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Analysis and Control of Multi-timescale
Modular Directed Heterogeneous Networks

Anes Lazri Elena Panteley Antonio Lorı́a

Abstract— We examine the collective behavior of large-
scale networks of heterogeneous nonlinear systems with
directed weighted interconnections, and containing a span-
ning tree. We consider networks that are composed of
groups of densely interconnected nodes, called modules,
that are in turn sparsely interconnected. Such networks
are called modular. The modules represent sub-networks
wherein consensus may be rapidly achieved, while syn-
chronization among modules occurs at a lower pace. Fur-
thermore, relying on the framework of [1], we identify an
underlying dynamics that corresponds to a weighted aver-
age of the nodes’ respective states. This average dynamics
evolves on a yet slower time-scale. Such triple time-scale
make modular networks are amenable to be analyzed via
singular-perturbations theory. We show that if the nodes’
dynamics are semi-passive and the average dynamics is
globally asymptotically stable, so is the entire network. In
the case that the average dynamics is not globally asymp-
totically stable we show how our main analysis statement
can be used for network control, via the addition of con-
trol nodes, in order to globally asymptotically stabilize the
network.

I. INTRODUCTION

Modular networks consist in sub-networks, called modules,
of densely interconnected nodes, while the interconnections
amongst these modules are comparatively weaker [2]–[4]. The
notion of grouping multiple agents in a single module has
been employed extensively in diverse contexts, whether for
undirected networks [5], [6], [7], or for directed networks
[8], [9]. Empirical observations have consistently revealed
that, subject to certain topological conditions, agents within
the same module tend to converge toward local consensus
among themselves rapidly. However, achieving global con-
sensus among modules transpires at a relatively slower pace
when compared to intra-modular convergence. When the in-
terconnection within modules is sufficiently high, obtaining
a reduced model representing the overall emerging dynamics
becomes feasible [7], [10].

In [11] singular-perturbations theory is used to model a
heterogeneous network with high coupling gain. As it is
explained therein, the network dynamics can be separated into
a slow system representing the emergent behavior of the net-
work and a fast one representing synchronization errors. This
two-time scale modeling approach provides insights into the
emergent behavior of the network. Similarly, in [12], singular-
perturbation techniques are applied to study interconnected
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linear systems with switching interconnection topology and
linear coupling. It is showed therein that when the coupling
gain is sufficiently high, the synchronized behavior of the
network can be approximated by a reduced-order switching
system. This reduction in complexity allows for a simplified
analysis of the network dynamics.

The idea of using time scale separation for sparse dynamic
networks probably originates from [13], where a two-time
scale model is developed to approximate the behavior of a
modular network or sparsely connected modules of densely
connected agents, specifically focusing on the consensus prob-
lem for linear systems. This concept is further expanded in [5],
which investigates nonlinear networks with internally dense
and externally sparse interconnections. The study emphasizes
the synchronization of densely connected nodes within certain
areas, which dominate the slow dynamics of the network.

In [14], for undirected networks of linear systems, the
authors explore modular networks with linear dynamics and
emphasize the presence of three-time scales in the syn-
chronization of interconnected agents in modular networks.
Then, under some assumptions, the network dynamics can
be approximated using a two-parameter singular-perturbation
form. The mean-field dynamics evolve on the slowest time
scale, intra-modular dynamics on the fastest, and inter-modular
dynamics are faster than mean-field but slower than intra-
modular dynamics. These insights enhance the understanding
of multi-scale synchronization in modular networks.

In this paper we analyze modular networks using a triple-
time-scale model and give mild sufficient conditions for global
asymptotic stability of the origin. Relative to [14] we consider
directed networks of heterogeneous nonlinear semi-passive
[15] systems. Relative to [11] we consider networks evolving
in three time scales. Moreover, we provide a control method to
stabilize the network. The method is conceptually reminiscent
of pinning control, which is a technique that involves con-
trolling a subset of nodes to synchronize the entire network
[16]. However, such a strategy does not consider the multiple
time-scale behavior of modular networks.

In Section II we present our standing hypotheses and give a
preliminary statement on boundedness of solutions for generic
directed networks; in Section III we describe the three-time-
scale model. Section IV we present our main statement on
stability analysis; in Section V we describe our control method
and provide illustrative examples. The paper is wrapped up
with some concluding remarks, given in Section VI.
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II. MODEL AND PROBLEM FORMULATION

Let us consider N nonlinear dynamical systems

χ̇i = fi(χi) + νi, i ≤ N, χi ∈ Rn, (1)

where the functions fi are continuously differentiable and νi
are inputs defined as

νi := −
N∑
j=1

σijaij(χi − χj), (2)

where aij represents the (in)existence of a link between
two agents and σij represents the coupling strength. More
precisely, aij > 0 and σij > 0 if there is an interconnection arc
from the jth node to the ith one and aij = σij = 0 otherwise.
In the case that all the interconnection strengths σij are equal,
say σij =: σ, the networked system, in compact form, reads

χ̇ = F(χ)− σLχ, (3)

where χ and F are vectors whose elements are χi and fi, L
is a Laplacian matrix, whose elements are defined as

`i,j =


−aij , i 6= j
N∑

` = 1
` 6= i

ai`, i = j, i, j ≤ N.

In this paper we consider the case in which certain links
have an interconnection strength σij := σI and for others
σij := σE , where σI � σE ≥ σ∗, where σ∗ > 0 is a certain
threshold. In addition, it is assumed that there are many more
arcs with strength σI than with strength σE . By virtue of this,
the networked systems are naturally organized into densely in-
terconnected modules that are sparsely interconnected among
themselves. A well-known example of such network, which
we refer to as modular, is that of power distribution [13].

We are primarily interested in investigating sufficient con-
ditions to guarantee global asymptotic stability of the origin
for modular networks, but also in devising control design
strategies to stabilize the origin. To those ends, we start
by introducing a more suitable model that consists in a
(non-unique) modular network decomposition. Such model is
defined by relabeling the network’s nodes and the systems’
states and introducing an adequate notation.

