and using ( 29) and (30), we conclude that the last term on the righthand side of (44) satisfies

η P η [f η (x e , η, 0) -f η (0, η, 0)] ≤ c 4 |P η ||x e ||η| (45) 
for all (x e , η) ∈ B R . Thus, putting all these bounds together, we obtain

∂V ∂x f (x, 0) ≤ -q 1 |x e | 2 + c 1 c|x e ||η| -σ E |η| 2 + c 3 |P η ||η| 2 + c 4 |P η ||η||x e |,
so there exists β < 1, such that (34) holds with φ 1 (x) :=

β min{q 1 , σ E } [x e η ] and α 1 = β min{q 1 , σ E }.
The second inequality, (35), follows trivially with W (z) := 

I = 1 λm( ΛI 2 )ε I it follows that α 2 = 1 λm( ΛI 2
) .

Finally, to see that Inequality (36) holds, we first observe that the left-hand side of (36) equals to ∂V e ∂x e f e (x e , η, ξ)-f e (x e , η, 0) + η P η f η (x e , η, ξ) -f η (x e , η, 0) , both of which, again by virtue of the differentiability of f e and f η , satisfy upper bounds that are linear in |ξ| for all x ∈ B R and all ξ ∈ B R . Thus, after (39), we have Finally, given the continuous differentiability of f ξ in B R , there exist L ξ1 (R) and L ξ2 (R) such that g(x, z) = f ξ (x e , η, ξ) with f ξ (0, 0, 0) = 0 satisfies (37). Thus, we set σ I * :=

∂V ∂x [f (x, z) -f (x, 0)] ≤ c
α1L ξ2 (R)+βL ξ1 (R) α1α2
. The statement of Theorem 1 follows.

V. APPLICATION TO NETWORK STABILIZATION

Theorem 1 guarantees global asymptotic stability of the origin, provided that Inequality (38) holds. In other words, if the origin for the average dynamics (31a) on the synchronization manifold {(η, ξ) = (0, 0)}, ẋe = f e (x e , 0, 0),

is globally asymptotically stable. In this section we explore two control methods to stabilize the origin for [START_REF] Romeres | Novel results on slow coherency in consensus and power networks[END_REF] in the case that the average dynamics (46) is not GAS. The standing assumption is that each control u k,i in (5a) may be endowed with an additional input v k,i . That is, we redefine

u k,i = u I k,i + u E k,i + v k,i , (47) 
so, in compact form, the network equation ( 7) becomes

ẋ = F (x) -σ I [L I ⊗ I n ]x -σ E [L E ⊗ I n ]x + v(x, x c ), (48) 
where the new input

v := v 1,1 • • • v 1,N1 • • • v m,1 • • • v m,Nm
depends on the network's state x and a distributed dynamics controller's state x c to be defined. We describe below two approaches that rely on modifying both the network's topology (and dimension) and the dynamics of (46) to render the origin GAS. We do this by adding control nodes to the network owing to two different strategies. The first consists in adding nodes to selected modules and the second consists in adding one or several whole control modules. The new nodes may be regarded as dynamic controllers that are added strategically using the coupling control inputs v k,i .

These control approaches are explained in further detail below and illustrated in Figure 2.

A. Stabilization via control nodes added to modules

Let k ≤ M be arbitrarily fixed and let N k be a number of added nodes to the kth module. Then, the dynamics of each node originally present in the module, becomes Original nodes are in red, control modules are in gray and blue. Note that each module contains a directed spanning tree (emphasized in red). Also a spanning tree exists from modules M 1 to modules M 2 and M 3 . However, the overall network does not have a spanning tree without the added blue control node no. 9 in M 2 and the added blue links or the module M 4 .

ẋk,i = f k,i (x k,i ) + u I k,i + u E k,i + v k,i (49) 
v k,i = -σ I N k j=1 a k,i,j (x k,i -x k,N k +j ), (50) 
where

a k,i,j := 1 if there is an edge from (k, i) to (k, j) 0 otherwise; (51) 
that is, v k,i = 0 only for existing nodes interconnected to new nodes. Furthermore, by convention, the states of the N k added control nodes are labeled x k,N k +j ∈ R n and their individual dynamics are given by