We consider that under the assumptions made above on the
coupling strength, m modules are formed, labeled Mk with
k ≤ m, and each containing Nk systems densely connected
with high coupling strength. That is, each of such modules
forms a sub-network of Nk nonlinear systems, whose models
(1) are rewritten using a notation that makes explicit the
module-dependency, i.e.,

ẋk,i = fk,i(xk,i) + uk,i, k ≤ m, i ≤ Nk, (4)

where xk,i ∈ Rn denotes the state of the ith system within
the kth module, and fk,i and uk,i define its dynamics and
input respectively. Then, to distinguish the interconnection
links depending on the coupling strength, the inputs are split
in two parts as follows:

uk,i = uIk,i + uEk,i (5a)

M1

x1,1

x1,3

aI11,3

M2

Mm xm,2χ1

xm,1 Mk

Fig. 1. Schematic representation of a directed modular network
composed of m modules Mk, each constituting a sub-network. Within
each module the interconnections are “strong” and dense (represented
by thick arrows) while among modules the interconnections are of lesser
strength and more sparse (represented by thinner arrows). Each module
contains a directed spanning tree—represented by red arrows within
the modules and with a root node also in red. The overall network
also contains a directed spanning tree—represented by dashed blue
and solid red arrows and with an overall root node represented in blue.
This node is first in the overall network so it is originally labeled χ1—
see Eq. 1, but it does not necessarily correspond to the root of a
module’s spanning tree. Indeed, it corresponds to the 2nd node in the
mth module, so its state is xm,1 in Eq. (4).

uIk,i = −σI
Nk∑
j=1

aIkij (xk,i − xk,j), (5b)

uEk,i = −σE
m∑

` 6= k
` = 1

Nk∑
j=1

aEij(xk,i − x`,j). (5c)

In the previous expressions, aIkij and aEij are zero- or positive-
valued, depending on the existence or absence of a link be-
tween two nodes within one module or between two modules
respectively—see Figure 1 for an illustration.

Then, in compact form, we define the vectors of rearranged
nodes’ states and dynamics,

x :=



 x1,1

...
x1,N1


... xm,1
...

xm,Nm




∈ RNn, F (x) :=



 f1,1(x1,1)
...

f1,N1
(x1,N1

)


... fm,1(xm,1)
...

fm,Nm(xm,Nm)




(6)

which contain all the states χi and respective dynamics fi
in (1), but not necessarily in the original order [χ>1 · · · χ>N ]>.
Note that x = Tχ where T is a permutation matrix (hence
invertible). With this notation, the closed-loop networked
system (4)–(5), takes the form,

ẋ = F (x)− σI [LI ⊗ In]x− σE [LE ⊗ In]x (7)

where v :=
[

[v>1,1 · · · v>1,N1
] · · · [v>m,1 · · · v>m,Nm ]

]>
, and LI
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and LE are Laplacian matrices defined as follows.

LI := blockdiag
[
LI1 L

I
2 · · · LIm

]
, (8a)

LIk :=
[
`Iki,j
]

(8b)

`Iki,j :=


−aIkij , i 6= j
Nk∑
` = 1
` 6= i

aIki` , i = j , (8c)

where, for each fixed k ≤ m, aIkij > 0 if there is an
interconnection arc from the jth node to the ith one within
the kth module and aIkij = 0 otherwise; LE ∈ RN×N ,
which corresponds to the intra-modular Laplacian, is defined
as LE = L− LI , where L = TLT−1. Both matrices LI and
LE are Laplacians. Moreover, under the following assumption,
LIk contains exactly one eigenvalue with null real part.

Assumption 1 (topology): Each module Mk individually
forms a strongly-connected sub-network; its topology is cap-
tured by the Laplacian LIk with elements defined in (8c).
Furthermore, both, the overall network and the network of
modules, contain a spanning tree. In addition, the interconnec-
tion strengths satisfy σE |LE | < σI |LI |, where | · | denotes
the induced L2 norm. �

Remark 1: There is little loss of generality in assuming
that each module Mk is strongly connected because in the
primary setting the modules are densely connected. The last
part of Assumption 1 means that, for each agent, the intra-
modular influence is higher than the inter-modular influence.
In other words, either the interconnections within modules are
denser than the interconnections among them or the interaction
weights inside modules is higher than among them.

The rest of the paper is devoted to the stability analysis
of, and control design for, Equation (7) under Assumption 1.
To that end, we also pose the following hypothesis on the
individual systems’ dynamics.

Assumption 2 (regularity and passivity): For each pair
(k, i), the function fk,i in (4) is continuously differentiable
and admits the origin as a unique equilibrium. In addition, all
the units (1) are semi-passive [15] with respect to the input
uk,i and the output xk,i, with continuously differentiable and
radially unbounded storage functions Vk,i : R → R≥0. That
is, there exist positive definite and radially unbounded storage
functions Vk,i, positive constants ρk,i, continuous functions
Hk,i, and non-negative continuous functions ψk,i such that

V̇k,i(xk,i) ≤ xk,iuk,i −Hk,i(xk,i)

and Hk,i(xk,i) ≥ ψk,i(|xk,i|) for all |xk,i| ≥ ρk,i. �

The hypothesis of semi-passivity, which is little restric-
tive since it is satisfied by a number of physical systems,
is useful to establish that the solutions of the networked
system are bounded. The following self-contained statement
generalizes [1, Proposition 2] by establishing boundedness of
the network’s trajectories, for arbitrary directed networks of
heterogeneous semi-passive systems, containing a spanning
tree. The proof is provided in [17].

Lemma 1: Consider a network of N interconnected dynam-
ical systems as in (1)-(2), with fi continuously differentiable,

admitting the origin as the unique equilibrium, and such that
each map νi 7→ χi is semi-passive. Assume, in addition, that
the network’s graph contains a directed spanning tree. Then,
the trajectories t 7→ χi(t), for all i ≤ N , solutions to (1)-(2),
are globally bounded . �

The statement of Lemma 1 follows from the observation that
by reordering the network’s states, in similar fashion as done
in [18] for weakly connected graphs, the Laplacian matrix
L may be transformed into that of a connected network that
consists in a spanning-tree of strongly-connected sub-graphs,
so the transformed Laplacian matrix possesses a convenient
lower-block-triangular form (see [17, Lemma 2]). Then, the
statement follows using a cascades argument, from the fact
that the trajectories of each strongly-connected sub-graph are
bounded (see the proof of [1, Proposition 2]) and remain
bounded under the effect of the interconnections (see [17,
Lemma 3]).

Assumptions 1 and 2 are also instrumental to cast the
analysis of (7) within the framework established in [1], which
builds on the recognition that the networked systems’ col-
lective behavior is dichotomous. It consists in two distinct
dynamical components that evolve in orthogonal spaces, that
of an emerging average system with state χs and that of the
synchronization errors ei, defined as the difference between the
dynamics of each individual system and the average dynamics,
i.e., ei := χi − χs. More precisely, χs is a weighted average
of χis, defined via the left-eigenvector corresponding to the
unique null eigenvalue of L. In particular, if the synchroniza-
tion manifold {i ≤ N : ei = 0} is asymptotically stable the
origin for the network system (7) is asymptotically stable if
and only if so is {χs = 0}.

In [19] it is recognized that global asymptotic stability of
the origin for (3) is possible for sufficiently large values of
σ. The analysis in this reference is based on the fact that the
average dynamics ẋs = fs(xs) evolves in scaled time t/σ,
that is, much slower than the synchronization dynamics. For
modular networks (7) the analysis starts with recognizing that
the presence of two different coupling strengths entails two
average dynamical systems, in addition to the synchronization
dynamics of the individual systems. Each of these three dy-
namics evolves in a different time-scale. The fastest time-scale
corresponds to that in which the synchronization errors within
modules evolve; we call this the intra-modular dynamics. The
second time-scale, which is moderately fast, corresponds to
that of the synchronization errors amongst the modules. Then,
a third and slowest time scale, corresponds to that in which
evolves the average of the modules’ averages. The dynamics
evolving in the second and third time-scales constitute what
we call inter-modular dynamics. The precise modeling of these
three dynamical systems is the subject of the next section.

III. THREE-TIME-SCALES MODELING

Consider the system (7) under Assumptions 1 and 2.

A. Intra-modular dynamics
Let k be arbitrarily fixed and let us focus our attention

on the kth module. It consists in a connected (sub)network



4 SUBMITTED TO IEEE TRANS. CONTR. NET. SYST.

with Laplacian LIk, Nk nodes, and contains a spanning tree
(Assumption 1). Therefore, LIk has a unique zero eigenvalue
and Nk−1 others with positive real part. The null eigenvalue
has as an associated left eigenvector v`k := 1

Nk
1Nk , with

1Nk := [1 1 · · · 1]> and the other Nk−1 eigenvalues admit
associated linearly independent eigenvectors that are gathered
in the matrix Qk ∈ RNk×(Nk−1). Therefore, LIk admits the
Jordan decomposition

LIk = Vk

[
0 0
0 ΛIk

]
V −1
k (9)

where ΛIk ∈ R(Nk−1)×(Nk−1) is positive definite and Vk ∈
RNk×Nk is the invertible transformation matrix Vk :=
[1Nk Qk]. Therefore,

V −1
k =:

[
v>`k
Q†k

]
. (10)

Then, akin to [19], we introduce a set of new state variables,
ζk ∈ Rn and ξk ∈ RnNk−1 , defined as[

ζk

ξk

]
:=

[
[v>`k ⊗ In]

[Q†k ⊗ In]

]
x̄k,

where x̄k := [x>k,1 x
>
k,2 . . . x>k,Nk ]>.

The state variable ζk may be regarded as the weighted
average of the kth module’s nodes’ states while, ξk is a
projection of the synchronization errors, ek, relative to that
average. More precisely, we define ek ∈ RnNk as

ek := x̄k − [1Nk ⊗ In]ζk (11)
= [Qk ⊗ In]ξk. (12)

Note that all the systems within the module synchronize
(that is, xk,i → xk,j) if and only if ek → 0 or, equivalently,
if and only if ξk → 0. If, in addition, for the average system
ζ̇k = [v>`k⊗In]x̄k we have ζk → 0, we conclude that xk,i → 0.
The same reasoning applies to the stronger property of global
asymptotic stability. Therefore, for our problem of interest, it
is crucial to study the dynamic evolution of ζk and ξk. To
that end, we gather these variables into the vectors ζ ∈ Rnm
and ξ ∈ RnNk−1m, defined as ζ := [ζ1 · · · ζm] and ξ :=
[ξ>1 · · · ξ>m]>. The latter satisfy[

ζ
ξ

]
=:

[
P † ⊗ In
Q† ⊗ In

]
x, (13)

where x is defined in (6), P ∈ RN×m is defined as

P = blockdiagk≤m{1Nk} (14)

—cf. [20], Q = blockdiagk≤m{Qk}, P = blockdiagk≤m{v`k}
and Q = blockdiagk≤m{Q

†
k}. Note that, since 1Nk and the

columns of Qk form the orthogonal transformation Vk in (9),
we have 1>NkQk = 0, so P †Q = Q†P = 0. In turn, after (13)
it follows that

x = P̄ ζ + Q̄ξ, (15)

where we defined P̄ := [P ⊗ In] and Q̄ := [Q ⊗ In]. Now,
differentiating on both sides of (13) and using (7) and (15),
we obtain

ζ̇ = P̄ †F
(
P̄ ζ + Q̄ξ

)
− σI P̄ †L̄I [P̄ ζ + Q̄ξ]

−σEP̄ †L̄E [P̄ ζ + Q̄ξ], (16)
ξ̇ = Q̄†F

(
P̄ ζ + Q̄ξ

)
− σIQ̄†L̄I [P̄ ζ + Q̄ξ

]
−σEQ̄†L̄E [P̄ ζ + Q̄ξ], (17)

where L̄I := [LI ⊗ In], and L̄E := [LE ⊗ In]. However, note
that LIk1Nk = 0, so LIP = P †LI = 0, while Q̄†L̄IQ̄ξ =
Λ̄Iξ. Thus, (16) and (17) become

ζ̇ = Fζ(ζ, ξ) (18a)

ξ̇ = −σI Λ̄Iξ + Fξ(ζ, ξ), (18b)

where Λ̄I := [ΛI ⊗ In] and ΛI ∈ R(N−m)×(N−m) is defined
as ΛI := blockdiagk≤m{ΛIk}, and

Fζ(ζ, ξ) = P̄ †F
(
P̄ ζ + Q̄ξ

)
− σEP̄ †L̄E

[
P̄ ζ + Q̄ξ

]
, (19)

Fξ(ζ, ξ) = Q̄†F
(
P̄ ζ + Q̄ξ

)
− σEQ̄†L̄E

[
P̄ ζ + Q̄ξ

]
. (20)

Equation (18a) corresponds to the dynamics of a network
of modules, i.e., a network of sub-networks. On the synchro-
nization manifold {ξ = 0} each module may be assimilated to
a single node with dynamics ζ̇k = Fζk(ζ, 0), but note that the
dynamics of each module depends on that of other modules as
well, so Eq. (18a) constitutes a reduced network of m nodes—
cf. [21], [22], [23]. This is the inter-modular dynamics, which
we study in detail next.