ẋk,N k +j = f k,N k +j (x k,N k +j ) -σ I N k i=1 a k,j,i (x k,N k +j -x k,i ).
(52) Eq. ( 52) represents the dynamics of the control nodes, i.e., x c in (48) is defined by all the applicable states x k,N k +j . As a result, the network (48) is transformed as follows. In compact form, the state vector, augmented by the states of the new nodes, corresponds to

x := x 1,1 • • • x 1,N1+1 • • • x 1,N1+N 1 • • • x m,1 • • • x m,Nm+N m .
Then, proceeding as in Section II, akin to Eq. ( 7), we obtain the dynamics equation for the augmented network,

ẋ = F (x) -σ I [L I ⊗ I n ]x -σ E [L E ⊗ I n ]x, (53) 
where F corresponds to the function F in (6) augmented by the corresponding functions f k,N k +j in (52); while L I , L E ∈ R N ×N , with N := N + M k=1 N k are, respectively, the augmented internal and external Laplacians, as per the definition introduced in Section II. Thus, the augmented system (53) has the same structure as [START_REF] Romeres | Novel results on slow coherency in consensus and power networks[END_REF]. In particular, the stability of the origin {x = 0} depends on the dynamics of the added nodes (52) rendering the origin globally asymptotically stable for the augmented average system, with {ξ = 0} and {η = 0}. That is, for the system

ẋe = m k=1 N k +N k i=1 w k v ki f k,i (x e ), (54) 
where w , v k are defined in the same way as in Section III for the new matrices L I , L E . We conclude this reasoning with the following statement, which stems directly from Theorem 1.

Corollary 1: Consider the networked system (48) under Assumptions 1 and 2, with modified individual dynamics as in ( 49)-( 50) and the dynamic control extensions (52). Assume, in addition, that the origin for (54) is globally asymptotically stable and there exists a continuously differentiable Lyapunov function V e : R n → R ≥0 satisfying (38)-(39), with f e (x e , 0, 0) corresponding to the right-hand side of (54). Then, there exist σ E * > 0 and σ I * > 0 such that, for all σ I > σ I * and σ E > σ E * , the origin for (53) system is GAS. Illustrative example: Consider a network of N = 24 Lorenz oscillators with state x k,i := [x k,i y k,i z k,i ] and dynamics

ẋk,i = H k,i (x k,i )x k,i , H k,i :=   -σ k,i σ k,i 0 ρ k,i -1 -x k,i 0 x k,i -β k,i  
where σ k,i , β k,i , ρ k,i are positive constants. Let these systems be interconnected over a strongly connected directed network that can be compartmentalized into m = 3 modules containing each N k = 8 nodes. Let each module k ∈ {1, 2, 3} constitute a strongly-connected sub-network with Laplacian

L I k =             4 -1 -1 0 -1 0 -1 0 -1 4 -1 -1 0 -1 0 0 0 -1 4 -1 0 -1 -1 0 -1 -1 0 5 -1 -1 0 -1 -1 0 0 -1 3 -1 0 0 0 -1 0 -1 -1 5 -1 -1 0 0 -1 0 -1 0 3 -1 -1 0 -1 0 0 -1 0 3             . ( 55 
)
On the other hand, the elements of the external Laplacian [START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF][START_REF] Lazri | On the robustness of networks of heterogeneous semi-passive systems interconnected over directed graphs[END_REF], [START_REF] Morȃrescu | Dimension reduction for large-scale networked systems[END_REF][START_REF] Lazri | On the robustness of networks of heterogeneous semi-passive systems interconnected over directed graphs[END_REF], (17, 1)}, and [L E ] i,j = 0 otherwise. L E contains mostly zero entries since the modules are sparsely connected. As matter of fact, the network may be represented as a strongly-connected network of modules, as shown in Figure 3. Then, the averaged dynamics x e for this network yields

L E ∈ R 24×24 are set to [L E ] 1,1 = 2, [L E ] i,i = 1 for i ∈ {9, 17}, [L E ] i,j = -1 for all (i, j) ∈ {(1, 9),
ẋe = m k=1 N k i=1 w k v ki H k,i (x e1 )x e . ( 56 
)
For certain values of σ k,i , β k,i , ρ k,i , set differently for all oscillators, the network reach consensus. That is, all oscillators converge to a stable equilibrium point, but different from the origin.