B. Inter-modular dynamics
To assess the behavior of the reduced network (18a) we

start by applying on ζ a coordinate transformation similar
to that defined above and performed on x. To that end, we
observe that under Assumption 1 the network (18a) is also
connected and contains a directed spanning tree. Furthermore,
its associated Laplacian, which appears in the definition of
Fζ(ζ, ξ) above, is given by

L̃E :=


āE11 −āE12 · · · −āE1m

...
. . .

...
...

. . .
...

−āEm1 −āEm2 · · · āEmm

 , (21)

where, for any two modules indexed i and j, āEij := v>`iAij1nj
and Aij is the Ni×Nj block of LE gathering the edges from
the ith to the jth module.

Thus, since there exists a directed spanning tree in the
modules’ interconnection graph, L̃E admits the Jordan decom-
position

L̃E = W

[
0 0
0 ΛE

]
W−1, (22)

where W ∈ Rm×m is nonsingular, and ΛE ∈ R(m−1)×(m−1)

is the diagonal matrix defined by the eigenvalues of L̃E with
positive real part, that is, ΛE := diagi∈{2,3,··· ,m}{λi(L̃E)}.
As a matter of fact,

W = [1m W1], (23)

where W1 is full-column-rank, so it is left-invertible and W
has full rank. Therefore,

W−1 =:

[
w>`
W †1

]
. (24)
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Next, we introduce the new state variables[
xe
η

]
=

[
w>` ⊗ In
W †1 ⊗ In

]
ζ, (25)

where xe ∈ Rn corresponds to the “weighted average of
averages ζk”, while η is a projection of all the synchroniza-
tion errors among modules, ζk − xe. That is, the vector of
synchronization errors corresponds to

eη := ζ − [1m ⊗ In]xe (26a)
= [W1 ⊗ In]η. (26b)

All the states of the reduced network (of modules) reach
consensus with the xe-system if and only if η = 0. Thus,
the collective behavior of the reduced-network (18a) may be
fully assessed by studying the equivalent dynamical system
that results from differentiating on both sides of (25). That is,

ẋe = fe(xe, η, ξ) (27a)
η̇ = −σEΛ̄Eη + fη(xe, η, ξ), (27b)

where

fe(xe, η, ξ) = [w>` ⊗ In]Fζ(ζ, ξ), (28)

fη(xe, η, ξ) = W̄ †1 P̄
†Fζ(P̄ ζ + Q̄ξ)− σEW̄ †1 P̄ †L̄EQ̄ξ (29)

ζ = [1m ⊗ In]xe + [W1 ⊗ In]η, (30)

and Λ̄E := [ΛE ⊗ In]. Equation (27a) follows by direct
differentiation of xe = [w>` ⊗ In]ζ, using (25) and (18a). The
expression (30) follows from (26). Equation (27b), together
with (29), is obtained as follows. After (25), (18a), and (19),
we have

η̇ = W̄ †1 P̄
†F
(
P̄ ζ + Q̄ξ

)
− σEW̄ †1

[
P̄ †L̄EP̄ ζ + P̄ †L̄EQ̄ξ

]
.

Now, by definition—see (21)—P̄ †L̄EP̄ = [L̃E⊗In]. Then, af-
ter (30) and the fact that L̃E1m = 0, we have W̄ †1 P̄

†L̄EP̄ ζ =
W̄ †1 [L̃E ⊗ In]W̄1η. Then, after (22) and (23), we obtain
W̄ †1 [L̃E ⊗ In]W̄1 = Λ̄E .

C. Multi-timescale overall network dynamics
After the previous developments, we see that the network

model (7) is equivalent to Eqs. (27) and (18b). Now we define
the singular parameter εE := 1/σE and the ratio of influence
among and within modules, µ := σE

σIλm(Λ̄I 2)
, where λm( · )

denotes the smallest eigenvalue. Then, we introduce the second
singular parameter εI := µεE = 1

σIλm(Λ̄I 2)
, so the system may

be written as

ẋe = fe(xe, η, ξ) (31a)

εE η̇ = −Λ̄Eη + εEfη(xe, η, ξ) (31b)

εI ξ̇ = − 1

λm(Λ̄I 2)
Λ̄Iξ + εIfξ(xe, η, ξ), (31c)

where fη is defined in (28) and, after (23), (33), and (30),

fξ(xe, η, ξ) = Fξ

(
[W ⊗ In]

[
xe
η

]
, ξ

)
(32)

The system (31) is in standard singular-perturbation form
[24], albeit with three-time scales. As explained at the end of

Section II, there co-exist three dynamical systems: Eq. (31a),
which is the slowest, corresponds to the weighted average of
all nodes’ states; Eq. (31b), which is moderately fast, corre-
sponds to the projection of the inter-modular synchronization
errors eη—see (26). Eq. (31c), which is the fastest, corre-
sponds to a projection of the intra-modular synchronization
errors ek—see (11).

In the next section we present our main statement on
stability for (7); we rely on the analysis of (31), via the
following lemma that establishes asymptotic stability of the
origin for (31), on arbitrary compacts of the state.

Lemma 2 (corollary of Theorem 11.3 in [24]): Consider
the nonlinear autonomous singularly-perturbed system,

ẋ = f(x, z) (33a)
εż = Az + εg(x, z), (33b)

where x ∈ Rnx , z ∈ Rnz and A ∈ Rnz×nz Hurwitz. Assume
that the equilibrium (x, z) = (0, 0) is an isolated equilibrium
point and, for any R > 0, f and g are Lipschitz for all (x, z) ∈
BR, with BR := {(x, z) ∈ Rnx×nz : |x|2 + |z|2 < R2}, with
a Lipschitz constant L(R). In addition, assume that for each
R > 0 there exist positive definite decrescent functions V and
W : BR → R≥0, positive constants α1, α2, β, as well as
positive-definite functions φ1 : BR → R and φ2 : BR → R,
given by φ1(x) = |x|, φ2(z) = |z|, such that, for all (x, z) ∈
BR,

∂V

∂x
f(x, 0) ≤ −α1φ1(x)2, (34)

∂W

∂z
Az ≤ −α2φ2(z)2, (35)

∂V

∂x
[f(x, z)− f(x, 0)] ≤ βφ1(x)φ2(z). (36)

Let L1(R) > 0 and L2(R) > 0 be Lipschitz constants
satisfying, for all x ∈ BR and z ∈ BR,

|g(x, z)− g(0, z)| ≤ L1(R)|x|, (37a)
|g(0, z)| ≤ L2(R)|z|. (37b)

Then, for all ε < ε∗ := α1α2

α1L2(R)+βL1(R) > 0, the origin of
(33) is asymptotically stable and attractive to all trajectories
that are contained in BR. �

Proof: Lemma 2 is a corollary of Theorem 11.3 in [24].
First, we recall that for the singularly-perturbed system (33),
h(x) , the quasi-steady-state, is obtained by solving equation
(33b) for ε = 0. Since A is Hurwitz by assumption, h(x) = 0.

Next, [24, Theorem 11.3] establishes the asymptotic stabil-
ity of (x, y) = (0, 0), where y = z−h(x). Then, for h(x) = 0,
the result is valid for (x, z) = (0, 0) and [24, Theorem 11.3]
can be used for the asymptotic stability of the origin (x, z)
for the system (33).

Furthermore, notice that (11.39), (11.40) and (11.43) in
[24] are equivalent to (34)–(36), for h(x) = 0 and y = z.
Hence, [24, Eq. (11.44)] is satisfied since the boundary-layer
system, dz

dτ = Az with τ = t/ε depends only on z and so
does the function W (z) associated with it. Finally, given the
particular form of the system (33) and the satisfaction of (37)
by assumption, we recover [24, Eq. (11.46)] with β2 = L1(R)
and γ = L2(R). �
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IV. NETWORK STABILITY ANALYSIS

Theorem 1: Consider the networked system (7) under As-
sumptions 1 and 2, and in its equivalent form (27)-(18b).
Assume that for any R > 0, there exists a positive-definite
decrescent, once continuously differentiable, function Ve :
Rn → R≥0 and positive constants q1 and c1, such that

∂Ve
∂xe

fe(xe, 0, 0) ≤ −q1|xe|2 (38)∣∣∣∣∂Ve∂xe

∣∣∣∣ ≤ c1|xe|, (39)

for all x ∈ BR. Then, there exist σE
∗
> 0 and σI

∗
> 0 such

that, for all σI > σI
∗

and σE > σE
∗
, the origin for (7) is

globally asymptotically stable. �

Proof: By Lemma 1 the solutions of (1)-(2), equivalently
those of (7), are globally bounded, that is, for any r > 0 there
exist R > 0 such that

|x◦| ≤ r =⇒ |x(t)| < R, ∀t ≥ 0. (40)

In turn, in view of (13) and (25), xe(t), η(t), ξ(t) are
also globally bounded. For simplicity, subject to a possible
redefinition of R, we shall say that |xe(t)| < R, |η(t)| < R,
and |ξ(t)| < R for all t ≥ 0.

Then, the rest of the proof consists in applying Lemma 2
twice consecutively. One first time to show global asymptotic
stability of the origin for the inter-modular dynamics on the
synchronization manifold,

ẋe = fe(xe, η, 0) (41a)

η̇ = −σEΛ̄Eη + fη(xe, η, 0), (41b)

where fe and fη are defined in (28) and (29) respectively, and
a second time for the intra-modular dynamics

ẏ = fy(y, ξ), (42a)

ξ̇ = −σI Λ̄Iξ + gξ(y, ξ), (42b)

where y = [x>e η>]>,

gξ(y, ξ) = Fξ([W
† ⊗ In]y, ξ),

fy(y, ξ) :=

[
fe(xe, η, ξ)

−σEΛ̄Eη + fη(xe, η, ξ),

]
.

1) Stability of the inter-modular dynamics: We analyze the
system (41). To that end, we apply Lemma 2 with x := xe,
z := η, ε := 1/σE , f(x, z) := fe(xe, η, 0), g(x, z) :=
fη(xe, η, 0), and A := −Λ̄E . Next, consider (40). To verify
(34) we pose V (x) := Ve(xe) so, after (38), (34) holds for all
xe ∈ BR, with φ1(x) :=

√
q1|xe|. Next, under Assumption

1, −Λ̄E is Hurwitz, so there exists Pη = P>η > 0, such that
Λ̄E>Pη + PηΛ̄E = 2I . Therefore, (35) holds with W (z) :=
η>Pηη and φ2(z) := |η|. Finally, condition (36) holds under
Assumption 2 and after (39). Indeed, after (28) and (30)

fe(xe, η, 0) = [v>` ⊗In]Fζ

(
P̄ [1m⊗In]xe+ P̄ [W1⊗In]η, 0

)
,

so invoking the Mean-value Theorem on each component of
Fζ( · ) above, we see that there exists c(R) such that the left-
hand side of (36) satisfies

∂Ve
∂xe

[fe(xe, η, 0)− fe(xe, 0, 0)] ≤ c1c|xe||η| (43)

for all (xe, η) ∈ BR. Therefore, (36) holds with β := c1c,
α1 =

√
q1 and α2 = 1. We conclude that for sufficiently

large σE∗ and any σE ≥ σE∗, the origin (xe, η) = (0, 0)
is asymptotically stable and all solutions that satisfy xe, (t),
η(t) ∈ BR converge to zero. Furthermore, since σE∗ = 1

ε ,
σE∗ :=

α1Lη2(R)+βLη1(R)
α1

, given the continuous differentia-
bility of fη in BR and the existence of Lη1(R) and Lη2(R)
satisfying (37) for g(x, z) = fη(xe, η, 0) with fη(0, 0, 0) = 0.
In other words, the origin is asymptotically stable for the inter-
modular dynamics (the reduced-order network), and the origin
is attractive on BR, provided that the individual systems in
each module Mk synchronize with their respective averages.
This is established next.

2) Stability of the intra-modular dynamics: We turn now our
attention to the overall system (27)-(42b), rewritten in the
equivalent form (31), so we can apply Lemma 2; this time,
with x := [x>e η>]>, z := ξ, g(x, z) := fξ(xe, η, ξ) in (32),
and

f(x, z) :=

[
fe(xe, η, ξ)

−σEΛ̄Eη + fη(xe, η, ξ)

]
.