To enforce the global stabilization of the origin, to each module we add one node (i.e., N k = 1) with dynamics ẋk,9 = -αx k,9 -αy k,i 0 and we interconnect it to the first and third nodes. That is, in (49) we set

v k,i = -σ I (x k,i -x k,9 ) ∀ i ∈ {1, 3} (57) 
and v k,i = 0 for all i ∈ {2, 4, 5, 6, 7, 8}. Then, we obtain the modified averaged dynamics, corresponding to the augmented network,

ẋe = m k=1 N k i=1 w k v ki H k,i (x e1 )x e + m k=1 N k +N k i=N k +1 w k v ki   -α -α 0   x e1 (58) 
which corresponds to Eq. ( 54). Now, let

σ * := m k=1 N k i=1 w k v ki σ k,i , ρ * := m k=1 N k i=1 w k v ki ρ k,i , ω * 1 := m k=1 N k i=1 w k v ki , ω * 2 := m k=1 N k +N k i=N k +1 w k v ki ,
Then, using these definitions, (58) becomes

ẋe =   -σ * -αω * 2 σ * 0 ρ * -αω * 2 -ω * 1 -ω * 1 x e1 0 ω * 1 x e1 -β *   x e . (59) 
It is left to set α so that the origin for (59) be GAS. To that end, we remark that σ * , ρ * , ω * 1 and ω * 2 are all positive since, for this example, so are w k and v ki . A straightforward computation, using the Lyapunov function V(x e ) = 1 2 ||x e || 2 , shows that V(x e ) ≤ -q||x e || 2 , with q > 0, for any α > max{

(ρ * +σ * ) 2 -2σ * 2ω * 2 , (ρ * +σ * ) 2 -2ω * 1 2ω * 2 }.
In Figure 4 we show the result of a simulation of the augmented network as described above, with α = 30. It is appreciated that the origin is asymptotically stable.

Figure 6 shows the trajectories of the systems in the network when Assumption 1 is not satisfied. In this case, the system's three time-scale behavior is reduced to a two time-scale behavior. In fact, we can see in the figure that the nodes of the network find general agreement whether they are of the same module or different modules. This is in contrast to Fig 5, in which we see that, initially, nodes of the same module find local agreement, leading to the formation of three clusters. In a second phase, the three trajectories merge, before stabilizing at the origin.

B. Stabilization via added control modules

We present now the second control approach to stabilize the origin for the network [START_REF] Romeres | Novel results on slow coherency in consensus and power networks[END_REF]. It consists in adding new whole modules with the aim, as in the previous section, to render the origin GAS for the resulting average system corresponding to the augmented network, on the synchronization manifold. Let m denote the number of new modules. For each k ≤ m , the dynamics of the ith node within the k th module is given by

ẋm+k ,i =f m+k ,i (x m+k ,i ) -σ I N m+k l=1 b m+k ,i,l (x m+k ,i -x m+k ,l ) -σ E m k=1 N k j=1 a (m+k ,i),(k,j) (x m+k ,i -x k,j ) (60)
where the coefficients b m+k ,i,l represent internal interconnec-tions within the (m + k )th module, i.e., b m+k ,i,l :=

   1 if there is an edge from (m + k , i) to (m + k , l) 0 if otherwise.
The coefficients a (m+k ,i),(k,j) represent external interconnections from nodes within the new control modules to nodes in the original network. That is, a (m+k ,i),(k,j) :=    1 if there is an edge from the node (k, j)

to the node (m + k , i) 0 if otherwise.

Correspondingly, the coupling

v k,i = -σ E m k =1 N m+k j=1 a k,k ,i,j (x k,i -x m+k ,j ) (61) 
is added to the existing nodes in the original network. Note that only for those existing nodes that are interconnected to nodes within new modules v k,i = 0. The state of the resulting augmented network now is x :=

x 1,1 • • • x 1,N1 • • • x m+1,1 • • • x m+m ,N m+m . That is, the augmented network in closed loop yields ẋ = F (x) -σ I [M I ⊗ I n ]x -σ E [M E ⊗ I n ]x, (62) 
where F corresponds to the function F in (6) augmented by the corresponding functions f m+k ,i in (60), M I and M E are, respectively, the new internal and external Laplacians, akin to L I and L E as per the definition of the latter below [START_REF] Romeres | Novel results on slow coherency in consensus and power networks[END_REF]. Hence, since the closed-loop system (62) has the same structure as [START_REF] Romeres | Novel results on slow coherency in consensus and power networks[END_REF], the arguments in Section III apply. Notably, one can compute eigenvectors w k and v ki as defined in [START_REF] Khalil | Nonlinear systems; 3rd ed[END_REF] and [START_REF] Varma | Analysis and control of multileveled opinions spreading in social networks[END_REF] applying the appropriate transformations (as per in Section III) to M I and M E . Then, the new average dynamics, on the synchronization manifold, is