Let V (x) := Ve(xe) + 1
2η
>Pηη, where Pη is defined in the

previous paragraph and Ve is defined in the statement of the
Theorem. Then, the left-hand side of Inequality (34) reads

∂V

∂x
f(x, 0) =

∂Ve
∂xe

fe(xe, 0, 0)

+
∂Ve
∂xe

[
fe(xe, η, 0)− fe(xe, 0, 0)

]
− σE

2
η>
[
Λ̄E>Pη + PηΛ̄E

]
η

+ η>Pηfη(0, η, 0)

+ η>Pη
[
fη(xe, η, 0)− fη(0, η, 0)

]
. (44)

The first term on the right-hand side of (44) satisfies (38) by
assumption; the second term satisfies (43); the third is bounded
by −σE |η|2. Then, under Assumption 2, fη(0, · , 0) is smooth
and fη(0, 0, 0) = 0, so by the Mean-value theorem (applied
component-wise) it follows that for any R > 0 and all η ∈ BR,
|fη(0, η, 0)| ≤ c3(R)|η|. After similar arguments and using
(29) and (30), we conclude that the last term on the right-
hand side of (44) satisfies

η>Pη[fη(xe, η, 0)− fη(0, η, 0)] ≤ c4|Pη||xe||η| (45)

for all (xe, η) ∈ BR. Thus, putting all these bounds together,
we obtain

∂V

∂x
f(x, 0) ≤ − q1|xe|2 + c1c|xe||η| − σE |η|2

+ c3|Pη||η|2 + c4|Pη||η||xe|,

so there exists β < 1, such that (34) holds with φ1(x) :=√
βmin{q1, σE}

∣∣[x>e η>]>
∣∣ and α1 =

√
βmin{q1, σE}.

The second inequality, (35), follows trivially with W (z) :=
1
2ξ
>Pξξ where Pξ = P>ξ solves the Lyapunov equation

Λ̄I>Pξ+PξΛ̄
I = 2I , which holds since −Λ̄I is Hurwitz. More

precisely, since σI = 1

λm(Λ̄I 2)εI
it follows that α2 = 1

λm(Λ̄I 2)
.
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Finally, to see that Inequality (36) holds, we first observe
that the left-hand side of (36) equals to

∂Ve
∂xe

[
fe(xe, η, ξ)−fe(xe, η, 0)

]
+ η>Pη

[
fη(xe, η, ξ)− fη(xe, η, 0)

]
,

both of which, again by virtue of the differentiability of fe and
fη , satisfy upper bounds that are linear in |ξ| for all x ∈ BR
and all ξ ∈ BR. Thus, after (39), we have

∂V

∂x
[f(x, z)− f(x, 0)] ≤ c

[
c1|xe|+ |Pη||η|

]
|ξ|,

so, since max{|η|, |xe|} ≤ |x|, (36) follows with φ1(x) :=
α1|x|, φ2(z) := |ξ|, and β := cmax{c1, |Pη|}.

Finally, given the continuous differentiability of fξ in BR,
there exist Lξ1(R) and Lξ2(R) such that g(x, z) = fξ(xe, η, ξ)
with fξ(0, 0, 0) = 0 satisfies (37). Thus, we set σI∗ :=
α1Lξ2(R)+βLξ1(R)

α1α2
.

The statement of Theorem 1 follows. �

V. APPLICATION TO NETWORK STABILIZATION

Theorem 1 guarantees global asymptotic stability of the ori-
gin, provided that Inequality (38) holds. In other words, if the
origin for the average dynamics (31a) on the synchronization
manifold {(η, ξ) = (0, 0)},

ẋe = fe(xe, 0, 0), (46)

is globally asymptotically stable. In this section we explore
two control methods to stabilize the origin for (7) in the case
that the average dynamics (46) is not GAS. The standing
assumption is that each control uk,i in (5a) may be endowed
with an additional input vk,i. That is, we redefine

uk,i = uIk,i + uEk,i + vk,i, (47)

so, in compact form, the network equation (7) becomes

ẋ = F (x)− σI [LI ⊗ In]x− σE [LE ⊗ In]x+ v(x, xc), (48)

where the new input v :=
[
v>1,1 · · · v>1,N1

· · · v>m,1 · · · v>m,Nm
]

depends on the network’s state x and a distributed dynamics
controller’s state xc to be defined.

We describe below two approaches that rely on modifying
both the network’s topology (and dimension) and the dynamics
of (46) to render the origin GAS. We do this by adding control
nodes to the network owing to two different strategies. The first
consists in adding nodes to selected modules and the second
consists in adding one or several whole control modules. The
new nodes may be regarded as dynamic controllers that are
added strategically using the coupling control inputs vk,i.

These control approaches are explained in further detail
below and illustrated in Figure 2.

A. Stabilization via control nodes added to modules
Let k ≤ M be arbitrarily fixed and let N ′k be a number of

added nodes to the kth module. Then, the dynamics of each
node originally present in the module, becomes

ẋk,i = fk,i(xk,i) + uIk,i + uEk,i + vk,i (49)

1

2

3

4

56

7

8

9

10
11

12

13

14

15

16 17

18

19 20

21

22
23

2425

26

27

28

29 30

31

32

33 34

35

M1 M2

M4

M3

Fig. 2. Illustration of network control methods. Given a network of three
modules M1, M2 and M3 containing eight nodes each, one control
node is added to each module, as well as a whole control module, M4.
Original nodes are in red, control modules are in gray and blue. Note
that each module contains a directed spanning tree (emphasized in red).
Also a spanning tree exists from modulesM1 to modulesM2 andM3.
However, the overall network does not have a spanning tree without the
added blue control node no. 9 in M2 and the added blue links or the
module M4.

vk,i = −σI
N ′k∑
j=1

a′k,i,j(xk,i − xk,Nk+j), (50)

where

a′k,i,j :=

{
1 if there is an edge from (k, i) to (k, j)

0 otherwise;
(51)

that is, vk,i 6= 0 only for existing nodes interconnected to new
nodes. Furthermore, by convention, the states of the N ′k added
control nodes are labeled xk,Nk+j ∈ Rn and their individual
dynamics are given by

ẋk,Nk+j = fk,Nk+j(xk,Nk+j)−σI
Nk∑
i=1

a′k,j,i(xk,Nk+j −xk,i).

(52)
Eq. (52) represents the dynamics of the control nodes, i.e.,

xc in (48) is defined by all the applicable states xk,Nk+j . As a
result, the network (48) is transformed as follows. In compact
form, the state vector, augmented by the states of the new
nodes, corresponds to

x̃ :=
[
x>1,1 · · ·x>1,N1+1 · · ·x>1,N1+N ′1

· · ·x>m,1 · · ·x>m,Nm+N ′m

]
.

Then, proceeding as in Section II, akin to Eq. (7), we obtain
the dynamics equation for the augmented network,

˙̃x = F̃ (x̃)− σI [LI ⊗ In]x̃− σE [LE ⊗ In]x̃, (53)

where F̃ corresponds to the function F in (6) augmented
by the corresponding functions fk,Nk+j in (52); while LI ,
LE ∈ RN×N , with N := N+

∑M
k=1N

′
k are, respectively, the

augmented internal and external Laplacians, as per the defi-
nition introduced in Section II. Thus, the augmented system
(53) has the same structure as (7). In particular, the stability
of the origin {x̃ = 0} depends on the dynamics of the added
nodes (52) rendering the origin globally asymptotically stable
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for the augmented average system, with {ξ = 0} and {η = 0}.
That is, for the system

ẋe =

m∑
k=1

Nk+N ′k∑
i=1

w`kv`kifk,i(xe), (54)

where w`, v`k are defined in the same way as in Section III for
the new matrices LI , LE . We conclude this reasoning with the
following statement, which stems directly from Theorem 1.

Corollary 1: Consider the networked system (48) under
Assumptions 1 and 2, with modified individual dynamics as
in (49)-(50) and the dynamic control extensions (52). Assume,
in addition, that the origin for (54) is globally asymptotically
stable and there exists a continuously differentiable Lyapunov
function Ve : Rn → R≥0 satisfying (38)-(39), with fe(xe, 0, 0)
corresponding to the right-hand side of (54). Then, there exist
σE
∗
> 0 and σI

∗
> 0 such that, for all σI > σI

∗
and

σE > σE
∗
, the origin for (53) system is GAS. �

Illustrative example: Consider a network of N = 24 Lorenz
oscillators with state xk,i := [xk,i yk,i zk,i]

> and dynamics

ẋk,i = Hk,i(xk,i)xk,i, Hk,i :=

−σk,i σk,i 0
ρk,i −1 −xk,i
0 xk,i −βk,i


where σk,i, βk,i, ρk,i are positive constants. Let these systems
be interconnected over a strongly connected directed network
that can be compartmentalized into m = 3 modules containing
each Nk = 8 nodes. Let each module k ∈ {1, 2, 3} constitute
a strongly-connected sub-network with Laplacian

LIk =



4 −1 −1 0 −1 0 −1 0
−1 4 −1 −1 0 −1 0 0
0 −1 4 −1 0 −1 −1 0
−1 −1 0 5 −1 −1 0 −1
−1 0 0 −1 3 −1 0 0
0 −1 0 −1 −1 5 −1 −1
0 0 −1 0 −1 0 3 −1
−1 0 −1 0 0 −1 0 3


. (55)

On the other hand, the elements of the external Lapla-
cian LE ∈ R24×24 are set to [LE ]1,1 = 2, [LE ]i,i =
1 for i ∈ {9, 17}, [LE ]i,j = −1 for all (i, j) ∈
{(1, 9), (1, 17), (9, 17), (17, 1)}, and [LE ]i,j = 0 otherwise.
LE contains mostly zero entries since the modules are sparsely
connected. As matter of fact, the network may be represented
as a strongly-connected network of modules, as shown in
Figure 3.

M1

M2 M3

Fig. 3. Schematic representation of the inter-modular network

Then, the averaged dynamics xe for this network yields

ẋe =

m∑
k=1

Nk∑
i=1

w`kv`kiHk,i(xe1)xe. (56)

For certain values of σk,i, βk,i, ρk,i, set differently for all
oscillators, the network reach consensus. That is, all oscillators
converge to a stable equilibrium point, but different from the
origin.

To enforce the global stabilization of the origin, to each
module we add one node (i.e., N ′k = 1) with dynamics ẋk,9 =[
−αxk,9 −αyk,i 0

]>
and we interconnect it to the first and

third nodes. That is, in (49) we set

vk,i = −σI(xk,i − xk,9) ∀ i ∈ {1, 3} (57)

and vk,i = 0 for all i ∈ {2, 4, 5, 6, 7, 8}. Then, we obtain the
modified averaged dynamics, corresponding to the augmented
network,

ẋe =

m∑
k=1

Nk∑
i=1

w`kv`kiHk,i(xe1)xe

+

m∑
k=1

Nk+N ′k∑
i=Nk+1

w`kv`ki

−α−α
0

xe1 (58)

which corresponds to Eq. (54).
Now, let

σ∗ :=

m∑
k=1

Nk∑
i=1

w`kv`kiσk,i, ρ∗ :=

m∑
k=1

Nk∑
i=1

w`kv`kiρk,i,

ω∗1 :=

m∑
k=1

Nk∑
i=1

w`kv`ki, ω∗2 :=

m∑
k=1

Nk+N ′k∑
i=Nk+1

w`kv`ki,

Then, using these definitions, (58) becomes

ẋe =

−σ∗ − αω∗2 σ∗ 0
ρ∗ −αω∗2 − ω∗1 −ω∗1xe1
0 ω∗1xe1 −β∗

xe. (59)

It is left to set α so that the origin for (59) be GAS. To
that end, we remark that σ∗, ρ∗, ω∗1 and ω∗2 are all positive
since, for this example, so are w`k and v`ki. A straightforward
computation, using the Lyapunov function V(xe) = 1

2 ||xe||
2,

shows that V̇(xe) ≤ −q||xe||2, with q > 0, for any α >

max{ (ρ∗+σ∗)2−2σ∗

2ω∗2
,

(ρ∗+σ∗)2−2ω∗1
2ω∗2

}.
In Figure 4 we show the result of a simulation of the

augmented network as described above, with α = 30. It is
appreciated that the origin is asymptotically stable.

Figure 6 shows the trajectories of the systems in the network
when Assumption 1 is not satisfied. In this case, the system’s
three time-scale behavior is reduced to a two time-scale
behavior. In fact, we can see in the figure that the nodes of the
network find general agreement whether they are of the same
module or different modules. This is in contrast to Fig 5, in
which we see that, initially, nodes of the same module find
local agreement, leading to the formation of three clusters. In
a second phase, the three trajectories merge, before stabilizing
at the origin.