ẋe = m+m k=1 N k i=1 w k v ki f k,i (x e ). (63) 
From this reasoning we draw the following statement, which follows directly from Theorem 1. Corollary 2: Consider the networked system (48) with modified dynamics as in (49), additional inputs (61) and the dynamic control extensions (60). Let Assumptions 1 and 2 hold for the resulting augmented closed-loop system (62) and assume, in addition, that the origin for the average system (63) is globally asymptotically stable and there exists a continuously differentiable Lyapunov function:V e : R n → R ≥0 satisfying (38)-(39). Then, there exists σ E * > 0 and σ I * > 0 such that, for all σ I > σ I * and σ E > σ E * , the origin of the closed-loop system (62) is GAS.

Illustrative example: To enforce the global stabilization with the second strategy, we add a control module to the original network. This 4th module contains N 4 = 8 nodes with dynamics ẋ4,i = -αx 4,i -αy 4,i 0 , furthermore, we consider that within this module, nodes are connected with respect to the Laplacian (55). A directed link is added from the first node of the control module to the first node of the other modules k ∈ {1, 2, 3} and a directed link from the first node of the third module to the first node of the control module. That is, in (49) we set v k,1 = -σ E (x k,1 -x 9,1 ) ∀k ∈ {1, 2, 3},

and v k,i = 0 for all i ∈ {2, 3, 4, 5, 6, 7, 8}. Finally, in (60), only a (4,1),(3,1) = 1 and all other coefficients are set to zero. The value of the control parameter α may be computed as for the previous example. The systems' trajectories are showed in Figure 7 below. Thus, it may be appreciated from Figures 5 and 7 that, in spite of their simplicity, both control methods are efficacious to globally stabilize the origin for heterogeneous modular networks. In both figures the three-time scales behavior is well apparent. Indeed, in a first stage, the fastest trajectories ξ(t) converge while η(t) and x e (t) remain "constant" (on a logarithmic scale-see Figure 4). Then, as ξ(t) approaches the origin, η(t) converges as well, and x e (t) remains "constant". Finally, x e (t) vanishes too, after η(t) is close to zero.

VI. CONCLUSION

We provided a stability analysis of networked systems with modular structure. The setting is fairly general since we consider generic directed networks (containing a spanning tree, which is a necessary condition for consensus); it covers heterogeneous nonlinear systems; and the network's interconnections may have different weights. We showed that if there exist modules of densely interconnected nodes with strong interconnections, the network dynamics is captured by a model evolving in three time scales. Moreover, such modular structure is particularly useful to devise a control approach that consists in adding control nodes that modify the network's behavior at will. Modular networks are common in varied engineering largescale systems, such as power networks. This leads to the study of a whole range of new control problems for networked systems that deserve attention. In particular, the study of orbital stability for directed modular networks deserves attention since orbital stability is a pertinent property in the realm of nonlinear oscillators, as in the case of power generators.
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  so invoking the Mean-value Theorem on each component of F ζ ( • ) above, we see that there exists c(R) such that the lefthand side of (36) satisfies ∂V e ∂x e [f e (x e , η, 0) -f e (x e , 0, 0)] ≤ c 1 c|x e ||η| (43)
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  c 1 |x e | + |P η ||η| |ξ|, so, since max{|η|, |x e |} ≤ |x|, (36) follows with φ 1 (x) := α 1 |x|, φ 2 (z) := |ξ|, and β := c max{c 1 , |P η |}.
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 432 Fig.2. Illustration of network control methods. Given a network of three modules M 1 , M 2 and M 3 containing eight nodes each, one control node is added to each module, as well as a whole control module, M 4 . Original nodes are in red, control modules are in gray and blue. Note that each module contains a directed spanning tree (emphasized in red). Also a spanning tree exists from modules M 1 to modules M 2 and M 3 . However, the overall network does not have a spanning tree without the added blue control node no. 9 in M 2 and the added blue links or the module M 4 .
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 1233 Fig. 3. Schematic representation of the inter-modular network
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 456 Fig. 4. Trajectories of the closed-loop system in logarithmic time scale. The solid lines represent the synchronization errors of the individual nodes relative to the modules' averages. The dotted lines represent the synchronization errors of each module relative to the modules' average. The dashed line depicts the overall average system's trajectories. In this simulation we used σ I = 5000, σ E = 300
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 7 Fig. 7. Trajectories of the closed-loop system in logarithmic time scale, with σ I = 9000, σ E = 900