B. Stabilization via added control modules
We present now the second control approach to stabilize

the origin for the network (7). It consists in adding new whole
modules with the aim, as in the previous section, to render the
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Fig. 4. Trajectories of the closed-loop system in logarithmic time scale.
The solid lines represent the synchronization errors of the individual
nodes relative to the modules’ averages. The dotted lines represent the
synchronization errors of each module relative to the modules’ average.
The dashed line depicts the overall average system’s trajectories. In this
simulation we used σI = 5000, σE = 300
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Fig. 5. Trajectories of the closed-loop system in logarithmic time scale,
with σI = 5000, σE = 300
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Fig. 6. Trajectories of the closed-loop system in logarithmic time scale,
with σI = 5000, σE = 12470 > σI |LI |

|LE|

origin GAS for the resulting average system corresponding to
the augmented network, on the synchronization manifold.

Let m′ denote the number of new modules. For each k′ ≤
m′, the dynamics of the ith node within the k′th module is
given by

ẋm+k′,i =fm+k′,i(xm+k′,i)

− σI
Nm+k′∑
l=1

bm+k′,i,l(xm+k′,i − xm+k′,l)

− σE
m∑
k=1

Nk∑
j=1

a′′(m+k′,i),(k,j)(xm+k′,i − xk,j) (60)

where the coefficients bm+k′,i,l represent internal interconnec-

tions within the (m+ k′)th module, i.e.,

bm+k′,i,l :=


1 if there is an edge from (m+ k′, i) to

(m+ k′, l)

0 if otherwise.

The coefficients a′′(m+k′,i),(k,j) represent external interconnec-
tions from nodes within the new control modules to nodes in
the original network. That is,

a′′(m+k′,i),(k,j) :=


1 if there is an edge from the node (k, j)

to the node (m+ k′, i)

0 if otherwise.

Correspondingly, the coupling

vk,i = −σE
m′∑
k′=1

Nm+k′∑
j=1

a′′k,k′,i,j(xk,i − xm+k′,j) (61)

is added to the existing nodes in the original network. Note
that only for those existing nodes that are interconnected to
nodes within new modules vk,i 6= 0.

The state of the resulting augmented network now is x̃ :=[
x>1,1 · · · x>1,N1

· · · x>m+1,1 · · · x>m+m′,Nm+m′

]
. That is, the

augmented network in closed loop yields

˙̃x = F̃ (x̃)− σI [MI ⊗ In]x̃− σE [ME ⊗ In]x̃, (62)

where F̃ corresponds to the function F in (6) augmented by
the corresponding functions fm+k′,i in (60), MI and ME

are, respectively, the new internal and external Laplacians,
akin to LI and LE as per the definition of the latter below
(7). Hence, since the closed-loop system (62) has the same
structure as (7), the arguments in Section III apply. Notably,
one can compute eigenvectors w`k and v`ki as defined in (24)
and (10) applying the appropriate transformations (as per in
Section III) toMI andME . Then, the new average dynamics,
on the synchronization manifold, is

ẋe =

m+m′∑
k=1

Nk∑
i=1

w`kv`kifk,i(xe). (63)

From this reasoning we draw the following statement, which
follows directly from Theorem 1.

Corollary 2: Consider the networked system (48) with
modified dynamics as in (49), additional inputs (61) and the
dynamic control extensions (60). Let Assumptions 1 and 2
hold for the resulting augmented closed-loop system (62) and
assume, in addition, that the origin for the average system
(63) is globally asymptotically stable and there exists a con-
tinuously differentiable Lyapunov function:Ve : Rn → R≥0

satisfying (38)-(39). Then, there exists σE
∗
> 0 and σI

∗
> 0

such that, for all σI > σI
∗

and σE > σE
∗
, the origin of the

closed-loop system (62) is GAS. �

Illustrative example: To enforce the global stabilization with
the second strategy, we add a control module to the original
network. This 4th module contains N4 = 8 nodes with
dynamics ẋ4,i =

[
− αx4,i − αy4,i 0

]>
, furthermore, we

consider that within this module, nodes are connected with
respect to the Laplacian (55). A directed link is added from the
first node of the control module to the first node of the other
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modules k ∈ {1, 2, 3} and a directed link from the first node
of the third module to the first node of the control module.
That is, in (49) we set

vk,1 = −σE(xk,1 − x9,1) ∀k ∈ {1, 2, 3}, (64)

and vk,i = 0 for all i ∈ {2, 3, 4, 5, 6, 7, 8}. Finally, in (60),
only a′′(4,1),(3,1) = 1 and all other coefficients are set to zero.
The value of the control parameter α may be computed as for
the previous example. The systems’ trajectories are showed in
Figure 7 below.

10-4 10-3 10-2 10-1 100
-60

-40

-20

0

20

40

60

Fig. 7. Trajectories of the closed-loop system in logarithmic time scale,
with σI = 9000, σE = 900

Thus, it may be appreciated from Figures 5 and 7 that, in
spite of their simplicity, both control methods are efficacious
to globally stabilize the origin for heterogeneous modular
networks. In both figures the three-time scales behavior is
well apparent. Indeed, in a first stage, the fastest trajectories
ξ(t) converge while η(t) and xe(t) remain “constant” (on a
logarithmic scale—see Figure 4). Then, as ξ(t) approaches the
origin, η(t) converges as well, and xe(t) remains “constant”.
Finally, xe(t) vanishes too, after η(t) is close to zero.

VI. CONCLUSION

We provided a stability analysis of networked systems
with modular structure. The setting is fairly general since
we consider generic directed networks (containing a span-
ning tree, which is a necessary condition for consensus); it
covers heterogeneous nonlinear systems; and the network’s
interconnections may have different weights. We showed that
if there exist modules of densely interconnected nodes with
strong interconnections, the network dynamics is captured by
a model evolving in three time scales. Moreover, such modular
structure is particularly useful to devise a control approach that
consists in adding control nodes that modify the network’s
behavior at will.

Modular networks are common in varied engineering large-
scale systems, such as power networks. This leads to the study
of a whole range of new control problems for networked sys-
tems that deserve attention. In particular, the study of orbital
stability for directed modular networks deserves attention since
orbital stability is a pertinent property in the realm of nonlinear
oscillators, as in the case of power generators.
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